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Resumen

Los péptidos antivirales (AVP, por sus siglas en inglés) poseen un gran potencial como fár-

macos contra las infecciones virales. Sin embargo, la cantidad de información disponible

supera la capacidad de interpretación de los investigadores. Para abordar este desafío, se

utilizó la minería interactiva de datos y las facilidades de las redes de espacio proximal a

través del software StarPep para explorar el espacio químico de los AVPs. Adicionalmente

se utilizó el algoritmo de clustering de Louvain para crear un perfil basado en las comu-

nidades obtenidas, revelando así características biológicas, patrones y diferentes relaciones

entre los péptidos. Esta exploración fue extendida a través de las redes de metadato (MN)

que aportó importante información sobre “bases de datos”, “función” ,“origen” y “obje-

tivo”. Este análisis permitió detectar nuevas interconexiones, enriqueciendo la comprensión

de los AVPs y sus características. Para crear representaciones simplificadas del espacio

químico se realizó un proceso de extracción de scaffold que resultó en cuatro subconjuntos

definidos que conservan las características centrales mientras simplifican la complejidad de

la red. Como resultado, reportamos 33 potenciales motivos antivirales, de los cuales 23

son completamente novedosos para el campo. Además se desarrollaron cinco Modelos de

Búsqueda por Similitud Múltiple que fueron comparados y superaron 14 diferentes pre-

dictores disponibles en la literatura. Sobre estos hallazgos mencionados se encontraron 46

potenciales secuencias antivirales derivadas de diferentes bases de datos que juntas con-

tenían más de 100,000 secuencias. Este trabajo no solo proporciona información valiosa

sobre las características de los AVP sino que también sienta las bases para el desarrollo de

péptidos con uso terapéutico.

Palabras Clave:

Péptidos Antivirales, Espacio Químico,Redes de Espacio Proximal, Motivos, Búsqueda por

Similitud Multi-Referencia, Clivado Virtual
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Abstract

Antiviral peptides (AVPs) hold substantial promise as therapeutic agents against viral in-

fections. However, the sheer volume of available data surpasses researchers’ capacity for

interpretation. To address this challenge, interactive data mining and the Half-Space Prox-

imal Network (HSPN) technique within the StarPep toolbox were utilized to address this

challenge and explore the chemical space of AVPs. Louvain Clustering was employed to

conduct community-based chemical profiling, revealing intricate biological patterns and re-

lationships among peptides. Exploration extended to Metadata Networks (MNs), shedding

light on the broader AVP landscape with attributes like ”database,” ”function,” ”origin,”

and ”target.” This exposed interconnections and associations, enriching the understanding

of AVPs and their attributes. Scaffold extraction was applied to streamline the represen-

tation of the AVP chemical space, yielding four well-defined subsets that retained core

characteristics while simplifying network complexity. Moreover, the study identified 33

potential antiviral motifs via an alignment-free de novo approach, including 23 entirely

novel motifs. Furthermore, five Multi-Query Similarity Search Models (MQSSMs) were

developed, outperforming several state-of-the-art predictors. Building upon these findings,

the research yielded 46 potential Antiviral Sequences derived from three diverse databases,

encompassing over 100,000 sequences. This work provides valuable insights into AVP char-

acteristics and lays the foundation for novel antiviral therapies rooted in their distinctive

chemical properties and interactions.

Keywords:

Antiviral peptide, Chemical space, Half-Space Proximal Network, Interactive mining, StarPep

toolbox, Motif Discovery, Muli-Query Similarity Search, Virtual Cleavage

xi



Contents

Dedication v

Acknowledgment vii

Resumen ix

Abstract xi

Contents xiii

List of Tables xvii

List of Figures xix

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 General Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.2 Specific Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theoretical Framework 5

2.1 Chemoinformatics and Chemical Space . . . . . . . . . . . . . . . . . . . . 5

2.2 Graph-based Interactive Mining . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Important Notions on Network Science . . . . . . . . . . . . . . . . 7

2.2.2 Half Space Proximal Network . . . . . . . . . . . . . . . . . . . . . 12

2.3 Pairwise Alignment Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 14

xiii



2.4 Molecular Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Multi Query Similarity Search . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 State of the Art 19

3.1 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 StarPepDB and StarPep Toolbox . . . . . . . . . . . . . . . . . . . 20

3.2 Prediction Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Machine Learning Based Models . . . . . . . . . . . . . . . . . . . 22

4 Methodology 27

4.1 Half-Space Proximal Network . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Metadata Complex Network . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Network visualization and Characterization . . . . . . . . . . . . . . . . . 28

4.4 Exploration of Scaffold and selection of most representative Subset . . . . 29

4.5 Motif Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.6 Alignment Free Motif Enrichment . . . . . . . . . . . . . . . . . . . . . . . 30

4.7 Multi-Query Similarity Search . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.7.1 Selection of best models . . . . . . . . . . . . . . . . . . . . . . . . 32

4.7.2 Model Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.7.3 Model Performance Evaluation . . . . . . . . . . . . . . . . . . . . 38

4.8 Lead Discovery from Protein Cleavage . . . . . . . . . . . . . . . . . . . . 40

5 Results and Discussion 43

5.1 Metadata Complex Networks . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Half Space Proximal Networks . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Scaffold Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Motif Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5 Multi Query Similarity Search Models . . . . . . . . . . . . . . . . . . . . 71

5.5.1 Model Selection and Improvement . . . . . . . . . . . . . . . . . . 73

5.5.2 Comparison with state of the art . . . . . . . . . . . . . . . . . . . 76

xiv



5.6 Proposal of New AVPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Conclusions 87

Bibliography 91

xv



List of Tables

3.1 A summary of existing antimicrobial and antiviral peptide databases . . . 20

3.2 Available Web Servers for AVP Prediction . . . . . . . . . . . . . . . . . . 24

3.3 Available Tools for AVPs prediction . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Available Tools for AVPs prediction . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Description of the used ”Query” Datasets . . . . . . . . . . . . . . . . . . 32

4.2 Description of the used ”Target” Datasets . . . . . . . . . . . . . . . . . . 33

4.3 State of the Art predictors used for comparison . . . . . . . . . . . . . . . 39

4.4 Web-Available tools used for Virtual Cleavage . . . . . . . . . . . . . . . . 41

5.1 Topology Characterization of HSPNs fro t = 0.3-0.9 . . . . . . . . . . . . . 49

5.2 Most Central sequences of each HSP and corresponding chemical features . 53

5.3 Characterization of Scaffolds from HSPN_NC varying the alignment algo-

rithm and Centrality Measure. . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Characterization of Scaffolds from HSPN_OP varying the alignment algo-

rithm and Centrality Measure. . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 List of Most Central AVPs corresponding to each Community in HSPN. . 63

5.6 List of Most Central AVPs corresponding to each Community in HSPN. . 64

5.7 Full list of validated motifs by SEA software, after removing motifs occurring

in negative datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.8 Full list of validated motifs by SEA software , after removing motifs occur-

ring in negative datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.9 Motifs Found in Literature Reports and other Bioinformatics Studies . . . 70

5.10 Parameters used for selected MQSSMs . . . . . . . . . . . . . . . . . . . . 74

xvii



5.11 Models Performance Evaluation for the Expanded Dataset . . . . . . . . . 76

5.12 Performance Comparison With State-of-the-Art Predictors . . . . . . . . . 77

5.13 Ranking of all predictors evaluated . . . . . . . . . . . . . . . . . . . . . . 79

5.14 Proposed Peptide Sequences as AVP Hits . . . . . . . . . . . . . . . . . . . 83

5.15 Proposed Peptide Sequences as AVP Hits 2 . . . . . . . . . . . . . . . . . 84

5.16 Other Potential Antimicrobial Activities of the proposed sequences . . . . 85

xviii



List of Figures

2.1 Comparison of Different Layouts . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Muli-Query Similarity Search Principle. . . . . . . . . . . . . . . . . . . . . 16

4.1 Calibrationa and Validation of MQSS . . . . . . . . . . . . . . . . . . . . . 34

4.2 Construction and Modification of Expandend Dataset . . . . . . . . . . . . 35

4.3 Process for Model Combination . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Process for Scaffold Combination . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Process for Query Enrichment . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.6 Workflow for Virtual Cleavage . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Metadata Networks (MN). (A) “Database” MN (B) “Function” MN Layout:

Force Atlas2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Metadata Networks (MNs). (A) “Origin” MN “produced by” edges (B)

“Target” MN “assessed against” nodes Layout: Force Atlas2 . . . . . . . . 46

5.3 Comparison of HSPN visual density depending on t value . . . . . . . . . 48

5.4 (I) t = 0 and (II) t = 0.75. A different color is assigned in each HSPN to

show communities. Layout: Fruchterman Reingold . . . . . . . . . . . . . 49

5.5 HSPN’s characterization using different parameters. . . . . . . . . . . . . 50

5.6 HSPNs (t = 0) for each 8 communities obtained by using the Louvain algo-

rithm Layout: Force Atlas2 . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.7 HSPNs’ Degree distribution. (A) t = 0.75, HSPN with optimal similarity

cut-off. (B) t = 0, HSPN with no cutoff (free parameter). The dashed red

line indicates the normal fit for the respective distribution. . . . . . . . . 52

xix



5.8 Occurrence of different types of AAs corresponding to the five most central

nodes (Harmonic Centrality ) of each HSPNs selected . . . . . . . . . . . 54

5.9 (A) Similarity Network between the most central nodes from HSPN_OP

and HSPN_NC. Layout: Fruchterman Reingold (B) Similarity Overlap be-

tween the 10 top sequences of each HSPN . . . . . . . . . . . . . . . . . . 57

5.10 Scaffold Density Comparison and Similarity Overlap . . . . . . . . . . . . 60

5.11 Chemical Characterization of each cluster . . . . . . . . . . . . . . . . . . 65

5.12 MCC Distribution In Calibration and Validation Stage . . . . . . . . . . . 72

5.13 Ranking Change Based on Metrics . . . . . . . . . . . . . . . . . . . . . . 78

5.14 Comparison of Different HSPNs constructed from the hits sequences . . . . 81

xx



Chapter 1

Introduction

1.1 Background

Viruses encompass an extensive group of pathogens responsible for numerous critical and

infectious medical events throughout human history. From smallpox to the most recent

SARS-CoV-2 global pandemic, viral diseases have been a focal point for scientific, agricul-

tural, and medical research [1]. One of the most remarkable abilities exhibited by certain

viruses is their capacity to adapt to new hosts and environments through mutations in rel-

atively short periods [2]. This characteristic leads to a constant emergence of viral diseases

worldwide, necessitating the development of therapeutics to address this threat [3].

Given the perpetual risk of new infectious viral diseases, antiviral therapeutics develop-

ment has been an enduring scientific endeavor. What is more, viruses have a broad range

of action mechanisms for replication and infection. Thus, it is highly complex to design

therapeutics that target various viruses, and each pathogen requires dedicated investment

and effort [4]. Antiviral drugs and vaccines are the most employed strategies to combat

viral infections. Historically, vaccines have played a central role in containing viral out-

breaks, but they often require substantial resources and time and are not always effective

[5]. Conversely, antiviral drugs focus on treating infections once they have already com-

menced. For antiviral drugs to be effective, they must exhibit both safety and potency.

Over the past few decades, numerous antiviral agents have been designed to target viral

proteins or host factors [6].
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Antiviral drugs can be categorized as either small molecules or peptide-based molecules.

Pharmaceutical companies have traditionally favored the development of small molecules

due to their relatively more straightforward development process than peptides [7]. How-

ever, in recent years, peptides as pharmaceuticals have regained attention as technological

advancements have addressed their main drawbacks [8]. Peptides, defined as polypeptides

consisting of up to 50 connected amino acids (AAs), exhibit a wide range of biological ac-

tivities and play critical roles in human physiology. As therapeutics, peptides offer a closer

resemblance to biological entities, making them considered safer, less toxic, and highly ef-

fective while also possibly scaling up the production from mg to kg levels [9]. Nonetheless,

they face challenges such as biological instability and poor membrane permeability and

stability [10].

Despite these limitations, peptides have significantly impacted the modern pharmaceu-

tical industry, and contributed to advancements in both chemical and biological sciences

[11]. Some strategies for overcoming these setbacks include modifying the molecules and

their delivery, stability, and application in preclinical stages. For example, D-peptides,

resistant to natural proteases, have longer half-lives and can be absorbed orally, making

them more suitable for therapeutic use than L-peptides. [12].

As of 2022, over 60 peptide drugs have been approved for commercial use in the United

States, Europe, and Japan [13]. Additionally, more than 400 peptides are currently under-

going clinical trials, with 150 active clinical development and 260 completed human clinical

trials [13]. Consequently, developing antiviral peptides (AVPs) as therapeutics assumes a

crucial role in the fight against viral diseases. Notable examples of AVPs target various

viruses including HIV [14], SARS-CoV-2 [15], Influenza [16], Herpes Simplex [17], Dengue

[18], Tobacco Mosaic Virus [19], HSV [20] and Zika virus [21].

1.2 Problem statement

Undoubtedly, the quantity of information amassed in databases concerning AVPs has

grown exponentially with rising interest, making it challenging to analyze each entry in-

dividually. This vast and ever-expanding dataset can overwhelm researchers’ capacity

for interpretation [22]. Experimentally scrutinizing tens of thousands of sequences is both
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resource-intensive and time-consuming. Consequently, traditional approaches rely on man-

ual scrutiny and experimental validation, which becomes increasingly impractical given the

surge in available information.

To address this challenge, scientists have developed techniques to bring order to this

wealth of information, and computational tools and methodologies have emerged as a

solution. Some of these tools, rooted in data mining and network analysis, offer hope in

this complex landscape. They not only expedite the research process but also enhance

accuracy and efficiency. These methodologies provide researchers with a robust starting

point for navigating the chemical space of biologically active peptides, streamlining their

focus on the most promising candidates.

Moreover, these computational approaches provide a comprehensive overview of the

available data, empowering researchers to make informed decisions. This paves the way

for targeted and effective research. In the pursuit of developing peptide therapeutics,

these tools are invaluable. They bridge the gap between the vast amount of data available

and actionable insights, ensuring that the journey from sequence discovery to therapeutic

development remains efficient, effective, and well-informed.

1.3 Objectives

1.3.1 General Objective

To comprehensively discover and understand the potential of Antiviral Peptides (AVPs)

using advanced computational methodologies, including interactive mining and network

science

1.3.2 Specific Objectives

• To thoroughly explore the chemical space of AVPs found in StarPepDB

• To perform a community analysis using biological and chemical information

• To conduct an advanced similarity search using the MQSS method to identify po-

tential AVPs.
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• Design and refine a representative AVPs model from starPepDB.

• To evaluate and refine models through various calibration stages

• To discover new motifs with potential antiviral activity
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Chapter 2

Theoretical Framework

2.1 Chemoinformatics and Chemical Space

The enormity of the ever-expanding data overwhelms researchers’ interpretation capabil-

ities. In response to this challenge, scientists have developed techniques to bring coher-

ence to this wealth of information [22]. The exponential growth of data stored in public

databases has led to the concept of ”chemical space,” akin to the vast expanse of the cos-

mic universe filled with compounds. In this context, two important concepts are similarity

and diversity[23]. However, Medina-Franco et al. have identified at least eight definitions

for ”chemical space” [24]. The systematic study and exploration of chemical space are

commonly called ”chemoinformatics”[25].

Chemoinformatics focuses on manipulating information about chemical structures using

informatic methods. Since its proper definition in 2006, it has played a pivotal role in

analyzing and mining chemical information, contributing to a better understanding of

structure-property relations.

Chemical space and drug discovery are closely intertwined. This information has laid

the foundation for many biologically and medicinally relevant structures[26]. The concept

of chemogenomics precisely links the prediction and validation of the intersection between

chemical and biological space [23]. The exploration of chemical space serves two main pur-

poses. Firstly, it allows for the comparison of compound datasets from different sources,

particularly libraries. Secondly, it involves the classification of bioactive compounds, illu-
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minating the ”biological active space” based on the principle that similar compounds share

similar activity[27].

2.2 Graph-based Interactive Mining

Analyzing the chemical space involves dealing with high-complexity multivariate data.

