
UNIVERSIDAD DE INVESTIGACIÓN DE
TECNOLOGÍA EXPERIMENTAL YACHAY

Escuela de Ciencias de la Tierra, Enerǵıa y Ambiente

TÍTULO: Numerical Simulation of Seismic Waves in 2D
using The Finite Element Method

Trabajo de integración curricular presentado como requisito para la
obtención del t́ıtulo de Geólogo

Autor:

Troya Yunga Ariel Santiago

Tutor:

M.Sc. Pérez Roa Richard

Co-Tutor:

Dr. Manzanilla Morillo Raúl, PhD

Urcuqúı, marzo 2024

Autoŕıa

Yo, Ariel Santiago Troya Yunga, con cédula de identidad 1720974938, declaro que las

ideas, juicios, valoraciones, interpretaciones, consultas bibliográficas, definiciones y concep-

tualizaciones expuestas en el presente trabajo; aśı cómo, los procedimientos y herramientas

utilizadas en la investigación, son de absoluta responsabilidad de el/la autor/a del trabajo

de integración curricular. Aśı mismo, me acojo a los reglamentos internos de la Universidad

de Investigación de Tecnoloǵıa Experimental Yachay.

Urcuqú

Ariel Santiago Troya Yunga

CI: 1720974938

ı, marzo 2024

Autorización de publicación

Yo, Ariel Santiago Troya Yunga, con cédula de identidad 1720974938, cedo a la Uni-

versidad de Investigación de Tecnoloǵıa Experimental Yachay, los derechos de publicación

de la presente obra, sin que deba haber un reconocimiento económico por este concepto.

Declaro además que el texto del presente trabajo de titulación no podrá ser cedido a

ninguna empresa editorial para su publicación u otros fines, sin contar previamente con la

autorización escrita de la Universidad.

Asimismo, autorizo a la Universidad que realice la digitalización y publicación de este

trabajo de integración curricular en el repositorio virtual, de conformidad a lo dispuesto

en el Art. 144 de la Ley Orgánica de Educación

Urcuqú

Ariel Santiago Troya Yunga

CI: 1720974938

ı, marzo 2024

Acknowledgment

I’m glad to thank my advisors Richard Pérez and Raúl Manzanilla, who supported me in

this work with their help and their collaboration to present this project.

Ariel Santiago Troya Yunga

v

Resumen

En Geoloǵıa, la obtención de modelos del subsuelo conduce a una mejor comprensión del

mismo. Generalmente, estos estudios se realizan mediante métodos geof́ısicos; el más uti-

lizado son los estudios śısmicos. Una de las técnicas para encontrar modelos de velocidad

del subsuelo mediante métodos śısmicos es la Inversión de Onda Completa (FWI por sus

siglas en inglés). Para utilizar este método es necesario resolver numéricamente la ecuación

de la onda elástica. El método más comúnmente utilizado ha sido el de diferencias finitas,

sin embargo, este método conduce a errores durante largos peŕıodos de tiempo de sim-

ulación debido a la acumulación de errores. Por otro lado, este método implementa las

condiciones de contorno en la solución de la ecuación elástica a posteriori. Para evitar

estos problemas, se propone resolver numéricamente el ecuación de onda elástica usando el

método de elementos finitos. Para tener un mejor enfoque, primero se resuelve el caso en

1D y se implementa en Python para comparar ambos métodos. El caso 2D se resuelve de

forma expĺıcita para el tiempo construyendo las matrices de rigidez y masa, estableciendo

claramente cómo funciona el método, el cual es de elementos finitos en el espacio y difer-

encias finitas en el tiempo. Posteriormente, se crea un código en Python para construir

las matrices anteriormente mencionadas. Se espera que este método pueda utilizarse para

mejorar la simulación de ondas śısmicas como parte de un proyecto de investigación más

amplio de FWI.

Palabras Clave:

Inversión completa de forma de onda, método de diferencias finitas, método de elementos

finitos.

vii

Abstract

In Geology, obtaining subsurface models leads to a better understanding of it. Generally,

these surveys are carried out through geophysical methods; the most widely used is seismic

surveys. One of the techniques to find subsurface velocity models through seismic methods

is the Full-Wave Inversion (FWI). To use this method is necessary to solve the elastic wave

equation numerically. The most common method used has been finite differences. However,

this method leads to errors for long simulation periods in time due to error accumulation.

On the other hand, this method does not include the boundary conditions in the elastic

equation solution. To avoid these issues, it is proposed to solve numerically the elastic

wave equation using the finite element method. To have a better approach, it is solved the

case in 1D and implemented it in Python to compare both methods. The 2D case is solved

explicitly for the time building the mass and stiffness matrices, and establishing clearly

how the method works, which is Finite Elements for the space and Finite Differences for

the time. Afterward, it is written a script in Python to build the matrices. It is hoped that

this method could be used to improve the simulation of seismic waves as part of a larger

research project of FWI.

Keywords:

Full waveform inversion, finite-difference method, finite-element method.

ix

Contents

Acknowledgment v

Resumen vii

Abstract ix

Contents xi

List of Tables xiii

List of Figures xv

1 Introduction 1

1.1 Full Waveform Inversion . 1

1.2 Introduction to Numerical Methods . 4

1.3 Applications in Earth Science . 7

1.4 Problem statement . 7

1.5 Objectives . 8

1.5.1 General Objective . 8

1.5.2 Specific Objectives . 8

2 Theoretical Framework 9

2.1 Seismic waves in a nutshell . 9

2.1.1 Types of seismic waves . 9

2.1.2 Snell’s Law . 11

2.1.3 Derivation of the elastic wave equation 12

2.2 Finite Element Method (FEM) in 1D . 14

2.2.1 Problem development . 14

xi

2.2.2 Analytical Solution . 15

2.2.3 Finite Difference Method (FDM) in Homogeneous Medium 16

2.2.4 Finite Element Method (FEM) in Homogeneous Medium 17

2.2.5 Finite Element Method (FEM) for Two Layers in 1D 22

2.3 Finite Element Method (FEM) in 2D . 23

2.3.1 Obtaining semi-discrete equations in space 26

2.3.2 Time approximation scheme . 31

3 Results and Discussion 33

3.1 Finite Element Method (FEM) in 1D . 33

3.1.1 Homogeneous Media . 34

3.1.2 Two Layers . 37

3.2 Finite Element Method (FEM) road to 2D 39

3.2.1 1-Layer homogeneous medium . 42

3.2.2 Two Layers . 50

4 Conclusions 55

Bibliography 57

Appendices 60

.1 Appendix 1. 63

.2 Appendix 2. 74

.3 Appendix 3. 82

xii

List of Tables

2.1 Scalar Products . 32

3.1 Compilation times . 36

3.2 Partial Stiffness Matrices . 46

xiii

xiv

List of Figures

1.1 Scheme of inputs and outputs of Forward and Reverse problems 1

1.2 A common receiver gathers in (a) the initial model (b) the final model.

Red arrows show first-arrival phases while black arrows indicate post-critical

phases. The source signal is shown as an insert and differs between the initial

and final models (Taken from [1]). 2

1.3 A 1D example of Finite Difference Method to approximate a function f(x)

(Extracted form [2]) . 4

1.4 A 1D example of Finite Element Method aproximating the function F(x)

using elemnents (Extracted from [3]) . 5

1.5 a) The six blocks constitute a cubed sphere, where the crust and mantle,

outer core, and inner core are colored in green, red, and blue respectively.

b) Close-up at the mesh that is doubled, this doubling ensures a relatively

constant number of grid points per wavelength and reduces the computa-

tional cost. c) Global view of the mesh at the surface, illustrating that each

of the six sides of the cubed sphere is divided into 25 slices (Extracted from

[4]). 6

1.6 a) Cell-centered arrangement. b) Vertex-centered arrangement (Extracted

from [5]). 7

2.1 Different types of seismic waves, and particle motion: Body waves (P and

S waves) on the left-hand side of the Figure, and surface waves (Love and

Rayleigh waves) on the right (Extracted from [6]) 10

xv

2.2 Snell’s law applied for different wave types traveling through different mate-

rials where α is the P wave velocity and β is the S wave velocity (subscript

just indicates the layer and its properties). a) Sv incident wave will pro-

duce Sv reflected and Sv refracted when it reaches an interface, also, there

is a mode conversion that generates two additional waves P reflected and

P refracted. b) P incident wave traveling through a liquid will produce a

P reflected and P refracted waves and a mode conversion generating a Sv

wave if the medium is solid. c) SH wave will only produce a reflection and

refraction and no mode conversion. 12

2.3 Stress efforts applied over a medium and its corresponding directions[7] . . 14

2.4 Increments of space and time discretization 17

2.5 Basis functions along the elements where the increment is specified. 20

2.6 a) Grid with the increments specified. b) numbering of the vertices of a

quadrilateral Q for the assembly of the sub-matrices, where each vertice

corresponds to a basis function P1, P2, P3, and P4. 25

2.7 Local numbering of neighboring nodes of Rij used for the assembly of ma-

trices M and K. 29

3.1 Left: Gaussian function through time, this shape presents a stable solu-

tion with low dispersion in short periods of simulation. Right: The source

spectrum that shows the frequency used for the wave propagation. 33

3.2 a) FDM and FEM at the beginning of the simulation. It shows almost 0

dispersion and a good match between both methods. B) FDM and FEM

after 1 000 000 time steps, it is shown a gap and delay between the two

signals due to the different way how boundary conditions are introduced for

each method. 34

xvi

3.3 a) Root Mean Square Error (RMSE) between analytical solution and FEM-

FDM, showing a better approximation of FEM since the error does not

deviate in the same magnitude from the analytical solution as FDM does.

b) Absolute error in percentage of the FEM with respect to the maximum

amplitude showing an interval where the error varies from 0.14 % to 0.19

%. c) Absolute error of the FDM showing a decreasing tendency from a

maximum value of 0.0019 % to a minimum value of 0.00026 %. 35

3.4 Root Mean square error between FEM and FDM. The image shows how the

error curve converges; i.e., the curve starts to flatten. However, it is clear

the perturbations provoked by the gap and delay produced by the boundary

conditions . 36

3.5 a)First wave after the activation of the source. b) Reflected and transmitted

waves after the source wave reaches the interface between the two densities 38

3.6 RMSE between FDM and FEM, it is showing a convergence tendency with

a decrease in the error magnitude which means the methods start to have

less deviation between them over time. 39

3.7 An example of 5 ∗ 5 grid points and 3 ∗ 3 elements. Numeration of elements

using the index k (red) and the numbering for each quadrilateral Qh (blue).

The numbering outside the mesh represents the indexes for rows and columns

of each element . 42

3.8 Flux diagram of how the code works to simulate the numerical approxima-

tion done using the Finite element method. Circle 1 is how to build the

matrices, it can be checked in Fig 3.9. 48

3.9 Flux diagram for building the Mass and Stiffness matrices. This flux diagram

is appliable for 1 to 2 layers since the procedure is the same, it is just

necessary to fill each place of the matrices with the proper Lamé parameter 49

1 Reference Quadrilateral Q to express the basis functions P1, P2, P3, and P4

for the reference coordinate system. 63

xvii

xviii

Chapter 1

Introduction

1.1 Full Waveform Inversion

In Geology, obtaining subsurface models leads to a better understanding of it. These

subsurface models can be approached as a forward problem which consists of predicting

observations whether initial conditions and model parameters are known or an inverse

problem which infers initial conditions and a model from observations (Fig.1.1). Gen-

erally, models are carried out through geophysical methods; the most commonly used is

seismic surveys. One of the most used techniques to find subsurface velocity models is the

Full Waveform Inversion (FWI). An inverse problem seeks a model such that differences

between the expected data and the observed data are minimum in the least-squares sense.

