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Resumen

La inflación cósmica fue propuesta para resolver algunos de los problemas llamados "fine-tuning" de la teoría del
"Big Bang Caliente", como el problema de la planitud y el problema del horizonte. Este enfoque requiere la selección
de un potencial que guíe esta época de inflación. Para este trabajo, se selecciona el modelo Hilltop cuártico, que tiene
un parámetro libre cuyo comportamiento afecta directamente los observables obtenidos en este estudio. Se obtienen
resultados sobre el espacio sin perturbaciones y un par de características observacionales, como el índice espectral
escalar nS, la razón tensor-escalar r, y el espectro de potencia escalar PS. Estos resultados se comparan con informes
observacionales como el de Planck 2018. Finalmente, se concluye que este modelo es altamente favorecido por los
resultados experimentales de Planck y que existe un rango de parámetros para los cuales hay una intersección entre
el conjunto de resultados numéricos y observacionales.

Palabras Clave: Cosmología, Inflación, Slow-roll, Espectro de potencia, Potencial Hilltop.



Abstract
Cosmological inflation was proposed to solve some of the fine tunning problems with the Hot Big Bang theory

such as flatness and horizon problems. This approach requires the selection of a potential that drives this epoch of
inflation. For this work we selected the Hilltop quartic model, that has a range of free parameters which behavior
affects directly observables obtained from this work. We use two approaches: slow-roll approximation and numerical
calculation. We obtained results for the background and a couple of observational features like: scalar spectral index
nS, tensor-scalar ratio r, and scalar power spectrum PS. These results are compared to observational reports such as
the Planck 2018 results. Finally, we conclude that this model is highly favored by Plank’s results and that exists a
range of parameters for which there is an intersection between numerical and observational results.

Keywords: Cosmology, Inflation, Slow-roll, Power Spectrum, Hilltop potential.

xi



Contents

List of Figures xiv

List of Tables xvi

1 Introduction 1
1.1 Hot Big Bang Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Horizon Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Flatness Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 General and Specific Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Methodology 9
2.1 Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Inflation Solution for Horizon Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Inflation Solution for Flatness Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Scalar field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Slow Roll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Hilltop Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Results & Discussion 19
3.1 Slow-Roll Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Slow Roll Background Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Slow Roll Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Numerical Background Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Numerical Perturbation Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Conclusions & Outlook 33

xiii



A Mathematica Code Used 35

Bibliography 47

xiv



List of Figures

2.1 Hilltop potential for different values of the parameter µ: µ = 18 (blue), µ = 25 (orange), and µ = 30
(green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 First slow roll parameter against the value of ϕ, for values of µ = 1 (blue) and µ = 2 (orange). . . . . 20
3.2 Relation between ϕend and µ, showing a linear pattern. . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Relation between ϕini and µ for N = 60 (blue), and N = 50 (orange). . . . . . . . . . . . . . . . . . 22
3.4 Relation between free parameter M and µ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Plots of solutions of the background equations of motion under the slow-roll approximation, for scale

factor a and inflaton field ϕ, for a fixed value of the parameter µ = 20. . . . . . . . . . . . . . . . . 23
3.6 Plots of Scalar perturbation spectrum for different values of parameter µ: 20 (blue), 30 (orange), 40

(green), and 50 (red), into the slow roll approximation for N = 60. . . . . . . . . . . . . . . . . . . 24
3.7 Plots of relation of observable against the parameter µ for N = 50 (blue) and N = 60 (orange) for

slow roll approximation. a) profile of spectral index nS(k) evaluated at k = 0.002 Mpc−1 against µ,
b) profile of tensor scalar ratio r(k) evaluated at k = 0.002 against µ and c) profile of spectral index
nS(k) evaluated at k = 0.002 Mpc−1 against tensor scalar ratio r(k) evaluated at k = 0.002 Mpc−1 . . 25

3.8 Plots of numerical solutions (solid) and slow roll (dashed) of the background equations of motion,
for scale factor a and inflaton field ϕ, for a fixed value of the parameter µ = 20. . . . . . . . . . . . 26

3.9 Relation of conformal η and cosmic time t for µ = 20 and N = 60. . . . . . . . . . . . . . . . . . . 27
3.10 Plots of the components of νk evaluated at pivot scale k = 0.05 Mpc−1 for different parameters of

the model a) and b) represents real and complex components comparing between N = 60 (blue)
and N = 50 (orange) and with black and brown points representing the point of horizon crossing
in each respective case, both with a fixed parameter µ = 20. c) and d) represents real and complex
components comparing between two different values of µ: µ = 20 (blue) and µ = 30 (orange). Black
and brown points represent the horizon crossing in each case . . . . . . . . . . . . . . . . . . . . . 28

3.11 Comparison of numerical (solid curves) and slow roll (dashed curves) results of nS(k) and r(k)
evaluated at k = 0.002 Mpc−1, compared for different values of µ, considering N = 60 (blue) and
N = 50 (orange), also it is shown values of observational results obtained by Planks 20181 (black):
nS = 0.9649 ± 0.0042 and r < 0.056. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

xv



3.12 Relation between numerical calculation of nS(k) vs r(k) evaluated at k = 0.002 Mpc−1 for different
values of µ considering N = 50 (orange) and N = 60 (blue). . . . . . . . . . . . . . . . . . . . . . . 30

3.13 a) Scalar perturbations spectrum from numerical approach against k, b) Log plot of scalar perturbation
spectrum, both for µ = 20 (blue), µ = 30 (orange), µ = 40 (green), and µ = 50 (red).c) Comparison
between slow roll (dashed) and numerical (solid) result of PS(k) for µ = 20 (blue) and µ = 30 (orange). 31

xvi



List of Tables

3.1 Values of tend for parameter selection µ = 20, for N = 60 and N = 50. . . . . . . . . . . . . . . . . 26

xvii





Chapter 1

Introduction

Since the work of Einstein, with the development of the general relativity, a completely new field of study was
created. If it is considered the Universe as a whole, then start to appears some interesting features. Friedmann was
one of the firsts to propose solutions to the Einstein Field Equations, and with this, opened the road to a new special
feature for the universe, solutions obtained by Friedmann gave as result a universe that evolves in time2.

One of the main considerations done by Friedmann when he obtained the equations of evolution of the Universe,
was that it is homogeneous and isotropic. That it would be homogeneous means that the density of matter will follow
a constant distribution, of course this is at large scales, when it considered from a cosmological scale. With this in
mind it is unlikely that all the matter that it can be seen from the Earth were just getting apart from the observation
point. And isotropic refers to the characteristic that Universe is equal in any direction of observation. This means
that no matter where the observational point is set in the whole universe, it will look just the same than any other
point.

In the very first years of this consideration there was a real controversy about how evolves the universe. Does
it expands?, or is it static? The importance of these questions relies on the justification for the introduction of the
cosmological constant, which, according to Einstein, was necessary if one is trying to explain an static universe.

It was until the discovery of Hubble and Lemaitre, at the end of the decade of 20’s3, when this discussion reach
a solution. They found independently a direct relation between the velocity at which a galaxy moves from the earth
and the distance at which it is located4, this relation is known as the Hubble parameter. The universe expands and it
does in a very important and intriguing way. With this in mind, not much time passed before the idea of expansion
appeared. Taking into consideration the arrow of time, Lemaitre postulate another idea: what if all the things that
we know comes from one single point? A point as the origin of all the universe5, this was later called the Big Bang
theory.

This approach is also refereed to as Hot Big Bang Theory because it takes the origin of the universe as a hot and
very dense singularity point from which all the universe evolves. The main problems with Hot Big bang theory are
related to how likely the conditions needed are to result in the current universe, given the measurements that have
been made about how it evolves. This situation results in a fine tuning selection of circumstances. The two problems

1



2 1.1. HOT BIG BANG THEORY

that are most mentioned in literature are the horizon problem, and the flatness problem.

1.1 Hot Big Bang Theory
To better understand the aim of this work, it is necessary to recover some of the most fundamental aspects of the
framework in which inflation appears. Hence, some concepts with significant importance in the development of the
classical Big Bang theory or Hot Big Bang theory will be reviewed. The first thing that is necessary to comprehend
is that the "Big Bang Theory" is a theory that does not explain why the universe emerged. Additionally, this theory
does not explain in detail the conditions and characteristics of the explosion to which the term "Big Bang" makes
reference. Instead, it is a theory that allows us to calculate and to understand what happened after this moment.

Recovering the idea of the cosmological principle, homogeneity and isotropicness of the universe at large scales
can be expressed through the Friedmann-Robertson-Walker (FRW) metric6 7 8.

ds2 = −dt2 + a2(t)
[

dr2

1 − kr2 + r2(dθ2 + sin2θdϕ2)
]
. (1.1)

Where a(t) is the scale factor, and k is the term that refers the curvature parameter and can take values of k = −1,
k = 0, and k = +1, for negatively curved, flat curved and positively curved, respectively9. These curvature shapes
are related to specific kind of geometry: hyper spherical, euclidean and spherical geometry, respectively10. Also,
this line element is written in polar coordinates form (t, r, θ, ϕ). In order to deal with this metric, it is necessary to
use the Einstein Field equations:

Gµν = 8πGTµν. (1.2)

Where G is Newton’s gravitational constant, and the term Tµν is the energy-momentum tensor. Also, the term Gµν

refers to the Einstein tensor:
Gµν = Rµν −

1
2

Rgµν. (1.3)

With the term Rµν for the Ricci Tensor, R as the Ricci Scalar and gµν the metric. Tµν includes properties of
the relativistic fluid considered to model the universe11. In this case, it is a perfect fluid; in that way the tensor is
expressed as:

T ν
µ =


−ρ(t) 0 0 0

0 p(t) 0 0
0 0 p(t) 0
0 0 0 p(t)

 . (1.4)

This perfect fluid is considered with features: energy density ρ(t) and pressure p(t), which are related through
the equation of state:

p(t) = wρ(t). (1.5)
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With this in mind, depending on the composition of the universe the value of the equation of state coefficient w
will change, for example for radiation dominated universe w = 1/312, and for a matter dominated universe w = 013.

Solving for the FRW metric and replacing non zero terms of the Ricci and Einstein tensor into Eq. 1.2, two
equations are obtained, one for solving the time-time components and the other for space-space terms14. The first
one is the Friedmann Equation. ( ȧ

a

)2
+

k
a2 =

8πG
3

ρ. (1.6)

Where a is the scale factor. For the case of flat universe, Friedmann equation is reduced to:( ȧ
a

)2
=

8πG
3

ρ. (1.7)

The second expression is an intermediate step14:

2
ä
a
+

( ȧ
a

)2
+

k
a2 = −8πGp, (1.8)

from which can be obtained the acceleration equation15:
ä
a
= −

4πG
3

(ρ + 3p) . (1.9)

Also from the momentum conservation law ∇µTµα = 0, the expression for the energy conservation is obtained,
relating the terms of the derivative of the energy density, pressure and energy density10:

ρ̇ + 3
ȧ
a

(p + ρ) = 0. (1.10)

1.1.1 Horizon Problem

The horizon problem refers to the limits of causality at the recombination epoch16. What if two points were
causally disconnected at that time? How should that affect the homogeneity of the universe? The comoving
distance for the travel of interaction before Cosmic Microwave Background was created, is according to calculation
∼ 180Ω−1/2

0 h−1 Mpc−1. If this value is compared with the comoving distance that radiation travels after decoupling,
which is ∼ 5800h−1 Mpc−1, the first one is considerable smaller17.