Proper visualization techniques have been developed to simplify this complexity, enabling

dimensionality reduction and facilitating human brain analysis [25]. Dimensionality re-

duction is crucial for summarizing information while preserving its essence. As a result,

various techniques for visualizing structure-activity relationships have emerged. Chemical

space visualizations require a set of compounds and a set of molecular descriptors. In its

simplest form, spaces are generated by plotting the coordinates of a pure descriptor. In

more advanced scenarios, spaces are created based on the descriptor values [28]. Over

the last two decades, different approaches have been developed, typically consisting of two

major parts: clustering or organizing the chemical structure information, and visualization

to project activity data onto complex information [29].

Graph-based representation is one of the popular approaches for visualizing chemical

space. In this representation, each compound becomes a part of a grid of nodes. Construct-

ing similarity-based graphs offers a visual depiction of the chemical space and is a powerful

tool for extracting information, enabling intricate analyses of connectivity. These net-

works provide an intuitive portrayal of the chemical space, displaying a distinct structure

delineating the distances between different structures [30].

In graph theory, graphs are mathematical representations between multiple objects,

with each object represented as a node, and the relationships between nodes are repre-

sented as edges Each molecule is considered as its entity, and (dis)similarity metrics are

used to compare them with other nodes on the grid [28], [31]. The following mathematical

definition is presented to provide a more detailed description of graphs [32]:

Definition 1 (Graph). A labeled Graph is 4-tuple, G=(V,E,L,l)

V is a set of vertices

E ⊆ V × V is a set of edges
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L is a set of Labels

l : V ∪ E → L, is a function assigning labels to the vertices and edges

Advances in network science have paved the way for novel applications, exploring meth-

ods to study global and local patterns and structures. Utilizing networks (graphs) offers

three major advantages. Firstly, networks provide a more natural representation of the

chemical space and its discrete structure. Secondly, they offer a concise framework for

statistical analysis. Lastly, networks excel in managing large volumes of information with

diverse features [30]. However, the use of networks in chemistry is a field that requires

further exploration [33] Moreover, despite their high importance, systematic studies for

peptides chemical space exploration and diversity are still lacking [34].

While visual representation and exploration of the chemical space are key factors in

cheminformatics, the ultimate goal is not solely to extract information from the repre-

sentation but to generate knowledge. This knowledge includes discoverying patterns and

establishing coherence and meaning within the information itself [35]. Thus, the interac-

tion between the researcher and the information representation becomes crucial, as the

human mind is the key in drawing conclusions beyond simple description. This process of

turning information into knowledge is often referred to as ”data mining” [36, 37]. Graph-

based methods play a significant role in the realm of interactive advanced data mining and

pattern discovery [36, 22].

2.2.1 Important Notions on Network Science

Chemical similarity measures described in the literature can be calculated using various

methods, including: (a) Molecular graphs, (b) Descriptor vectors, (c) Molecular fields, (d)

Kernels,(e) unsupervised modeling, and (f) Supervised modeling studies. Among these,

similarity measures based on fixed-sized descriptor vectors are the most popular. They

involve different types of distances, such as Euclidean, Manhattan, Mahalanobis, and

Minkowski, to measure molecular dissimilarity [38]. Of these, the Euclidean distance is

the most commonly used (dis)similarity metric. This is primarily due to its widespread

application in calculating distances in physical spaces, making it more understandable and

manageable for human interpreters.
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Euclidean (dis) similarity metric: The techniques used for measuring distance are

particularly important in data mining. The most widely known distance is the Euclidean,

which works well with compact clusters, is easy to compute, and is sensitive to outliers

[39].

deuc = [
n∑

i=1
(xi − yi)2]

1
2 (2.1)

Bipartite Graph: These kinds of graphs have different and independent sets of ver-

tices (V1 and V2), and every edge of the graph connects one node of V1 to a node of

V2 [40]. Examples of these kinds of graph are the metadata networks introduced in later

sections.

How a network is connected is known as network topology, and it is directly influenced

by the threshold value selected. Different topologies reveal distinct activity clusters within

the entire space. Consequently, topology is a crucial parameter to consider when charac-

terizing a network at both global and local levels [30]. The characterization of topology

is often achieved through specific network properties, including node degree, clustering

coefficient, shortest path length, community structures, and network density [33]

Degree: The degree of a node in a graph is the number of edges connected to it [41]

Path: In network science, a path is defined as any sequence of vertices such that every

consecutive pair of nodes in the sequence is connected by one edge. The shortest path is

a connection between two nodes in a manner that no other possible path is shorter [41].

Graph density: This property reflects the ratio between the existing edges and the

maximum of edges that could exist in said graph. Said maximum, where n is the number

of nodes , can be calculated as follows [41]
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(
n

x

)
= 1

2
n(n − 1) (2.2)

Modularity: As defined by Newman, modularity refers to the difference between the

number of edges within groups in a complex network and the expected number of edges

in a random network with similar characteristics. The value of modularity indicates the

existence or absence of community structure within the network. Maximizing modularity

suggests the presence of distinct communities within the graph [42].

The method of optimal modularity can be explained as follows [43]. Suppose a network

with n number of nodes that is up to be divided into two subgroups for simplicity. Assign

1 to si if the node is found in group 1 and -1 if it’s assigned to group 2. Additionally, let

the number of edges in the network be Aij which is also referred to as the adjacent matrix

that can take values of 1 or 0. Also, the expected number of edges if i and j are placed at

random is kikj

2m
: where ki and kj are the degrees of each node and m = ∑

i ki (total number

of edges in the network. Hence, the modularity (Q) is given by the sum, of Aij − kikj/2m

over all pair of vertices placed in the same group. Stating that the quantity 1
2(sisj + 1) is 1

if i and j are in different groups and 0 if not. Summarizing all this, modularity is expressed

as :

Q = 1
4m

∑
ij

(Aij − kikj

2m
)(sisj + 1) = 1

4m

∑
ij

(Aij − kikj

2m
)sisj (2.3)

Average Clustering Coefficient (ACC): The clustering coefficient (CC) is measured

for each node, in a way that relates the number of edges that connect the node to its

respective neighbors and the total possible number of neighbors that could be connected.

This total possible number can be defined as when a node i, with ji neighbors; in a way

that every neighbor is also connected to the other neighbors. The CC gives information

about a singular node, whereas ACC gives a more general idea of the topology of the

network and the “small world” effect [44, 45]. ”Small world” networks are highly clustered

and have small characteristic path lengths. Consequently, these networks have specialized

nodes or regions [46].
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The mathematical representation goes as follows [47]. First, the clustering coefficient

CC(i) ∈ Q [0, 1] of a node i

CC(i) =


0 deg(i) ∈ 0, 1

2|N |
deg(i)(deg(i)−1) deg(i) > 1

 (2.4)

The clustering coefficient takes only values for one node, contrary to that, the average

clustering coefficient ACC ∈ R[0, 1] is a global parameter about the general topology of a

graph. Let X ⊆ V |∀x ∈ X : deg(x) > 0, denote the subset of such nodes [47].

.ACC(G)


0 |X| = 0

1
|X|
∑|X|

i=1 CC(xi) |X| > 0

 (2.5)

Clustering is the process of classifying objects into different groups or subsets based

on shared critical traits. It is a common technique used in various statistical analyses, in-

cluding machine learning, data mining, pattern recognition, bioinformatics, and chemoin-

formatics [48]. Community detection is essential because it helps identify clusters and

their boundaries, enabling the classification of nodes in a network. Nodes with a central

position within a specific community may play a vital role in controlling and stabilizing

the group, while more external nodes may mediate exchanges and communication between

communities [49]. Modularity has been employed as a measure to assess the quality of par-

titions in a graph, but its significance lies more importantly in its function as a means of

optimization [50]. When clustering is done using modularity optimization, it ensures that

each cluster consists of a connected subgraph, guaranteeing the validity and cohesiveness

of the clusters [51].

Louvain Clustering Algorithm: This algorithm is quite simple and optimizes the

modularity quality function; this process is carried out in two phases: (1) local moving

of nodes; and (2) aggregation of the network [52]. The algorithm starts by assigning a

different community to each of the nodes. Then for each node i, each of the neighbours

j is considered, and the gain in modularity is evaluated if the node i is removed from its

community and placed in j’s community instead. Then, the node i is left in the community

in which the positive gain is the highest; if this is not possible the node i stays in its

10



community. This process is recursive until there’s a local maximum in modularity, ending

the first phase. The second phase builds a new network using the priorly designated

communities as nodes by establishing the weight of the links as the sum of the weight of

the links within the two communities [50].

The concept of centrality plays a crucial role in understanding the structural attributes

of networks, and it is closely related to many other significant group properties and pro-

cesses [53]. The most commonly used centrality measures are degree, betweenness, close-

ness, and eigenvector centrality [54]. These measures quantify a node’s ability to influence

or be influenced by other nodes based on the network’s topology, thus identifying impor-

tant and central nodes often referred to as hubs [55]. The ranking of a node with a specific

centrality measure depends on the dynamic process assumed to be taking place. Some

centralities focus on shortest-path behaviors, while others prioritize interactions within

the local community. As a result, there are over 200 centrality measures reported to date,

reflecting the diverse and dynamic variations in network analysis [56].

Community Hub-Bridge Centrality (HB): a metric that assumes each node can

function as a bridge or a hub. Its purpose is to identify nodes that have balanced con-

nections within their community and between communities. This measure assigns weight

to the intra-community link based on the size of the community, and weight to the inter-

community link based on the neighboring communities [57][58]. To compute the centrality

measure, we define the internal strength of each node i as kint
i and the external strength as

kext
i . The formula for the Community Hub-Bridge Centrality is as follows (Eq.2.6), where

card(ci) represents the size of the community to which node i belongs and nnc(i) denotes

the number of neighboring communities [59].

CHB = kint
i ∗ card(ci) + kext

i ∗ nnc(i) (2.6)

Harmonic Centrality Measure (HC): This centrality measure is global and obtained

through the shortest path since the connectivity length of the graph is the harmonic mean.

Defined as follows, where 1/d(x,y) is the shortest path from x to y [60][61].
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CHC =
∑
x ̸=y

1
d(x, y)

(2.7)

Betweenness Centrality: It is a measure of the degree to which a node is needed by

others when connecting along the shortest paths, in comparison with centrality measures

based on closeness, in betweenness centralities, it must be computed the number of shortest

paths between pairs. This centrality helps measure how “popular” a node is based on the

multiple shortest paths strategy [51].

2.2.2 Half Space Proximal Network

As stated, the chemical space can be visualized using networks, these networks are co-

ordinated free representations called Chemical Space Networks (CSN). These networks

are conceived as weighted graphs, that is for a given threshold, the similarity matrix

SM = [sij]n×n stores the values computed by the similarity function between 0 and 1, for

every set of nodes and become the adjacent matrix A = [aij]n×n whose values are given by

[59]

aij +


sijifi ̸= j, sij ≥ t

0 otherwise

 (2.8)

However, this kind of representation, especially with t = 0, is not recommended for

large data sets. To build a complex network for large data sets, a large amount of RAM

is required to store the corresponding (dis)similarity matrix. With a representation of

lower density, the computational resources required decrease exponentially. The Half-space

proximal network (HSPN) reduces the number of links between nodes while maintaining

a metric space’s (dis)similarity properties. [59] The principle for this complex network, is

the Half-Space Proximal Test. This process generates a far less dense graph than a regular

chemical space network [62].
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HSP test [63]

Input : a vertex u of a geometric graph and a lit L1 of edges incident with v

Output : A list of directed edges L2 which are retained for the HS⃗P (G) graph

1. Set the forbidden area F(u) to be ∅

2. Repeat the following while L1 is not empty

• Remove from L1 the shortest edge, say [u, v], and insert L2 directed edge (u, v)with

u being the initial vertex

• Add to F(u) the open half plane determined by the line perpendicular to the edge

[u,v] in the middle of the edge and containing the vertex v, the point of the line does

not belong to the forbidden area

• Scan the List Li and remove from it any edge whose en vertix is in F(u)

Layouts

Network visualization is achieved through various applications of a force-directed layout,

a graph layout algorithm that models edges as springs, attracting nodes closer together

while setting repulsion values to avoid overlap. This process resembles energy minimization

in computational chemistry, which involves minimizing potential functions[64]. Also, it

has been proved that force-directed layouts can help optimize modularity, which is key

for community formation [65]. Nevertheless, these representations can be limited by the

amount of nodes, where extensive networks can end up looking la hairballs. Thus, it

is important to choose a layout that will help understand the topological structure of a

network.

Fruchterman Reingold layout : Fruchterman [66] explains the principle for graph

drawing using the following analogy: ”the vertices behave as atomic particles or celestial

bodies, exerting attractive and repulsive forces on one another, this forces induced a move-

ment. The algorithm will resemble a molecular or a planetary simulation ”. Certainly,

this type of layout will always try to display the network as a sphere, where important

parameters to consider are the surface area and the repulsion forces.

ForceAtlas 2: This is the default layout of Gephi [67]. Similar to the Fruchterman-

Reingold layout, it is also based on the principle that edges attract and act as springs,
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while nodes repel each other. However, unlike Fruchterman-Reingold, this layout has been

more recently optimized and offers more tunable variables. The scaling and ”prevent

overlap mode” are particularly useful for handling large datasets. Other parameters, such

as repulsion, gravity, and edge weight, can also be adjusted to achieve better results.

ForceAtlas 2 Fruchterman Reingold

Figure 2.1: Comparison of Different Layouts

2.3 Pairwise Alignment Algorithms

Pairwise Sequence Alignment is one of the keystone operations in bioinformatics. It is

widely used to determine if two different sequences are structurally or functionally related.

The operation aligns the two sequences to achieve maximal levers of identity to measure

the similarity and the possibility of homology [68].

Smith-Waterman Alignment Algorithm: Often referred to as local alignment, this

algorithm is employed to find the best subsequence between a target and a query sequence.

The algorithm consists of two phases. In the first phase, an alignment matrix is computed

for the two distinct sequences. The second phase involves extracting the best subsequence

from the alignment matrix. Sequences expected to be quite dissimilar can be compared

using this algorithm, which finds local regions with high levels of similarity [69].

Needleman-Wunsch Alignment Algorithm: It is commonly referred to as global

alignment because is optimal to cover the entire length of two sequences. It is appropri-

ate when both sequences have a similar length and demonstrate a considerable similarity

throughout. Starting with an AA pair, a comparison is made between corresponding AAs
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sequence. All potential pairs are organized in a two-dimensional array, and path represent

all possible comparisons through this array [70].

2.4 Molecular Descriptors

Molecular descriptors, fundamental to contemporary computer-assisted toxicological and

chemical applications, are numerical representations derived from molecular characteris-

tics. They enable a mathematical treatment of molecules, signifying a pivotal step in

converting molecular features into quantifiable data. These descriptors, defined as math-

ematical representations obtained through specific algorithms or experimental protocols,

encapsulate distinct aspects of a molecule’s chemical information [71].

Aliphatic Index: Aliphatic AAs are responsible for the thermal stability of peptides.

Therefore are a good indicator of thermostability in general. This index is computed using

the relative volume occupied by AAs with aliphatic side chain: alanine, valine, isoleucine

and leucine [72].

Boman Index: this function was introduced in 2003 based on the aminoacidic compo-

sition of a sequence and measures the potential protein interaction, primarily based on the

solubility of the AAs present as an estimation ability of a peptide to bind to membranes

to receptors is a good indicative [73].

Hydrophobicity: This parameter is an important criterion to consider for the estabi-

lization of the peptide. However, this interaction can change depending on the solvent in

which the sequence is found[74].

Isoelectric Point: The isoelectric point is the value of pH at which a molecule, in this

case a peptide, carries no net electrical charge, this parameter may affect the solubility of

the of the compound depending of the pH of the medium [75].

Charge: The overall charge of a peptide is the sum of the charges of every group in a

peptide that can be ionized [75].