Figure 1.1: Scheme of inputs and outputs of Forward and Reverse problems

Full waveform inversion (FWI) is a high-resolution seismic imaging technique that is

based on using the entire content of seismic traces for extracting physical parameters of the

medium sampled by seismic waves [1]. This means finding an optimal model in which the

1

computed shot gathers reproduces the observed shot data. The process of finding a correct

model is not trivial. Since this procedure depends on the reliability of the low-frequency

content of the observed data, the proper strategy will be to determine the model iteratively,

typically by successively introducing higher frequencies [8] (Fig. 1.2). Furthermore, the

user needs to provide an adequate wave equation to generate synthetic wave fields and

associated shot gathers in order to simulate wave propagation. Note that, due to the

limited data acquisitions from the surface only and its frequency band, FWI may lead to

more than one solution.

Figure 1.2: A common receiver gathers in (a) the initial model (b) the final model. Red
arrows show first-arrival phases while black arrows indicate post-critical phases. The source
signal is shown as an insert and differs between the initial and final models (Taken from
[1]).

The objective of FWI is to minimize the least-squares misfit function (The development

and deduction is taken from [1]).

J(m) = 1
2 ||dcalc(m) − dobs||2, (1.1)

where m(x) is the model to be determined with x = (x,y,z) spatial coordinates, the

observed data dobs(s, r, t) at position s, receiver position r, and time t. The calculated data

dcalc are a function of the m model and are the solution of the wave equation.

L(m)ds,x,t = δ(s − x)Ω(t), (1.2)

dcalc(s, r, t) = d(s, x = r, t), (1.3)

where L is the wave equation operator, d the wave field, Ω(t) the seismic source wavelet,

2

and δ the Dirac distribution. This means that the wave field d is the solution of the wave

equation for a point source located at x=s and for a seismic source wavelet.

The evaluation of J(m) is the first step; however, which one seeks a more suitable

model. This technique turns into an iterative process. The better approach is to use a

gradient-based inversion, where the model is iteratively determined. The requirements are:

• an initial model;

• computation of the objective function gradient

This procedure is related to the minimization under constraints, with the introduction

of Lagrangian multipliers λ(s, x, t). Therefore, the derivation of the gradient requires three

elements:

• computation of the forward wavefield d (Eq. (1.2)) for each source,

• computation of the backward residual wave field λ, for each source. This is obtained

by solving the wave equation for a source term, being the residual wave field at the

receiver position dcalc − dobs,

• cross-correlation between d and λ, with summation over all times, but for fixed spatial

x points.

Once the gradient is computed, the new model is updated as follows:

mn+1 = mn − α
∂J

∂m
(1.4)

where the gradient is ∂J
∂m

and α > 0 a scalar length. In practice, FWI can select an interval

of data around certain windows (an implement function to avoid unwanted jumps and

downs of data by smoothing the curve). For example, to only include a zone around the

direct arrivals or to remove ground roll. This means that equation (1.1) is modified such:

J(m) = 1
2 ||M(dcalc(m) − dobs)||2 (1.5)

where M is a mask in the data domain. It is important to be careful to avoid aliasing and

leakage.

3

1.2 Introduction to Numerical Methods

To apply the FWI, it must be provided the correct wave equation which, in this case, is for

the elastic seismic waves. This equation can be numerically solved using several methods,

each one has pros and cons related to its methodology. The more commonly used methods

are the spectral-element method, the finite-volume method, the finite-difference method,

and the finite-element method.

The Finite-Difference Method (FDM)

The Finite Difference Method is the numerical method most often used to approximate

solutions in several areas where different Partial Differential Equations (PDEs) and Or-

dinary Differential Equations (ODEs) appear. The procedure to apply this scheme is to

replace the differential operator with a linear combination of function values over the given

point surrounding the point where one wants to replace the differential operator, the most

common strategy is using the Taylor series [9] to approximate the spatial and temporal

derivatives by using the model values at nearby points [10] (Fig. 1.3).

Figure 1.3: A 1D example of Finite Difference Method to approximate a function f(x)
(Extracted form [2])

The Finite-Element Method (FEM)

The Finite Element Method (FEM) is a numerical method that seeks an approximated

solution to the distribution of variables in the problem domain that is often difficult to

obtain analytically; it is done by first dividing the problem domain into a number of small

4

pieces called elements, often by a simple geometry (Fig. 1.4), where the unknown variables

in the FEM are simply the discrete values of the field variable at the nodes [3]. Then, the

continuous solution field is replaced by a finite sum over basis functions which leads to a

system of linear equations [11].

Figure 1.4: A 1D example of Finite Element Method aproximating the function F(x) using
elemnents (Extracted from [3])

The Spectral-Element Method (SEM)

The Spectral Element Method (SEM) was introduced over 15 years ago in the field of

computational fluid dynamics [12]. It combines some aspects of the finite element method

and the pseudospectral method. In a traditional finite element method, the same points

that define the element’s geometry are also used for interpolating the wave field [4]. How-

ever, in SEM, the wave field is expressed using higher-degree Lagrange polynomials on

Gauss-Lobatto-Legendre interpolation points, this approach ensures minimal numerical

grid dispersion and anisotropy[4].

One key feature of SEM is that the mass matrix is inherently diagonal, simplifying the

implementation and reducing computational costs [4]. This property allows for the use of

explicit time integration schemes without the need to invert a linear system. By avoiding

the inversion step, the computational efficiency is improved [4].

In summary, SEM offers a powerful approach by combining the flexibility of the finite

element method and the accuracy of the pseudospectral method. This method can be

5

implemented for several purposes such as approximating the earth’s surface using a mesh

on the so-called ”cubed-sphere”, which is an analytical mapping from the cube to the

sphere (Fig. 1.5)

Figure 1.5: a) The six blocks constitute a cubed sphere, where the crust and mantle, outer
core, and inner core are colored in green, red, and blue respectively. b) Close-up at the
mesh that is doubled, this doubling ensures a relatively constant number of grid points
per wavelength and reduces the computational cost. c) Global view of the mesh at the
surface, illustrating that each of the six sides of the cubed sphere is divided into 25 slices
(Extracted from [4]).

The Finite-Volume Method (FVM)

The finite-volume method was developed around the problem of transporting (advecting)

material and conserving the integral quantity, as the first-order linear advection prob-

lem is formally equivalent to the elastic wave-propagation problem [11] (Fig. 1.6). The

finite-volume method uses the same principles as the Finite Element Method such as the

discretization using structured or unstructured meshes [13]. This method is locally con-

servative because it is based on a “balance” approach: a local balance is written on each

discretization cell that is often called “control volume;” by the divergence formula, an in-

tegral formulation of the fluxes over the boundary of the control volume is then obtained

[13].

6

Figure 1.6: a) Cell-centered arrangement. b) Vertex-centered arrangement (Extracted from
[5]).

1.3 Applications in Earth Science

Full waveform inversion is a processing technique to derive quantitative images of the

subsurface from seismic measurements. This method is applied in Earth Science in different

fields such as geophysical exploration, regional wave propagation, seismic tomography,

simulation of ambient noise, and elastic waves in random media, among others [11]. In

order to apply FWI, it is necessary to solve numerically the elastic wave function [8].

The applications of FWI have a broad spectrum which allows for performing better

studies to obtain accurate results. These results are needed to improve the understanding

of geological processes that has a considerable impact on the academic and economic field.

1.4 Problem statement

This work aims to approximate the elastic seismic wave equation using the finite element

method. In this method, the continuous solution field is replaced by a discrete field of the

finite dimension with, not necessarily orthogonal, basis functions; finite-element analysis

leads to an (extensive) system of linear equations in which the associated matrices are of size

N × N where N is the number of degrees of freedom [11]. In contrast, the finite-difference

method replaces the partial derivatives with finite differences allowing partial differential

equations, such as the wave equation, to be solved directly for (in principle) arbitrarily

7

heterogeneous media or spatial domain [11]. It has been observed that the finite-difference

method accumulates errors in large periods of simulation whereas the finite-element method

does not [3]. Furthermore, the finite-element method, compared with the finite-difference

method, will provide minimum dispersion, neutral amplification, and minimum numerical

anisotropy [14]. Consequently, it is pointed out that the finite-element method will reduce

errors and will have an accurate approximation.

1.5 Objectives

1.5.1 General Objective

• Solve the elastic wave equation numerically using the finite element method.

1.5.2 Specific Objectives

• Deduce the equations of the finite element method for the elastic wave equation in

1D and 2D

• Computational implementation of the numerical solutions of the elastic wave equa-

tion.

• Comparison between the finite-element method and the finite-difference method.

8

Chapter 2

Theoretical Framework

2.1 Seismic waves in a nutshell

Seismic waves can be defined as the energy propagated through the Earth, this energy can

be generated naturally (earthquakes, movement of land masses) or artificially (explosion or

movement produced by an anthropic instrument) [15]. This energy is propagated through

a medium and it can be described with a wave behavior, specifically, the elastic wave

equation.

2.1.1 Types of seismic waves

The waves propagated through the Earth can be divided into body waves and surface waves

which are different solutions for the seismic wave equation each one for different conditions.

Body waves are solutions for the whole space; i.e., no boundary conditions while surface

waves are a combination of body waves that are trapped in a free surface.

Body waves

Body waves travel through the Earth’s body and can be divided into Primary (P waves) and

Secondary (S waves). P (pressure wave, primary wave) propagates through a mechanism

of uni-axial strain in the direction of propagation, the particle motion is an oscillation in

the propagation direction of the wave (Fig. 2.1); while, S (shear wave, secondary wave)

propagates through a shearing mechanism, the particle motion is the oscillation in any

plane perpendicular to the propagation direction of the wave [16] (Fig. 2.1). Typically

9

in seismology, the oscillation directions are decomposed into the orthogonal components

SV (Shear waves with displacement in the vertical x - z plane) and SH (Shear waves with

displacement in the horizontal x - y plane) [10].

Surface waves

While body waves travel through the Earth’s body, Surface waves are trapped and travel

along the Earth’s surface. Rayleigh wave (LR) has a retrograde-elliptical particle motion

in the vertical-radial plane that is a combination of P and SV motion (Fig. 2.1), and its

amplitude decays exponentially with depth below the free surface [10]. Love wave (LQ)

has multiple internal reflections of horizontally polarized S waves (SH) in a near-surface

medium (waveguide effect); it produces a transverse horizontal particle motion (Fig. 2.1)

[10].

Figure 2.1: Different types of seismic waves, and particle motion: Body waves (P and S
waves) on the left-hand side of the Figure, and surface waves (Love and Rayleigh waves)
on the right (Extracted from [6])

10

2.1.2 Snell’s Law

Since the Earth is formed by different rock types and lithologies that have different elastic

properties, the waves will be reflected and refracted when they reach an interface between

two different lithologies (Fig. 2.2). Each wave type will be propagated in different ways

with different velocities through several materials. P waves travel faster than S waves

since the compression involves the elastic moduli λ and the shear modulus µ. This has

another consequence, the S waves can not travel through liquids since they are not able to

be sheared.