This would mean that the possibility of a causal connection of different point separated by a greater distance
than the Hubble radius should not be possible. At least before of this epoch, those regions were closer, so they could
be causally connected. Then, how it is possible that measurements indicate that the thermal black body spectrum is
highly homogeneous around the temperature of T = 2.7 ± 10−5K 18.

This problem is better explained when the angular diameter of the horizon at the epoch of recombination, seen
by an observer today, is calculated. In that way, it is possible to realize the level of fine-tunning needed to accomplish
these conditions.

Following the calculation done by Martin19, it is calculated the relation between the size of the horizon at the
last scattering and the present angular distance to the last scattering.

∆Ω =
dH(tls)
dA(tls)

, (1.11)
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where dH(tls) represents the size of the horizon evaluated at epoch of last scattering, and dA(tls) is the present angular
distance to the last scattering moment. Now, it is explained how to obtained these two quantities.

For this, a special coordinate systems is considered, one in which the origin is on Earth. Then a photon could
be emitted from spacial comoving coordinates (rem, θem, ψem), but in this case using cosmic time tem. Due to the
solution to the geodesic equation, it is known that the calculation of the path followed by the emitted photon can be
chosen in a way that coordinates θ and ψ keeps constant. As a consequence, the path can be characterized by the
coordinate r, that will be a function of time, r(t).

r(t) = rem −

∫ t

tem

dτ
a(τ)

. (1.12)

Then, it is necessary to obtain an expression for the proper distance from the position of the emitted photon at
time t to the origin. This quantity is what is called the size of the horizon at time t = trec, a given reception time.

dp(t) = a(t)
[
rem −

∫ t

tem

dτ
a(τ)

]
. (1.13)

The comoving coordinate of emission is obtained when this value dp(trec) = 0. Then:

rem =

∫ trec

0

dτ
a(τ)

. (1.14)

Having this, it can be written the distance to the horizon at time t = trec. And consider that it can be taken at any
time like t = tls, then we have the first term for our expression of ∆Ω.

dH(trec) = a(trec)rem. (1.15)

Now, for the second, it is considered the distance from a point where is emitted a photon at time t = tem that
arrives to the earth right now.

rem =

∫ t0

tem

dτ
a(τ)

. (1.16)

This value is used to calculate dA:
dA = a(tem)rem. (1.17)

For this expression it is evaluated again at t = tls:

dA(tls) = a(tls)rem. (1.18)

After this:

∆Ω =

[∫ tls

0

dτ
a(τ)

]
×

[∫ t0

tls

dτ
a(τ)

]−1

. (1.19)

where the terms a(tls) are cancelled out, and the expression just relates the term rem.
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The next step is to consider an expression for the quantity a(t) and evaluate it in the equation above. Hence,
Martin19 makes the assumption of a universe that is radiation-dominated before the recombination epoch and after
that is matter-dominated. Under this approach the epoch dominated by radiation is interrupted ti < t < tend during
which inflation occurs, when appears the effect of and unknown fluid X, that follows a fixed equation of state that
keeps constant with the parameter ωx.

Then it is used the following piece-wise function, that is continuous and it is also its first derivative.

a(t) =


ai(2Hit)1/2 , 0 ≤ t < ti

ai
[

3
2 (1 + ωx)Hi(t − ti) + 1

] 2
[3(1+ωx )] , ti ≤ t < tend

aend [2Hend(t − tend + 1)]1/2 , tend ≤ t < teq

aeq
[ 3Heq

2 (t − teq) + 1
]2/3

, teq ≤ t < t0

. (1.20)

where the subscript eq in parameters refers to the epoch of equilibrium, when the density of radiation and the
density of matter become comparable, in the middle time between the epoch of the dominance of radiation and
matter.

Then evaluating in expressions above, Eq. 1.15 and Eq. 1.18, it is obtained.

dA(tls) = als

∫ t0

tls

dτ
a(τ)

, (1.21)

= als
2

a0H0

1 − (
als

a0

)1/2 , (1.22)

dH(tls) = als

∫ tls

0

dτ
a(τ)

, (1.23)

= als
1

a0H0

(
als

a0

)1/2
1 +

1 − 3ωx

1 + 3ωx

aend

als

1 − (
ai

aend

) (1+3ωx )
2


 . (1.24)

The final expression, which is obtained evaluating Eq. 1.22, and Eq. 1.24, into the Eq. 1.11.

∆Ω =
1
2

[
1 − (1 + zls)−1/2

]−1
(1 + zls)−1/2

{
1 +

1 − ωx

1 + 3ωx

1 + zls

1 + zend

[
1 − e−N(1+3ωx)/2

]}
. (1.25)

where N ≡ ln(aend/aini) refers of the number of e-foldings, which represents the times the universe has increases
their size when it has been inflated or in other words the amount of inflation. For this case, it will be taken N = 0,
the case of no inflation. Then, the expression approximates as:

∆Ω ≈ 0.5(1 + zls)−1/2 ≈ 0.85◦. (1.26)

What this calculation reveals is that the angular diameter of causal connected space at that time is less than
1◦ 19. The sky would be full of patches of that angular diameter with different properties between them, making the
homogeneity between them improbable. This situation and the fact that it is not seen in this way from observations
what carries the thoughts to the called horizon paradox problem. In next sections it will be discussed how inflation
solves this paradox.
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1.1.2 Flatness Problem

The flatness problem comes from other fine-tuning situation, one that relates to the geometry of the universe and
energy density in it. As a result, it is seen the universe as extremely flat. The problem comes when it is noticed
that this situation is highly unlikely16. To better understand this problem, it is useful to use the definition of density
parameter Ω.

Ω ≡
ρ

ρcri
. (1.27)

where ρ represents the energy density and ρcri represents its critical value, that marks the value for which the universe
would be completely flat19. That follows the expression:

ρcri(t) =
3H2

8πG
. (1.28)

The measurement value of this parameter is currently obtained in the range 0.995 < Ω0 < 1.00520, showing that our
universe is very close to being flat. Considering this definition, it will be used the Friedmann equation, which will
be developed in the following chapter, in the form:

|Ωtot(t) − 1| =
|k|

a2H2 . (1.29)

Where Ωtot represents the sum over all the kind of matter that exist in the universe. Also what can be obtained from
the equation above is the relation of the curvature term k and the energy density term Ωtot as well as their evolution
on time14.

For the case where Ωtot = 1, it is found that the term of curvature has to maintain the value k = 0, this means that
if the universe is flat, it will keep flat. Otherwise, the density parameter will change with time11. If it is analyzed
more deeply, it is found that the relation of the term a2H2 evolve in some way with time depending of the dominance
of matter in the universe.

a2H2 ∝ t−1 radiation dominated time;
a2H2 ∝ t−2/3 matter dominated time;

(1.30)

Then using the relation of the Friedmann equation, Eq. 2.18, they becomes:

|Ωtot − 1| ∝ t1 radiation dominated time;
|Ωtot − 1| ∝ t2/3 matter dominated time;

(1.31)

As can be seen, the difference between the density parameter Ωtot and unity is a functions that increase as the
age of the universe evolves. This means that the situation of exact flatness is an unstable state14. If, at some point,
the density parameter deviates significantly from 1, then it will get more and more different. If this parameter is
grater than 1, it would evolve increasing this value until the universe collapse due to gravity, this is the close model
universe. And if the parameter is less than 1 then the gravitational attraction would become weaker and weaker,
carrying the expansion rate asymptotically to a constant, this is the open universe model21. This means that in order
to have at this epoch a density parameter so close to 1, at early age of the universe this value had to be extremely
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close to the unity. If it is taken, for example, the time of nucleosynthesis, approximately 1s after the Big Bang, it is
required11:

|Ωtot(tnuc) − 1| ≲ 10−16. (1.32)

The fine-tunning problem comes when it is analyzed how unlike is that this value is so small. In next chapter it
will be explained how inflation solves this puzzle.

1.2 Problem Statement
Considering these puzzles, it was necessary a mechanism to explain why the universe starts with those so unlikely
conditions. Before inflation, there were consider as curiosities, and working on Big Bang theory relied on making
these assumptions. In that way, inflation explains and establishes causal relations for the conditions needed to the
formation of the universe. The flatness and horizon problems are just a couple of the issues that inflation solved;
it also helped to better understand the formation of large scale structure of the universe and the heterogeneity of
the Comic Microwave Background (CMB) temperature spectrum. In next chapter, it will be discussed further the
mechanism and definition of the inflation theory.

In the field of inflation research, one of the main branches involves the analysis of different inflation potentials.
For this purpose there have been developed several models that tries to explain features of the early universe and
consequences that can be seen from this epoch. The way in which these potentials are studied and contrasted with
observations is mainly through perturbation theory. This involves perturbing the usual metric of the universe, a
concept that will be explained in more detail later. From this analysis there are obtained scalar and tensor perturbation
spectrum, which serve as observables for cosmological experiments conducted in projects like COBE or Planck1.

It is also important to consider that Planck Collaboration is not the only work dedicated to make measurements
about inflation. For example BICEP/Keck Collaborations that measure the polarization of the CMB specifically
for the B-modes, and whose last results shows a new constraint for tensor-scalar ratio r < 0.036 in the 95% CL.22

While experiments like Atacama Cosmology Telescope has observed some results that creates a tension with the
ones reported by Planck satellite. This "CMB tension" has been measured in the range 1.8σ to 3.5σ depending of
the extended model, starting from the ΛCDM baseline23.

The comparison between observational parameters and observables obtained from the study of potentials allows
the constraining of certain models and the rejection of others when the data is sufficiently accurate. In this work, it
is taken one of this potentials, the Hilltop model, which is developed with more detail later.

1.3 General and Specific Objectives
This work is divided into three chapters. In the first one,an introduction to the work is provided, where is explained
some of the basic concepts necessary to understand further analysis. Also, certain features of the Hot Big Bang
Theory are discussed, along with some of its puzzles or fine-tuning problems that eventually lead to the development
of the inflationary theory. In the second chapter, the theoretical basis used for this work is explained in more
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detail. Inflation and perturbation theory are elaborated upon, along with all the numerical aspects considered for the
computational approach of this work. Third chapter is about results, they are separated in background calculation
and perturbation calculations The approach used for the analysis, both numerical and slow roll, is discussed as well.
Finally in the conclusion chapter, a summary of the topics developed in this work is provided, along with the final
insights obtained from the analysis of the Hilltop model.

Einstein summation convention is used for this work. As usual, greek indices runs from 0 to 3 and latin indices
from 1 to 3. The signature of the metric is (−,+,+,+). Also values as ℏ and c are taken as 1.