GRAVY: The Grand average of hydropathicity index serves as a representation of a

peptide’s hydrophobicity. It is computed by summing the hydropathy values of all the

amino acids within the sequence and then dividing this sum by the sequence length [76].
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2.5 Multi Query Similarity Search

A fundamental principle in Medicinal Chemistry is that similar structures often exhibit

similar biological activities, with the degree of structural similarity correlating to the degree

of biological activity [77]. The Multi-Query Similarity Search (MQSS) method is grounded

in this axiom. This approach leverages a known set of sequences as a reference for the

biologically active domain. This set, known as the query set, must be carefully selected

by researchers to represent the breadth of the active space. Subsequently, the target

or unknown dataset is compared to this query set, and based on a predefined similarity

threshold, it is determined whether a sequence belongs to the biologically active space or

not. This process is illustrated in the schematic diagram below Figure.2.2.

Recent studies have showcased this non-trained supervised technique for predicting

peptide bioactivities, including Hemolysis [78], Tumor-Homing [79], and Antiparasitic [80],

with impressive results. This method trumps conventional ML methods in several ways:

it’s user-friendly, does not rely on web server availability, consumes fewer computational

resources, and processes sequences with non-standard amino acids or varying lengths. Re-

markably, MQSS models function without extensive training, relying instead on fine-tuning

certain parameters like sequence alignment type – the similarity cutoff value. They can be

developed without needing a negative dataset, a significant advantage given the scarcity of

validated negative sequences, ensuring the learning phase is not skewed by data imbalances.
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2.5.1 Metrics

Friedman Test:

The interpretation of statistical information usually relies on variance analysis to propose

ordinal rankings. However, this tool is unsuited for data that does not follow a normal

distribution. In this case, The Friedman test is used to detect differences in treatments

across multiple test attempts [81].

Definition 2 (Test Statistic).

Q = 12
nk(k + 1)

k∑
j=1

R2
j − 3n(k + 1) (2.9)

where k is the number of test attempts, n is the number of subjects and Rj is the sum of

the ranks for the jth group

Mathews Correlation Coefficient

A binary classification task involves categorizing data into two distinct groups, making

the evaluation of binary classifiers crucial in various research areas. Typically, in these

classifiers, a positive response is associated with ’1,’ and a negative response with ’0.’ To

assess performance, the standard practice is to create a confusion matrix, a 2 × 2 table

that groups correctly and incorrectly classified instances into true positives, false positives,

true negatives, and false negatives[82]. From the confusion matrix, fundamental ratios are

calculated to gauge the predictor’s performance. These ratios encompass the true positive

rate (sensitivity), true negative rate (specificity), positive predictive value (precision), and

negative predictive value[83].

The Mathews Correlation Coefficient (MCC), originally introduced in 1975 for com-

paring chemical structures, found new purpose in the 2000s as a performance metric for

machine learning. One of its advantages is its resilience to imbalanced datasets. The MCC

utilizes a contingency matrix approach, derived from the Pearson product-moment corre-

lation coefficient. What sets MCC apart is its ability to yield high scores when the binary

predictor accurately predicts both the majority of positive instances and the majority of

negative instances in the data[84]. Additionally, it has already been established its supe-

17



riority in comparison with ROC AUC, F1 Score, and Balanced Accuracy, which are other

common metrics derived from the basic ratios of the confusion matrix [82].
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Chapter 3

State of the Art

3.1 Databases

Biological databases are pivotal in bioinformatics, serving as repositories of organized and

relevant data [85]. As interest in Antiviral Peptides (AVPs) continues to grow within the

scientific community, numerous research endeavors have been dedicated to investigating

their structures, and mechanisms of action, and aggregating this knowledge into compre-

hensive databases [86]. AVPs are often classified as a subset of Antimicrobial Peptides

(AMPs) in various categorization systems. This classification is particularly significant, as

many existing databases incorporate AVPs within the broader framework of AMPs. No-

tably, the landscape of tools and databases available for AMP studies has been extensively

surveyed by Ramazi et al. [87], encompassing a range of general AMP databases. Several

of these databases are also covered here, while additional focus is directed toward specific

antiviral databases, see Table.3.1.

Furthermore, this review highlights the scope of coverage of antiviral sequences within

these general databases. It is worth noting that while some specialized peptide databases

might not explicitly categorize their entries as ”Antiviral,” databases such as Defensins [88]

and Cybase [89] still holds substantial importance. They contribute invaluable insights

into the mechanisms of action and structural characteristics of therapeutic peptides, thus

enhancing our understanding of potential antiviral candidate peptides.
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Table 3.1: A summary of existing antimicrobial and antiviral peptide databases

Database Name Covering Class Aproximate Size Year Reference

dbAMP 2.0 AMPs 1803 AVPs
187 Anti SARS-CoV 2022 [90]

DBAASP AMPs
1454 AVPs
53 Anti HIV

80 Anti SARS-CoV
2021 [91]

LAMP AMPs 4320 AVPs 2020 [92]

DRAMP AMPs 2219 AVPs 2019 [93]

InverPep AMPs 10 AVPs 2017 [94]

CAMP R4 AMPs 117 AVPs 2022 [95]

APD3 AMPs 172 AVPs 2015 [96]

AVPdb AVPs 2683 seq 2014 [97]

HIPdb Anti HIV AVPs 981 seq 2013 [98]

ACovPepDB Anti SARS-CoV 214 seq 2022 [99]

AntiCoV_DB Anti SARS-CoV 34 Anti COVID-19
104 anti SARS-CoV-2 2023 [100]

DRAVP AVPs 1986 AVPs.
46 Specific Virus Classification 2023 [101]

3.1.1 StarPepDB and StarPep Toolbox

StarPepDB functions as an integrated graph database housing peptide sequences and cor-

responding metadata, organized in interconnected nodes. This repository boasts a sub-

stantial collection, comprising 71,310 nodes and 348,505 connections [102]. To facilitate

easy access and utilization of the wealth of information within StarPepDB, the comple-

mentary software StarPep toolbox was developed [59]. This toolbox offers a range of visual

analytic processes, encompassing peptide queries, filtering, 3D structure visualization, net-

work construction, characterization, and more. Both StarPepDB and StarPep toolbox are

accessible at http://mobiosd-hub.com/starpep/

Distinguished as the largest compiled database to date, StarPepDB uniquely integrates

various individual databases [103, 104]. This affords a notable edge over previously estab-

lished peptide databases. The toolkit provided by StarPep toolbox and its graph-based

approach extends beyond the realm of antiviral peptides, serving diverse research endeav-
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ors. For instance, it has been instrumental in proposing 54 leads for tumor-homing peptides

[79], identifying motifs for anti-biofilm peptides [105], repurposing 95 AMPs as potential

anti-parasitic peptide hits [80], and identifying 47 potential hemolytic motifs [78].

3.2 Prediction Models

3.2.1 Encodings

With the increasing application of machine learning-based models in bioinformatics, one

key factor for successfully using these models is translating of peptide sequences into nu-

meric vectors. Although this is a crucial consideration when designing these methods,

it’s important to note that most encoding methods were developed before the advent of

deep learning. The most common encoding methods include one-hot encoding, BLOck

SUbstitution Matrix (Blosum), and physicochemical character-based encodings[106].

In a more general approach, encoding can be subdivided into sequence-based encod-

ings and structure-based encodings. Sequence-based encoding methods include Sparse,

Amino Acid Composition (AAC), distance frequency, quantitative Matrix, CTD (Com-

position, Transition, and Distribution), Pseudo-amino Acid (PseAAC), AAindex, Physico-

chemical properties, Substitution Scoring Matrix, and BLOMAP. On the other hand, some

structure-derived encodings include QSAR, general structure, electrostatic hull, distance

distribution, and more [107].

Substitution Score Matrix

Substitution matrices, such as BLOSUM62, represent accepted mutations between amino

acid pairs in sequence alterations[107]. Their primary purpose is to determine whether a

pair of sequences are homologous by assigning an alignment score to them. In this context,

it is assumed that the positioning of amino acid pair residues in alignments is statistically

independent of others. Thus, there’s a probability for pairing amino acids ’a’ and ’b’

residues in homologous sequences. Hence, it is possible to calculate the likelihood that

these two residues are uncorrelated and occurring independently[108].

So, if this specific residue pair is found more often than expected by random chance,
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a positive score is assigned, leading to a conservative substitution. In BLOSUM62,

the scores assigned to some pairs of amino acids are not the same. This variation in

scores reflects that in the homologous alignment data on which BLOSUM62 was trained,

some pairs of amino acids appeared more commonly than others, resulting in a different

assignment of scores for rarer alignments[109].

3.2.2 Machine Learning Based Models

The current pipeline for managing big data stored in databases involves machine learning

(ML), which efficiently analyzes extensive multidimensional information [110]. Traditional

ML algorithms, such as Support Vector Machine (SVM), k-nearest neighbor (kNN), random

forest (RF), single neural network (NN), and deep learning algorithms (DL), have proven

to be efficient methods for recognizing patterns within peptide sequences and exploring

the potential of new sequences [111]. The available prediction models are presented in

Table.3.2 The typical workflow of these methods begins with input encoding, followed by

model construction using either traditional ML or DL algorithms. One notable advantage

of DL methods is their reduced dependency on prior knowledge and well-engineered input

features. These DL techniques encompass Deep Neural Networks (DNN), Convolutional

Neural Networks (CNN), and Recursive Neural Networks (RNN)[112].

However, a significant point of controversy within the field revolves around the justifi-

cation of using DL models for predicting AMPs in general. Most DL methods necessitate

extensive datasets of experimentally validated peptide sequences. In contrast to other

fields where deep learning is widely employed, the available data in this context is often

insufficient. One approach to address this insufficiency is ”data augmentation,” as em-

ployed by Lin et al. [113] for negative sequences. Nevertheless, this approach has not

been fully explored.As noted by Garcia-Jacas et al. [114], there is no significant improve-

ment in using DNN over traditional ML methods, and the chemical space produced by

these algorithms often overlaps. Additional challenges related to available datasets include

the overrepresentation of certain sequences and imbalanced data distribution, which can

lead to difficulties when evaluating performance solely based on accuracy. Furthermore,

issues concerning the lack of result reproducibility persist, as not all researchers share their
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source code or datasets, hindering the broader adoption of these methods within the sci-

entific community. Consequently, while machine learning-based methods offer promising

tools for predicting biologically active peptides, there is ongoing work required to refine

these models and obtain valuable results [111, 112].
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Chapter 4

Methodology

4.1 Half-Space Proximal Network

The methodology employed for constructing the HSPN followed a similar approach as

described in [79, 78, 80]and [105] when successfully studying hemolytic, tumor-homing,

antiparasitic and antibiofilm activities in peptides. However, the graph-based method has

not been applied to antiviral peptides. This methodology allows us to leverage a net-

work representation for data mining. The initial StarPepDB consisted of 45120 sequences,

out of which 4663 were classified as antiviral based on their function. To ensure a more

representative subset for the HSPNs, the Smith-Waterman alignment algorithm removed

sequences with a redundancy higher than 95%. As a result, the number of sequences was

reduced to 3494 AVPs. The Euclidean metric and Min-Max normalization were employed

to calculate pairwise similarity between peptides. The molecular descriptors used for fea-

ture extraction, which are found in Starpep toolbox, included Peptide Length, Net Charge,

Isoelectric Peptide, Molecular Weight, Boman Index, Hydrophobic Moment, Average Hy-

drophilicity, Hydrophobic Periodicity, Aliphatic Index, Instability Index, and Indices based

on Aggregation Operators.

Various values of t ranging from 0.3 to 0.9 were tested to investigate the impact of the

similarity threshold (t) in the HSPNs. Additionally, a network with t = 0 (no similarity cut-

off is used, that is, a parameter-free complex network) was included. Further refinement of

each HSPN was performed by applying the Louvain algorithm for clustering. The centrality
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characterization of most HSPNs was carried out using the HB centrality measure. However,

with smaller networks, HC was also used. All these steps were carried out using the StarPep

Toolbox (http://mobiosd-hub.com/starpep/ ).

4.2 Metadata Complex Network

Another notable feature of the StarPep toolbox is its ability to generate Metadata complex

Networks (MNs). These networks are constructed as bipartite graphs, leveraging the 3494-

sequence subset of AVPs as the first set of nodes. For the second set of nodes, metadata

information categorized by the StarPep toolbox as “Database”, “Origin”, “Function”, and

“Target” was utilized. To fully appreciate the bipartite graph structure provided by the

MNs, edges linking peptides within the same set were removed based on the initial simi-

larity network. This removal highlights the hierarchical relationships within the MNs. For

instance, each “peptide” node is connected to an “origin” node, and different “peptide”

nodes can be connected to the same “origin” node, but not to each other, resulting in a

visible hierarchy. In contrast to the previous networks discussed, the centrality of the MNs

was measured using the Betweenness centrality.

4.3 Network visualization and Characterization

All HSPNs were visualized using Gephi 0.10 ([136], https://gephi.org/ ), utilizing the

Fruchterman-Reingold Layout [66] with an Area set to 1 × 108 and a speed of 20. The

HSPNs were color-coded to represent different clusters, and the size of nodes was scaled

according to their respective centrality measure (HB centrality) to enhance visual clar-

ity. Using the Statistical Features integrated into Gephi 0.10, various parameters were

calculated for each HSPN with varying cut-offs (t = 0.3-0.9). The reported parameters

included Average Degree, Network Density, Modularity, ACC, and Average Path Length.

The number of singletons (atypical sequences) in the network was estimated using the

“Giant Component subgraph” and/or vertex degree equal to 0. These parameters aided in

selecting the HSPN with the optimal t value. The selected HSPN with optimal t value was

taken as the main reference to compare with the HSPN without cut-off value; to assess the
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effect of said parameter in the representation of AVPs.

The five most central AVP nodes were extracted from each HSPN to gain further

insight into the selected complex networks. Some molecular properties of these sequences

were calculated using the ’Peptides’ package for R ([137], https://cran.r-project.org ) .

The molecular descriptors used for this characterization included Aliphatic Index, Boman

Index, Hydrophobicity, Isoelectric Point, Charge, and peptide Length. Additionally, some

biological activity information was incorporated through cross-referencing the metadata

provided by StarPepDB . The peptides were visualized as a ten-node HSPN , and their

similarity overlap was measured using Dover Analyzer [138].

4.4 Exploration of Scaffold and selection of most rep-

resentative Subset

Starting from the selected HSPNs (t = 0.75 and t = 0) a scaffold extraction was performed

using the data mining tools provided by the StarPep toolbox. This process involves mod-

ifying several variables, including the centrality measure, the pairwise sequence alignment

algorithm, and pairwise sequence % identity to obtain the best-reduced representation of

the chemical space. Both the Harmonic and Community Hub-Bridge Centralities were uti-

lized for the centrality measure. The alignment algorithms used were Needleman-Wunsch

and Smith-Waterman . Additionally, the pairwise sequence’s % identity was adjusted from

90% to 50%. These modifications resulted in the generation of 20 distinct scaffolds from

each of the selected HSPNs (t = 0.75 and t = 0) Subsequently, the generated subsets were

compared using the Dover Analyzer. To assess the impact of the centrality measure, align-

ment algorithm, and HSPN cut-off on the scaffold extraction process, subsets obtained with

the same sequence’s % identity were grouped for analysis. The comparison was based on

the percentage of identical and similarity overlap between sequences within each scaffold.

These comparisons identified the best and least redundant subsets for each sequence’s %

identity. These subsets were compiled into a consolidated dataset, representing the optimal

and most representative choices for each percentage of allowed similarity. Finally, these

scaffolds were visualized in Gephi using the same methodology described earlier.
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4.5 Motif Discovery

The motif discovery was conducted using the alignment-free method called STREME (

[139], https://meme-suite.org/meme/tools/streme ) , which is part of the MEME Suite

5.5.2 [140]. The 8 communities identified by the clustering algorithm in the HSPN (t = 0)

from StarPep toolbox were used to obtain these motifs. Each community was converted

and separated into individual .fasta files, which served as input for the motif extraction

process using STREME. The motif width was set to a minimum of 3 and a maximum of

6 AAs. The search for motifs was limited to those with a p-value threshold of 0.05.

Parallel to the motif discovery, an analysis of the communities was conducted. Initially,

several molecular descriptors were calculated for the three most central nodes of each of the

8 clusters, following a similar chemical characterization approach as explained previously.