VP =
√

λ + 2µ

ρ

VS =
√

µ

ρ

The laws for reflection and refraction are obtained using Huygens’s principle which

states that every point on a wavefront may be considered a source of secondary waves

[17]. Also, these laws have a strong relation with Fermat’s principle which states that

waves travel between two points along the path that requires the least time, as compared

to other nearby paths [18]. Using Fermat’s principle and Huygens’s principle can obtain

Snell’s Law which states that the ray parameter must be equal for all the incident, reflected,

and refracted waves [19]. Then, the relation between angles and velocity for all waves

produced by an incident wave can be described [19] as (Note that angles and velocities are

stated based on the Figure 2.2a.):

sin(j1)
β1

= sin(i1)
α1

= sin(i2)
α2

= sin(j2)
β2

;

When a refracted wave crosses the critical angle, it turns into a direct wave that travels

along the interface. In this way, Snell’s law is very useful to get information about the

ray paths, arrival times, and the refractor’s position; however, it does not provide any

information about the wave amplitude.

11

Figure 2.2: Snell’s law applied for different wave types traveling through different materials
where α is the P wave velocity and β is the S wave velocity (subscript just indicates the
layer and its properties). a) Sv incident wave will produce Sv reflected and Sv refracted
when it reaches an interface, also, there is a mode conversion that generates two additional
waves P reflected and P refracted. b) P incident wave traveling through a liquid will
produce a P reflected and P refracted waves and a mode conversion generating a Sv wave
if the medium is solid. c) SH wave will only produce a reflection and refraction and no
mode conversion.

2.1.3 Derivation of the elastic wave equation

The elastic waves travel in three directions x (horizontal), y (profundity), and z (depth);

in addition, another dimension is added which is time (t). To get the 2D elastic wave

equation, the derivation was extracted from [20]. Let’s place the plane coordinates:

• u(x, z, t) : the displacement relative to the equilibrium position, of coordi-

nates (x, z) in the direction of the x-axis at time t.

• w(x, z, t) : the displacement relative to the equilibrium position, of coordi-

nates (x, z) in the direction of the z-axis at time t.

12

•

∑

xx

∑
xz∑

zx

∑
zz

 (
x z t

)
: The deformation tensor at coordinates (x, z) at

time t (Fig. 2.3). The deformations are defined from the displacement

derivatives using the following expressions:

∑
xx = ∂u

∂x

∑
zz = ∂w

∂z

∑
xz = ϵzx = 1

2

(
∂u

∂z
− ∂w

∂x

)
(2.1)

It is known that: τxz = τzx. Then, let’s consider as a constraint-deformation relation

the law of homogeneous isotropic, linear elastic media:

τxx = λ(∑xx +∑
zz) + 2µ

∑
xx

τzz = λ(∑xx +∑
zz) + 2µ

∑
zz

τxz = 2µ
∑

xz

; Where λ and µ are the lamé parameters. (2.2)

It is possible to deduce from Eq. (2.1) and Eq. (2.2) the expression of the displacement

functions:

τxx = λ

(
∂u

∂x
+ ∂w

∂z

)
+ 2µ

∂u

∂x

τzz = λ

(
∂u

∂x
+ ∂w

∂z

)
+ 2µ

∂u

∂z

τxz = µ

(
∂u

∂z
+ ∂w

∂x

)
(2.3)

13

In the absence of external forces, the equations can be written as:

ρ
∂2u

∂t2 = ∂

∂x
τxx + ∂

∂z
τzx

ρ
∂2w

∂t2 = ∂

∂x
τxz + ∂

∂z
τzz

; Where ρ is the density (2.4)

By replacing the eq. (2.3) into the eq. (2.4), it is obtained the elastic wave equations

for the x-axis and z-axis:

ρ
∂2u

∂t2 = ∂

∂x

λ

(
∂u

∂x
+ ∂w

∂z

)
+ 2µ

∂u

∂x

+ ∂

∂z

µ

(
∂u

∂z
+ ∂w

∂x

) (2.5)

ρ
∂2w

∂t2 = ∂

∂z

λ

(
∂u

∂x
+ ∂w

∂z

)
+ 2µ

∂w

∂z

+ ∂

∂x

µ

(
∂u

∂z
+ ∂w

∂x

) (2.6)

Figure 2.3: Stress efforts applied over a medium and its corresponding directions[7]

2.2 Finite Element Method (FEM) in 1D

2.2.1 Problem development

Let’s consider the elastic wave equation in 1D [21], which describes the propagation of

elastic waves along the x-axis with an impulse (source).

ρ(x)∂2
ttu(x, t) = ∂x(µ(x)∂xu(x, t)) + f(x, t), (x, t) ∈ (0, xmax) × (0, +∞) (2.7)

Where ρ is the density, µ is the shear modulus or the Lamé parameter, u is the displace-

14

ment field, and f is the source vector. To solve the PDE and approximate the equation, it

is necessary to implement the boundary and initial conditions.

Initial conditions

u(x, t = 0) = 0

∂tu(x, t = 0) = 0
(2.8)

Boundary conditions

u(x = 0, t) = 0

u(x = xmax, t) = 0
(2.9)

The given initial conditions mean that the wave is not propagating at t = 0; i.e., there

is no movement at the beginning. On the other hand, the boundary conditions mean that

the string is fixed at the edges. Therefore, the wave reaches the end of the string and

returns without any movement at the edges.

2.2.2 Analytical Solution

The following deduction for an analytical solution is extracted from [22], and can be re-

viewed for a detailed explanation. To obtain analytical solutions for an elastic wave equa-

tion with a source in 1D (eq. 2.7), it is usually developed by using the concept of Green’s

function, that is the solution for an impulse response:

∂2
ttG(x, t; x0, t0) − c2∆G(x, t; x0, t0) = δ(x − x0)δ(t − t0); where c2 = µ

ρ
(2.10)

Green’s functions are the solutions to the specific partial differential equations for

δ−functions as source terms evaluated at (x, t) and activated at (x0, t0), where ∆ is the

Laplace operator and δ−function is defined by:

δ(x) =

∞ x = 0

0 x ̸= 0
(2.11)

∫ ∞

−∞
δ(x)dx = 1,

∫ ∞

−∞
f(x)δ(x)dx = f(0) (2.12)

Analytical solutions for eq. 2.7 are obtained using the Heaviside function, where the

15

result for the Green’s function is:

1
2c

H

(
t − |x|

c

)
(2.13)

Note that Green’s function is obtained after convolution with the first derivative of a

Gaussian source with a frequency of f0 = 25Hz. Where the first derivative of the Gaussian

source is:

f = −2(t − t0)(f 2
0)(e−f2

0 (t−t0)2) (2.14)

2.2.3 Finite Difference Method (FDM) in Homogeneous Medium

For the FDM, the elastic wave equation turns into the acoustic wave for the 1D case,

especially for the case of S-waves. Rearranging the equation, it is obtained that:

∂2
ttu(x, t) = c2(∂2

xxu(x, t)) + f ; where c2 = µ

ρ
(2.15)

The FDM seeks an approximation using the Taylor series to approach the derivatives

using differences of points along the wave [9]. While more points are used, the approx-

imation is better. For this purpose, it was chosen a center difference using three points

(Fig. 1.3). It is necessary to make a convention where it is specified if the step is taken in

the space or time domain. Then, it is set that the superscript i refers to the time domain

while the subscript l refers to the space domain. Note that, i ± 1 and l ± 1 mean a step

forward or backward on each domain (Fig. 2.4); i.e., add or subtract ∆t or ∆x which are

the increment in time and space respectively, where i = 1, ..., I and l = 1, ..., N .

To approximate the equation, it is used the second order derivative of the Taylor series.

For the time second derivative:

∂2
ttu(xl, ti) ≈ ui+1

l − 2ui
l + ui−1

l

∆t2 (2.16)

For the space second derivative:

∂2
xxu(xl, ti) ≈

ui
l+1 − 2ui

l + ui
l−1

∆x2 (2.17)

16

Figure 2.4: Increments of space and time discretization

Now, by replacing eq. 2.17 and eq. 2.16 into eq. 2.15, and solving for ui+1
l :

ui+1
l = c2

l

∆t2

∆x2 (ui
l+1 − 2ui

l + ui
l−1) + 2ui

l − ui−1
l + ∆t2f i

l (2.18)

The eq. 2.18 is the fully explicit key for the FDM, and this equation is the final

expression to be implemented in Python to simulate the acoustic wave equation.

2.2.4 Finite Element Method (FEM) in Homogeneous Medium

The FEM approximates the eq. 2.7 by discretizing the domain into elements that can be

evenly spaced or not. In this case, elements have equal distances between them. This

method seeks solutions for the displacement field u(x, t). This approach is solved by re-

placing the displacement field by a finite sum over basis functions ϕi which verifies the

boundary conditions of the problem.

u(x, t) ≈ ū(x, t) =
N∑

i=1
ui(t)ϕi(x) (2.19)

The unknowns are the coefficients ui(t). Let’s formulate the weak form by multiplying

the eq. 2.7 by a test function ϕj. Afterward, it is integrated over the physical domain (D).

∫
D

ρ∂2
ttuϕjdx +

∫
D

∂x(µ∂xu)ϕjdx =
∫

D
fϕjdx; where j = 1, ..., N (2.20)

17

Using integration by parts, the second term of the left-hand side of eq. 2.20 is replaced

by:

∫
D

∂x(µ∂xu)ϕjdx = [µ∂xuϕj] −
∫

D
µ∂xu∂xϕjdx where j = 1, ..., N (2.21)

The first term of the right-hand side is evaluated at the limit of the domain. Then,

the antiderivative term drops out due to the null boundary conditions 2.9 which means a

stress-free boundary condition. Applying the integration by parts and the finite sum; i.e.,

substituting the eq. 2.19 and eq. 2.21 into eq. 2.20. It is obtained that:

N∑
i=1

∂2
t ui(t)

∫
D

ρϕiϕjdx+
N∑

i=1
ui(t)

∫
D

µ(∂xϕi)(∂xϕj)dx =
∫

D
fϕjdx where j = 1, ..., N (2.22)

The eq. 2.22 is, actually, a system of equations. To simplify the notation, let’s use a

matrix and vector notation.

u → ui(t) (2.23)

M → Mij =
∫

D
ρϕiϕjdx (2.24)

K → Kij =
∫

D
µ(∂xϕi)(∂xϕj)dx (2.25)

f → fi =
∫

D
ϕjdx (2.26)

Where u is the displacement field in the time domain, M is the mass matrix, K is the

stiffness matrix, and f is the source vector. Now, the system can be written as:

∂2
t uM + uK = f (2.27)

As transpose notation:

MT ∂2
t u = fT − KT uT (2.28)

18

To approximate the time field using FEM can turn into a cumbersome problem; then,

it was chosen to approximate this field using FDM. Therefore, the eq. 2.28 can written as:

MT

[
u(t + ∆t) − 2u(t) + u(t − ∆t)

∆t2

]
= fT − KT uT (2.29)

Due to the initial conditions (eq. 2.8), it is possible to determine the displacement field

at time t + ∆t by solving the eq. 2.29 for u(t + ∆t). Then, the final expression is:

u(t + ∆t) = ∆t2(MT)−1[f − kT u] + 2u(t) − u(t − ∆t) (2.30)

To solve the equation system, we need to turn the domain into a local coordinate system

for the basis functions (Fig. 2.5).