Chapter 2

Methodology

2.1 Inflation
In 1981 Alan Guth proposed the idea of inflation in an attempt to solve some problems with the "Hot Big Bang
Theory": horizon and flatness are some of them16. Inflation refers to a period of rapidly expansion for the universe
placed after the beginning of the time refereed by Big Bang. This expansion would follow an exponential behavior.
Mathematically this fact about expansion is described as14:

ä(t) > 0. (2.1)

With this condition in mind, it can be evaluated in acceleration equation, Eq. 1.9, which tells:

ρ + 3p < 0, (2.2)

as a consequence. Then as the energy density is considered as a positive number, it results:

p < −
ρ

3
. (2.3)

For inflation to occurs it is necessary a negative pressure exotic matter. The condition described in Eq. 2.1 can be
described also in the following way:

d
dt

H−1

a
< 0. (2.4)

Where the term H−1

a is the Hubble length, which for occurring inflation has to be a decreasing value in time.
Other way to see this condition is:

−
Ḣ
H2 < 1, (2.5)

9
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that tells that for inflation era, H varies slowly on Hubble timescale. Also notice that if Ḣ ≪ H2, H would be almost
constant and it would result in an almost exponential expansion a ∝ eHt 11.

Now it will be developed how inflation solves horizon and flatness problems from the classic Big Bang theory.

2.1.1 Inflation Solution for Horizon Problem

For solving the horizon problem, it is necessary to consider Eq. 1.25 and how the term N that relates the amount
of inflation with the size of the horizon at the time of last scattering. The condition for solving this problem can be
written as ∆Ω > 4π that refers to obtaining a last scattering surface very isotropic19, in that way can be explained
the lack of expected heterogeneity. This condition is used as constrain to obtain:

N ⪆ −4 + ln zend. (2.6)

This result shows that exist a number of e-foldings for which the condition to solve the horizon problem is met.
Considering that redshift at the end of inflation,zend, is in the order of ∼ 1026 24, then the number of e-foldings:

N ⪆ 55 (2.7)

2.1.2 Inflation Solution for Flatness Problem

For solving the flatness problem thought the way of inflation it is necessary to consider that for the epoch at which it
occurred, the redshift has to be z ≫ zend, and for this time it is considered that the universe is full with some exotic
unknown matter, different from usual matter or radiation, that will be refered as X, characterized by the equation
of state ωx. This equation of state can be chosen in a way that allows that ΩT − 1 be close to zero19. Also for this
purpose it is useful to write ΩT in function of the scale factor a(t)19, then it is obtained

ΩT(a) =
N∑

i=1

Ωi(t0)
(

a
a0

)−3(1+ωi)


N∑
j=1

Ωj(t0)
(

a
a0

)−3(1+ω j)

− [ΩT(t0) − 1]
(

a
a0

)−2

−1

. (2.8)

Considering that for inflation it is necessary to deal with this unknown matter, it is useful to writeΩT in relation with
the density parameter of this new matter ΩX

ΩT =
ΩX(ai)

ΩX(ai) + [1 −ΩT(ai)]
(

a
ai

)1+3ωX
. (2.9)

At the time of the end the the inflation the value of the scale factor a(tend) makes this expression above tend to 1
when the condition 1 + 3ωX is fulfilled, this situation is maintained for all the time the matter X dominates. This is
the mathematical description of negative pressure material, necessary for inflation.

It is possible also, to obtain information about the amount of inflation needed to solve the flatness problem. For
that it is necessary to look for the value of N that could carry ΩT very close to the unity at the end of inflation, so
that, it still maintain considerable close to one still after radiation and matter domination on the universe.
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(
aend

ai

)1+3ωX

= eN(1+3ωX) ≲ 104 × z−2
end, (2.10)

which can be expressed as:
N ≳ −4 + ln zend. (2.11)

This is the same condition obtained from the solution to the horizon problem.

2.2 Scalar field
Going further in inflation propose, it is necessary to consider that if happened, it was at a very early time in the
universe. This implies that this process occurred a very high energies, then the better way we can understand a
process like this is with quantum field theory resources. In fundamental physics features of any system can be
specified using the Lagrangian expression, that is used to define the action:

S =
∫ ∞

−∞

Ldt, (2.12)

where L refers to Lagrangian. L depends of the degrees of freedom of the system, in that sense it is considered a
finite system, with finite number of particles, and finite number of coordinates. But when it is tried to specify the
behavior of a system with infinity degrees of freedom, because in the field sense this exist everywhere, it is necessary
to change the formulation. In that way appears the definition of Lagrangian density L

L =
∫
Ld3r, (2.13)

that is a Lorentz invariant quantity, and has units of [energy]4. L is a function that depends on the fields, that are
defined, as well as on their derivatives respect to space and time. In a significant portion of the literature, a specific
kind of model is considered, employing a scalar field formulation17, where ’scalar’ denotes a field with spin-0,
similar to the Higgs boson.

Considering the term of the action that contains only the scalar field ϕ, that is taken as decoupled from other
fields where V(ϕ) refers to some free function, a potential that is constrained after for having some properties, and
the first term is known as kinetic term. Then if it is used relativistic index notation, where coordinates are expressed
as xµ ≡ (t, r) ≡ (x0, xi), the relation of action would be19:

S = −
∫

d4x
√
−g

[
1
2

gµν∂µϕ∂νϕ + V(ϕ)
]
. (2.14)

Where g is the determinant of the metric tensor. This action describes a universe driven by a scalar field, ϕ(t, x),
that depends on time and position. However, as will be shown, due to symmetry of stress-energy tensor, it will
depend only on time ϕ(t). This field is called inflation25. The stress energy tensor can be obtained from Noether’s
theorem or from the calculation of the action of scalar field17 25. And it is expressed in the following way:

Tµν = ∂µϕ∂νϕ − gµν

[
1
2

gαβ∂αϕ∂βϕ − V(ϕ)
]
. (2.15)
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It is obtained from time-time component of stress-energy tensor T 0
0 = ρ that:

ρ =
1
2
ϕ̇2 + V(ϕ). (2.16)

Considering that developing the space-space component T i
j = −pδi

j, and the total energy density ρ is the sum of
kinetic and potential terms, then:

p =
1
2
ϕ̇2 − V(ϕ). (2.17)

Having this relations it is possible to evaluate Friedmann and energy conservation equations, Eq. 1.7 and Eq.
1.10, respectively, with the pressure and energy density terms. From them it is obtained:

H2 =
1
3

[
1
2
ϕ̇2 + V(ϕ)

]
, (2.18)

ϕ̈ + 3Hϕ̇ + V ′ = 0, (2.19)

where V ′ represents the derivative of the potential respect of the field ϕ. The first equation is known as the Friedmann
equation and the second Klein-Gordon equation25. These pair of expressions are called the equations of motion of
a scalar field driven universe.

2.3 Slow Roll
Having this set of equations it is possible to select a given potential and solve Friedmann and Klein-Gordon equations
in order to obtain the evolution of the field ϕ(t) and scale factor a(t). But it is useful to approximate these equations
in order to make the process of solving less complex. If it consider the case when potential energy V(ϕ) dominates
over the kinetic energy, then is obtained the called slow roll approximation.

Notice also that Eq. 2.19 looks like a harmonic oscillator equation, with a friction term proportional to the
Hubble parameter H. For that case it is known that for large values of the friction term the system will be damped
making the acceleration term ϕ̈ negligible26. Mathematically this will approximate Eq. 2.18 and Eq. 2.19 to the
following expressions:

H2 ≃
1
3

V(ϕ), (2.20)

3Hϕ̇ ≃ −Vϕ. (2.21)

For slow roll approach there are defined some parameters that give features and let to know if conditions of
inflation are been accomplished. Mainly there are two kinds: the first one are defined of function of the Hubble
parameter, they are also called Hubble flow parameters, which characterise the way Hubble parameters evolve in
time27. These are defined in the following way:

ϵH(ϕ) =
[

H′(ϕ)
H(ϕ)

]2

, (2.22)

ηH(ϕ) =
H′′(ϕ)
H(ϕ)

. (2.23)
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Also slow roll parameters can be defined in function of the potential selected for the model of inflation28 29:

ϵV(ϕ) =
1
2

[
V ′(ϕ)
V(ϕ)

]2

, (2.24)

ηV(ϕ) =
V ′′(ϕ)
V(ϕ)

. (2.25)

These last equations requires not only the potential of inflation but also the information about how it evolves. For this
work are used both approaches, the second one is used in order to obtain values of the field at the end of inflation. And
the first approach is used for the calculation of the observables quantities under the slow roll paradigm. Conditions
for inflation in terms of these parameters are30:

ϵ(ϕ) < 1, (2.26)

|η(ϕ)| < 1. (2.27)

That is why for defining the end of inflation it is used the situation when one of those conditions are broken31, then:

ϵ(ϕend) = 1, (2.28)

|η(ϕend)| = 1. (2.29)

In next sections, it will be discussed about mentioned observable quantities and how are they obtained from
perturbations theory and how slow roll can be used to compute them.

2.4 Perturbation Theory
After studying background solutions for the inflationary epoch, it is studied perturbations created during that time.
This is done in order to understand how these perturbations become inhomogeneities, leading to the formation of
large-scale structure of the Universe that can be observed today. The basic idea of this is that there were some
primordial perturbations that grow up and increase their amplitude because of gravitational instabilities, then as a
consequence all the structures in the universe take form32.

To study these perturbations there is developed cosmological perturbation theory that tries to study the origin and
evolution of small perturbations from homogeneity and isotropic solutions17. For that, there are considered three
kind of perturbations: scalar, vector, and tensor ones, but for inflation the effect of vector perturbation is neglected
because they are no caused by inflation28.

The way this analysis is by done is considering coupled linear differential equations for each kind of perturbations,
in that way, ones can be studied while the effect of the other are not taken into account. This treatment also let to
study perturbations separately from background solutions. With that aim, gauge variables33 and perturbations are
defined in order to obtain a situation where, in the absence of perturbations the system will return to usual background
state17.