Subsequently, a literature search was performed to expand the characterization of these

peptides and gain a deeper biological insight into their properties. Additionally, based

on the sequence of these peptides there were searches for the occurrence of the motifs

discovered within the same cluster.

4.6 Alignment Free Motif Enrichment

The motifs extracted by STREME were further validated using the Sequence Enrichment

Analysis [141] tool from the MEME Suite 5.5.2 . This validation involved assessing the

relative enrichment of these motifs in external databases [103]. The following external

datasets were used for validation:

• B-TS-StarPepAVP (272 positives)

• Ex-StarPepAVP (1230 positives)

• TR-StarPepAVP (622 positives)

• TS-StarPepAVP (622 positives)

To avoid redundancy between the datasets, the similarity among them was also studied

using Dover Analyzer. In the validation process using SEA, the E-value threshold was set
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to be lower than or equal to 10. The enrichment E-value of a motif is calculated as

the adjusted p-value multiplied by the number of motifs in the input. The adjusted p-

value represents the probability of the motif distinguishing the primary sequences from the

control sequences.

A negative dataset was selected for “inverse-validation” to eliminate the possibility that

the identified motifs have the same probability of occurring in both positive and negative

sequences. The negative dataset was constructed by combining the negative sequences

from the external datasets mentioned previously. Redundant sequences were removed,

resulting in a 13715 unique negative sequences dataset. After validating the motifs, they

were searched within the most central sequences of each source cluster. This analysis

aimed to explore the presence and significance of the motifs within the central sequences

of each cluster. A literature search was also conducted to investigate any similarities or

connections to other prediction reports, further enhancing the understanding of the motifs

and their potential biological relevance. By conducting these analyses, it was possible to

validate and explore the motifs concerning both positive and negative sequences, and to

gain insights from existing literature and prediction studies.

4.7 Multi-Query Similarity Search

The Multi-Query Similarity Search (MQSS) method was previously introduced in the Theo-

retical Fundamentals section (see Chapter 2). For executing the MQSS, 15 distinct ”Query”

datasets were employed. These reference datasets were created using the scaffold extrac-

tion algorithm provided by the StarPep toolbox. The selection of these scaffolds was

made based on their representativeness in comparison to similar ones. Furthermore, five

of the ”Query” datasets were formed by merging different scaffolds with similar sequence

identity percentages, enhancing the sequence representativeness of these datasets. More

comprehensive information about the ”Query” datasets can be found in Table 4.1.

In conjunction with the ”Query” datasets, several critical variables must be considered

for the MQSS process. The first involves determining the similarity cutoff (r), which

was varied within the range of 0.3 to 0.9. The computation of similarity was based on

the BLOSUM-62 substitution matrix. The second variable involves selecting the type of
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alignment algorithm, whether global or local. These parameters collectively resulted in a

total of 210 models being tested during the initial phase of the MQSS process.

Table 4.1: Description of the used ”Query” Datasets

Name Size Description Name Size Description

Md1 1,872
seq

Merged of scaffolds
with 50% from
scaffold extraction

SG4 2,562
seq

Constructed using
Global Alignment,
HB Similarity Measure
and 80% sequence identity

Md2 2,152
seq

Merged of scaffolds
with 60% from
scaffold extraction

SG5 3,119
seq

Constructed using
Global Alignment,
HB Similarity Measure
and 90% sequence identity

Md3 2,445
seq

Merged of scaffolds
with 70% from
scaffold extraction

SL1 1,030
seq

Constructed using
Local Alignment,
HC Similarity Measure
and 50% sequence identity

Md4 2,703
seq

Merged of scaffolds
with 80% from
scaffold extraction

SL2 1,557
seq

Constructed using
Local Alignment,
HC Similarity Measure
and 60% sequence identity

Md5 3,206
seq

Merged of scaffolds
with 90% from
scaffold extraction

SL3 2,028
seq

Constructed using
Local Alignment,
HC Similarity Measure
and 70% sequence identity

SG1 1,626
seq

Constructed using
Global Alignment,
HB Similarity Measure
and 50% sequence identity

SL4 2,369
seq

Constructed using
Local Alignment,
HC Similarity Measure
and 80% sequence identity

SG3 1,991
seq

Constructed using
Global Alignment,
HB Similarity Measure
and 70% sequence identity

SL5 3,003
seq

Constructed using
Local Alignment,
HC Similarity Measure
and 90% sequence identity

4.7.1 Selection of best models

Model Calibration

To identify the optimal model, an exhaustive search for available AVP datasets was con-

ducted to compile a comprehensive set of sequences (refer to Table 4.2 for evaluation

details). It’s important to note that for studies encompassing multiple types of AMPs, the

search was limited to the antiviral subsections of these databases. This selection process

was executed through multiple filtering stages.
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Table 4.2: Description of the used ”Target” Datasets

Dataset Size Positives Negatives Ref

TR_StarPep 4,642 2,321 2,321 [103]

TS_Starpep 1,246 623 623 [103]

Ex_Starpep 12,001 1,230 10,771 [103]

AVPIden 53,116 2,662 51,116 [118]

AMPfun 5,826 2,001 3,825 [120]

ENNAVIA_A 974 557 420 [119]

ENNAVIA_B 1,154 557 597 [119]

Imb 12,234 2,038
139 (Anti-CoV) 10,196 [142]

Thakur 1,056 604 452 [127]

Sharma 6,544 3,273 3,271 [117]

AI4AVP 20,222 2,934 17,288 [113]

ENNAVIA_C 465 109 (Anit-CoV) 356 [119]

ENNAVIA_D 469 110 (Anti-CoV) 359 [119]

HIPdb 981 981 - [98]

Expanded 55,822 3,178 52,644 -

Reduced 27,692 1,419 26,273 -

The model selection procedure can be divided into two distinct sections. The first,

described here, pertains to the calibration of model construction, wherein various hyperpa-

rameters were fine-tuned. These parameters encompassed the selection of the best ”Query”

Dataset, as outlined in Table 4.1 alignment algorithm, and the value of the cutoff parameter

(r). The calibration process occurred across two evaluation rounds. In the initial round, the

evaluation was conducted using datasets provided by [103]. Specifically, the TS_StarPep,

TR_StarPep, and EX_StarPep datasets were utilized as targets for the Multi-Query Sim-

ilarity Search (MQSS). This evaluation stage resulted in reducing the number of models

from 210 to 80.

The subsequent stage encompassed six distinct datasets: AVPIden, AMPfun, EN-

NAVIA A, ENNAVIA B, Imb, and Thakur. Evaluating these models using the afore-

mentioned datasets as targets further refined the selection, reducing the number to 50

models.
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Figure 4.1: Calibrationa and Validation of MQSS

Model Validation

In the third stage of reduction, the performance of the remaining 50 models was rigorously

assessed using an additional set of five datasets: Sharma, AI4AVP, ENNAVIA C, EN-

NAVIA D, and Imb_CoV. This meticulous evaluation process eventually led to the final

selection of 32 models. Importantly, this evaluation phase included datasets specifically

tailored to certain types of viruses such as SARS-CoV, enabling the assessment of the

model’s performance against more targeted AVPs.

To further refine the selection process, an ”Expanded” dataset was constructed by

aggregating all sequences from the 14 individual datasets (Figure.4.2). Furthermore, posi-

tive sequences demonstrating anti-HIV activity from the HIPdb[98] were integrated. This

amalgamated dataset encompassed a total of 70,126 negative sequences and 20,136 positive

sequences. Following the removal of sequence redundancy, the dataset contained 54,088

negative sequences and 4,745 unique positive sequences. To enhance accuracy, overlapping

sequences that were reported both as positive and negative were excluded from the dataset,

leading to the elimination of 1,567 overlapping sequences. The evaluation conducted using

the Expanded dataset led to the identification of 12 models that exhibited optimal perfor-

mance characteristics. The final selection of these 12 models was determined through an

Average Ranking of the Friedman test. The Statistical test and corresponding significance

test were carried out using the KEEL software ( [143], https://sci2s.ugr.es/keel/develop

ment.php#x1-20001) and the Non-parametric Statistical Analysis Module. The described
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workflow is better depicted in Figure.4.1
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Figure 4.2: Construction and Modification of Expandend Dataset

4.7.2 Model Improvement

One significant challenge that necessitates addressing in these models is the precision of

recalling positive sequences. Various approaches were undertaken to explore avenues for

enhancing the detection of positive sequences.
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A posteriori Modification

The first approach involved aggregating multiple models and employing a majority vote

system to generate a new prediction for a given sequence. Given the total of 12 base

models, there were 220 possible combinations of 3 models, and 720 possible combinations

for groups of 5 and 7 base models. These amalgamated models were designated as meta

models. The evaluation of these metamodels was conducted using the Expanded dataset.

The concept of the majority vote system is visually depicted in Figure 4.3.
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Figure 4.3: Process for Model Combination

A priori Modification

The second approach involves enhancing the ”Query” Dataset. After identifying the top 3

base models, the scaffolds employed in the QMSS were chosen. These selected scaffolds were

merged and any redundancy within the set was eliminated. New models were constructed

using the refined query set while retaining the alignment algorithm and cutoff value from

the parent models.

Query Enrichment

The primary challenge associated with the accuracy of positive sequences can also be at-

tributed to the inadequate representation of specific sequence types absent in StarPepDB.
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Consequently, the MQSS struggles to accurately predict such sequences. The second round

of evaluations during the model selection’s calibration stage was employed as a starting

point to enhance the ”Query” Dataset with additional sequences. Datasets where mod-

els exhibited notably poor performance were singled out. These datasets encompassed

Thakur, ENNAVIA A, AMPfun, and Imb. Positive sequences from these four datasets

were extracted in a single new dataset, with redundant sequences subsequently removed.

This process resulted in 2403 unique sequences. To ensure the absence of these sequences

from the currently top-performing model’s scaffolds, a pairwise similarity comparison was

conducted using Dover Analyzer.

With the newly curated and validated dataset , it was integrated into the StarPep

toolbox to construct a HSPN, similar to the HSPNs developed previously for the entire

AVP space. Following HSPN contruction, Scaffold Extraction was applied to the network,

varying the centrality measure between Harmonica and Community Hub-Bridge. The

alignment algorithm type was adjusted between local and global, considering only 80%

and 90% as the sequence identity percentages. This process yielded 8 new scaffolds, desig-

nated as ”external scaffolds.” These scaffolds were utilized to develop new MQSS models,

employing the same methodology as before, resulting in 112 new models, as depicted in Fig-

ure.4.5. These newly generated models underwent testing against the Expanded Dataset

to identify the most effective external scaffolds.

Once the best-performing scaffolds were pinpointed, they were incorporated into the
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scaffolds of the best-performing base models, while eliminating redundancy among the

sequences. These enriched queries were employed once again in constructing models while

retaining the parameters of the parent base models.

Positives from 
problematic datasets 

Non redundant sequences 
from ENNAVIA A, Thakur, 

Imb,AMPfun

HSPN 
Construction

Scaffold Extraction

8 Scaffolds

Models 
Construction 

Model Evaluation 
with Expanded Dataset

Model Evaluation 
with Expanded Dataset

Extraction of External Scaffold

Query Enrichment

Selection of 2 best 
perfoming scaffolds

Model Evaluation 
with Expanded Dataset

Selected Query 
Dataset enrichment 

with extracted scaffold 

Figure 4.5: Process for Query Enrichment

4.7.3 Model Performance Evaluation

Performance is assessed across various datasets at every stage of the model selection, valida-

tion, and improvement process. This performance evaluation is conducted using commonly

employed metrics in Machine Learning Based Predictors. These metrics encompass Accu-

racy (ACC), Sensitivity (SN), Specificity (SP), the Mathews Correlation Coefficient, the

F1 Score, and the False Positive Rate (FPR) [144].

ACC = TP + TN

TP + FP + TN + FN
(4.1)

SN(Recall) = TP

TP + FN
(4.2)

SP = TN

TN + FP
(4.3)
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Precision = TP

TP + FN
(4.4)

MCC = TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(4.5)

F1 = 2 × Precision × Recall

Precision + Recall
(4.6)

FPR = FP

FP + TN
(4.7)

Where TN are the true negatives, TP are the true positives, FN are the false positives and

the FP are the false positives.

Comparison with State of the Art

To assess the robustness of the MQSSMs, a selection depicted in Table.4.3 of state-of-the-

art predictors was made, primarily considering their availability through web services and

ease of implementation. The table below provides a summary of the predictors used in this

section. For the comparison with the predictors the Reduced Dataset was employed as it

was stated previously:

Table 4.3: State of the Art predictors used for comparison

Predictor Year Algorithm Implementation Ref
AI4AVP 2022 CNN https://axp.iis.sinica.edu.tw/AI4AVP/ [113]
iACVP 2022 RF http://kurata35.bio.kyutech.ac.jp/iACVP/ [145]

PTPAMP 2022 SVM http://www.nipgr.ac.in/PTPAMP/ [117]
seqpros 2022 MLP,LSTM https://github.com/eotovic/seqpropstherapeutic [130]
ProDcal 2021 RF,RNN https://biocom-ampdiscover.cicese.mx/ [103]
AMPfun 2020 RF http://fdblab.csie.ncu.edu.tw/AMPfun/index.html [120]

FIRM-AVP 2020 RF,SVM, DL https://github.com/pmartR/FIRM-AVP [134]
Meta-iAVP 2019 hybrid http://codes.bio/meta-iavp/ [121]
AntiVPP 2019 RF https://github.com/bio-coding/AntiVPP [146]
ClassAMP 2012 RF SVM http://www.bicnirrh.res.in/classamp/ [126]
AVPpred 2012 SVM http://crdd.osdd.net/servers/avppred/ [127]
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4.8 Lead Discovery from Protein Cleavage

The objective is to propose antiviral sequences through Virtual Cleavage, using the models

developed in the last section. Although the process involves more steps than just applying

the models, the workflow for this section is explained in the diagram.

The initial point applying of the workflow (Figure.4.6) is three databases: the Starpep

database, a human proteome database, and a cephalopod peptides database. The Starpep

database contains the 45,120 sequences embedded in the StarPepDB. The human proteome

database contains 43,000 novel cryptic AMPs scanned using a scoring function. Finally, the

cephalopod database was crafted applying 13 enzymatic digestion protocols to the proteins

found in cephalopods’ salivary glands[147]. The peptides in these databases were filtered

to retain only sequences with fewer than 35 amino acids and using standard amino acids.

For the StarPep DB, sequences labeled as antiviral, toxic, or hemolytic were also removed.

After the initial filter, the M13+ MQSS model was applied. The remaining sequences

were compared with all the positive sequences in the Expanded dataset and the experi-

mentally negative sequences in the same dataset. Another filter was applied to remove

sequences with a similarity higher than 90%.

The resulting group of potential antiviral sequences was subjected to some state-of-

the-art predictors to increase the chances of identifying antiviral activity. The web servers

used in this case included AMPfun, iACVP, meta-iAVP, AI4AVP, PTPAMP, and ProtDcal.

Sequences that received a positive prediction from most the models were selected for the

next filter.

Finally, the selected sequences were subjected to toxicity, hemolysis, and allergen pre-

dictors to eliminate sequences predicted as toxic, hemolytic, or allergen. The GRAVY

index was also calculated to further refine the set of sequences presented. Certain physico-

chemical properties were calculated using the ”peptides” package from R to provide more

information. All the tools employed in this section are listed in Table.4.4
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Table 4.4: Web-Available tools used for Virtual Cleavage

Web Server Activity URL Ref
AMPfun

Antiviral

http://fdblab.csie.ncu.edu.tw/AMPfun/index.html [120]
iACVP http://kurata35.bio.kyutech.ac.jp/iACVP/ [145]
PTPAMP http://www.nipgr.ac.in/PTPAMP/ [116]
Meta-iAVP http://codes.bio/meta-iavp/ [121]
AI4AVP http://axp.iis.sinica.edu.tw/AI4AVP/ [113]
ProtDcal https://biocom-ampdiscover.cicese.mx/ [103]
ToxinPred Toxicity https://webs.iiitd.edu.in/raghava/toxinpred/algo.php [148]
HemoPred Hemolysis http://codes.bio/hemopred/ [149]
ALGpred2 Allergens https://webs.iiitd.edu.in/raghava/algpred2/algo.html [150]
GRAVY GRAVY https://www.gravy-calculator.de/

Web Server 
Prediction 

Hemolysis
Toxicity
Allergen
GRAVY
Predictors 

Reduction of 
redundant 
sequences 
higher to 90 % 

Max Length : 35 AA 

Apply M13+ 
MQSS Model 

non redundancy 
with experimentally 
reported 
AVP/Non AVP 

Standard AA
Non toxic
Non hemolytic
Non AVP

+100 000 
sequences

Proposed workflow
HITS

Proposal of Potential AVP Sequences

Figure 4.6: Workflow for Virtual Cleavage

To visually represent the selected groups of potential antiviral hits, and was created

an HSPN using the sequences as nodes. Once the network was constructed, the Louvain

algorithm for clustering was employed and it was calculated the Community Hub-Bridge

Centrality for each node. This information guided us in hand-picking specific sequences

based on their representativeness and significance within the network. To streamline the

presented sequences, the Scaffold Extraction Algorithm was utilized. This process utilized
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the HB Centrality calculation in combination with a local type of sequence alignment,

considering a 50% sequence pairwise identity threshold.