δ = x − xi

hi = xi+1 − xi

(2.31)

Where hi is the increment, and the element i is defined in the interval x ∈ [xi; xi+1].

The basis [3] functions are given by:

ϕi =

δ

hi−1
+ 1; −hi−1 ≤ δ ≤ 0

1 − δ

hi

; 0 ≤ δ ≤ hi

0; elsewhere

(2.32)

∂δϕi =

1
hi−1

; −hi−1 ≤ δ ≤ 0

− 1
hi

; 0 ≤ δ ≤ hi

0; elsewhere

(2.33)

Let’s solve the Mass and Stiffness matrix with the given basis functions. It is important

to clarify the solution is assuming a homogenous density and shear modulus. Consider the

Mass matrix (eq. 2.24), and change the domain into the local coordinate system (eq. 2.31).

The diagonal elements of the matrix, it is solved as follows:

19

Figure 2.5: Basis functions along the elements where the increment is specified.

Mii =
∫

D
ρϕiϕidx =

∫
Dδ

ρϕiϕidδ (2.34)

Mii = ρi−1

∫ 0

−hi−1

(
δ

hi−1
+ 1

)2

dδ + ρi

∫ hi

0

(
1 − δ

hi

)2

dδ (2.35)

Mii = 1
3(ρi−1hi−1 + ρihi) (2.36)

For the off-diagonal elements, the basis functions overlap only in one element.

Mi,i−1 = ρi−1

∫ 0

−hi−1

(
δ

hi−1
+ 1

)(
− δ

hi−1

)
dδ (2.37)

Mi,i−1 = 1
6ρi−1hi−1 (2.38)

Mi,i+1 = ρi

∫ hi

0

(
1 − δ

hi

)(
δ

hi

)
dδ (2.39)

Mi,i+1 = 1
6ρihi (2.40)

20

M = ρh

6

. 0 0

. . . 4 1 . . . 0
... 1 4 1 ...

0 . . . 1 4 . . .

0 0 . . .
.

(2.41)

For the stiffness matrix (eq. 2.25), it is solved as follows for the diagonal:

Kii =
∫

D
µ∂xϕi∂xϕidx =

∫
Dδ

µ∂xϕi∂xϕidδ (2.42)

Kii = µi−1

∫ 0

−hi−1

(
1

hi−1

)2

dδ + µi

∫ hi

0

(
− 1

hi

)2

dδ (2.43)

Kii = µi−1

hi−1
+ µi

hi

(2.44)

For the elements off-diagonal:

Ki,i−1 = µi−1

∫ 0

−hi−1

(
1

hi−1

)(
−1
hi−1

)
dδ (2.45)

Ki,i−1 = −µi−1

hi−1
(2.46)

Ki,i+1 = µi

∫ hi

0

(
1
hi

)(
− 1

hi

)
dδ (2.47)

Ki,i+1 = −µi

hi

(2.48)

K = µ

h

. 0 0

. . . 2 −1 . . . 0
... −1 2 −1 ...

0 . . . −1 2 . . .

0 0 . . .
.

(2.49)

21

Note that density and shear modulus are constant through the medium, this provokes

that these values can move out of the integral. Now the eq. 2.30 and eq. 2.18 can be

implemented in Python to simulate each method and compare them.

2.2.5 Finite Element Method (FEM) for Two Layers in 1D

It is known that the earth’s crust is not homogenous, it is composed of different rock

types such as sedimentary rocks, extrusive and intrusive rocks, and metamorphic rocks

[23]. FWI and the direct problem are more often used to identify anomalies related to

potential reserves of minerals, oil, and gas. These two last ones are stored in sedimentary

rocks that are stratified, which means a succession of several layers following a sequence

(These layers possess different properties that produce different behaviors as the waves pass

through). Then, the importance of simulating waves through different mediums becomes

an important issue to solve. For this particular case consider two mediums with their

corresponding properties; i.e., there are ρ1, ρ2, µ1, and µ2.

The two layers case follow the same reasoning for a homogeneous medium; however, it

is necessary to consider some changes for the Mass and Stiffness matrices. For the mass

matrix, let’s consider the equations 2.35, 2.37, and 2.39 the solutions for these equations

considering two layers will be:

Mii = 1
3(ρ1i−1hi−1 + ρ2i

hi) (2.50)

Mi,i−1 = 1
6ρ1i−1hi−1 (2.51)

Mi,i+1 = 1
6ρ2i

hi (2.52)

The stiffness matrix will be changed as:

Kii = µ1i−1

hi−1
+ µ2i

hi

(2.53)

Ki,i−1 = −
µ1i−1

hi−1
(2.54)

22

Ki,i+1 = −µ2i

hi

(2.55)

Then, this solution can be used for more layers with different properties. It must be

provided where the interfaces are located to place the respective values.

2.3 Finite Element Method (FEM) in 2D

The aim of this section is to discretize the space field of the elastic wave equation using FEM

and the time domain using FDM since this combination produces a stable and accurate

result [24]. The numerical approximation is obtained following [20] and [25] for the spatial

and temporal discretization.

Let Ω be the rectangle of R2,]0, L[×]0, Z[, with frontiers Γ = Γ0 ∪ Γ1 ∪ Γ2 ∪ Γ3.

Consider the equations 2.5 and 2.6. Also, let’s fix the boundary conditions that are typically

applied in several cases. Equations 2.56 and 2.57 specify a force, with components Fx, Fz,

that are applied on Γ0 (Top)

τxz = µ

(
∂u

∂z
+ ∂w

∂z

)
= −Fx (2.56)

τzz = λ

(
∂u

∂x
+ ∂w

∂z

)
+ 2µ

∂w

∂z
= −Fz (2.57)

The conditions of symetry respect to Γ1 (left side) are:

u = 0 (2.58)

∂w

∂x
= 0 (2.59)

For Γ2 (right side) and Γ3 (bottom)

u = 0 (2.60)

w = 0 (2.61)

23

The initial conditions are given by:

u(x, z, 0) = u0(x, z) (2.62)

w(x, z, 0) = w0(x, z) (2.63)

∂u

∂t
(x, z, 0) = u1(x, z) (2.64)

∂w

∂t
(x, z, 0) = w1(x, z) (2.65)

Now, let’s introduce the space V :

V = Vx × Vz with:

Vx = v ∈ H1(Ω) wich verifies eq. 2.58 and eq. 2.60

Vz = v ∈ H1(Ω) wich verifies eq. 2.61

(2.66)

Let v ∈ Vx; multiply the eq. 2.5 by v and integrate over Ω. After integration by parts

and taking into account the boundary conditions (eq. 2.56), we obtain:

∫
Ω

ρ
∂2u

∂t2 v + (λ + 2µ)∂u

∂x

∂v

∂x
+ λ

∂w

∂z

∂v

∂x
+ µ

(
∂u

∂z
+ ∂w

∂x

)
∂v

∂z

 dΩ =
∫

Γ0
FxvdΓ (2.67)

Likewise, let v ∈ Vz; multiply the eq. 2.6 by v and integrate over Ω. After integration

by parts and taking into account the boundary conditions (equations 2.57, 2.58, 2.59), we

obtain:

∫
Ω

ρ
∂2w

∂t2 v + (λ + 2µ)∂w

∂z

∂v

∂z
+ λ

∂u

∂x

∂v

∂z
+ µ

(
∂u

∂z
+ ∂w

∂x

)
∂v

∂x

 dΩ =
∫

Γ0
FzvdΓ (2.68)

The Ω domain is cut by a regular mesh whose grid (fig. 2.6a) is formed of straight lines

with x = i∆x and z = j∆z, the intersection of these lines determines the node Rij. ∆x

24

and ∆z are chosen as:

L = I∆x and Z = J∆z; where I, J are integers (2.69)

Figure 2.6: a) Grid with the increments specified. b) numbering of the vertices of a
quadrilateral Q for the assembly of the sub-matrices, where each vertice corresponds to a
basis function P1, P2, P3, and P4.

In that way, h is the pair of numbers (∆x, ∆z) and Qh is the set of quadrilaterals with

sides ∆x, ∆z formed by the grid previously defined.

It’s necessary to create the restriction to each quadrilateral Q of Qh is in polynomial

of degree 1 separately in x and in z, for this let’s consider the space Wh = vh ∈ C0(Ω).

It is possible to show that a basis of the vector space Wh is formed by the functions pij

defined by:

pij(Ri′j′) =

1 : i = i′ and j = j′ 0 ≤ i, i′ ≤ I

0 : otherwise 0 ≤ j, j′ ≤ J

(2.70)

Consequently, the functions vh of wh can be written:

vh =
∑

i=0,I
j=0,J

vh(Rij)pij =
∑

i=0,I
j=0,J

vijpij; where vij are numbers, pij are functions. (2.71)

Now, let’s define the space Vh:

25

Vh = Vhx × Vhz; with:

Vhx = vh ∈ Wh as vij = 0 ∀j = 0, ..., J if i = 0, ..., I and vij = 0 ∀i = 0, ..., I

Vhz = vh ∈ Wh as vIj = 0 ∀j = 0, ..., J and vij = 0 ∀i = 0, ..., I

(2.72)

The space Vh approaches the space V defined in the eq. 2.66.

It will therefore be reasonable to seek to approximate at any instant t the solution of

the variational problem of the equations 2.67 and 2.68 by a function of the space Vh; this

function will solve an approach problem that it is going to be defined now.

The finite element method consists in establishing an approach problem obtained by

replacing in the continuous variational problem the functions (solution and test function)

of V by functions of the space Vh.

It is assumed for the following deduction that Fx = Fz = 0

2.3.1 Obtaining semi-discrete equations in space

It is called

uh

wh

 the solution of the approach problem obtained by writing the variational

formulation of the equations 2.67 and 2.68 for any function of the basis Vh; i.e., for any

vector of the form

pij

0

, where pij belongs to the basis of Vhx or

 0

pij

, where pij belongs

to the base of Vhz.

After having introduced the components ui′j′ and wi′j′ of the vector

uh

wh

 on the

vectors of the base of Vh (eq. 2.71):

uh =
∑

i′=0,I
j′=0,J

ui′j′pi′j′

wh =
∑

i′=0,I
j′=0,J

wi′j′pi′j′

(2.73)

The approach problem consists in solving the following system of differential equations:

26

∑
i′=0,I
j′=0,J

d2ui′j′

dt2

∫
Ω
ρpijpi′j′

+
∑

i′=0,I
j′=0,J

ui′j′

∫
Ω
(λ + 2µ)

(
∂pij

∂x

∂pi′j′

∂x
+ µ

∂pij

∂z

∂pi′j′

∂z

)

+
∑

i′=0,I
j′=0,J

wi′j′

∫
Ω
λ

(
∂pij

∂x

∂pi′j′

∂z
+ µ

∂pij

∂z

∂pi′j′

∂x

)
= 0

∀i = 1, I

∀j = 0, J

(2.74)

∑
i′=0,I
j′=0,J

d2wi′j′

dt2

∫
Ω
ρpijpi′j′

+
∑

i′=0,I
j′=0,J

wi′j′

∫
Ω
(λ + 2µ)

(
∂pij

∂z

∂pi′j′

∂z
+ µ

∂pij

∂x

∂pi′j′

∂x

)

+
∑

i′=0,I
j′=0,J

ui′j′

∫
Ω
λ

(
∂pij

∂z

∂pi′j′

∂x
+ µ

∂pij

∂x

∂pi′j′

∂z

)
= 0

∀i = 1, I

∀j = 0, J

(2.75)

Having adopted a renumbering, depending on a single index, of the nodes Rij and

having posed:

U(t) =

uij(t)

wij(t)

Vector of unknown discrete functions

or j = 0, ..., J and i = 1, ..., I for u and 0, ..., I for W

(2.76)

System 2.74 and 2.75 can be written:

M
d2U

dt2 + KU = 0 (2.77)

The matrices M and K are called mass matrix and stiffness matrix, respectively.