In that way, it will be considered a perturbed FRW metric for a flat universe under the longitudinal gauge32.
Whose line element is given by:
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ds2 = − [1 + 2Φ(t, x)] dt2 + a2 [1 − 2Ψ(t, x)] δi jdxidx j, (2.30)

whereΦ(t, x) andΨ(t, x) are the gauge invariant variables. Then for obtaining equation of perturbations it is necessary
to solve Einstein’s equation for this perturbed metric:

δGµ
ν ≡ δR

µ
ν −

1
2
δ
µ
νδR = 8πGδT µ

ν , (2.31)

where δGνµ represent the perturbed Einstein tensor, δRµ
ν is the perturbed Ricci tensor, δR is the perturbed Ricci

scalar, and δT µ
ν the perturbed stress-energy tensor. Then the metric that is considered is the following:

gµν =


−1 − 2Φ(t, x) 0 0 0

0 a2 [1 − 2Ψ(t, x)] 0 0
0 0 a2 [1 − 2Ψ(t, x)] 0
0 0 0 a2 [1 − 2Ψ(t, x)]

 . (2.32)

Having that this metric is a diagonal matrix, the contravariant metric would be given by the inverse of each of the
components.

g00 = −
1

1 + 2Φ
, (2.33)

gii =
1

a2(1 − 2Ψ)
, (2.34)

expressions that can be approximated considering that Ψ and Φ are small:

g00 = −1 + 2Φ, (2.35)

gii =
1
a2 (1 + 2Ψ). (2.36)

Tapia and Rojas32 developed this calculation explicitly, computing perturbed quantities of the Einstein tensor Gµ
ν

and stress-energy tensor T µ
ν up to first order and they were obtained the following set of equations:

∇2Φ − 3HΦ′ −
(
H ′ + 2H2

)
Φ =

3
2

l2
(
φ′0δφ

′ + Vϕa2δφ
)
, (2.37)

Φ′ +HΦ =
3
2

l2φ′0δφ, (2.38)

Φ′′ + 3HΦ′ +
(
H ′ + 2H2

)
Φ =

3
2

l2
(
φ′0δφ

′ − Vφa2δφ
)
, (2.39)

where H = a′
a , and its relation with H is H = H/a, and the terms φ0 and δφ are part of the definition of the

perturbed inflaton field:
φ(t, x) = φ0(t) + δφ(t, x), (2.40)

with φ0 as the background field, and δφ is the linear perturbation. Also the term Vφ represents the derivative of the
potential with respect to the inflaton field.
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After combining perturbation equations described above, the following expression results:

Φ′′ − ∇2Φ + 2
(

a
φ′0

)′ ( a
φ′0

)−1

Φ′ + 2φ′0

(
H

φ′0

)′
Φ = 0, (2.41)

or,

σ′′ − ∇2σ − zs

(
1
zs

)′′
σ = 0. (2.42)

Considering for this last expression the following definitions: σ =
(
a/φ′0

)
, and zs = (aφ′0)/H . This equation describes

the evolution of perturbations in a classical way, and is used for the situation when perturbations have crossed the
horizon. Then, in order to understand dynamics of perturbations before the horizon crossing, it is necessary to use
to quantize term, this procedure is developed by Deruelle34. It is defined the gauge invariant variable:

u = a
[
δφ +

φΦ

H

]
, (2.43)

which is related to σ in the way:

u =
2

3l2

(
σ′ +

z′s
zs
σ

)
, (2.44)

then using Eq. 2.42 it can be obtained:

∇2σ =
3
2

l2zs

(
u
zs

)′
. (2.45)

Finally, this equation can be expressed as:

u′′ − ∇2u −
z′′s
zs

u = 0, (2.46)

that after a Fourier transformation is obtained in function of the mode vk, where k is the wave number:

u′′k +
(
k2 −

z′′s
zs

)
uk = 0, (2.47)

that is also known as the Mukhanov-Sasaki equation35. According to Tapia36, for modeling the behavior of
perturbations can be used separate expressions, one for scalar and the other for tensor ones. Eq. 2.47 is the
expression for scalar perturbation dynamics and the following expression correspond to the tensor case37:

v′′k +
(
k2 −

a′′

a

)
vk = 0. (2.48)

From the solution for these differential equations, there are obtained the modes uk and vk, that are used for the
definition of cosmological observables. There will be defined power spectra of scalar and tensor perturbations38:

PS(k) = lim
kt→∞

k3

2π2

∣∣∣∣∣uk(t)
zs(t)

∣∣∣∣∣2 , (2.49)

PT(k) = lim
kt→∞

k3

2π2

∣∣∣∣∣vk(t)
a(t)

∣∣∣∣∣2 , (2.50)
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and with these quantities comes another that is in the same way useful in the process of constraining inflation
models, the tensor-scalar ratio37 r:

r(k) = 8
PT(k)
PS(k)

. (2.51)

In the same way are defined spectral indices for scalar and tensor perturbations37:

nS(k) = 1 +
d ln PS

d ln k
, (2.52)

nT(k) =
d ln PT

d ln k
. (2.53)

But there is another approach for obtaining the expression for the value of PS (k), it is usually used when treating
with observational data or when research is not biased by a selection of a potential. This is used as a generic function
that tries to model and fit the shape of the scalar spectrum as a power law39:

log PS(k) = log AS + (nS − 1) log
(

k
k∗

)
+

1
2
αS log2

(
k
k∗

)
+ ..., (2.54)

where AS is the amplitude of the spectrum, αS is the running parameter and k∗ is the pivot scale. In the same
way there exist and expression for the tensor spectrum1:

log PT(k) = log rAS + nT log
(

k
k∗

)
+ ..., (2.55)

2.5 Hilltop Potential
The mathematical expression for the Hilltop model of inflation is given by40:

V(ϕ) = M4
[
1 −

(
ϕ

µ

)p]
, (2.56)

where M is the normalization term, p is the power index and for this work it will be set on p = 4, because this model
has been more favored by the Planck results1, and finally the term µ is the parameter associated to the Plank mass.
Parameter p has to fulfil the condition p > 0 and µ can take any value40, but has to be accomplish also the condition
for small field limit ϕ < µ. This model is also called small field inflation. It appears in a great variety of proposes, in
superstring theories and non-linear sigma theories. The shape of the potential, seen in Fig. 2.1, is selected in order
to have a very flat potential at the begging of inflation , allowing for a slow roll phase where the potential term is
considerably greater than the kinetic term.
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Figure 2.1: Hilltop potential for different values of the parameter µ: µ = 18 (blue), µ = 25 (orange), and µ = 30
(green).





Chapter 3

Results & Discussion

Results obtained in this work will be separated in the following manner: first, the calculations for slow-roll parameters
are outlined. These calculations yield essential values, such as the field quantities at the end and beginning of inflation,
which are crucial for understanding the background dynamics. The outcomes of the slow-roll approximation and
numerical results for the background dynamics are then presented in the following section. After that, there are shown
perturbation analysis results and power spectra, along with the relationship of observable values like the spectral
index and tensor-scalar ratio. Again these results were obtained for slow-roll approximation and for numerical
results. Also, we note that all of this calculations were computed using a conventional laptop with AMD RYZEN
7 4000 series, using software Mathematica 13.341, where the development of calculation have taken several hours,
considering the range of parameters selected.

3.1 Slow-Roll Parameters
For Hilltop potential, the calculation of this quantities can be done analytically.

ϵ =
1
2

[
V ′(ϕ)
V(ϕ)

]2

, (3.1)

=
2p2

(
ϕ
µ

)2p

ϕ2
[(
ϕ
µ

)p
− 1

]2 . (3.2)

Considering that it is taken p = 4, because that is the model most favored by Plank’s results1, we obtained:

ϵ =
8ϕ6

µ8
(
1 − ϕ4

µ4

)2 . (3.3)

This relation is shown in Fig. 3.1 for different values of µ.

19
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Figure 3.1: First slow roll parameter against the value of ϕ, for values of µ = 1 (blue) and µ = 2 (orange).

Now for obtaining the value ϕend, we equal ϵ = 1, that is the conditions described in section 2 for the end of
inflation.

8ϕ6
end

µ8
(
1 − ϕ4

end
µ4

)2 = 1. (3.4)

Solving for ϕend, several solutions are obtained considering that we are dealing with a high-degree equation. However,
considering the conditions of the Hilltop model, real and positive solutions are chosen. Additionally, this value has to
be lower that the value selected for the parameter µ. According to1, the range of parameter µ for which this potential
has plausible solutions according to observations done by Plank’s 2018, is:

−2 < log10

(
µ

Mpl

)
< 2. (3.5)

As units used for this work consider the term of Planck’s mass as Mpl = 1, is obtained the following range:

0.01 < µ < 100. (3.6)

In Fig. 3.2, is shown the relation between the value chosen for the parameter µ, and its correspond value of ϕend

considering the condition for the end of the inflation. After this, for the calculation of the value of the field ϕ at the
beginning of the inflation it is necessary to consider the definition of amount of inflation, discussed in section 2.

N =
∫ ϕini

ϕ

V(ϕ)
Vϕ(ϕ)

dϕ. (3.7)

where ϕini represents the value of ϕ at the beginning of the inflation, and Vϕ(ϕ) represents the derivative of the
potential respect to the field ϕ. With this equation, we calculated the number of e-folding at given value of ϕ. In this
work the interest is in relating the quantity with a value for ϕini. Developing this relation, we obtain:



CHAPTER 3. RESULTS & DISCUSSION 21

0 20 40 60 80 100
0

20

40

60

80

100

μ

ϕ
en
d

Figure 3.2: Relation between ϕend and µ, showing a linear pattern.

N =
−ϕ2 + ϕ2

ini −
2
[
ϕ2

(
ϕ
µ

)−p
−ϕ2

ini

(
ϕini
µ

)−p
]

p−2

2p
, (3.8)

N =
1
8

µ4
 1
ϕ2

ini
−

1
ϕ2

 + ϕ2
ini − ϕ

2
 . (3.9)

Considering values for N = 50 and N = 60, according to the sections above, the conditions for the number of
e-folding for the validity of Inflation theory, which is calculated N ∼ 55. In that way, the following relations were
obtained for each value, as shown in Fig. 3.3.

Having calculated values for the field ϕ at the end and at the beginning of inflation, now it is possible to use
them to obtain solutions to the equations of motion of the universe. We will use these values to obtain solutions
to slow-roll approximated equations, and then use them to calculate solutions for numerical approach. In the same
way, during this process we will find the correct value for the M quantity, this value in the potential will help us as a
normalization constant.

3.2 Slow Roll Background Solutions
For solving equations of motion of universe for the slow roll approximation:

H2 ≃
1
3

V(ϕ), (3.10)

3Hϕ̇ ≃ −Vϕ. (3.11)

Considering that H = H(t) and ϕ = ϕ(t), we get:
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Figure 3.3: Relation between ϕini and µ for N = 60 (blue), and N = 50 (orange).

H2(t) ≈
1
3

V
[
ϕ(t)

]
, (3.12)

3H(t)ϕ̇(t) ≈ −
∂V

[
ϕ(t)

]
∂ϕ(t)

, (3.13)[
ȧ(t)
a(t)

]2

≈
1
3

V
[
ϕ(t)

]
, (3.14)

3
[
ȧ(t)
a(t)

]
ϕ̇(t) ≈ −

∂V
[
ϕ(t)

]
∂ϕ(t)

. (3.15)

After this procedure, the value of ϕ∗ is calculated. This value corresponds to the field at the horizon, and the
condition used to calculate it is given by:

k = a(t)H(t), (3.16)

where k represents the mode of oscillation, and for the purpose of this stage is taken k = 0.05.
Whit this is mind, there is developed a procedure in which is iterativelly calculated ϕ∗ until is obtained a

convergence of this value. Then, having ϕ∗ we used the equation that related the value of δR, reported by the Planck
collaboration1 in 2.1 × 10−9, to compute:

δR =
1

24π
V(ϕ)
ϵ(ϕ)

, (3.17)

and after developing it:

M4 =
12δR p2π2

(
ϕ∗
µ

)2p

ϕ2
∗

[
1 −

(
ϕ∗
µ

)]3 . (3.18)
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Note that this relationship requires as one of its inputs the value of ϕ∗, the field at the horizon. This quantity M
represents a free parameter that normalizes the scalar perturbation spectrum. In Figure 3.4, the relationship between
this value and the parameter µ is illustrated.
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Figure 3.4: Relation between free parameter M and µ.