For the final set of sequences, we estimated additional antimicrobial activities using

the AMPfun and the AMPDiscover (ProtDcal Hierchal) web servers. These assessments

covered antiparasitic, antifungal, and antibacterial activities.
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Chapter 5

Results and Discussion

5.1 Metadata Complex Networks

Metadata Networks (MNs) serve as an essential starting point for the basic characteriza-

tion of AVPs, utilizing the information available in StarPepDB. MNs provide researchers

with a comprehensive view of the metadata associated with AVPs, enabling them to ex-

plore the distribution and interconnections of AVP sequences based on various attributes,

including their sources, functions, or targets. These complex networks highlight the hier-

archical relationships within the data, particularly between the “peptide” nodes and the

corresponding “metadata” nodes. Additionally, other hierarchical structures may emerge

among the “metadata” nodes due to the presence of redundant classification categories

(Figure.5.1A).

Database MN : The databases that contribute the majority of AVPs in StarPepDB

include SATPdb [151], AVPdb [97], DBAASP [152], DRAMP_General [153] and, LAMP_

Experimental [92] (Figure 1A). These databases serve as the top 5 most central nodes in

the network, as measured by Betweenness centrality, and exhibit high connectivity, sharing

a significant number of sequences. Among them, SATPdb stands out with connections

to 3106 peptides, which account for 88.9% of the original subset, surpassing the next

most central database (AVPdb) by a wide margin. The least connected databases are

DRAMP_Clinical [153] and MilkAMP [154], with a node degree of 4 and 6, respectively.
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While most sequences are associated with several databases, peripheral nodes connect to

only one database, such as AVPdb, which contains 70 unique sequences visible in the

bottom right corner of the network. This distinction is important as AVPdb specifically

focuses on antiviral peptides, unlike SATPdb. Another example is the CyBase_Cyclotides

[89], which connect to only 81 peptides but is noteworthy for including cyclic backbone

peptides(Figure.5.1B).

Figure 5.1: Metadata Networks (MN). (A) “Database” MN (B) “Function” MN Layout:
Force Atlas2

Function MN: Exploring the relationship between antimicrobial peptides (AMPs)

subclasses and AVPs reveals an intriguing approach. Beyond the AMP class itself, these

associations can shed light on the peptides’ action mechanisms and potential biological

activities. The antiviral subclass was expected to be the most central node in the MN.

Moving beyond that, the subsequent most central nodes from 1 to 6 include further subclas-

sifications of antimicrobial peptides: Antimicrobial, Antibacterial, Antifungal, Anti Gram

+, Anti Gram -, and Anti-HIV, in that order. The prominence of the anti-HIV function

indicates the importance of targeted antiviral research specifically focused on HIV. Outside

the antimicrobial category, the first two functions to appear are “toxic to mammals” and

“hemolytic” suggesting a potential relationship between antiviral activity and the toxic-

ity of these sequences. These observations align with findings reported in [78] regarding
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hemolytic peptides. In contrast, the function with the fewest connections is “tumor-homing

activity,” which is only associated with one peptide(Figure.5.2A).

Origin MN: The Origin MN enables the association of selected peptide sequences

with their respective sources, which range from synthetic constructs to isolates from various

organisms. An interesting feature of this MN is its ability to link peptides with their origins

and also relate the subcategories of origin to broader categories. This leads to additional

edges labeled as “produced by” and “is a” with the latter relating to the subcategories of

origin. In the “produced by” category, two main spheres are noticeable. The first sphere

connects to the most central node representing “synthetic constructs”, encompassing all

reported synthetic AVPs. Although synthetic sources are the most common for AVPs,

they only account for 13.5% of all sources, indicating the wide range of natural sources for

AVPs. Some synthetic sequences have also been isolated from living organisms, primarily

from Homo sapiens, Bos taurus, and Rattus norvegicus. A closer examination of this

section reveals peptides that have been synthetically obtained and naturally isolated, such

as StarPep_01104 and StarPep_00155, which have 22 reported sources each. The first

peptide has 15 cross-references in StarPepDB and is reported as mammalian tachykinin

peptide family [155]. The second one has 41 cross-references in StarPepDB, a peptide part

of a transferase found in Homo sapiens and Saccharomyces cerevisiae [156]. In the outer

sphere, sequences that have only been obtained from living organisms are found. These

sequences are less central and more dispersed in comparison. The most common natural

sources are the genus Homo and the family Homininae (Figure.5.2B).

On the other hand, the “is a” classification allows for identifying small clusters of taxo-

nomically related categories. Additionally, some origins node do not appear to be directly

related to any other origin node and are located on the periphery of the MN, such as

Macaca mulatta, Rana temporaria, and Odorrana andersonii. This observation suggests

the potential for further research on AVPs in species related to the mentioned ones.

Target MN: Like the previous MN, this complex network also consists of two types of

edges labeled as “is a” and “assessed against”. The “assessed against” edge is particularly

useful for analyzing different targets. Two main sections can be observed: the inner circle,
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Figure 5.2: Metadata Networks (MNs). (A) “Origin” MN “produced by” edges (B) “Tar-
get” MN “assessed against” nodes Layout: Force Atlas2

which includes most nodes, and the outer ring, where nodes are more dispersed with limited

connectivity. In the center, the most common targets for AVPs are HIV, Escherichia Coli,

Staphylococcus Aureus, Hepatitis C, and Herpes Simplex. With 666 peptides connected to

it, HIV represents 19% of the reported targets, emphasizing the importance of developing

therapeutics against this specific virus. It is worth noting that the most common targets

are viruses and bacteria, highlighting the close relationship between AVPs and AMPs.

Another interesting observation from this section is the forming of a small cluster, situated

between the inner and outer circles, with the most central node being the target Andes

Virus. The outer ring includes peptides that are not specifically associated with any target

but rather represent a taxonomic classification of a larger group of organisms. In the “is

a” MN, the taxonomical relation and relative proximity of each target to the others are

displayed.

5.2 Half Space Proximal Networks

In HSPNs for AVPs, the Euclidean metric serves as the most intuitive similarity measure,

commonly employed to calculate distances in many applications. In an n-dimensional

space (n molecular descriptors), distances between nodes are computed, and these dis-
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tances are then aggregated into a ‘similarity matrix’. While the visual interpretation of a

similarity matrix leads to a similarity network, the conversion between the two requires the

application of a threshold matrix. The selection of a similarity threshold determines the

preservation of edges connecting different peptides (nodes) [47]. This study systematically

varied the similarity threshold (t) was systematically varied from 0.3 to 0.9. Addition-

ally, an HSPN without a threshold was included to facilitate a later comparison between

networks with and without the threshold. The choice of the similarity threshold directly

influences the density of connections within the complex network. While the number of

nodes remains constant across all networks, the number of edges varies. Although this

may appear to be a minor change, it significantly impacts the formation of communities

and the presence of singletons (nodes that lack connections to any other node) within the

network.

Once all the HSPNs with different similarity threshold (t) values were constructed

and the topology was characterized using several parameters obtained in Gephi software

. The different HSPNs constructed are displayed in Figure.5.3 Several parameters were

considered in this analysis, including the number of edges, number of communities, number

of singletons, density, modularity, ACC, average path length, and average degree, gathered

in Table. 5.1

Figure.5.5 depicts the density, ACC, and modularity of each HSPN for all t used. These

parameters were utilized to establish an HSPNs’ characterization and discovery, which t

value is optimal for representing AVPs. The significance of this study lies in the fact that

selecting the most optimal t value is not an automated process; it requires careful consider-

ation by researchers. Choosing the correct t value enhances complex network visualization

and facilitates a better understanding of the relationships between communities. An HSPN

with just one large community may not be desirable, just as a network with a high count

of singletons can obscure important similarity information. Therefore, finding the right

balance is crucial for obtaining a meaningful representation of AVPs and their subsequent

exploration [47].
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t = 0.85 t = 0.9 

t = 0.7 t = 0.75 t = 0.8

t = 0.55 t = 0.6

t = 0.40t = 0.3t = 0 t = 0.35

t = 0.45 t = 0.5

t = 0.65

Figure 5.3: Comparison of HSPN visual density depending on t value
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Table 5.1: Topology Characterization of HSPNs fro t = 0.3-0.9

t Edges Clusters Singletons Density Modularity ACC Av. Path Av.Degree
0 27725 10 0 0.005 0.463 0.024 7 3.591
0.3 27724 8 0 0.005 0.473 0.024 7 3.591
0.35 27722 8 0 0.005 0.472 0.024 7 3.592
0.4 27716 8 0 0.005 0.464 0.024 7 3.593
0.45 27698 7 0 0.005 0.476 0.024 7 3.596
0.5 27667 7 0 0.005 0.472 0.024 7 3.6
0.55 27564 8 0 0.005 0.478 0.024 8 3.611
0.6 27340 10 3 0.004 0.467 0.024 8 3.631
0.65 26676 15 9 0.004 0.48 0.025 8 3.685
0.7 25052 21 13 0.004 0.486 0.026 10 3.836
0.75 21474 74 75 0.004 0.518 0.027 18 4.305
0.8 14844 307 509 0.002 0.58 0.026 16 4.849
0.85 5739 1075 1726 0.001 0.79 0.024 23 6.449
0.9 1641 2356 3388 0 0.952 0.023 12 3.829

Figure 5.4: (I) t = 0 and (II) t = 0.75. A different color is assigned in each HSPN to show
communities. Layout: Fruchterman Reingold

However, the construction of the HSPN presents a unique characteristic that sets it

apart from traditional networks: it doesn’t necessarily require a similarity threshold yet

remains sparse. This attribute makes the network parameter-free, offering a significant
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advantage as there is no need to determine an optimal similarity threshold. In this study,

both the threshold-free network and the network with the optimal threshold are used

in parallel. This approach enables a comprehensive comparison of the similarities and

differences discovered, allowing for a more thorough analysis of the network dynamics.

By utilizing both network versions, the study gains a broader perspective, enhancing the

overall understanding of the HSPN network’s characteristics

Figure 5.5: HSPN’s characterization using different parameters.

The density of a network is expected to decrease as the number of edges satisfying

the similarity threshold condition decreases. On the other hand, modularity is a parame-

ter that reflects the presence of communities, and maximizing modularity is a goal of the

Louvain clustering algorithm. As the t value increases, there is an increase in modularity,

indicating the formation of fewer but more cohesive communities. This increase is partic-
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ularly noticeable after t = 0.8. However, the correlation between ACC and t is not linear,

as an increase in t does not necessarily lead to an increase in ACC. When plotting the

different ACC values, a maximum is observed around t = 0.75, indicating the highest level

of connectivity.

Based on these observations, the cut-off value of t = 0.75 was determined as the optimal

choice. Figure.5.4 illustrates the HSPN at this cut-off (HSPN_OP) alongside the HSPN

at t = 0 (HSPN_NC). Additionally, Figure.5.6 displays the graphical representation of the

Louvain Clustering Algorithm, showcasing the 8 communities obtained from HSPN_NC.

Each community is depicted in a distinctive color, and the size of the nodes reflects their

centrality.

1 2 3 4

5 6 7 8

Figure 5.6: HSPNs (t = 0) for each 8 communities obtained by using the Louvain algorithm
Layout: Force Atlas2

These communities range from 100 nodes (cluster 4) to 652 (cluster 1). It is worth

noting that these communities can be further subdivided and characterized similarly to the

whole-space networks, due to their still considered size. In a subsequent analysis, the most

representative sequences within these 8 clusters, labeled in the figure, will be examined.

A community analysis was not performed to HSPN_OP since the number of clusters

extracted by the Louvain clustering algorithm is considerably larger (74 clusters) and the
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number of singletons (75 singletons) is also high hindering a more rounded interpretation

of the communities.

For an additional representation of the networks, the degree distribution was plotted

noticing a higher degree distribution for the HSPN_NC, where HSPN_OP has a higher

count of singletons and nodes with lower connectivity as it was aforementioned. The degree

distributions along with a normal approximation are shown in Figure.5.7

The most central nodes (determined by HB centrality) were selected and further ana-

lyzed to delve deeper into the chemical space of these complex networks. These selected

sequences were characterized using various molecular descriptors, allowing for a detailed

examination of their chemical properties (Table.5.2). Additionally, a classification of the

different AAs present in each sequence was performed using the ”Peptides” package for R.

Figure 5.7: HSPNs’ Degree distribution. (A) t = 0.75, HSPN with optimal similarity cut-
off. (B) t = 0, HSPN with no cutoff (free parameter). The dashed red line indicates the
normal fit for the respective distribution.

Upon careful examination of the central nodes within each HSPN, a noteworthy obser-
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vation comes to light: the peptides represented in the network are not identical. However,

this does not mean that the nodes highly central in HSPN_NC are absent in HSPN_OP.

In fact, upon further analysis, it is revealed that the most central nodes in HSPN_OP, as

shown in Table.5.2, are present in clusters 19 and 9, which correspond to clusters 1 and

3 in HSPN_NC. This emphasizes the significance of these particular clusters in terms of

connectivity. Additionally, the most central peptides in HSPN_NC are found in three

distinct clusters (1, 5, 8), these same peptides are present in HSPN_OP in clusters 9, 18,

and 31. This demonstrates that, regardless of the HSPN considered, the same sequences

are consistently grouped. However, it also highlights how HSPN_OP further fractures the

space, making it more challenging to comprehend the distances between different groups of

sequences. Despite this complexity, the underlying connectivity patterns remain preserved

across the networks, and cluster 1 is considerably important in terms of centrality as it is

also the largest one.

Table 5.2: Most Central sequences of each HSP and corresponding chemical features

IDa Cluster Aliphatic Index
Boman
Index

Hydrophobicity
Isoelectric

Point
Charge Length

HSPN t = 0.75 (HSPN_OP)
StarPep_02593 19 78.00 0.42 0.34 7.99 1.69 30
StarPep_01372 9 62.86 2.07 -00.90 12.25 8.09 28
StarPep_13366 9 86.67 3.56 -00.95 11.28 2.09 18
StarPep_02091 9 66.67 1.37 -00.01 8.17 3.50 63
StarPep_13542 9 91.00 1.53 -00.14 10.21 2.09 30

Mean (±SD)
77.04

(±10.93)
1.79

(±1.03)
-00.33
(±0.51)

9.98
(±1.68)

3.49
(±2.38)

33.8
(±15.26)

HSPN t = 0 (HSPN_NC)
StarPep_02526 5 97.50 0.34 0.43 11.90 6.00 20
StarPep_08887 8 43.33 1.47 -00.39 8.16 1.06 9
StarPep_10907 1 46.52 3.66 -1.56 11.09 5.94 23
StarPep_01472 1 65.00 2.12 -00.07 11.16 5.75 30
StarPep_10501 5 76.11 1.43 -00.50 7.02 0.00 18

Mean (± SD)
65.69

(±19.94)
1.81

(±1.09)
-00.42
(±0.65)

9.87
(±1.91)

3.75
(±2.65)

20
(±6.84)

Jumping into a more chemical analysis of the AVPs space, one notable difference ob-

served among the molecular descriptors used is the Aliphatic index, which is lower for
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HSPN_OP than HSPN_NC. Additionally, the Hydrophobicity values are also lower for

HSPN_OP. Furthermore, the average length of the most central peptides in HSPN_NC

is approximately 13 residues longer than those in HSPN_OP. On the other hand, the

differences between the two networks in terms of other properties such as Boman Index,

Isoelectric Point, and Charge are less than 10%. These differences are best depicted in

Table.5.2

Figure 5.8: Occurrence of different types of AAs corresponding to the five most central
nodes (Harmonic Centrality ) of each HSPNs selected

In terms of AA representation, it can be observed that HSPN_OP exhibits a higher

level of homogeneity in its representative peptides compared to HSPN_NC. This difference
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is probably linked to the fact that many of the most central peptides in HSPN_OP are

from the same cluster compared to HSPN_NC. Specifically, HSPN_NC demonstrates a

larger mole percentage of aromatic, charged, and basic AAs. Conversely, HSPN_OP shows

a more stable presence of AAs categorized as tiny, aliphatic residues, and acidic. However,

both networks exhibit the highest representativity of non-polar AAs over any other category

(Figure.5.8).