The matrices M and K are obtained by explaining in 2.74 and 2.75 the scalar products

in L2 of the functions for the finite element basis and their derivatives in space. There

is an explanation of these scalar products by using the method of contributions: one

calculates initially (assembly of under matrices of mass and stiffness) the contributions of

each quadrilateral in the scalar products; then for a given node (i.e., having fixed the i and

the j appearing in 2.74 and 2.75). We sum (assembly of the mass and stiffness matrices)

27

the contributions of each quadrilateral to obtain the different terms of the line, associated

with 2.74 or 2.75 and with the node Rij, of the matrices M and K. Taking into account

the support of the basis functions, the only non-zero contributions are those corresponding

to the scalar products of the basis function (or of its derivatives) associated with a node

Rij with a basis function (or with one of its derivatives) associated with the node Ri′j′ ,

vertex of a quadrilateral also having Rij as a vertex. Consequently, for the assembly of the

submatrices, it is necessary to perform the scalar products L2 only of the basis functions

(or of their derivatives) associated with the vertices of the same quadrilateral of Qh.

Assembly of sub-matrices.

Given a quadrilateral of Qh, we number its vertices as shown in Figure 2.6b and we note

pi the function of the form (restriction to quadrilateral Q of the basis function associated

with vertex i) associated with vertex i.

We will calculate scalar products of the type:

∫
Q

pipj (2.78)

Analogous scalar products are obtained by replacing ρ with λ or µ and the shape

functions by their derivatives.

Note that the coefficients ρ, λ, and µ are assumed to be constant on each quadrilateral.

Under these conditions, it is easy to obtain the values of the scalar products of type

2.78 from the L2 scalar products of the shape functions or their derivatives.

These scalar products are summarized in Table 2.1, and the calculations can be seen

in Appendix .1.

Assembly of the matrices R and K

Assuming that the coefficients ρ, λ, and µ are constant in the domains Cj, which are layers:

Cj = {(x, z) ∈ R2 as 0 ≤ x ≤ L and

j∆z < z < (j + 1)∆z, j ∈ N}
(2.79)

Moreover, in order to simplify the presentation, it will only establish the rows of the

28

matrices R and K corresponding to functions of bases pij with Rij node interior to omega

(i.e, RijdΓ).

Let Mij be the interior node and v be the basis function associated with it. We will use

local numbering attached to Rij in which Rij will have the number 0 and it is numbered

1, 2, 3, 4, 5, 6, 7, and 8 the neighboring nodes of Rij (fig. 2.7).

Figure 2.7: Local numbering of neighboring nodes of Rij used for the assembly of matrices
M and K.

It is adopted a local numbering for the layers and the coefficients: layer 1 is layer cj-1

and layer 2 is layer Cj, and the coefficients in layers 1 and 2 are called respectively ρ1, λ1,

µ1 and ρ2, λ2, µ2.

By noting respectively uk and wk the approximations of the unknown functions u and

w at node number k (in the local frame linked to node Rij), appearing in eq. 2.74 and

obtain the equation (in u) semi-discrete in space associated with node Rij.

29

∆x∆z

9 [2(ρ1 + ρ2)
∂2u0

dt2 + (ρ1 + ρ2)
2

(
∂2u1

dt2 + ∂2u5

dt2

)
+ ρ1

∂2u3

dt2 + ρ2
∂2u7

dt2

+1
4ρ1

(
∂2u2

dt2 + ∂2u4

dt2

)
+ 1

4ρ2

(
∂2u8

dt2 + ∂2u6

dt2

)
]

+∆z

∆x
(λ + 2µ)1

[
2
3u0 − 1

6(u2 + u4) + 1
3u3 − 1

3(u1 + u5)
]

+∆z

∆x
(λ + 2µ)2

[
2
3u0 − 1

6(u6 + u8) + 1
3u7 − 1

3(u1 + u5)
]

+∆x

∆z
µ1

[
2
3u0 − 1

6(u2 + u4) − 2
3u3 + 1

6(u1 + u5)
]

+∆x

∆z
µ2

[
2
3u0 − 1

6(u6 + u8) − 2
3u7 + 1

6(u1 + u5)
]

+λ1

4 (−w2 + w4 − w5 + w1) + λ2

4 (−w6 + w8 − w1 + w5)

+µ1

4 (−w2 + w4 − w1 + w5) + µ2

4 (−w6 + w8 − w5 + w1) = 0

(2.80)

Similarly, by explaining eq. 2.75, it is obtained for any interior node:

∆x∆z

9 [2(ρ1 + ρ2)
∂2w0

dt2 + (ρ1 + ρ2)
2

(
∂2w1

dt2 + ∂2w5

dt2

)
+ ρ1

∂2w3

dt2 + ρ2
∂2w7

dt2

+1
4ρ1

(
∂2w2

dt2 + ∂2w4

dt2

)
+ 1

4ρ2

(
∂2w8

dt2 + ∂2w6

dt2

)
]

+∆x

∆z
(λ + 2µ)1

[
2
3w0 − 1

6(w2 + w4) − 2
3w3 + 1

6(w1 + w5)
]

+∆x

∆z
(λ + 2µ)2

[
2
3w0 − 1

6(w6 + w8) − 2
3w7 + 1

6(w1 + w5)
]

+∆z

∆x
µ1

[
2
3w0 − 1

6(w2 + w4) + 1
3w3 − 1

3(w1 + w5)
]

+∆z

∆x
µ2

[
2
3w0 − 1

6(w6 + w8) + 1
3w7 − 1

3(w1 + w5)
]

+λ1

4 (−u2 + u4 − u1 + w5) + λ2

4 (−u6 + u8 − u5 + u1)

+µ1

4 (−u2 + u4 − u5 + u1) + µ2

4 (−u6 + u8 − u1 + u5) = 0

(2.81)

The semi-discretization in space by finite elements, therefore, leads to the system of

differential equations 2.80 and 2.81 to be written for any node inside Ω to which must be

added the equations 2.74 written for Rij ∈ Γ0 and 2.75 for Rij ∈ Γ0 ∪ Γ1.

Note: Schema for Γ0 boundary nodes can be obtained from equations 2.80 and 2.81

30

with ρ1 = λ1 = µ1 = 0.

2.3.2 Time approximation scheme

The system of differential equations 2.77 is solved in an approximate way using an “explicit”

numerical scheme with finite differences.

Let’s set the time step ∆t and approach the vector U , solution of 2.77 at time n∆t by

a vector Un.

∂2U

dt2 (n∆t) for 1
∆t2 (Un+1 − 2Un + Un−1) and

u(n∆t) for Un

(2.82)

Then, the following schema is obtained:

1
∆t2 (MUn+1 − 2MUn + MUn−1) + KUn = 0 (2.83)

which allows the successive calculation of Un starting from U1 and U0 which one obtains

using the initial conditions 2.62, 2.63, 2.64, 2.65.

The diagram will be computer-explicit only if the matrix R is diagonal which is the

case of the approximation in space with condensation of the mass matrix.

31

p1
∂p1

∂x

∂p1

∂z
p2

∂p2

∂x

∂p2

∂z
p3

∂p3

∂x

∂p3

∂z
p4

∂p4

∂x

∂p4

∂z

p1
∆x∆z

9
∆x∆z

18
∆x∆z

36
∆x∆z

18

∂p1

∂x
∆z

3∆x
1
4 − ∆z

3∆x
1
4 − ∆z

6∆x
−1

4
∆z

6∆x
−1

4

∂p1

∂z
1
4

∆x
3∆z

−1
4

∆x
6∆z

−1
4 − ∆x

6∆z
1
4 − ∆x

3∆z

p2
∆x∆z

18
∆x∆z

9
∆x∆z

18
∆x∆z

36

∂p2

∂x
− ∆z

3∆x
−1

4
∆z

3∆x
−1

4
∆z

6∆x
1
4 − ∆z

6∆x
1
4

∂p2

∂z
1
4

∆x
6∆z

−1
4

∆x
3∆z

−1
4 − ∆x

3∆z
1
4 − ∆x

6∆z

p3
∆x∆z

36
∆x∆z

18
∆x∆z

9
∆x∆z

18

∂p3

∂x
− ∆z

6∆x
−1

4
∆z

6∆x
−1

4
∆z

3∆x
1
4 − ∆z

3∆x
1
4

∂p3

∂z
−1

4 − ∆x
6∆z

1
4 − ∆x

3∆z
1
4

∆x
3∆z

−1
4

∆x
6∆z

p4
∆x∆z

18
∆x∆z

36
∆x∆z

18
∆x∆z

9

∂p4

∂x
∆z

6∆x
1
4 − ∆z

6∆x
1
4 − ∆z

3∆x
−1

4
∆z

3∆x
−1

4

∂p4

∂z
−1

4 − ∆x
3∆z

1
4 − ∆x

6∆z
1
4

∆x
6∆z

−1
4

∆x
3∆z

Table 2.1: Scalar Products

32

Chapter 3

Results and Discussion

3.1 Finite Element Method (FEM) in 1D

The implementation of FDM and FEM in Python was performed using a Gaussian source

(eq. 2.14), which showed less dispersion through time than other sources. The used

frequency was f0 = 25Hz (Fig. 3.1).

Figure 3.1: Left: Gaussian function through time, this shape presents a stable solution
with low dispersion in short periods of simulation. Right: The source spectrum that shows
the frequency used for the wave propagation.

33

3.1.1 Homogeneous Media

To find a stable increment in time and space, it was used the Courant-Friedrich-Lewy

Criterion (CFL Criterion) [26], and it was found that the value for this case should be

within this range 0.6 ≤ c
dt

dx
≤ 1. To accomplish this criterion it was used an s-wave

velocity of vs = 375 m/s, a space increment of dx = 0.65 m, and a time increment of

dt = 0.00010 s.

With this configuration, the simulation is stable and has a minimum dispersion at the

beginning. However, for large periods of simulation, the dispersion increased significantly.

To test this, it was used 1 000 000 time steps (Fig. 3.2).

Figure 3.2: a) FDM and FEM at the beginning of the simulation. It shows almost 0
dispersion and a good match between both methods. B) FDM and FEM after 1 000 000
time steps, it is shown a gap and delay between the two signals due to the different way
how boundary conditions are introduced for each method.

34

Figure 3.3: a) Root Mean Square Error (RMSE) between analytical solution and FEM-
FDM, showing a better approximation of FEM since the error does not deviate in the same
magnitude from the analytical solution as FDM does. b) Absolute error in percentage of the
FEM with respect to the maximum amplitude showing an interval where the error varies
from 0.14 % to 0.19 %. c) Absolute error of the FDM showing a decreasing tendency from
a maximum value of 0.0019 % to a minimum value of 0.00026 %.

35

To calculate the compilation time, the code was run using 24000 time-steps. The result

was that the FDM takes less time to compile the code (see Table 3.1).