Having calculated this value, we can proceed to compute the solutions for the equations of motion,specifically for
ϕ(t) and a(t), which are presented in Figure 3.5. Fig. 3.5a illustrates the solution for scale factor asr(t), showcasing
its exponential shape. Additionally, Figure 3.6b displays the solution for the inflaton ϕsr(t), that goes from ϕini to
ϕend, that in this case for the parameter µ = 20 are: ϕini = 11.838, and ϕend = 19.3287.
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Figure 3.5: Plots of solutions of the background equations of motion under the slow-roll approximation, for scale
factor a and inflaton field ϕ, for a fixed value of the parameter µ = 20.
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3.3 Slow Roll Perturbations
In previous chapter we have shown the development of the slow roll approximation and how this carry out to the
expressions for the equations for observables, PS(k), nS(k) and r(k).

PS(k) =
M4

144π2 p2

−12ϕ2
∗

[(
ϕ∗
µ

)p

− 1
]2

+ p
(
ϕ∗
µ

)p {
4 − 4p − 4

(
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)p

+ 5p
(
ϕ∗
µ

)p

+ 12C
[(
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µ

)p

+ p − 1
] }} (
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µ

)−2p [(
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µ

)p
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]
, (3.19)
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[
2 − 2p − (2 + p)

(
ϕ∗
µ

)p] (
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)p

ϕ2
∗

[(
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− 1
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r = 8p2

(
ϕ∗
µ

)2p

ϕ2
∗

[(
ϕ∗
µ

)p
− 1

]2 , (3.21)

where ϕ∗ is the value of the inflaton field at the horizon.
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(a) PS(k) × 10−9 vs k.
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(b) Log Plot PS(k) × 10−9 vs k .

Figure 3.6: Plots of Scalar perturbation spectrum for different values of parameter µ: 20 (blue), 30 (orange), 40
(green), and 50 (red), into the slow roll approximation for N = 60.

In Fig. 3.5 we show solutions under the slow roll approximation, illustrating the scalar perturbation spectrum
for different values of parameter µ, there are presented in normal scale and in log scale. This last provides a clearer
depiction of the differences between each of the cases, highlighting how the slope of the curve changes as it is
changed parameters of model.

Observables of the model are seen in Fig. 3.7, we present the relation of spectral index, tensor scalar ratio and the
parameter µ at the pivot scale k = 0.002 Mpc−1, and for values N = 50 and N = 60 into the slow roll approximation.
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(a) nS(k) vs µ at k = 0.002 Mpc−1.
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(b) r(k) vs µ at k = 0.002 Mpc−1.
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(c) nS(k) vs r(k) at k = 0.002 Mpc−1.

Figure 3.7: Plots of relation of observable against the parameter µ for N = 50 (blue) and N = 60 (orange) for slow
roll approximation. a) profile of spectral index nS(k) evaluated at k = 0.002 Mpc−1 against µ, b) profile of tensor
scalar ratio r(k) evaluated at k = 0.002 against µ and c) profile of spectral index nS(k) evaluated at k = 0.002 Mpc−1

against tensor scalar ratio r(k) evaluated at k = 0.002 Mpc−1

.

3.4 Numerical Background Solutions
For numerical resolution of background solutions we used complete equations of motion of the universe:

H2 =
1
3

[
V(ϕ) +

1
2
ϕ̇2

]
, (3.22)

ϕ̈ + 3Hϕ̇ = −Vϕ(ϕ). (3.23)

We used Mathematica function NDS olve to obtain a numerical result for each of the functions, the inflation field
ϕ(t) and a(t). And as initial conditions are used the result obtained from slow roll approximation in the last section
evaluated at t = 0.
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Figure 3.8: Plots of numerical solutions (solid) and slow roll (dashed) of the background equations of motion, for
scale factor a and inflaton field ϕ, for a fixed value of the parameter µ = 20.

In Fig. 3.8a we show the evolution of the scale factor a over cosmic time t, and in Fig. 3.8b we show the evolution
of the inflation field ϕ over cosmic time t, for number of e-folding N = 60 and parameter µ = 20. Also in both figures
in Fig. 3.8 it is compared numerical result and the result obtained from slow roll approximation, showing that for
most of the time the approximation works well, and the difference between them is small. However, for values of
time close to the end of the inflation, slow roll and numerical results start to separate, this difference can be seen also
in the calculated value for the tend, the time at the end of inflation, as it can be seen in tab. 3.1.

N µ Slow roll Numerical
50 20 3.07717 ×106 3.13727×106

60 20 4.35531 ×106 4.43099 ×106

Table 3.1: Values of tend for parameter selection µ = 20, for N = 60 and N = 50.

3.5 Numerical Perturbation Solutions
Numerical calculation of perturbations involve solving the Mukhanov-Sasaki equation for the variable νk, considering
it in cosmic time t form, when t is taken as independent variable. The relation between conformal η and cosmic time
t is given by the expression:

dt = adη. (3.24)

Fig. 3.9 shows this relation, solving for imposed condition η(tend) = 0. In that way we pass from perturbation
equations with derivatives with respect to conformal time:



CHAPTER 3. RESULTS & DISCUSSION 27

0 1 × 106 2 × 106 3 × 106 4 × 106

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

t

η
(t
)

Figure 3.9: Relation of conformal η and cosmic time t for µ = 20 and N = 60.

u′′k +
(
k2 −

z′′s
zs

)
uk = 0, (3.25)

v′′k +
(
k2 −

a′′

a

)
vk = 0, (3.26)

to equations with derivatives with respect to cosmic time:

ük +
ȧ
a

u̇k +
1
a2

[
k2 −

(ȧżs + az̈s)a
zs

]
uk = 0, (3.27)

v̈k +
ȧ
a

v̇k +
1
a2

[
k2 − (ȧ2 + aä)

]
vk = 0. (3.28)

From Eq. 3.27 and Eq. 3.28, functions uk and vk are complex, then they have a real and an imaginary component,
for that reason there are solved two differential equations for each of the expressions above. In the same way, these
equations are solved in two parts: the first in which is considered the case when k2 ≫

(ȧżs+az̈s)a
zs

and k2 ≫ (ȧ2 + aä) in
scalar and tensor perturbation equations respectively, this reduces equations to Eq. 3.29 and Eq. 3.30, and in second
place are considered full equations. This parts corresponds to solutions inside and outside the horizon respectively.

ük +
ȧ
a

u̇k +
k2

a2 uk = 0, (3.29)

v̈k +
ȧ
a

v̇k +
k2

a2 vk = 0. (3.30)

In Fig. 3.10 we show the result of scalar perturbation differential equation, Eq 3.27, for different sets of
parameters. Notice that Fig. 3.10a and Fig. 3.10c illustrate the solution of the real component of νk function, and
Fig. 3.10b and Fig. 3.10d the solution of the imaginary component. These figures show how change the νk function
when is changed the value of N: N = 60 and N = 50, and how they change after changing the value of µ: µ = 20 and



28 3.5. NUMERICAL PERTURBATION SOLUTIONS

µ = 30. They show that the effect after changing the value of e-foldings N is small, it can be seen, but for example
horizon crossing time is almost the same. But when it is seen the effect of changing parameter µ, this change is more
noticeable, in the shape and localization of the function, and in the location of the horizon crossing time, for both
real and imaginary components.
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(b) ℑ[ν0.05(t)] vs t for N = 60 and N = 50 with µ = 20.
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(c)ℜ[ν0.05(t)] vs t for µ = 20 and µ = 30.
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Figure 3.10: Plots of the components of νk evaluated at pivot scale k = 0.05 Mpc−1 for different parameters of the
model a) and b) represents real and complex components comparing between N = 60 (blue) and N = 50 (orange)
and with black and brown points representing the point of horizon crossing in each respective case, both with a fixed
parameter µ = 20. c) and d) represents real and complex components comparing between two different values of µ:
µ = 20 (blue) and µ = 30 (orange). Black and brown points represent the horizon crossing in each case .

After obtaining these solutions we used Eq. 2.49 and Eq. 2.50, that relate the result functions of differential
equations above, to obtain scalar and tensor perturbation spectrum for given pivot scale k∗. There are obtained values
for PS and PT , for values of k∗ from 0.001 to 2.5. The data is then used to fit and obtain the function based on the
shapes defined in Equations 2.54 and 2.55. This process yields coefficients, namely, the scalar spectral index nS and
the running index value α.
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(a) nS(k) against µ evaluated at k = 0.002 Mpc−1.
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(b) r(k) against µ evaluated at k = 0.002 Mpc−1..

Figure 3.11: Comparison of numerical (solid curves) and slow roll (dashed curves) results of nS(k) and r(k) evaluated
at k = 0.002 Mpc−1, compared for different values of µ, considering N = 60 (blue) and N = 50 (orange), also it is
shown values of observational results obtained by Planks 20181 (black): nS = 0.9649 ± 0.0042 and r < 0.056.

These results are presented in Fig. 3.11, each subplot show the behavior of spectral index nS(k) evaluated at
k = 0.002 Mpc−1 and the tensor scalar ratio r(k) evaluated at the same pivot scale. In plots we have shown how these
values change with the variation of the parameter µ, in the case of nS against µ plot, Fig. 3.11a, the value of nS

increases as the value of µ is incremented. This behavior is maintained for numerical and slow roll results, and also
the same behavior appears for N = 60 and N = 50. In the other side, the plot of the resulted values of r, the behavior
of slow roll and numerical approach are quite similar. Also it is noticed that for very small values of µ the values of
r get close for N = 60 and N = 50, reducing their difference.

Also, these results are compared with observational values. Fig. 3.11 shows a black region that represents these
quantities. It is observed that this area have overlapping regions with results obtained in this work. In the case of nS

values for which there is an agreement depends on the selected value of N. For the case of N = 60, there exist to
ranges of parameter µ for which is fulfil these condition: the first one that represent the observable obtained from
slow roll calculations (dashed curves) and the second one that is obtained from numerical approach (solid curves).
For the first condition the values are approximately 12 < µ < 26 and for the second condition 16 < µ < 56. It is
noticed that there exist a window for which both approaches converge. In the case of N = 50, the range for slow roll
result is µ > 19 and for numerical µ > 28.

In the case of r, the ranges of parameter µ that agree with the result of Planks 2018 are: in the case of N = 60,
µ < 90 for slow roll, and µ < 96 for numerical approach. For N = 50 the ranges are: µ < 47 for slow roll, and µ < 52
for numerical result.

Then, it can be obtain the relation between these observables, which is shown in Fig. 3.12. This plot relates the
values of scalar spectral index nS(k) and the tensor scalar ratio r(k), both evaluated at a pivot scale k = 0.002 Mpc−1.