Furthermore, an extensive literature search was conducted to gain insights into the

mechanisms of action associated with these AVPs. While many of these sequences have

numerous cross-references in StarPepDB, only one reference was selected for each case to

avoid excessive lengthening of this section. Focusing on a representative reference for each

sequence makes the analysis more concise and manageable.

Most Central Nodes for HSPN_OP

• StarPep_02593. This peptide has been reported as Cycloviolacin-O17, with a se-

quence “GIPCGESCVWIPGISAAIGCSCKNKVCYRN”, and extracted from Viola

odorata (Sweet violet). Anti-HIV, antibacterial, and hemolytic biological activities

for these cyclotides have been reported. It has also studied the relation between the

cyclotide framework and the proteolytic stability of these peptides [157].

• StarPep_01372.It is reported as Kenojeinin I, with a sequence “GKQYFPKVGGRLS-

GKAPLAAKTHRRLKP” and has been isolated from the skin of a fermented skate.

It has many cationic residues and shows antimicrobial activity. The researchers that

purified this peptide suggest that the basic AA facilitates binding of and transport

across the bacterial outer membrane, and the hydrophobic residues cause the inner

membrane’s disruption and permeation [158].

• StarPep_13366. This peptide is part of a Genome polyprotein, with a sequence “VA-

TRDGKLPTTQLRRHID”. It is related to the Hepatitis C virus (HCV) genotype 1a.

This peptide is linked to the envelope proteins of E1 and E2 of HCV. Characterization

of the E1 and E2 heterodimer suggests that the functional complex’s pre-budding

form of the functional complex, which will probably play an active role in the entry

into host cells [159].
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• StarPep_02091. It is a Ascaris suum antibacterial factor type antimicrobial peptide,

named by the researchers abf-2. Abf-2 has the following sequence, “DIDFSTCAR-

MDVPILKKAAQGLCITSCSMQNCGTGSCKKRSGRPTCVCYRC ANGGGDIPL-

GAL”. This peptide was tested to have biological activity against Gram-positive and

Gram-negative bacteria, and yeast [160].

• StarPep_13542. This peptide is a genome polyprotein, with a sequence “VSRRY-

LASLHKKALPTSVTFELLFDGTNPS”, and has been linked to the envelope glyco-

proteins involved in cell infection of classical swine fever virus [161] .

Most central nodes for HSPN_NC:

• StarPep_02526. This peptide “FLFRVASKVFPALIGKFKKK” is referred to as D51,

and it was designed to have antimicrobial properties by using a linguistic model

of natural AMPs based on amphipathic properties; the peptide was tested against

Gram-positive and Gram-negative bacteria [162].

• StarPep_08887. This peptide “CSLHSHKGC was reported as a cyclic peptide that

inhibits the Andes Virus infection. The technique used for identifying this peptide

was phage display using a cysteine-constrained cyclic nonapeptide-bearing library

[163]

• StarPep_10907. Described as Envelope glycoprotein gp150 synthetized for the in-

hibition of the Feline immunodeficiency virus, with a sequence “KQRNRWEWR-

PDFKSKKVKISLPC”. Although the action mechanism isn’t clear, the author sug-

gests that the inhibitory peptides may act by interacting with cell-surface molecules

involved in viral infection [164].

• StarPep_01472. This peptide “IRNSLTCRFNFGICLPKRCPGRMRQIGTCF” was

isolated from Cervus elaphus blood (deer), and it showed antimicrobial activity,

especially against Gram-negative bacteria [165].

• StarPep_10501. This amphipathic helix-containing peptide was designed to interfere

with HIV envelope glycoprotein and interfere with the steps involving membrane

fusion. The sequence is “KAFEEVLAKKFYDKALWD” [166].
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Similar to the observations made in the MNs analysis, there is a close relationship

between the antiviral function and the broader classification of antimicrobial peptides.

Out of the 10 sequences mentioned earlier, 3 primarily target Gram-positive and Gram-

negative bacteria. Another notable similarity among these sequences is that both HSPNs

contain at least one central peptide that targets HIV, the most common target in the

”target” MN.

Figure 5.9: (A) Similarity Network between the most central nodes from HSPN_OP and
HSPN_NC. Layout: Fruchterman Reingold (B) Similarity Overlap between the 10 top
sequences of each HSPN

However, these sequences have additional underlying relationships and similarities to

shed light on. A similarity network can be constructed by considering only these ten

sequences. The network found in Figure.5.9A reveals sparse connections, with most nodes

only connecting to two other sequences. The peptide that exhibits the highest number

of connections is the StarPep_02091 sequence, previously identified as one of the most

central nodes in the HSPN_OP. This can be attributed to the fact that it is the longest

peptide among the selected sequences. To explore the study of sequence similarities in more

depth, each of these peptides underwent analysis using Dover Analyzer (41) to generate a

similarity overlap heatmap. Given the expectation of distinct characteristics among these

sequences, a local type alignment algorithm was utilized to measure their similarity. As

depicted in Figure.5.9A, these sequences demonstrate minimal compositional similarities.
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Thus, it becomes imperative to delve further into the intracommunity to obtain a more

comprehensive understanding of the nature of AVPs’ chemical space. This analysis will be

conducted at a later stage.

5.3 Scaffold Extraction

The primary objective of this section is to create a well-represented subset of the overall

AVP chemical space. A total of 20 scaffolds were obtained from HSPN_OP and HSPN_NC

by varying the alignment algorithm, centrality measure, and similarity threshold. The

scaffold extraction tool available in the subnetwork mining section of the StarPep tool-

box was utilized for this purpose. The scaffold extraction process allows for simplifying

the network’s topology based on a pre-defined similarity parameter. As a result, the gen-

eral representation, and characteristics of the AVP chemical space are preserved, while

significantly reducing the complexity of the network.

For the comparison of the scaffolds, Dover Analyzer software was utilized. Among

the various computed results provided by that software, the primary focus was on the

analysis of similarity overlaps between the scaffolds. These similarity overlaps, expressed as

percentages, indicate the extent to which sequences are repeated when compared pairwise.

The results of this comparison are visualized in the form of a heatmap graphic, where 8

different scaffolds are compared at the time, changing sourcing HSPN, alignment algorithm,

and centrality measure. One notable observation from these heat maps is that they are not

symmetrical. This lack of symmetry arises from an imbalance in the number of sequences

in each scaffold. While two scaffolds may have the same number of redundant sequences,

the redundancy percentage may vary for a smaller subset, representing a higher proportion

of its total.
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Table 5.3: Characterization of Scaffolds from HSPN_NC varying the alignment algorithm
and Centrality Measure.

HB centrality HC measure

Identity Percent Edges Nodes
Coverage

(%)
Identity Percent Edges Nodes

Coverage
(%)

Local Alignment
90 22,343 2,996 86 90 22,229 3,003 86
80 16,396 2,363 68 80 16,027 2,369 68
70 12,820 2,044 59 70 12,764 2,028 58
60 8,108 1,536 44 60 8,395 1,557 45
50 3,633 950 27 50 4,530 1,030 29

Global Alignment
90 23,768 3,123 89 90 23,836 3,124 89
80 18,585 2,566 73 80 18,569 2,560 73
70 15,612 2,278 65 70 15,674 2,273 65
60 13,004 2,007 57 60 13,132 2,005 57
50 8,721 1,587 45 50 8,798 1,582 45

Table 5.4: Characterization of Scaffolds from HSPN_OP varying the alignment algorithm
and Centrality Measure.

HB centrality HC measure

Identity Percent Edges Nodes
Coverage

(%)
Identity Percent Edges Nodes

Coverage
(%)

Local Alignment
90 16,997 3,005 86 90 17,015 3,005 86
80 12,801 2,368 68 80 12,819 2,369 68
70 10,221 2,022 58 70 10,504 2,046 59
60 6,817 1,534 44 60 7,212 1,559 45
50 4,110 1,034 30 50 4,311 1,044 30

Global Alignment
90 18,442 3,119 89 90 18,397 3,126 89
80 14,832 2,562 73 80 14,667 2.566 73
70 12,620 2,277 65 70 12,410 2,006 65
60 10,669 1,991 57 60 10,564 2,006 57
50 7,529 1,589 45 50 7,287 1,592 46

When comparing the various variables set for this experiment (Figure.5.10), a notable

observation is that the section of the heatmaps comparing scaffolds derived from different

parent HSPNs consistently shows a predominantly red color. This indicates that there is no
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significant difference in representativeness and diversity between these two HSPNs. This

finding holds important implications, suggesting that in future research involving HSPNs

and AVPs, there may not be a need to extensively explore the network topology in search of

an optimal similarity threshold (t-value). This result holds significance for the subsequent

section of the study.

The difference in alignment algorithm yields the most noticeable effects, particularly

in scaffolds characterized using different centrality measures. It is important to emphasize

that the HB centrality adopts a more localized or community-based approach, whereas

the HC measure is based on the shortest path between nodes. As a result, the choice of

alignment algorithm has a lesser influence on scaffolds obtained using HC, and its influence

becomes apparent only when the sequence’s % identity is reduced to 60%. All the scaffold

analysis is summarized in Table.5.3 and Table.5.4.

Figure 5.10: Scaffold Density Comparison and Similarity Overlap

Based on these findings, a set of scaffolds was carefully selected to construct representa-

tive and diverse subsets for various similarity cutoffs. Four merged subsets were constructed
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from 80-50% of pairwise sequence’s identity containing 2703, 2445, 2152, and 1872 posi-

tive sequences respectively. These subsets, consisting of representative sequences, are now

being presented to the chemoinformatics/bioinformatics community as a condensed subset

of the vast chemical space of AVPs. These results hold significant value as they can serve

as training datasets for machine learning-based predictors and/or facilitate multi-query

similarity searching. The primary advantage of these scaffolds lies in their high diversity

and non-redundant representativity, which effectively prevent overfitting and family over-

representation in predictive models. By utilizing these scaffolds, researchers can develop

accurate prediction models, and effectively explore novel AVP candidates. These resources

contribute to advancing AVP research and the development of effective antiviral therapies

5.4 Motif Discovery

The diversification of peptide sequences is immeasurable; however, the changes in the

sequence must be within the limits of functionality. As a result, certain AAs tend to remain

unaltered due to their direct involvement in the activity. When these conserved residues

are identified across various sequences, they are called motifs, indicating an orthologous

relationship [167]. The term “motif” is used in various contexts, often denoting a specific

repetitive element. In a biological context, these elements represent recurrent patterns in

biological entities.

To enhance our understanding of natural networks beyond their topology, it is valuable

to identify motifs, which are significant patterns of interconnections. Network motifs refer

to elements with a higher probability of appearing than to a randomly generated network

[168]. In this case, the motifs will consist of AAs sets containing between 3 and 6 residues.

Peptide motifs offer a significant advantage as compact building blocks with functional

autonomy, potentially leading to more effective AVPs [169]. However, identifying linear

motifs poses challenges due to their short length, the tendency to occur in different se-

quence sections, and limited conservation across unrelated species. Moreover, discovering

these motifs is elusive using experimental techniques and often requires time-consuming

experiments [170].

The search focused on the clusters obtained through modularity optimization of HSPN_NC
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to identify antiviral motifs. Only the communities within this network were utilized, as

the scaffold analysis from the previous section revealed no significant difference between

HSPNs with and without an optimal cut-off. The graphical representation of each cluster

can be found in Figure.5.6.

As mentioned earlier, an intracommunity analysis of the chemical space is required.

The three most central nodes for each cluster are listed in Table.5.5, along with their

sequences and relevant external information regarding their identity. It is worth noting

that certain clusters exhibit specific similarities among their nodes. For instance, in clusters

1 and 2, the listed peptides are derived from plants and possess a cyclotide structure

[171, 172, 173, 174, 175]. Nodes in clusters 3 and 6 share a notable similarity as they

originate from amphibious sources [176, 177, 178, 179, 180]. Lastly, cluster 4 comprises

nodes interacting with HIV [181, 182]. The remaining clusters do not exhibit such obvious

biological relationships among their central nodes.

For the chemical characterization of these peptides, a distinct chemical profile was

developed for each cluster. To facilitate comparison, the changes between clusters based

on molecular descriptors are presented. Several important observations can be made from

this comparison, see Figure. 5.11.
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Figure 5.11: Chemical Characterization of each cluster

Firstly, Cluster 4 exhibits a negative charge on average, indicating a higher prevalence

of acidic AAs, while Cluster 1 has the highest positive charge, indicating the opposite trend.

Clusters 2, 7, and 8 are nearly neutral in charge. In terms of length, the longest sequences

are found in Clusters 1 and 3, while the shortest sequences are present in Cluster 8. The

aliphatic index is highest in Cluster 6 and lowest in Clusters 1, 2, and 8. The Boman index
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is negative for Cluster 6, indicating a potential antimicrobial activity, whereas Cluster

1 has the highest Boman index value. Hydrophobicity is notably high in Cluster 6 and

negative in Cluster 1. The isoelectric point shows relative homogeneity within each cluster,

with Cluster 4 having the lowest value due to its negative charge. These properties are

very important for the anti-viral ability of the peptide. Typically, AVPs are cationic

and contain hydrophobic residues, the hydrophobicity and electrostatic interaction are

important factors when fighting enveloped viruses [188].

This chemical information also provides insights into the similarity relations and com-

munities within the chemical space. For example, clusters 1 and 2, which have relatively

similar sources, may initially appear to belong to the same cluster. However, a closer

examination of their distinct chemical properties reveals significant differences, justifying

their formation as separate communities.

Once the community analysis was completed, the STREME algorithm from the MEME

suite was employed for an de novo fixed-length motif discovery [140]. When provided with

a dataset, STREME generates a control set by shuffling the letters of the primary sequences

while preserving lower-order statistics. This process helps to identify only relevant motifs

and avoids the discovery of non-relevant ones. STREME also provides significance statistics

for each discovered motif, which is determined by comparing its occurrence in the primary

sequences to that in the control set. The primary sets used for motif discovery consisted

of the sequences found within the 8 clusters of HSPN_NC.

The validation process of the 42 motifs discovered by STREME involved two stages. In

the first stage, the SEA algorithm [141] from the MEME suite was used in conjunction with

four positive external datasets. This analysis aimed to evaluate the enrichment of the motifs

within the positive datasets and determine their statistical significance. To ensure the

reliability of the validation process, the external datasets used were subjected to an overlap

analysis. It was observed that most of the datasets had a similarity overlap lower than 60%.

However, an exception was found in the B-TS and TS datasets, where all the sequences in

the B-TS dataset were also present in the TS dataset. By using non-redundant and diverse

datasets for the validation process, the reliability and generalizability of the discovered

motifs were enhanced. This further strengthens the significance and applicability of the

motifs in understanding the functional properties of AVPs.
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The second stage involved an “inverse-validation” using a unique negative dataset. This

step allowed for the elimination of motifs that had a similar probability of appearing in

negative sequences. The SEA algorithm [141], like STREME, constructs a control set by

shuffling each of the primary sequences while preserving certain statistics. By comparing

the occurrence of motifs in the primary sequences to that in the control set, SEA provides

insights into the enrichment and significance of the motifs [141]. The validation process

serves to confirm the relevance and reliability of the discovered motifs, ensuring that they

are not mere chance occurrences but have true functional significance within the context

of AVPs.