Time (s)
FEM and FDM FDM FEM
500.8159170150 279.3736398220 305.5113596916

Table 3.1: Compilation times

The comparison between both methods is validated since it has been proved that the

Finite Difference Method is stable and converges to analytical solutions for the acoustic

wave case; to reach this aim, it was applied the Dirichlet and Neuman analysis for stability

and convergence [7]. In addition, it was seen that FDM is stable for values of the CFL cri-

terion ≤ 1. It means that FDM is a reliable approach for approximating the acoustic wave

equation. By comparing FDM and FEM it was observed that FEM eventually converges

to the FDM (Fig. 3.4), since the error starts to converge and its curve flattens in large

periods of compilations. The error calculated is the root mean square error:

RMSE =

√√√√ 1
N

N∑
i=1

(pi − ui)2 (3.1)

Figure 3.4: Root Mean square error between FEM and FDM. The image shows how the
error curve converges; i.e., the curve starts to flatten. However, it is clear the perturbations
provoked by the gap and delay produced by the boundary conditions

Where pi is the value for FDM and ui is the value for FEM. However, there is an

important observation for the error calculation. There are disruptions and inconsistencies

between both methods at the edges, since the boundary conditions are implemented in

different manners this produces a gap between FDM and FEM that in large periods of

36

simulation will create a delay between both signals. To get a better understanding of the

methods a comparison between numerical methods and analytical solutions was performed

using the root mean square error (eq. 3.1) and the absolute error in percentage:

Error(%) =
∣∣∣∣XAnalytical − XNumerical

XAnalytical

∣∣∣∣ ∗ 100 (3.2)

Where X is the amplitude value of the wavelength for each case. For the root mean

square error pi must be replaced by the analytical solution vector, and ui must be the FDM

and FEM vectors for each case. In general, it was observed the FEM approaches better the

analytical solution since its RMSE is less than FDM; i.e., the FEM does not deviate from

the values so far from the analytical solution as FDM does. Nevertheless, both methods

have a stable error that could decrease but after that will be kept constant and stable (Fig.

3.3a). In contrast, the absolute error shows that for FEM the error is bounded between

0.14 % and 0.19 % which means that the amplitude is slightly different than expected

(Fig. 3.3b); while for FDM the error shows a decreasing tendency with a maximum value

of 0.019 % and a minimum value of 0.00026 %, which means a better approach through

time to the analytical solution (Fig. 3.3c). Then, the amplitude of the FDM tends to

converge to the analytical solution while the amplitude of FEM keeps constant within an

interval through time.

3.1.2 Two Layers

The two-layer case was performed to simulate the wave behavior when it reaches an inter-

face. This interface divides the medium creating two layers with different properties that

are the common case; i.e., a heterogenous medium.

For layer 1 the properties are: V s1 = 350 m/s and ρ1 = 300 kg/m3, for layer 2 the

properties are: V s2 = 375 m/s and ρ2 = 315 kg/m3.

It has been observed that the wave for both methods has a stable behavior, and both

waves have the same shape without any changes at the beginning of the simulation (fig.

3.5a). However, after the waves reach the interface, both methods have different ampli-

tudes. The transmitted wave has a higher amplitude for FDM and the reflected wave has a

different polarity. The FEM has a positive polarity while the FDM has a negative polarity

37

(fig. 3.5b).

Figure 3.5: a)First wave after the activation of the source. b) Reflected and transmitted
waves after the source wave reaches the interface between the two densities

In the same way for the homogeneous medium, the RMSE shows some deviation be-

tween both methods due to the boundary conditions. The methods have different behavior

at the edges of the simulation. Also, the behavior changes at the interface (fig. 3.5b) where

the reflected wave polarity is different. However, the RMSE shows a convergence tendency;

even, it starts to decrease over time (Fig. 3.6). Nevertheless, there are some discrepancies

due to the delay and gaps between both signals due to the boundary conditions and the

interface.

38

Figure 3.6: RMSE between FDM and FEM, it is showing a convergence tendency with
a decrease in the error magnitude which means the methods start to have less deviation
between them over time.

3.2 Finite Element Method (FEM) road to 2D

In order to implement the FEM for 2D using the procedure developed in Section 2, it

is necessary to assemble explicitly the Mass and Stiffness matrices. Let’s start with the

numerical approximation:

uh =
∑

i=0,I
j=0,J

uij(t)Pij(x, z); wh =
∑

i=0,I
j=0,J

wij(t)Pij(x, z) (3.3)

Where uij and wij are dependent on time and Pij are the basis functions. The numerical

approximations for the elastic wave equation to approach the displacement uh and wh are:

∫
Ω
ρ
∑

i=0,I
j=0,J

u′′
ijPijPi′j′ +

∫
Ω
(λ + 2µ)∂x(

∑
i=0,I
j=0,J

uijPij)∂xPi′j′

+
∫

Ω
λ∂z(

∑
i=0,I
j=0,J

wijPij)∂zPi′j′ +
∫

Ω
µ

∂z(
∑

i=0,I
j=0,J

uijPij) + ∂x(
∑

i=0,I
j=0,J

wijPij)

 ∂zPi′j′ = 0

(3.4)

39

∫
Ω
ρ
∑

i=0,I
j=0,J

w′′
ijPijPi′j′ +

∫
Ω
(λ + 2µ)∂z(

∑
i=0,I
j=0,J

wijPij)∂xPi′j′

+
∫

Ω
λ∂x(

∑
i=0,I
j=0,J

uijPij)∂zPi′j′ +
∫

Ω
µ

∂z(
∑

i=0,I
j=0,J

uijPij) + ∂x(
∑

i=0,I
j=0,J

wijPij)

 ∂xPi′j′ = 0

(3.5)

Mass matrix (M)

The mass matrix will be calculated using the following expression:

M =
∫
Ω

ρ
∑

i=0,I
j=0,J

PijPi′j′ (3.6)

Stiffness matrix (K)

The Global Stiffness matrix (K) is composed of the sum of three matrices, each one cor-

responding to the partial derivatives of the basis function with respect to each component

Kxx, Kzz, and Kxz = Kzx, where:

Kxx =
∫

Ω
Υ∂x(Pij)∂xPi′j′

Kzz =
∫

Ω
Υ∂z(Pij)∂zPi′j′

Kxz =
∫

Ω
Υ∂x(Pij)∂zPi′j′

; Υ is a Lamé parameter or a combination of them (3.7)

Matrix notation

Then, using the eq. 3.6 and eq. 3.7, the system of partial differential equations eq. 3.4

and eq. 3.5 can be written as:

Mu′′

ij + [(λ + 2µ)Kxx + µKzz]uij + [λkzz + µKxz]wij = 0

Mw′′
ij + [λKxz + µKxx]uij + [(λ + 2µ)Kzz + µKxx]wij = 0

; respectively (3.8)

40

The Lamé parameters are not into the integrals of each matrix just to clarify what

parameters should be integrated for each combination of the partial Stiffness matrices; i.e.,

they must be included for each matrix solution. Following the eq. 2.76, the system of

differential equations 3.7 can be expressed as the eq. 2.77. It is clear that the system is

coupled; i.e., both systems must be solved together as follows:

M 0

0 M

u′′

ij

w′′
ij

+

(λ + 2µ)Kxx + µKzz λKzz + µKxz

λKxz + µKxx (λ + 2µ)Kzz + µKxx

uij

wij

 = 0 (3.9)

Before the assembly of the matrices let’s introduce another index k which will enumerate

the elements from k = 1, ..., K. The number of elements will be K = (I − 2) ∗ (J − 2)

since the border elements are not included in making the calculations due to the boundary

conditions; i.e., their values are zero. This means the elements are only the internal points

(Fig: 3.7) which implies that:

I ′ = (I − 2) ∗ ∆x

J ′ = (J − 2) ∗ ∆z

(3.10)

This denotes that K = I ′ ∗ J ′ and the relation between the indexes (i, j) are related

with k as follows:

(i, j) → k = (i − 1) ∗ J ′ + j

k → i =
k

J

+ 1; j = k − I ′ ∗ (i − 1)
; i = 1, ..., I ′; j = 1, ..., J ′ (3.11)

To explain better how the matrices are filled, let’s clarify the size. The size of the

matrices is K ∗ K since it is necessary to calculate the interaction of each element with

the whole mesh (the other elements). Therefore, these combinations create matrices of

size K ∗ K, where the diagonal is filled with the interactions of each element with itself.

Furthermore, it is needed to fill the diagonal and the upper values due to the matrices

are symmetric; then, the bottom values will be filled by symmetry with the upper values

41

Figure 3.7: An example of 5 ∗ 5 grid points and 3 ∗ 3 elements. Numeration of elements
using the index k (red) and the numbering for each quadrilateral Qh (blue). The numbering
outside the mesh represents the indexes for rows and columns of each element

already calculated. The spaces of the matrices with values different from zero will be those

ones where the fixed element interacts with the neighboring elements; i.e., the positions

(k, k + 1), (k, k + J ′ − 1), (k, k + J ′), and (k, k + J ′ + 1)

3.2.1 1-Layer homogeneous medium

The one-layer isotropic medium is a good approach for understanding how the method

works and seeing how the matrices are built.

Explicit assembly of the mass matrix

As it was established, the elements of the matrices must be filled depending on the interac-

tion of the elements of the mesh with itself and the neighboring elements. The combination

with the non-neighboring elements will be zero since there is no interaction. The solution

is obtained using the reference quadrilateral in Fig. 2.6b, and the scalar products in L2

are already calculated in Table 2.1.

Then, let’s consider:

42

M =
∫
Ω

ρ
∑

i=0,I
j=0,J

PijPi′j′

Changing into the local coordinate system and considering an isotropic 1-layer medium,

we have that

Mk,k′ = ρ
∫
Q̂

PijPi′j′ ; where Q̂ is the set of quadrilaterals involved. (3.12)

• Diagonal

The elements of the diagonal are Mk,k′ where k′ = k. Then, solving the eq. 3.12, for

this case, we have that:

Mk,k′ = ρ

∫
Qk

PijPi′j′ +
∫
Qk+i

PijPi′j′ +
∫
Qk+J′+i

PijPi′j′ +
∫
Qk+J′+i+1

PijPi′j′

Turn each integral into the coordinates for the corresponding quadrilateral reference

(Fig. 2.6), and we have that:

Mk,k′ = ρ

∫
Qk

P2P2 +
∫
Qk+i

P1P1 +
∫
Qk+J′+i

P3P3 +
∫
Qk+J′+i+1

P4P4

Mk,k′ = ρ
4
9∆x∆z (3.13)

• Right side

The solution for the interactions with the right side element is Mk,k′ , where k′ = k+1

and (i′, j′) = (i, j + 1). Then, solving the eq. 3.12, for this case, we have that:

Mk,k′ = ρ

∫
Qk+i

PijPi′j′ +
∫
Qk+J′+i+1

PijPi′j′

Turn each integral into the coordinates for the corresponding quadrilateral of refer-

ence (Fig. 2.6):

43

Mk,k′ = ρ

∫
Qk+i

P1P2 +
∫
Qk+J′+i+1

P4P3

Mk,k′ = ρ
1
9∆x∆z (3.14)

• Down left

Considering the eq: 3.12, let’s solve Mk,k′ , where k′ = k + J ′ − 1, and (i′, j′) =

(i + 1, j − 1).

Mk,k′ = ρ

∫
Qk+J′+i

PijPi′j′

Mk,k′ = ρ

∫
Qk+J′+i

P3P1

Mk,k′ = ρ
1
36∆x∆z (3.15)

• Down

Considering the eq: 3.12, let’s solve Mk,k′ , where k′ = k + J ′, and (i′, j′) = (i + 1, j).