Finally, we presented the scalar perturbation spectrum for a selection of values of µ. Fig. 3.13 shows the relation
of this spectrum with k, in normal scale, Fig. 3.13a, and in log scale, Fig. 3.13b. In the first one can be noticed the



30 3.5. NUMERICAL PERTURBATION SOLUTIONS

0.940 0.945 0.950 0.955 0.960 0.965 0.970
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

nS (0.002)

r
(0
.0
02

)

Figure 3.12: Relation between numerical calculation of nS(k) vs r(k) evaluated at k = 0.002 Mpc−1 for different
values of µ considering N = 50 (orange) and N = 60 (blue).

difference between µ = 20 and the other cases, but these last do not differ so much between them. Log plot allows to
distinct between them, showing different slopes for the curve, for each value of µ. It is observed that for small values
of k exist a linear relation in the log plot between PS(k) and k, but this linear regression is not maintain because the
dispersion of curves is changed for greater values of k.

In the last plot, Fig. 3.13c shows the comparison between numerical and slow roll results for scalar perturbations
spectrum, in this case it is taken µ = 20 and µ = 30. We observed that there is a strong correspondence between the
results obtained from these approaches for small values of k. However, as the value of k increases, the calculations
begin to diverge. This discrepancy becomes significant for values of k between 5 and 10.

Finally it has been found that exist a range of parameter µ for which there is a great agreement between
observational parameters with observational results from Planck collaboration. This range depends on the number
of inflation, N, with which the work is done. But there are some region of the space of possible parameters that
is valid for both branches of the work, for N = 50 and for N = 60. For the scalar spectral index, nS, this range is
between 19 > µ > 26 for slow roll and 28 > µ > 56 for numerical approach. And for tensor scalar ratio the range
is µ < 47 for slow roll and µ < 52 in the numerical case. This results shows that this model can be taken as an
important candidate for inflation considering that results on slow roll approach and numerical outcome are highly
favoured by Planck 2018 data release1.
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(c) Numerical and Slow roll results.

Figure 3.13: a) Scalar perturbations spectrum from numerical approach against k, b) Log plot of scalar perturbation
spectrum, both for µ = 20 (blue), µ = 30 (orange), µ = 40 (green), and µ = 50 (red).c) Comparison between slow
roll (dashed) and numerical (solid) result of PS(k) for µ = 20 (blue) and µ = 30 (orange).





Chapter 4

Conclusions & Outlook

In this work it is reviewed some of the fundamental concepts necessary to go further in the topic of inflationary
cosmology, there is introduced the theory behind the Hot Big Bang Model and some of the puzzles created by this
approach. Also the main equations used in cosmology are developed and explained. Then it is presented inflation
as a solution of this puzzles and more problems that at the moment of the development of the theory were still a
mystery, like the way early universe and large scale structure were related or the discrepancies in the distribution of
temperatures in the CMB.

There is introduced also the motivation and application of the slow-roll approximation used to understand
inflationary models under the assumption of dominance of potential over the kinetic term in the equations of motion
of the universe. There are defined some of the most important parameters for this analysis. There is also a
section about cosmological perturbation theory where is explained and defined some of the gauge invariant variables
necessary to obtain information about the cosmological observables of the universe, that are useful to connect the
work done theoretically and computationally with the work done by observations. In the same chapter is introduced
the potential that is used for this work, the hilltop potential.

The chapter corresponding to the results contains all the information about the analysis that was conducted,
in both of the approaches used: slow-roll approximation and numerical results. This chapter is also divided in
background and perturbations results. Using calculations done with slow-roll parameters, and the definition of the
amount of inflation, there are computed features like the value of the field at the beginning and at the end of the
inflation. There are presented the solutions for the equations of motion of the universe giving plots that relate the
evolution of the inflaton field ϕ(t) and the scale factor a(t).

Using differential equations governing the evolution of the scalar and tensor perturbations there are calculated the
functions that relate the behavior in time of the gauge invariant variables defined uk and vk that related the modes of
the perturbations. With definitions provided in Chapter. 2 about scalar and tensor power spectrum, there is obtained
information for different values of scale k necessary to find the best fit according to the definition of these spectra as
power law.

Finally, there are obtained values of the observables: spectral index nS(k) and tensor-scalar ratio r(k) evaluated
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at k = 0.002 Mpc−1 for different values of the parameter µ in the range. This calculation is performed using both
the slow-roll approximation and numerical approach, then is make a comparison between these methods and its
results. Furthermore these results is compared with the values reported by the Plank’s experiment. In conclusion,
the Hilltop quartic model appears to be favored by the observational results, and a confident range of parameters can
be chosen based on this concordance. For numerical case the range of parameter µ that agrees with Plank’s result is
16 < µ < 56 if it is used as discriminator the value of nS considering the number of e-foldings N = 60. And using
tensor-scalar ratio r the range is µ < 90. It can be seen that there is an intersection between these ranges 16 < µ < 56.

For the case N = 50, when using nS as the discriminator, the obtained range is µ > 28, and using r is µ < 52.
The intersection of these sets is: 28 < µ < 52. After this it is obtained plots about scalar power spectrum.

The constraint of inflationary models heavily relies on the results obtained from observational efforts. Ad-
vancements in this field, particularly improvements in the accuracy of observable measurements, directly impact its
development. Future work in this area must take this fact into account, and also consider different observational
results that until now has carried us to the "CMB tension".



Appendix A

Mathematica Code Used

Listing A.1: Code for obtaining values for ϕend, ϕini and M given µ, p and a value for ϕ∗.� �
1 cend = Compile[{{p, _Real}, {\[Mu], _Real}},

2 end\[Phi] =

3 SolveValues[(p^2 (\[Phi]/\[Mu])^(-2 + 2 p))/(

4 2 \[Mu]^2 (1 - (\[Phi]/\[Mu])^p)^2) == 1, \[Phi],

5 Assumptions -> {\[Phi] > 0, \[Phi] < \[Mu]}] // N];

6 cini = Compile[{{p, _Real}, {\[Mu], _Real}},

7 end\[Phi] = cend[p, \[Mu]];

8 ini\[Phi] =

9 SolveValues[(-\[Phi]^2 + \[Phi]i^2 - (

10 2 (\[Phi]^2 (\[Phi]/\[Mu])^-p - \[Phi]i^2 \

11 (\[Phi]i/\[Mu])^-p))/(-2 + p))/(2 p) - 60 == 0 /. \[Phi] ->

12 end\[Phi], \[Phi]i,

13 Assumptions -> {\[Phi]i > 0, \[Phi]i < \[Mu]}] // N ];

14

15 cM = Compile[{{p, _Real}, {\[Mu], _Real}, {\[Phi]p, _Real}},

16 end\[Phi] = cend[p, \[Mu]];

17 ini\[Phi] = cini[p, \[Mu]];

18 deltaR = 2.1 10^-9;

19 M = (-((

20 12 deltaR p^2 \[Pi]^2 (\[Phi]p/\[Mu])^(

21 2 p))/(\[Phi]p^2 (-1 + (\[Phi]p/\[Mu])^p)^3)))^(1/4)];� �
Listing A.2: Code for calculation of ϕ∗ and M under the slow roll approximation for a given value of µ.
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� �
1 c\[Phi]evalsr =

2 Compile[{{p, _Real}, {\[Mu], _Real}, {\[Phi]p, _Real}},

3 \[Phi]ini = cini[p, \[Mu]];

4 M = cM[p, \[Mu], \[Phi]p];

5 V[p, t] = M^4 (1 - (\[Phi]s[t]/\[Mu])^p);

6 Vp[p, t] = D[V[p, t], \[Phi]s[t]];

7 sol =

8 NDSolve[{\[Phi]s’[t] == - Vp[p, t] as[t]/(3 as’[t]) ,

9 as’[t] ==

10 as[t] Sqrt[1/3 V[p, t]], \[Phi]s[0] == \[Phi]ini[[1]],

11 as[0] == 1}, {\[Phi]s, as}, {t, 0, 4.06 10^8}];

12 asr[t_] = (as /. First[sol])[t];

13 asrp[t_] = D[asr[t], {t, 1}];

14 \[Phi]sr[t_] = (\[Phi]s /. First[sol])[t];

15 \[Phi]srp[t_] = D[\[Phi]sr[t], {t, 1}];

16 H[t_] = pa[t]/a[t];

17

18 teval[k_] = FindRoot[k == asrp[t], {t, 10^7}];

19 \[Phi]sr[teval[0.05][[1, 2]]]];

20

21 p = 4;

22 \[Mu] = 1;

23 \[Phi]eval[\[Phi]h_] := c\[Phi]evalsr[p, \[Mu], \[Phi]h]

24

25 attemp = cini[p, \[Mu]];

26 iterations = 10;

27 his = NestList[\[Phi]eval, attemp, iterations]

28

29 Mvalue[\[Phi]h_] := cM[p, \[Mu], \[Phi]h]

30 Mvalue[his[[-1]]]� �
Listing A.3: Code for calculation of ϕ∗ and M for a given value of µ.� �

1 c\[Phi]eval =

2 Compile[{{p, _Real}, {\[Mu], _Real}, {\[Phi]p, _Real}},

3 \[Phi]ini = cini[p, \[Mu]];

4 M = cM[p, \[Mu], \[Phi]p];

5 V[p, t] = M^4 (1 - (\[Phi]s[t]/\[Mu])^p);
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6 Vp[p, t] = D[V[p, t], \[Phi]s[t]];

7 sol = NDSolve[{\[Phi]s’[t] == - Vp[p, t] as[t]/(3 as’[t]) ,

8 as’[t] == as[t] Sqrt[1/3 V[p, t]], \[Phi]s[0] == \[Phi]ini[[1]],

9 as[0] == 1}, {\[Phi]s, as}, {t, 0, 4.06 10^8}];

10 asr[t_] = (as /. First[sol])[t];

11 asrp[t_] = D[asr[t], {t, 1}];

12 \[Phi]sr[t_] = (\[Phi]s /. First[sol])[t];

13 \[Phi]srp[t_] = D[\[Phi]sr[t], {t, 1}];

14 Vt[t_] = M^4 (1 - (\[Phi]t[t] / \[Mu])^p);

15 Vtp[t_] = D[Vt[t], \[Phi]t[t]];

16 sol1 =

17 NDSolve[{\[Phi]t’’[t] + 3 at’[t]/at[t] \[Phi]t’[t] + Vtp[t] == 0,

18 at’[t] == at[t] Sqrt[1/3 (1/2 \[Phi]t’[t]^2 + Vt[t])], \[Phi]t[

19 0] == \[Phi]sr[0], \[Phi]t’[0] == \[Phi]srp[0],

20 at[0] == 1}, {\[Phi]t, at}, {t, 0, 4.06 10^8}];

21 \[Phi][t_ ] = (\[Phi]t /. First[sol1])[t];

22 a[t_] = (at /. First[sol1])[t];

23 pa[t_] = (at’ /. First[sol1])[t];

24 H[t_] = pa[t]/a[t];

25

26 teval[k_] = FindRoot[k == pa[t], {t, 10^8}];