After the validation process, a final set of 33 motifs was obtained, these motifs along

with their respective statistical significance are depicted in Table.5.8. These motifs were

searched for in the most central sequences of each of the cluster listed before (Table marked

in red). Just in the sequences from cluster one, no motif was found. To address this

particularity a further examination of cluster 1 could improve the result. Nonetheless, the

other clusters showed in many sequences the occurrence of more than one motif, especially

clusters 2 and 4.

To gain further insights into these motifs, a comparison was conducted with existing

state of art literature (see Table.5.9). Specifically, two other studies that reported logos of

discovered antiviral sequences were examined for comparison [189, 142]. Additionally, the

motifs were compared with known sequences of antiviral activity to identify any potential

similarities or overlaps. This comparative analysis with existing studies and known an-

tiviral sequences provides valuable context and supports the significance of the discovered

motifs. By establishing connections and similarities with previously reported findings,

the understanding of the antiviral properties and mechanisms of action associated with

these motifs can be expanded, while also validating the reliability of the methodology here

employed.

In a study conducted by Balachandran Manavalan et al. in 2022 [189], the researchers

focused on comparing different machine-learning approaches for identifying peptides tar-

geting SARS-CoV-2. The study reported statistically significant position-specific com-

positions of certain predictive sequences. Notably, their predictions highlighted a high

occurrence of glycine in the first position of the sequence. Similarly, in our validated mo-
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Table 5.7: Full list of validated motifs by SEA software, after removing motifs occurring
in negative datasets.

Motif Cluster P-value E-value TP Dataset

CYCR

1

0.00 0.00 279/1097 (25.4%) 1
0.27 1.60 23/520 (4.4%) 2
0.00 0.02 31/1935 (1.6%) 3
0.50 3.00 11/217 (5.1%) 4

RRRRH

0.50 3.00 4/1097 (0.4%) 1
0.43 2.55 15/520 (2.88 %) 2
0.00 0.00 26/1935 (1.34%) 3
0.17 1.03 7/217 (3.22%) 4

RRWWC

0.79 4.73 11/1097 (1.0%) 1
0.23 1.36 5/520 (0.9%) 2
0.16 0.98 16/1935 (0.8%) 3
0.94 5.63 2/217 (0.9%) 4

YDISDD

0.99 5.94 4/1097 (0.4%) 1
0.00 0.03 20/520 (3.8%) 2
0.00 0.00 57/1935 (2.9%) 3
0.05 0.29 12/217 (5.52%) 4

CGES

2

0.00 0.00 102 /1097 (9.3%) 1
0.14 5.91 6 / 217 (2.8%) 4

GCSCK

0.00 0.00 96 /1097 (8.7%) 1
0.09 3.58 10 /520 (1.9%) 2
0.09 3.67 7 / 217 (3.2%) 4

VCYRN
0.00 0.00 126 /1097 (11.5%) 1
0.01 0.01 16 /520 (3.1%) 2

GLPV 0.00 0.00 41 /1097 (3.7%) 1

GTCNTP

0.00 0.00 49 /1097 (4.5%) 1
0.22 9.15 5 / 520 (0.9%) 2
0.15 6.28 15 /217 (6.9%) 4

VWIPCI

0.00 0.00 62 /1097 (5.7%) 1
0.01 0.42 13 /520 (2.5%) 2
0.00 0.16 8 / 217 (3.7%) 4

SAAJ

0.06 2.27 275 /1097 (25.1%) 1
0.00 0.00 43 /520 (8.3%) 2
0.04 1.66 35 /217 (16.1%) 4

QAVG
0.14 5.87 170 /1097 (15.5%) 1
0.06 2.52 4 / 520 (0.8%) 2
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Table 5.8: Full list of validated motifs by SEA software , after removing motifs occurring
in negative datasets.

Motif Cluster P-value E-value TP Dataset
CKITG

3

0.00 0.00 110 /1097 (10.0 %) 1

GJMDT
0.00 0.00 63 /1097 (5.7%) 1
0.11 4.41 5 / 520 (0.9%) 2

AGKSVA 0.00 0.00 81 /1097 (7.4% ) 1

JFSKI
0.00 0.00 50 /1097 (4.6%) 1
0.12 5.07 37 /520 (7.1%) 2
0.03 1.17 23 /217 (10.6%) 4

LLDK
0.00 0.00 29 /1097 (2.6%) 1
0.09 3.67 10 /217 (4.6%) 4

EAIPLT

4

0.06 2.52 4 / 520 (0.8%) 2
0.00 0.08 9 / 217 (4.14%) 4

FNK 0.04 1.55 15 /520 (2.9%) 2

IPPEVK
0.20 8.29 14 /1097 (1.3%) 1
0.11 4.47 5 / 217 (2.3%) 4

KKKKVV

5

0.00 0.00 26 /520 (5.0%) 2
0.06 2.56 6 / 217 (2.8%) 4

ATYVL 0.00 0.00 41 /520 (7.9%) 2
TKKC 0.00 0.00 168 /1097 (15.3%) 1

WLRDI
0.20 8.10 38 /1097 (3.5%) 1
0.00 0.01 23 /520 (4.4%9 2
0.15 6.28 15 /217 (6.9%) 4

LSDFK 0.00 0.00 43 /520 (8.3%) 2
WDWIC 0.18 7.18 18 /520 (3.5%) 2

GLSGL

6

0.00 0.00 32 /1097 (2.9%) 1
0.11 4.47 5 / 217 (2.3%) 4

GKK
0.19 7.72 153 /1097 (13.9%) 1
0.12 5.06 17 /217 (7.8%) 4

FLPIV
0.00 0.00 84 /1097 (7.6%) 1
0.17 6.91 7 / 520 (1.3%) 2

KAAGKA

7

0.00 0.00 122 /1097 (11.1%) 1

SLLGRM
0.03 1.22 27 /1097 (2.5%) 1
0.01 0.44 11 /520 (2.1%) 2

YFL 0.07 2.93 29 /217 (13.4%) 4

HCKFWW
0.15 5.95 26 /1097 (2.4%) 1
0.16 6.63 11 /520 (2.1%) 2
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tifs, 18% of them also had glycine as the first residue and 21% of them contained glycine

in other positions. Another motif, GKK, was found in the position-specific representa-

tion of positive samples estimated using the ENNAVIA-D model [119]. Interestingly, the

results from this study [119], also revealed the frequent presence of lysine, leucine, as-

paragine, glutamic acid, and valine, although in different positions. These residues are

also commonly observed in the motifs reported in our study, in particular lysine, leucine,

and valine occupying, 36%, 30%, and 27% of the validated motifs respectively.

The second study we examined also focused on identifying anti-coronavirus peptides

[142]. In their supplementary information, functional motifs for AVPs were reported.

We found higher similarities between these motifs and those reported here. However, an

important observation not included in the Table is the high occurrence of arginine, leucine,

and valine residues in these sequences, consistent with the previous comparison and our

reported motifs. Interestingly, while lysine was found to be highly prevalent in AVPs, its

occurrence in non-AVPs was even higher, which is an important factor to consider. Other

studies have also confirmed the frequent presence of leucine, glutamic acid, valine, and

tryptophan in AVPs [120, 193].

To our knowledge, only 10 of the 33 motifs introduced in this study have been doc-

umented in existing literature, indicating the discovery of 23 entirely new motifs. These

novel motifs offer promising prospects for designing and testing new sequences in peptide-

based antiviral therapeutics. Notably, previous literature predominantly emphasizes longer

sequences rather than concise motifs. Consequently, the findings of this study demonstrate

a more versatile and ”building block” nature compared to similar research works in the

field. This underscores the effectiveness of utilizing similarity networks and data min-

ing tools in uncovering novel motifs and advancing our understanding of peptide-based

antiviral strategies.

5.5 Multi Query Similarity Search Models

This section addresses the challenge of handling an initial pool of 210 models through a

scaled-down process. During the first round of the calibration stage, we evaluated these

initial 210 models using three datasets: TR_Starpep, TS_Starpep, and EX_Starpep.
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Notably, these datasets, primarily sourced from StarpepDB, exhibited fairly consistent

model behavior (Figure.5.12). This result is extremely logical since these datasets and the

used ”Query” share a lot of sequences.
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Figure 5.12: MCC Distribution In Calibration and Validation Stage

In the subsequent round of the calibration stage, we introduced six datasets unrelated

to StarPepDB. As expected, during this round, the models’ performance deteriorated com-

pared to the first round. An essential insight that emerged during this phase is that the

models excelled when working with datasets containing randomly generated negative se-

quences and non-experimentally tested sequences. This observation stemmed from the fact

that many of these negative sequences bore a resemblance to the positive ones. As a result,

the alignment-based methods struggled to distinguish the distinctive characteristics of each

72



group.

This issue became particularly evident in datasets such as ENNAVIA-A and Thakur,

which included experimental sequences as negative datasets, while with ENNAVIA-B,

which has the same amount of positive sequences, the models were far better at rec-

ognizing non-antiviral sequences. Additionally, it’s crucial to note that the number of

experimentally validated negative sequences is relatively limited compared to positive se-

quences. Therefore, the primary challenge during modeling was to enhance the recall of

positive sequences in general.

After the calibration stage, certain trends in the parameters for the QMSS began to

emerge. One initially expected observation was that richer scaffolds performed better, as

more references fine-tuned the characterization of the AVPs chemical space. Scaffolds like

Md4, Md5, SG4, SG5, SL4, and SL5 had the most variants of models.

Furthermore, global types of alignment tended to pair better with lower percentage

sequence identity, whereas local types of alignment paired better with higher percentage

sequence identity. Additionally, in less rich scaffolds, global types of alignment outper-

formed local types of alignment at any identity percentage.

5.5.1 Model Selection and Improvement

During the Validation test, one of the approaches taken was to test these models against

datasets that contained sequences with a specific antiviral target like SARS-CoV. Datasets

like ENNAVIA-C, ENNAVIA-D, and Imb_CoV provided these sequences. As it is shown

in the Figure.5.12, both in ENNAVIA-C and IMB_CoV the base models performed really

poorly. This behavior is understandable since the references for these models date to 2019,

before the discovery of these sequences. This observation, remarks how important is the

representation in the ”Query” dataset used for the models. On the contrary, the models

perform better in the ENNAVIA-D Dataset due to the fact that these datasets contained

random negative sequences, a behavior already seen for these models in previous datasets.

Throughout the various stages of model selection, 32 models initially selected in the

first round of the Validation stage were tested against the Expanded dataset. From this

testing, 12 models emerged as the top performers, determined through a multi-variable
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Friedman ranking approach. This group comprised 6 models based on global alignment

and 6 on local alignment strategies. All the parameters for these models are summarized

in Table.5.10.

At this point, the focus shifted towards enhancing the prediction of positive sequences.

Various strategies were explored in pursuit of improved performance. The first approach

involved post-processing the models, where combinations of 3, 5, and 7 models were con-

structed from the 12 final base models. These combinations were formed through a ma-

jority vote, with additional models added based on this selection criterion. Nevertheless,

this approach did not result in a significant improvement in model performance. Notably,

it was observed that the sequences predicted by the models remained largely unchanged,

rendering the combinations ineffective since the active space predicted overlapped greatly.

Among these combinations, the one comprising models M3, M7, and M12 demonstrated

the best performance, prompting their selection for further enhancement.

Table 5.10: Parameters used for selected MQSSMs

Model Alignment Identity % Scaffold
Base Models

M1 global 50 Md3
M2 global 50 Md4
M3 global 70 Md4
M4 local 70 SG4
M5 local 80 SL5
M6 global 40 SG4
M7 local 90 SL5
M8 global 40 SG5
M9 global 50 SG5
M10 local 70 SG5
M11 local 80 SG5
M12 local 90 SG5

Modified Models
M13 global 90 Fusion
M3+ global 70 Md4+
M7+ local 90 SL5+
M12+ local 90 SG5+
M13+ global 90 Fusion+
E1 global 90 EG5
E2 global 90 EL5
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The second approach, an a priori modification, entailed extracting and combining

the scaffolds of models M3, M7, and M12 (md4,SL5, SG5) into a single scaffold while

eliminating duplicated sequences. This scaffold comprised 3206 unique sequences. Testing

this modified scaffold revealed a slight improvement in predictions by models using global

alignment with a similarity threshold of 90. This improvement is due to an increase in the

representativity of the space with more sequences.

Despite these changes providing valuable insights into the specificities of the MQSSMs,

their overall performance remained unsatisfactory. As indicated in the figure, the base

models tested in the Calibration Phase performed poorly on datasets such as Thakur,

ENNAVIA-A, AMPfun, and AVPiden as the Figure.5.12 shows. This suggests that many

sequences in these datasets were not adequately represented in the scaffolds used for the

QMSS. Furthermore, several of these datasets contained many experimentally validated

negative sequences, adding to the complexity of predictions.

In response to these challenges, a new HSPN was constructed by aggregating the posi-

tive sequences from these problematic target datasets. The total number of sequences used

for the HSPN was 2403 sequences. The resulting HSPN produced 8 scaffolds, the best 2

references were selected to enhance the current scaffolds. This enhancement introduced

new models, namely M3+, M7+, M12+, and M13+, denoted by the ”+” signifying their

enriched nature. Now these scaffolds contained 3155, 3437, 3472, and 3606 sequences re-

spectively, To retain scaffolds that did not overlap with the sequences found in StarPepDB,

models E1 and E2 were crafted using the external scaffold. The scaffolds used for E1 and

E2 contained 1517 and 1261 sequences respectively. This increased the total number of

models for analysis to 10, adding 6 enriched models to the already existing M3, M7, M12,

and M13. All the particularities of the models are shown in Table.5.10.

Subsequently, these 10 models were rigorously tested across the 15 databases (the 14

datasets from the workflow and the Expanded Dataset), and a Friedman ranking was

employed to reduce the number of top-performing models by half, taking into account the

metrics of ACC, SP, SN, MCC, and F1. The results of this ranking revealed that the best-

performing methods were M3+, M13+, M7, M12, and E1, marked in gray in Table.5.11.

Is important to notice that although the models that had more sequences as references

are in the top 5, models like E1, M7, and M12, which contain fewer sequences than their
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enriched counterparts, perform similarly, meaning that the key for the reference is not in

the number but in their diversity and range of representativity. These top 5 models were

then benchmarked against existing predictors from the literature to assess their current

performance in comparison with other available tools.