Mk,k′ = ρ

∫
Qk+J′+i

PijPi′j′ +
∫
Qk+J′+i+1

PijPi′j′

Mk,k′ = ρ

∫
Qk+J′+i

P3P2 +
∫
Qk+J′+i+1

P4P1

Mk,k′ = ρ
1
9∆x∆z (3.16)

• Down right

Considering the eq: 3.12, let’s solve Mk,k′ , where k′ = k + J ′ + 1, and (i′, j′) =

(i + 1, j + 1).

44

Mk,k′ = ρ

∫
Qk+J′+i+1

PijPi′j′

Mk,k′ = ρ

∫
Qk+J′+i+1

P4P2

Mk,k′ = ρ
1
36∆x∆z (3.17)

With these solutions, it is clear that the shape of the matrices will vary depending on

the number of elements. To illustrate how looks like the shape, let’s consider Figure 3.7.

This mesh will create a matrix size of 9X9 as follows:

M = ρ
∆x∆z

9

4 1 0 1 1/4 0 0 0 0

1 4 1 1/4 1 1/4 0 0 0

0 1 4 0 1/4 1 0 0 0

1 1/4 0 4 1 0 1 1/4 0

1/4 1 1/4 1 4 1 1/4 1 1/4

0 1/4 1 0 1 4 0 1/4 1

0 0 0 1 1/4 0 4 1 0

0 0 0 1/4 1 1/4 1 4 1

0 0 0 0 1/4 1 0 1 4

(3.18)

Explicit assembly of the Stiffness Matrix

In order to build the Global Stiffness matrix, it is necessary to first build the partial

stiffness matrices. The procedure to follow is the same as the one taken for building the

Mass matrix, it just changes the evaluation of the integrals with the corresponding partial

derivatives. Then, the results can be summarized in Table 3.2, in this table the indexes

correspond to (k, k′) = (k, k + 1), (k, k′′) = (k, k + J ′ − 1), (k, k′′′) = (k, k + J ′), and

(k, k4) = (k, k + J ′ + 1)

Solving for Figure 3.7, the partial stiffness matrices have the shape:

45

Indexes Kxx =
∫

Ω
Υ∂x(Pij)∂xPi′j′ Kzz =

∫
Ω
Υ∂z(Pij)∂zPi′j′ Kxz =

∫
Ω
Υ∂x(Pij)∂zPi′j′

(k, k) K(k,k)
xx = Υ4∆z

3∆x
K(k,k)

zz = Υ4∆x

3∆z
K(k,k)

xz = 0

(k, k′) K(k,k′)
xx = −Υ2∆z

3∆x
K(k,k′)

zz = Υ ∆x

3∆z
K(k,k′)

xz = 0

(k, k′′) K(k,k′′)
xx = −Υ ∆z

6∆x
K(k,k′′)

zz = −Υ ∆x

6∆z
K(k,k′′)

xz = −Υ1
4

(k, k′′′) K(k,k′′′)
xx = Υ ∆z

3∆x
K(k,k′′′)

zz = −Υ2∆x

3∆z
K(k,k′′′)

xz =

(k, k4) K(k,k4)
xx = −Υ ∆z

3∆x
K(k,k4)

zz = −Υ ∆x

6∆z
K(k,k4)

xz = Υ1
4

Table 3.2: Partial Stiffness Matrices

Kxx = Υ ∆z

3∆x

4 −2 0 1 −1/2 0 0 0 0

−2 4 −2 −1/2 1 −1/2 0 0 0

0 −2 4 0 −1/2 1 0 0 0

1 −1/2 0 4 −2 0 1 −1/2 0

−1/2 1 −1/2 −2 4 −2 −1/2 1 −1/2

0 −1/2 1 0 −2 4 0 −1/2 1

0 0 0 1 −1/2 0 4 −2 0

0 0 0 −1/2 1 −1/2 −2 4 −2

0 0 0 0 −1/2 1 0 −2 4

(3.19)

46

Kzz = Υ ∆x

3∆z

4 1 0 −2 −1/2 0 0 0 0

1 4 1 −1/2 −2 −1/2 0 0 0

0 1 4 0 −1/2 −2 0 0 0

−2 −1/2 0 4 1 0 −2 −1/2 0

−1/2 −2 −1/2 1 4 1 −1/2 −2 −1/2

0 −1/2 −2 0 1 4 0 −1/2 −2

0 0 0 −2 −1/2 0 4 1 0

0 0 0 −1/2 −2 −1/2 1 4 1

0 0 0 0 −1/2 −2 0 1 4

(3.20)

Kxz = Υ1
4

0 0 0 0 1 0 0 0 0

0 0 0 −1 0 1 0 0 0

0 0 0 0 −1 0 0 0 0

0 −1 0 0 0 0 0 1 0

1 0 −1 0 0 0 −1 0 1

0 1 0 0 0 0 0 −1 0

0 0 0 0 −1 0 0 0 0

0 0 0 1 0 −1 0 0 0

0 0 0 0 1 0 0 0 0

(3.21)

Once the matrices are built, it is possible to continue with the implementation in Python

to build the matrices and start the simulation.

Let’s consider the eq: 2.83. The first step is to introduce a source for each displacement

component, the source used is the same for the 1D case. Now, let’s solve the eq. 2.83 for

Un+1:

Un+1 = M−1[∆t2F − KUn] + 2Un − Un−1 (3.22)

The implementation of the numerical approximation starts by incorporating the proper

libraries, setting the data to build the matrices and values to be integrated into the matrices

(Fig. 3.8); once the data is set, the matrices are built and filled using a for loop (Fig.

47

Figure 3.8: Flux diagram of how the code works to simulate the numerical approximation
done using the Finite element method. Circle 1 is how to build the matrices, it can be
checked in Fig 3.9.

48

Figure 3.9: Flux diagram for building the Mass and Stiffness matrices. This flux diagram
is appliable for 1 to 2 layers since the procedure is the same, it is just necessary to fill each
place of the matrices with the proper Lamé parameter

49

3.9) and complemented by symmetry. Afterward, the source function is initialized and

incorporated into the equation obtained form the application of FEM to the elastic wave

equation. A code built in for python can be seen in Appendix .2

3.2.2 Two Layers

The formulation to build the 2 layered matrices is the same for the 1 layered. However,

when we are solving the integrals, it is necessary to consider the lame parameters for each

quadrilateral in order to solve the integral (Fig: 3.7).

Then the solutions for each position of the Mass and stiffness matrices are the following

(The Lamé parameter’s subscripts are for the quadrilateral values):

• Position (k, k′) = (k, k)

Mk,k′ = ∆x∆z

9 [ρk + ρk+i + ρk+J ′+i + ρk+J ′+i+1] (3.23)

Kk,k′

xx = ∆z

3∆x
[Υk + Υk+i + Υk+J ′+i + Υk+J ′+i+1] (3.24)

Kk,k′

zz = ∆x

3∆z
[Υk + Υk+i + Υk+J ′+i + Υk+J ′+i+1] (3.25)

Kk,k′

xz = −1
4Υk + 1

4Υk+i + 1
4Υk+J ′+i − 1

4Υk+J ′+i+1 (3.26)

• Position (k, k′) = (k, k + 1)

Mk,k′ = ∆x∆z

18 [ρk+i + ρk+J ′+i+1] (3.27)

Kk,k′

xx = − ∆z

3∆x
[Υk+i + Υk+J ′+i+1] (3.28)

Kk,k′

zz = ∆x

6∆z
[Υk+i + Υk+J ′+i+1] (3.29)

50

Kk,k′

xz = 1
4Υk+i − 1

4Υk+J ′+i+1 (3.30)

• Position (k, k′) = (k, k + J ′ − 1)

Mk,k′ = ∆x∆z

36 ρk+J ′+i (3.31)

Kk,k′

xx = − ∆z

6∆x
Υk+J ′+i (3.32)

Kk,k′

zz = − ∆x

6∆z
Υk+J ′+i (3.33)

Kk,k′

xz = −1
4Υk+J ′+i (3.34)

• Position (k, k′) = (k, k + J ′)

Mk,k′ = ∆x∆z

18 [ρk+J ′+i + ρk+J ′+i+1] (3.35)

Kk,k′

xx = ∆z

6∆x
[Υk+J ′+i + Υk+J ′+i+1] (3.36)

Kk,k′

zz = − ∆x

3∆z
[Υk+J ′+i + Υk+J ′+i+1] (3.37)

Kk,k′

xz = −1
4Υk+J ′+i + 1

4Υk+J ′+i+1 (3.38)

• Position (k, k′) = (k, k + J ′ + 1)

Mk,k′ = ∆x∆z

36 ρk+J ′+i+1 (3.39)

51

Kk,k′

xx = − ∆z

3∆x
Υk+J ′+i+1 (3.40)

Kk,k′

zz = − ∆x

6∆z
Υk+J ′+i+1 (3.41)

Kk,k′

xz = 1
4Υk+J ′+i+1 (3.42)

Then, the mass and stiffness matrices can be filled using the equations from eq. 3.23

and 3.42. These equations are for a general case where each quadrilateral has its own Lamé

parameter value. Therefore, to build a two-layer mesh, it is necessary to set the interface

and the corresponding values for each layer.

The implementation is the same for the case of 1 layer case, the only difference is how the

matrices are built. The procedure to simulate is the same for the 1 layered case; however,

when the matrices are filled with the proper values, it is necessary to establish the correct

Lamé parameters for each place that is well explained in the script in Appendix .3 that is

valid for Python. In addition, we must create additional partial Stiffness matrices according

to the Lamé parameters preceding these matrices following the eq. 3.9. Therefore, the

Global Stiffness matrix is built.

Once the matrices are implemented the simulation can be started. To avoid dispersion,

it is necessary to consider the proper values for whole parameters, for this it is important

to take into consideration the stability condition for finite elements in 2D [20]:

√
V 2

p + V 2
s

∆t

∆x
≤ 1√

3
(3.43)

With this stability condition, we are ensuring to avoid numerical dispersion.

The more efficient way to implement the numerical approximation is using matrices

since all calculations are done at once; however, there are some inconveniences. Computer

memory plays an important role since the matrices grow significantly when the number of

grid points increases too. Also, it is important to consider the source type and how it is

going to be implemented in the simulation in order to obtain accurate results.

Moreover, the implementation looks to get better results than finite differences. Nev-

52

ertheless, the procedure to apply FEM to a partial differential equation, in this case, the

elastic wave equation, results harder than using FDM due to the approximation using

basis functions and the integration over the local coordinate system. Furthermore, there

are some advantages to this approximation. The implementation of boundary conditions

in order to solve the PDE allows to setting and simulation of a proper behavior of the

seismic waves through a medium. Also, the elastic properties can be attached to each

element, this has significant consequences since it is possible to approach the real medium

using a more realistic distribution of elastic properties through the subsurface to represent

lithology changes, faults, and geological features.

53

54

Chapter 4

Conclusions

FEM can be treated as a good approach for the elastic wave equation in 1D since it con-

verges to the FDM. However, it presents some disadvantages such as it needs more time

to compile and the procedure to discretize and express the equation using the basis func-

tions can turn into a complicated work for more dimensions or more structured equations.