27 Print[teval[0.05]];

28 \[Phi][teval[0.05][[1, 2]]]];

29

30 p = 4;

31 \[Mu] = 1;

32 \[Phi]eval[\[Phi]h_] := c\[Phi]evalsr[p, \[Mu], \[Phi]h]

33

34 attemp = cini[p, \[Mu]];

35 iterations = 10;

36 his = NestList[\[Phi]eval, attemp, iterations]

37

38 Mvalue[\[Phi]h_] := cM[p, \[Mu], \[Phi]h]

39 Mvalue[his[[-1]]]� �
Listing A.4: Code for calculation of background solutions of ϕ(t) and a(t) under slow roll approximation.� �

1 \[Mu] := 20

2 M := 0.005359077192041455‘
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3 p := 4

4 \[Phi]ini = 11.838012784632001‘;

5 \[Phi]end = 19.328683873439395‘;

6 V[p_, t_] := M^4 (1 - (\[Phi][t]/\[Mu])^p)

7 Vp[p_, t_] = D[V[p, t], \[Phi][t]];

8 ten = 4.57 10^6;

9 sol = NDSolve[{ 3 a’[t]/a[t] \[Phi]’[t] + Vp[p, t] == 0,

10 a’[t] == a[t] Sqrt[1/3 (V[p, t])],

11 \[Phi][0] == \[Phi]ini, a[0] == 1}, {\[Phi], a},

12 {t, 0, ten}, MaxSteps -> 10000000, AccuracyGoal -> 10];

13 \[Phi]sr1[t_] := (\[Phi] /. First[sol])[t]

14 \[Phi]srp[t_] = D[\[Phi]sr1[t], {t, 1}];

15 asr[t_] := (a /. First[sol])[t]

16 tend = t /. FindRoot[\[Phi]sr1[t] == \[Phi]end, {t, ten }];� �
Listing A.5: Code for calculation of background solutions of ϕ(t) and a(t) numerically.� �

1 \[Mu] := 20

2 M := Import[

3 "C:\\Users\\RAUL\\Documents\\Wolfram␣Mathematica\\Titulation␣-␣\

4 Cosmology\\data_ex\\mvalues_ex_k005_N60.csv"][[\[Mu], 2]];

5 p := 4

6 \[Phi]end := First[cend[p, \[Mu]]]

7 \[Phi]ini := First[cini[p, \[Mu]]]

8 V[t_] := M^4 (1 - (\[Phi][t]/\[Mu])^p)

9 Vp[t_] = D[V[t], \[Phi][t]];

10 ten := 4.57 10^6

11 (*\[Phi]sr,asr*)

12 sol = NDSolve[{ 3 a’[t]/a[t] \[Phi]’[t] + Vp[t] == 0,

13 a’[t] == a[t] Sqrt[1/3 (V[t])],

14 \[Phi][0] == \[Phi]ini, a[0] == 1}, {\[Phi], a},

15 {t, -90000, ten}, MaxSteps -> 100000, AccuracyGoal -> 10];

16 \[Phi]sr[t_] := (\[Phi] /. First[sol])[t]

17 \[Phi]srp[t_] = D[\[Phi]sr[t], {t, 1}];

18 asr[t_] := (a /. First[sol])[t];

19 (*\[Phi],a*)

20 Vt[t_] := M^4 (1 - (\[Phi]t[t]/\[Mu])^p)

21 Vtp[t_] = D[Vt[t], \[Phi]t[t]];

22 sol1 = NDSolve[{\[Phi]t’’[t] + 3 at’[t]/at[t] \[Phi]t’[t] + Vtp[t] ==



APPENDIX A. MATHEMATICA CODE USED 39

23 0,

24 at’[t] == at[t] Sqrt[1/3 (1/2 \[Phi]t’[t]^2 + Vt[t])],

25 \[Phi]t[0] == \[Phi]sr[0], \[Phi]t’[0] == \[Phi]srp[0],

26 at[0] == 1}, {\[Phi]t, at},

27 {t, -90000, ten}, MaxSteps -> 100000, AccuracyGoal -> 10];

28 \[Phi][t_] := (\[Phi]t /. First[sol1])[t]

29 p\[Phi][t_] := (\[Phi]t’ /. First[sol1])[t];

30 pp\[Phi][t_] := (\[Phi]t’’ /. First[sol1])[t];

31 ppp\[Phi][t_] := (\[Phi]t’’’ /. First[sol1])[t];

32 a[t_] := (at /. First[sol1])[t];

33 pa[t_] := (at’ /. First[sol1])[t];

34 ppa[t_] := (at’’ /. First[sol1])[t];

35 pppa[t_] := (at’’’ /. First[sol1])[t];� �
Listing A.6: Code for calculation of pertubations and observables under slow roll calculations.� �

1 M := 0.005131259185052941‘

2 p := 4

3 \[Mu] := 18

4 \[Phi]ini = 10.106728678999152‘;

5 \[Phi]end = 17.332457543904017‘;

6 V[p_, t_] := M^4 (1 - (\[Phi][t]/\[Mu])^p)

7 Vp[p_, t_] = D[V[p, t], \[Phi][t]];

8 sol = NDSolve[{\[Phi]’[t] == - Vp[p, t] a[t]/(3 a’[t]) ,

9 a’[t] == a[t] Sqrt[1/3 V[p, t]], \[Phi][0] == \[Phi]ini,

10 a[0] == 1}, {\[Phi], a}, {t, 0, 9 10^6}];

11 asr[t_] := (a /. First[sol])[t]

12 asrp[t_] = D[asr[t], {t, 1}];

13 \[Phi]sr[t_] := (\[Phi] /. First[sol])[t]

14 \[Phi]srp[t_] = D[\[Phi]sr[t], {t, 1}];

15 \[Phi]srpp[t_] = D[\[Phi]sr[t], {t, 2}];

16 \[Phi]srppp[t_] = D[\[Phi]sr[t], {t, 3}];

17 Vt[p_, t_] := M^4 (1 - (\[Phi]sr[t]/\[Mu])^p)

18 Hsr[p_, t_] := 1/Sqrt[3] Sqrt[Vt[p, t]]

19 Hsrp[p_, t_] = D[Hsr[p, t], {t, 1}] ;

20 Vphi[p_, \[Phi]_] := M^4 (1 - (\[Phi]/\[Mu])^p)

21 Vphip[p_, \[Phi]_] := D[Vphi[p, \[Phi]], {\[Phi], 1}];

22 Vphipp[p_, \[Phi]_] := D[Vphi[p, \[Phi]], {\[Phi], 2}];

23 (*Parameters*)
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24 \[Epsilon]H1[p_, t_] := -Hsrp[p, t]/Hsr[p, t]^2

25 \[Epsilon]H2[p_, t_] = 1/Hsr[p, t] D[\[Epsilon]H1[p, t], {t, 1}];

26 \[Delta]H1[p_, t_] := \[Phi]srpp[t]/(Hsr[p, t] \[Phi]srp[t])

27 \[Delta]H2[p_, t_] := \[Phi]srppp[t]/(Hsr[p, t]^2 \[Phi]srp[t])

28 \[Alpha] := 0.729637

29 (*First Order*)

30 PSsr1[t_] := (1 + (4 \[Alpha] - 2) \[Epsilon]H1[p, t] +

31 2 \[Alpha] \[Delta]H1[p, t]) (Hsr[p, t]^2/(2 \[Pi] \[Phi]srp[t]))^2

32 nSsr1[t_] := 1 - 4 \[Epsilon]H1[p, t] - 2 \[Delta]H1[p, t]

33 PTsr1[t_] := (1 + (2 \[Alpha] - 2) \[Epsilon]H1[p, t]) (Hsr[p, t]/(

34 2 \[Pi]))^2

35 nTsr1[t_] := -2 \[Epsilon]H1[p, t]

36 (*Second Order*)

37 PSsr2[t_] := (1 + (4 \[Alpha] - 2) \[Epsilon]H1[p, t] +

38 2 \[Alpha] \[Delta]H1[p,

39 t] + (4 \[Alpha]^2 - 23 + 7 \[Pi]^2/3) \[Epsilon]H1[p,

40 t]^2 + (3 \[Alpha]^2 + 2 \[Alpha] - 22 +

41 29 \[Pi]^2/12) \[Epsilon]H1[p, t] \[Delta]H1[p,

42 t] + (3 \[Alpha]^2 - 4 + 5 \[Pi]^2/12) \[Delta]H1[p,

43 t]^2 + (-\[Alpha]^2 + \[Pi]^2/12) \[Delta]H2[p, t]) (Hsr[p,

44 t]^2/(2 \[Pi] \[Phi]srp[t]))^2

45 nSsr2[t_] :=

46 1 - 4 \[Epsilon]H1[p, t] -

47 2 \[Delta]H1[p, t] + (8 \[Alpha] - 8) \[Epsilon]H1[p,

48 t]^2 + (10 \[Alpha] - 6) \[Epsilon]H1[p, t] \[Delta]H1[p, t] -

49 2 \[Alpha] \[Delta]H1[p, t]^2 + 2 \[Alpha] \[Delta]H2[p, t]

50 PTsr2[t_] := (1 + (2 \[Alpha] - 2) \[Epsilon]H1[p,

51 t] + (2 \[Alpha]^2 - 2 \[Alpha] - 3 + \[Pi]^2/2) \[Epsilon]H1[p,

52 t]^2 + (-\[Alpha]^2 + 2 \[Alpha] - 2 + \[Pi]^2/

53 12) \[Epsilon]H2[p, t]) (Hsr[p, t]/(2 \[Pi]))^2

54 nTsr2[t_] := -2 \[Epsilon]H1[p, t] -

55 2 \[Epsilon]H1[p, t]^2 + (2 \[Alpha] - 2 ) \[Epsilon]H2[p, t]

56 teval[k_] := (t /.