Table 5.11: Models Performance Evaluation for the Expanded Dataset

Model Name ACC SP SN MCC FPR F1 Score
E1 0.966 0.995 0.481 0.624 0.005 0.614
E2 0.961 0.995 0.398 0.562 0.005 0.540
M12 0.958 0.962 0.891 0.704 0.038 0.708
M12+ 0.736 0.724 0.937 0.330 0.276 0.288
M13 0.964 0.980 0.694 0.667 0.020 0.686
M13+ 0.969 0.979 0.802 0.731 0.021 0.746
M3 0.935 0.944 0.782 0.568 0.056 0.577
M3+ 0.935 0.939 0.876 0.609 0.061 0.606
M7 0.958 0.964 0.873 0.699 0.036 0.705
M7+ 0.736 0.724 0.933 0.329 0.276 0.287

5.5.2 Comparison with state of the art

To ensure a fair comparison, all sequences overlapping between the models’ scaffolds

(M3+,M7,M12,M13+,E1) and the Reduced dataset were removed. This step lowered the

number of positive sequences to just 116, while the count of negative sequences remained

unchanged. It’s worth noting that many of the negative sequences in the Reduced dataset

are part of the training datasets from the external predictors, but these sequences were

retained. This slight adjustment places the models at a considerable disadvantage in per-

formance evaluation. A total of 14 External Predictors were tested, evaluating metrics

including Accuracy (ACC), Specificity (SP), Sensitivity (SN), Mathews Correlation Coef-

ficient (MCC), the False Positive Rate (FPR), and the F1 Score. Among these metrics,

MCC is the most relevant as it’s not affected by imbalanced data, as is the case here, and

is the one on which the following analysis is most based.
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Table 5.12: Performance Comparison With State-of-the-Art Predictors

Model Name ACC SP SN MCC FPR F1 Score
M3+ 0.929 0.930 0.603 0.137 0.070 0.069
M7 0.970 0.972 0.448 0.163 0.028 0.115
M12 0.968 0.971 0.466 0.165 0.029 0.114
M13+ 0.983 0.986 0.422 0.214 0.014 0.180
E1 0.993 0.996 0.190 0.184 0.004 0.187
AI4AVP 0.387 0.385 0.905 0.039 0.615 0.013
AI4AVP(DA) 0.379 0.376 0.871 0.034 0.624 0.012
FIRM-AVP 0.647 0.647 0.595 0.034 0.353 0.015
Meta-iAVP 0.594 0.593 0.647 0.032 0.407 0.014
seqpros 0.119 0.116 0.940 0.011 0.884 0.009
AMPfun 0.463 0.462 0.784 0.033 0.538 0.013
iACVP 0.893 0.895 0.517 0.088 0.105 0.041
PTPAMP 0.825 0.827 0.336 0.028 0.173 0.017
ClassAMP 0.795 0.798 0.310 0.018 0.202 0.013
AntiVPP 0.732 0.734 0.457 0.028 0.266 0.015
ProtDcalRF 0.995 1.000 0.000 -0.001 0.000 0.000
ProtDcalHier 0.995 0.999 0.000 -0.002 0.001 0.000
ProtDcalRNN 0.950 0.954 0.034 -0.004 0.046 0.006
AVPpred 0.902 0.904 0.371 0.062 0.096 0.032

With the modification to the Reduced dataset, the performance of the QMSSMs has

noticeably dropped. This decline is particularly evident in the SN and MCC values, while

ACC and SP remain relatively stable due to the significant class imbalance between positive

and negative cases. The reduced sensitivity highlights a significant and consistent deficit

in the recall of positive sequences. This failure to recover true positives also impacts the

MCC, dropping from 0.731 to 0.214 for the M13+ model (Table.5.12). Correspondingly,

the F1 score also declines, as it relies on both recall and precision.

Despite the unsatisfactory results, the QMSS models outperform the external predictors

overall. From the performance results obtained from the external predictors, two different

tendencies can be inferred from Figure.5.13. Some prediction models excel at recognizing

most positive sequences, achieving high SN but at the expense of a high rate of false

positives. Others are proficient at identifying all negative sequences but misclassify many

positive ones, a characteristic of the presented QMSS models. Most deep learning-based

models fall into the first category, while traditional machine learning models fall into the
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second.
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Figure 5.13: Ranking Change Based on Metrics

In general, no single predictor performs well in all categories, corroborating the find-

ings of Garcia-Jacas et al. that the use of deep learning methods for AVP prediction is

not justified. Expanding on that remark, none of the tested machine learning models are

performing well enough, indicating that significant work is still required to enhance these

models. The primary issue here lies in the quality of the training data, which is insuffi-

ciently numerous and representative. Most positive sequences are similar, with up to 90%

similarity. Additionally, the validated negative sequences closely resemble the positive

ones. The complexity of the architectures employed is not the problem; instead, the data

availability has been a long-standing challenge to collect and analyze.

Another common challenge encountered when evaluating the state-of-the-art predictors

was the accessibility issue. Table.3.2 list numerous predictors, many of which were quite

challenging to assess. Firstly, several of the web servers proved to be poorly constructed

and were either not currently operational or malfunctioned regularly, including servers less

than 2 years old. Additionally, many of the repositories provided by researchers lacked
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clear instructions, making their implementation more complicated. This issue aligns with

concerns raised by [111] regarding the availability of source codes. In this context, the

MQSSMs stand out as they are readily accessible through the StarPep toolbox standalone

software, which features an intuitive interface, simplifying their usage.

Although the MQSSMs require substantial improvement to address their current deficits,

they still outperform the ML models. A Friedman Ranking, listed in Table.5.13, consider-

ing MCC, ACC, SP, SN, and F1, was conducted to support these findings. Nonetheless,

the computational resources required by the QMSSMs are significantly lower, and they

don’t have length limitations, offering crucial advantages to consider.

In selecting a prediction model, the researcher’s specific requirements must be consid-

ered. Researchers may require many potential positive sequences or a smaller set with

a lower likelihood of false positives. For the purpose of synthesizing potential sequences,

the second approach seems more useful due to the high resource demands of experimental

procedures.

Table 5.13: Ranking of all predictors evaluated

Predictor Friedman Ranking Predictor Friedman Ranking
M13+ 4.6 Meta 11.6
E1 5 PTPAMP 11.6
M7 5.6 AntiVPP 11.6
M12 5.6 ProtDcalHier 11.8
M3+ 6.4 AMPfun 12.2
iACVP 8 PC6 12.6
AVPpred 9 ClassAMP 13.2
FIRM 11 ProtDcalRNN 13.4
ProtDcalRF 11.2 seqpros 14.2
AI4AVP 11.4

5.6 Proposal of New AVPs

A significant aspect of this study involves proposing new potential antiviral peptide se-

quences. These predictions are based on the tools introduced in various sections and the

previously developed MQSS models. Three different databases served as the starting point

for virtual cleavage to initiate this process.
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Starting Point: StarPepDB

Following the workflow outlined in the scheme, the initial number of sequences found in

StarPepDB is 45,120. Of these, 34,093 sequences have a length of less than 35 amino acids

(AAs). From this subset, 7,633 are labeled as toxic, hemolytic, or both, and only 26,327

sequences do not contain non-standard AAs. After applying the first predictive model

(M13+), 1,256 sequences remained. Within this subset, 402 sequences did not overlap

with experimentally validated antiviral and antiviral-related sequences. These sequences

then underwent evaluation using various web predictors for antiviral activity, toxicity,

hemolysis, allergenicity, and a GRAVY calculator. Following this rigorous filtering pro-

cess, a final set of 12 sequences was obtained from StarPepDB.

Starting Point: Human Proteome

Similarly, the starting point for this database consisted of 42,999 sequences. Among

them, 27,999 sequences had a maximum length of 35 AAs and did not contain non-standard

AAs. After applying the M13+ model, the sequence count was reduced to 6,835. Subse-

quently, by eliminating sequences that overlapped with experimentally validated sequences

and those with redundancy exceeding 90%, the count dropped to 1,268 sequences. These

sequences were subjected to various web servers to evaluate antiviral activity, hemoly-

sis, toxicity, allergenicity, and GRAVY score calculation. After these additional filtration

steps, 32 sequences were obtained from the Human Proteome.

Starting Point: Cephalopods

The starting point for this dataset was 68,694 sequences that had already been tested

for toxicity and hemolytic activity. By restricting the peptide length to 35 AAs, the dataset

was reduced to 66,337 sequences. Applying the M13+ model to this subset reduced the

potential AVPs to 13,801 sequences. After removing sequences with a similarity greater

than 90%, the count lowered to 13,195. These sequences then underwent evaluation through

various web server predictors, GRAVY calculation, and allergen prediction, resulting in 63

sequences identified as potential AVPs.

The utilization of numerous web servers is essential to predict various properties cru-

cial for therapeutic development during the virtual cleavage, in addition to prediction for
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anntiviral activity. Take, for instance, antimicrobial peptides (AMPs). To be consid-

ered suitable for systemic applications, these peptides must exhibit low toxicity towards

erythrocytes[194]. Moreover, toxicity and immunogenicity represent significant concerns

when considering them for therapeutic purposes [195]. Furthermore, the prediction of the

GRAVY Index ensures that these sequences possess hydrophilic characteristics, which in

turn suggest a more globular behavior and increased solubility.

A union of the chosen peptides from the aforementioned starting points was created

to narrow down the selection, totaling 107 sequences. However, this number was still

considered too large. These sequences were combined into a single input, and an HSPN

was constructed using them. Subsequently, a Scaffold Extraction was conducted utilizing

the Community Hub-Bridge Centrality and a local alignment with a 50% sequence identity

threshold. This procedure reduced the pool of sequences to 92, which was still considered

too extensive.

107 sequences 92 sequences 46 sequences

Figure 5.14: Comparison of Different HSPNs constructed from the hits sequences

A visual analysis was performed to further refine the selection, and sequences were

manually selected based on how they were clustered using the Louvain Clustering Algo-

rithm and their centrality within the network. This final curation step resulted in the

presentation of 46 sequences in the Table.5.14, accompanied by relevant physicochemical

features.Among these features some annotations are necessary, all the proposed peptides

have a positive charge. Cationic peptides, due to the high presence of lysine and arginine,
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have been extensively regarded as antimicrobial peptides due to their ability to attack mi-

croorganisms directly [196, 197]. These observations support further the potential antiviral

activity of the 46 sequences. To give a graphical representation of the last reduction step

HSPNs were constructed based on the 107,92 and 46 sequences selections (Figure.5.14).

Finally, this study also includes predictions for other antimicrobial activities, which

are presented in Table 5.16. These predictions were generated using ProtDcal to assess

antibacterial, antifungal, and antiparasitic activities as well as for the AMPfun predictor.

This addition is grounded in the premise that Antiviral Peptides share close relations with

other antimicrobial active peptides, as highlighted in the Metadata Network depicted in

Figure.5.1.
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Table 5.16: Other Potential Antimicrobial Activities of the proposed sequences

Antibacterial Antifungal AntiParasitic
Peptide ID ProtDcal AMPfun ProtDcal AMPfun ProtDcal AMPfun
P27877 ✓ × ✓ ✓ ✓ ×
SRR5204441 ✓ × ✓ × ✓ ×
P27484 ✓ ✓ ✓ × ✓ ×
P27345 ✓ × × × ✓ ✓
P27727 ✓ × × × ✓ ✓
SRR3105558 ✓ ✓ ✓ ✓ ✓ ×
SRR2047107 ✓ ✓ ✓ × ✓ ×

SRR2047107_ ✓ ✓ ✓ × × ×

SRR5204442 ✓ ✓ ✓ ✓ ✓ ×
SRR3105558 ✓ ✓ ✓ × ✓ ×
SRR6349992 ✓ ✓ × × ✓ ×
SRR2047107 ✓ ✓ ✓ × ✓ ×
SRR2047107 ✓ ✓ ✓ × ✓ ×
P27545 ✓ ✓ ✓ × ✓ ×
P27679 ✓ ✓ ✓ × ✓ ×
SRR3105558 ✓ ✓ ✓ × ✓ ×
P27200 ✓ ✓ × × ✓ ✓
P26071 ✓ ✓ ✓ × ✓ ×
P27157 ✓ ✓ ✓ × ✓ ×
P27739 ✓ ✓ ✓ × ✓ ×
P26563 ✓ ✓ ✓ × ✓ ✓
SRR5204441 ✓ ✓ ✓ × ✓ ×
P26773 ✓ × ✓ × ✓ ×
P27743 ✓ ✓ × × ✓ ×
SRR2047107 ✓ ✓ ✓ ✓ ✓ ×
SRR6349992 ✓ ✓ × × ✓ ×
DN19901 × × ✓ × ✓ ×
SRR3105321 × ✓ × × × ✓
SRR5204441 ✓ ✓ ✓ × ✓ ×
SRR3105558 ✓ ✓ ✓ × ✓ ×
SRR3105558 ✓ ✓ ✓ × ✓ ×
DN11116 × ✓ ✓ × ✓ ✓
DN8078 ✓ ✓ ✓ × ✓ ×
starPep44946 × × × × × ×
SRR6349992 ✓ ✓ × × ✓ ×
SRR6349992 ✓ × × × ✓ ×
SRR3105321 × ✓ × × × ×
SRR5204441 ✓ ✓ ✓ × ✓ ×
SRR2047107 ✓ ✓ ✓ × ✓ ×
SRR6349992 ✓ ✓ × × ✓ ×
SRR6349992 ✓ ✓ × × ✓ ×
SRR5204441 ✓ ✓ ✓ × ✓ ×
SRR3105558 ✓ ✓ ✓ × ✓ ×
P27042 ✓ ✓ × × ✓ ✓
SRR2047107 ✓ ✓ ✓ × ✓ ×
starPep37607 ✓ ✓ ✓ × ✓ ✓
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Chapter 6

Conclusions

The chemical space of AVPs, which comprises 3494 sequences (StarPepDB (36)), was

effectively represented using the HSPN implemented in the StarPep toolbox (37). The

optimal similarity threshold (t) for the HSPNs was determined to be 0.75, although no

major representational differences were found when compared with an HSPN t = 0. The

most representative peptides within the HSPNs were identified using HB centrality. These

peptides were characterized based on their chemical and biological properties. The Louvain

clustering algorithm was applied to the HSPN with optimal cut-off and without cut-off,

resulting in the identification of distinct communities within the AVP chemical space.

These communities present in HSPN (t = 0) were individually studied, and cluster profiles

were created based on various molecular descriptors and literature-based validations.

In addition to HSPN construction, the AVPs’ chemical space was further explored

using Metadata Networks, which incorporated metadata information such as database,

function, origin, and target. This provided a comprehensive understanding of the AVP

landscape. These networks revealed that the majority of AVPs are of synthetic origin

and are frequently associated with other antimicrobial peptides. Additionally, the most

commonly assessed target for antiviral therapeutics was HIV.

To obtain representative and diverse subsets of AVPs, scaffold extraction was performed

with similarity thresholds ranging from 90% to 50%. Changes in alignment algorithm and

centrality measures were studied during scaffold extraction. The scaffold comparison re-

vealed no significant difference between the HSPNs with and without cut-off, further sup-

porting the robustness of the network representation. Additionally, it was observed that
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the most representative centrality-alignment algorithm combination was the global align-

ment algorithm and the Community Hub-Bridge Centrality, as well as the local alignment

with the Harmonic Centrality.

Furthermore, 42 potential motifs were discovered using the STREME algorithm, and

subsequent validation using the SEA algorithm was conducted on 33 motifs. The validation

process involved measuring the relative enrichment of the motifs in four external datasets.

This analysis confirmed the motifs’ significance and potential functional relevance, with

23 completely novel motifs. The identified motifs provide valuable insights into potential

functional patterns within AVPs, contributing to the understanding and discovery of AVPs.

Moreover, a significant milestone in this research is the successful design and imple-

mentation of Multi-Query Similarity Search Models (MQSSMs). These models were metic-

ulously developed based on the insights gained during chemical space exploration and

scaffold extraction stages. This innovative approach, grounded in structural similarities

concept, leading to analogous biological activities, has played a pivotal role in refining

model selection.

Furthermore, creating the largest dataset of Antiviral sequences to date is another re-

markable achievement, as the availability of diverse data is one of the main concerns of

the design of AVPs predictors. The extensive evaluation and various filtering stages culmi-

nated in the selection of five final MQSSMs, each rigorously assessed using various metrics.

The highest-performing model achieved the following: ACC=0.986, SP=0.930, SN=0.422,

MCC=0.214, FPR=0.014, and F1=0.180. Compared to state-of-the-art machine learning-

based predictors, the MQSS models outperformed the 14 predictors tested. This analysis

underscored the current limitations and deficiencies of these models. The MQSSMs demon-

strated superior capabilities in predicting AVP sequences while addressing the challenges

posed by variable-length sequences and imbalanced data.

Building upon the refinement of the MQSSMs, a virtual cleavage process was un-

dertaken to propose potential Antiviral Sequences. This process was applied to three

different datasets, collectively comprising more than 100,000 sequences. Additionally,

these sequences underwent scrutiny for toxicity, hemolytic activity, allergen activity, and

other antimicrobial activities. Herein, we report 46 potential antiviral peptides with se-

quences shorter than 35 amino acids, which were predicted as non-toxic, non-hemolytic,
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non-allergenic, and antiviral by the presented MQSSMs and several online web predictors.

The MQSSMs performance was measured and results were derived from the Multi-

Query Similarity Search (MQSS) method. This innovative approach, grounded in the

principle that structural similarities often lead to analogous biological activities, has been

instrumental in refining model selection. The meticulous evaluation conducted using the

Expanded dataset resulted in the identification of 12 models that exhibited unparalleled

performance characteristics. When juxtaposed against existing state-of-the-art predictors,

these models emerged superior, setting a new gold standard in AVP discovery.
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