57 First[FindRoot[k == asr[t] (Hsr[p, t]), {t, 10^6}]])� �
Listing A.7: Code for calculation of pertubations and observables numerically.� �

1 \[Mu] := 20

2 M := Import[
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3 "C:\\Users\\RAUL\\Documents\\Wolfram␣Mathematica\\Titulation␣-␣\

4 Cosmology\\data_ex\\mvalues_ex_k005_N60.csv"][[\[Mu], 2]];

5 p := 4

6 \[Phi]end := First[cend[p, \[Mu]]]

7 \[Phi]ini := First[cini[p, \[Mu]]]

8 V[t_] := M^4 (1 - (\[Phi][t]/\[Mu])^p)

9 Vp[t_] = D[V[t], \[Phi][t]];

10 ten := 4.57 10^6

11 (*\[Phi]sr,asr*)

12 sol = NDSolve[{ 3 a’[t]/a[t] \[Phi]’[t] + Vp[t] == 0,

13 a’[t] == a[t] Sqrt[1/3 (V[t])],

14 \[Phi][0] == \[Phi]ini, a[0] == 1}, {\[Phi], a},

15 {t, -90000, ten}, MaxSteps -> 100000, AccuracyGoal -> 10];

16 \[Phi]sr[t_] := (\[Phi] /. First[sol])[t]

17 \[Phi]srp[t_] = D[\[Phi]sr[t], {t, 1}];

18 (*\[Phi],a*)

19 Vt[t_] := M^4 (1 - (\[Phi]t[t]/\[Mu])^p)

20 Vtp[t_] = D[Vt[t], \[Phi]t[t]];

21 sol1 = NDSolve[{\[Phi]t’’[t] + 3 at’[t]/at[t] \[Phi]t’[t] + Vtp[t] ==

22 0,

23 at’[t] == at[t] Sqrt[1/3 (1/2 \[Phi]t’[t]^2 + Vt[t])],

24 \[Phi]t[0] == \[Phi]sr[0], \[Phi]t’[0] == \[Phi]srp[0],

25 at[0] == 1}, {\[Phi]t, at},

26 {t, -90000, ten}, MaxSteps -> 100000, AccuracyGoal -> 10];

27 \[Phi][t_] := (\[Phi]t /. First[sol1])[t]

28 p\[Phi][t_] := (\[Phi]t’ /. First[sol1])[t];

29 pp\[Phi][t_] := (\[Phi]t’’ /. First[sol1])[t];

30 ppp\[Phi][t_] := (\[Phi]t’’’ /. First[sol1])[t];

31 a[t_] := (at /. First[sol1])[t];

32 pa[t_] := (at’ /. First[sol1])[t];

33 ppa[t_] := (at’’ /. First[sol1])[t];

34 pppa[t_] := (at’’’ /. First[sol1])[t];

35 H[t_] := pa[t]/a[t]

36 z[t_] := (a[t] p\[Phi][t])/H[t]

37 tend = t /. FindRoot[\[Phi][t] == \[Phi]end, {t, ten *0.9}];

38 Efolds = Log[a[tend]/a[0]];

39 pH[t_] = D[H[t], t];

40 z[t_] := ((a[t])^2 p\[Phi][t])/pa[t];
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41 pz[t_] :=

42 a[t] (p\[Phi][t] (2 - (a[t] ppa[t])/pa[t]^2) + (a[t] pp\[Phi][t])/

43 pa[t])

44 ppz[t_] :=

45 2 pa[t] p\[Phi][t] + (2 a[t]^2 p\[Phi][t] ppa[t]^2)/pa[t]^3 +

46 4 a[t] pp\[Phi][t] - (

47 a[t]^2 (2 ppa[t] pp\[Phi][t] + p\[Phi][t] pppa[t]))/pa[t]^2 + (

48 a[t] (-2 p\[Phi][t] ppa[t] + a[t] ppp\[Phi][t]))/pa[t]

49

50 conformal =

51 NDSolve[{conf’[t] == 1/a[t], conf[Re[tend]] == 0}, {conf,

52 conf’}, {t, 0, tend}, AccuracyGoal -> 10, PrecisionGoal -> 10,

53 WorkingPrecision -> 15, MaxSteps -> Infinity,

54 InterpolationOrder -> All];

55 \[Eta][t_] := (conf /. First[conformal])[t];

56 p\[Eta][t_] := (conf’ /. First[conformal])[t];

57 rhsScalar[k_, t_] :=

58 1/(a[t])^2 (k^2 - a[t]/z[t] ((pa[t] pz[t]) + (a[t] ppz[t])));

59 rhsTensor[k_, t_] := ((k/a[t])^2 - (pa[t]/a[t])^2 - ppa[t]/a[t]);

60 hc[k_] := Rationalize[FindRoot[k - pa[t], {t, 10^6}][[1, 2]], 0];

61 uini[k_, t_] := Rationalize[Exp[-I k \[Eta][t]]/Sqrt[2 k], 0];

62 diffuini[k_, t_] :=

63 Rationalize[-(Exp[-I k \[Eta][t]]/Sqrt[2 k]) (I k p\[Eta][t]), 0];

64 nzeros[k_] :=

65 n /. First[

66 NSolve[n == Pi^-1 k (\[Eta][hc[k]] - \[Eta][0]), n,

67 WorkingPrecision -> 15]]

68 etabuch[k_] := NSolve[k (\[Eta][hc[k]] - eta) == 500 Pi, eta]

69 etaini[k_] := NSolve[k (\[Eta][hc[k]] - eta) == 300 Pi, eta]

70 suptbuch[k_] :=

71 FindRoot[\[Eta][t] == (eta /. First[etabuch[k]]), {t, 500, 1000}][[1,

72 2]]

73 suptini[k_] :=

74 FindRoot[\[Eta][t] == (eta /. First[etaini[k]]), {t, 500, 1000}][[1,

75 2]]

76 tbuch[k_] :=

77 Piecewise[{{hc[k]*0.001, k <= .06}, {suptbuch[k], k > .06}}];

78 tini[k_] := Piecewise[{{hc[k]*.05, k <= .06}, {suptini[k], k > .06}}]
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79 prere[k_] :=

80 NDSolve[{l’’[t] + l’[t] H[t] + l[t] (k/a[t])^2 == 0,

81 l[tbuch[k]] == Re[uini[k, tbuch[k]]],

82 l’[tbuch[k]] == Re[diffuini[k, tbuch[k]]]}, {l, l’}, {t, tbuch[k],

83 tini[k]}, MaxSteps -> Infinity , StartingStepSize -> .0001,

84 MaxStepSize -> 10, InterpolationOrder -> All];

85 re[k_] :=

86 NDSolve[{u’’[t] + u’[t] H[t] + u[t] rhsScalar[k, t] == 0,

87 u[tini[k]] == Rationalize[(l /. First[prere[k]])[tini[k]], 0],

88 u’[tini[k]] == Rationalize[(l’ /. First[prere[k]])[tini[k]], 0]},

89 u, {t, tini[k], 3 hc[k]}, MaxSteps -> Infinity ,

90 StartingStepSize -> .001, MaxStepSize -> 10,

91 InterpolationOrder -> All];

92 preim[k_] :=

93 NDSolve[{g’’[t] + g’[t] H[t] + g[t] (k/a[t])^2 == 0,

94 g[tbuch[k]] == Im[uini[k, tbuch[k]]],

95 g’[tbuch[k]] == Im[diffuini[k, tbuch[k]]]}, {g, g’}, {t, tbuch[k],

96 tini[k]}, MaxSteps -> Infinity , StartingStepSize -> .0001,

97 MaxStepSize -> 10, InterpolationOrder -> All];

98 im[k_] :=

99 NDSolve[{v’’[t] + v’[t] H[t] + v[t] rhsScalar[k, t] == 0,

100 v[tini[k]] == Rationalize[(g /. First[preim[k]])[tini[k]], 0],

101 v’[tini[k]] == Rationalize[(g’ /. First[preim[k]])[tini[k]], 0]},

102 v, {t, tini[k], 3 hc[k]}, MaxSteps -> Infinity ,

103 StartingStepSize -> .001, MaxStepSize -> 10,

104 InterpolationOrder -> All];

105 x[k_] := u /. First[re[k]]

106 y[k_] := v /. First[im[k]]

107 (*Tensor*)

108 prere2[k_] :=

109 NDSolve[{l’’[t] + l’[t] H[t] + l[t] (k/a[t])^2 == 0,

110 l[tbuch[k]] == Re[uini[k, tbuch[k]]],

111 l’[tbuch[k]] == Re[diffuini[k, tbuch[k]]]}, {l, l’}, {t, tbuch[k],

112 tini[k]}, MaxSteps -> Infinity , StartingStepSize -> .0001,

113 MaxStepSize -> 10, InterpolationOrder -> All];

114 re2[k_] :=

115 NDSolve[{u’’[t] + u’[t] H[t] + u[t] rhsTensor[k, t] == 0,

116 u[tini[k]] == Rationalize[(l /. First[prere[k]])[tini[k]], 0],
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117 u’[tini[k]] == Rationalize[(l’ /. First[prere[k]])[tini[k]], 0]},

118 u, {t, tini[k], 3 hc[k]}, MaxSteps -> Infinity ,

119 StartingStepSize -> .001, MaxStepSize -> 10,

120 InterpolationOrder -> All];

121 preim2[k_] :=

122 NDSolve[{g’’[t] + g’[t] H[t] + g[t] (k/a[t])^2 == 0,

123 g[tbuch[k]] == Im[uini[k, tbuch[k]]],

124 g’[tbuch[k]] == Im[diffuini[k, tbuch[k]]]}, {g, g’}, {t, tbuch[k],

125 tini[k]}, MaxSteps -> Infinity , StartingStepSize -> .0001,

126 MaxStepSize -> 10, InterpolationOrder -> All];

127 im2[k_] :=

128 NDSolve[{v’’[t] + v’[t] H[t] + v[t] rhsTensor[k, t] == 0,

129 v[tini[k]] == Rationalize[(g /. First[preim[k]])[tini[k]], 0],

130 v’[tini[k]] == Rationalize[(g’ /. First[preim[k]])[tini[k]], 0]},

131 v, {t, tini[k], 3 hc[k]}, MaxSteps -> Infinity ,

132 StartingStepSize -> .001, MaxStepSize -> 10,

133 InterpolationOrder -> All];

134 x2[k_] := u /. First[re2[k]]

135 y2[k_] := v /. First[im2[k]]

136 PS[k_] :=

137 k^3/(2 Pi^2 (z[3 hc[k]])^2) Abs[(x[k])[3 hc[k]] + I (y[k])[3 hc[k]]]^2

138 PT[k_] :=

139 k^3/(2 Pi^2 (a[3 hc[k]])^2)

140 Abs[(x2[k])[3 hc[k]] + I (y2[k])[3 hc[k]]]^2

141 nS[k_] := 1 + k/PS[k] (PS[k + h2] - PS[k - h2])/(2 h2)

142 r[k_] := 8 PT[k]/PS[k]� �
Listing A.8: Code for calculation of fitting of PS (k).� �

1

2 powerspectra :=

3 Import["C:\\Users\\RAUL\\Documents\\Wolfram␣Mathematica\\Titulation␣\

4 -␣Cosmology\\Approach␣fitting␣PS\\data_PS\\k_vs_PS(k)_mu=20.dat",

5 "Table"]

6

7 kpivot := 0.05

8

9 fit = NonlinearModelFit[powerspectra ,

10 AS (k/kpivot)^(spec - 1 +
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11 1/2 \[Alpha] Log[k/kpivot] + \[Beta]/6 (Log[k/kpivot])^2), {AS,

12 spec, \[Alpha], \[Beta]}, k]

13

14 PPS[k_] :=

15 2.136834395930296‘*^-9 E^(-0.10542561370312366‘ -

16 0.0001685987644504388‘ Log[20.‘ k]^2)

17 k^(-0.036352362643531644‘ - 0.00038736045818737607‘ Log[20.‘ k] -

18 0.00005627965020065743‘ Log[20.‘ k]^2)

19 dPPS[k_] = D[PPS[k], {k, 1}];

20 nnS[k_] = 1 + k/PPS[k] dPPS[k];� �
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