Furthermore, both methods vary from each other due to the way the boundary and initial

conditions are implemented. However, both methods show a reliable approach to the ana-

lytical solution where the FEM presents less deviation to this solution while FDM shows

a bigger discrepancy from the analytical solution. Although, the FDM approaches better

to real amplitude and shows a convergence tendency to analytical solutions while FEM is

bounded showing a discrepancy to the exact solution.

In the case of the 2D, FEM presents a numerical procedure that can seem harder than

FDM; however, the results present accurate approaches to the elastic wave equation since

it is possible the set the proper and desired boundary conditions and the elastic properties

can be arranged according to the geological setting that will be described. The assembly

of the matrices allows to perform an efficient way to implement the numerical solution in

coding; however, it presents some disadvantages like the computer memory, which occurs

because the size’s matrices increase rapidly as the grid points increase too. Moreover,

with this building, it is possible to simulate the behavior of the seismic waves with a

proper implementation of the source and the boundary conditions which lead to future

comparisons with other methods such as FDM. Finally, this study contributes to the FWI

55

since it gives the mathematical procedure for the direct problem of approaching the PDE

of the elastic wave. This gives a better understanding of how the inverse problem can be

treated.

56

Bibliography

[1] J. Virieux, A. Asnaashari, R. Brossier, L. Métivier, A. Ribodetti, and W. Zhou, 6. An

introduction to full waveform inversion, 2017, pp. R1–1–R1–40. [Online]. Available:

https://library.seg.org/doi/abs/10.1190/1.9781560803027.entry6

[2] Q. Kong, T. Siauw, and A. Bayen, Python Programming and Numerical Methods:

A Guide for Engineers and Scientists. Elsevier Science, 2020. [Online]. Available:

https://books.google.com.ec/books?id=cZ4LEAAAQBAJ

[3] G.-R. Liu and S. S. Quek, The finite element method: a practical course. Butterworth-

Heinemann, 2013.

[4] D. Komatitsch, J. Ritsema, and J. Tromp, “The spectral-element method, beowulf

computing, and global seismology,” Science, vol. 298, no. 5599, pp. 1737–1742, 2002.

[5] F. Moukalled, L. Mangani, M. Darwish, F. Moukalled, L. Mangani, and M. Darwish,

The finite volume method. Springer, 2016.

[6] R. Hohensinn, “Detection of hazardous ground movements with instantaneous velocity

estimates by gnss,” Ph.D. dissertation, 06 2019.

[7] K. N. Habib, “Convergence analysis for wave equation by explicit finite difference

equation with drichlet and neumann boundary condition,” Matrix, vol. 2, no. 2, p. 9,

2021.

[8] H. Chauris, Chapter 5 Full waveform inversion. EDP Sciences, 2021, pp. 123–146.

[Online]. Available: https://doi.org/10.1051/978-2-7598-2351-2.c007

57

https://library.seg.org/doi/abs/10.1190/1.9781560803027.entry6
https://books.google.com.ec/books?id=cZ4LEAAAQBAJ
https://doi.org/10.1051/978-2-7598-2351-2.c007

[9] I. R. Khan and R. Ohba, “Closed-form expressions for the finite difference approxima-

tions of first and higher derivatives based on taylor series,” Journal of Computational

and Applied Mathematics, vol. 107, no. 2, pp. 179–193, 1999.

[10] P. M. Shearer, Introduction to seismology. Cambridge university press, 2019.

[11] H. Igel, Computational seismology: a practical introduction. Oxford University Press,

2017.

[12] A. T. Patera, “A spectral element method for fluid dynamics: laminar flow in a channel

expansion,” Journal of computational Physics, vol. 54, no. 3, pp. 468–488, 1984.

[13] R. Eymard, T. Gallouët, and R. Herbin, “Finite volume methods,” in Solution of

Equation in n (Part 3), Techniques of Scientific Computing (Part 3), ser. Handbook

of Numerical Analysis. Elsevier, 2000, vol. 7, pp. 713–1018. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1570865900070058

[14] K. J. Marfurt, “Accuracy of finite-difference and finite-element modeling of the

scalar and elastic wave equations,” GEOPHYSICS, vol. 49, no. 5, pp. 533–549, 1984.

[Online]. Available: https://doi.org/10.1190/1.1441689

[15] T. E. o. E. Britannica, Seismic wave. Encyclopedia Britannica., 2023. [Online].

Available: https://www.britannica.com/science/seismic-wave

[16] A. Ben-Menahem and S. Singh, Seismic Waves and Sources. Springer New York,

2012. [Online]. Available: https://books.google.com.ec/books?id=L0PTBwAAQBAJ

[17] M. Norton and J. Pan, “Noise — noise radiated from elementary sources,”

in Encyclopedia of Vibration, S. Braun, Ed. Oxford: Elsevier, 2001, pp.

877–887. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

B0122270851001454

[18] H. Farkas, K. Kály-Kullai, and S. Sieniutycz, “Chapter 17 - the fermat principle

and chemical waves,” in Variational and Extremum Principles in Macroscopic

Systems, S. Sieniutycz and H. Farkas, Eds. Oxford: Elsevier, 2005, pp.

58

https://www.sciencedirect.com/science/article/pii/S1570865900070058
https://doi.org/10.1190/1.1441689
https://www.britannica.com/science/seismic-wave
https://books.google.com.ec/books?id=L0PTBwAAQBAJ
https://www.sciencedirect.com/science/article/pii/B0122270851001454
https://www.sciencedirect.com/science/article/pii/B0122270851001454

355–373. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

B9780080444888500205

[19] R. J. Schechter, “Snell’s law: Optimum pathway analysis,” Survey of Ophthalmology,

vol. 21, no. 6, pp. 464–466, 1977. [Online]. Available: https://www.sciencedirect.

com/science/article/pii/S0039625777800027

[20] A. Bamberger, G. Chavent, and P. Lailly, “Étude de schémas numériques de

l’élastodynamique linéaire,” 01 1980.

[21] R. Aster, “The seismic wave equation,” Seismological Society of America, p. 18, 2011.

[22] S. Rienstra, “Hirschberg: An introduction to acoustics,” Eindhoven, Netherlands,

Eindhoven University of Technology, 2016.

[23] A. Yaroshevsky, “Abundances of chemical elements in the earth’s crust,” Geochemistry

International, vol. 44, pp. 48–55, 2006.

[24] M. Frehner, S. M. Schmalholz, E. H. Saenger, and H. Steeb, “Comparison

of finite difference and finite element methods for simulating two-dimensional

scattering of elastic waves,” Physics of the Earth and Planetary Interiors,

vol. 171, no. 1, pp. 112–121, 2008, recent Advances in Computational

Geodynamics: Theory, Numerics and Applications. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S0031920108001647

[25] D.-J. Min, C. Shin, R. G. Pratt, and H. S. Yoo, “Weighted-Averaging Finite-Element

Method for 2D Elastic Wave Equations in the Frequency Domain,” Bulletin of the

Seismological Society of America, vol. 93, no. 2, pp. 904–921, 04 2003. [Online].

Available: https://doi.org/10.1785/0120020066

[26] H. Zhou, Y. Liu, and J. Wang, “Acoustic finite-difference modeling beyond conven-

tional courant-friedrichs-lewy stability limit: Approach based on variable-length tem-

poral and spatial operators,” Earthquake Science, vol. 34, no. 2, pp. 123–136, 2021.

59

https://www.sciencedirect.com/science/article/pii/B9780080444888500205
https://www.sciencedirect.com/science/article/pii/B9780080444888500205
https://www.sciencedirect.com/science/article/pii/S0039625777800027
https://www.sciencedirect.com/science/article/pii/S0039625777800027
https://www.sciencedirect.com/science/article/pii/S0031920108001647
https://www.sciencedirect.com/science/article/pii/S0031920108001647
https://doi.org/10.1785/0120020066

60

Appendices

61

.1 Appendix 1.

In this section, we are showing the calculations to obtain the results for the scalar products

in L2, which are shown in Table 2.1.

Let’s consider the quadrilateral in Figure 1

Figure 1: Reference Quadrilateral Q to express the basis functions P1, P2, P3, and P4 for
the reference coordinate system.

The basis functions can be expressed as:

P1(x, z) = (x − xi+1)(z − zj+1)
(xi − xi+1)(zj − zj+1)

= (x − xi+1)(z − zj+1)
∆x∆z

P2(x, z) = (x − xi)(z − zj+1)
(xi+1 − xi)(zj − zj+1)

= (x − xi)(zj+1 − z)
∆x∆z

P3(x, z) = (x − xi)(z − zj)
(xi+1 − xi)(zj+1 − zj)

= (x − xi)(z − zj)
∆x∆z

P4(x, z) = (x − xi+1)(z − zj)
(xi − xi+1)(zj+1 − zj)

= (xi+1 − x)(z − zj)
∆x∆z

(1)

Let’s calculate the partial derivatives of the basis functions.

Partial derivative respect to x:

63

∂P1(x, z)
∂x

= z − zj+1

∆x∆z
∂P2(x, z)

∂x
= zj+1 − z

∆x∆z
∂P3(x, z)

∂x
= z − zj

∆x∆z
∂P4(x, z)

∂x
= zj − z

∆x∆z

(2)

Partial derivative respect to z:

∂P1(x, z)
∂z

= x − xi+1

∆x∆z
∂P2(x, z)

∂z
= xi − x

∆x∆z
∂P3(x, z)

∂z
= x − xi

∆x∆z
∂P4(x, z)

∂z
= xi+1 − x

∆x∆z

(3)

Since the function is explicitly expressed, let’s calculate each scalar product shown in

Table 2.1. The procedure is the same for all combinations, for some integrals it is going to

be used antiderivatives, and for others integration by parts. This is going to be explained

clearly in 1 and 2, respectively; therefore, the rest is to apply the same.

1.
∫

Q
P1P1dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (x − xi+1)2(z − zj+1)2dxdz

Using the antiderivatives of each integral, we obtain:

=
[

1
∆x2∆z2

1
3

1
3(x − xi+1)3(z − zj+1)3

]xi+1,zj+1

xi,zj

= ∆x3∆z3

9∆x2∆z2 = ∆x∆z

9

2.
∫

Q
P1P2dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (x − xi+1)(z − zj+1)(x − xi)(zj+1 − z)dxdz

= 1
∆x2∆z2

∫ xi+1

xi

(x − xi+1)(x − xi)dx
∫ zj+1

zj

(z − zj+1)(zj+1 − z)dz

Using integration by parts
∫

uv′ = uv −
∫

vu′ for the x variable and antiderivates for

z variable, we obtain that:

64

= 1
∆x2∆z2

[
(x − xi+1)

1
2(x − xi)2

∣∣∣∣xi+1

xi

− 1
2

∫ xi+1

xi

(x − xi)2dx

] ∫ zj+1

zj

− (z − zj+1)2dz

= 1
∆x2∆z2

1
2

[
1
3(x − xi)3

]xi+1

xi

 1
3(z − zj+1)3

∣∣∣∣zj+1

zj

= ∆x3∆z3

18∆x2∆z2 = ∆x∆z

18

3.
∫

Q
P1P3dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (x − xi+1)(z − zj+1)(x − xi)(z − zj)dxdz

Then, using integration by parts for both variables, we obtain:

= 1
∆x2∆z2

[
−1

2
1
3(x − xi)3

]xi+1

xi

[
−1

2
1
3(z − zj)3

]zj+1

zj

= ∆x∆z

36

4.
∫

Q
P1P4dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (x − xi+1)(z − zj+1)(xi+1 − x)(z − zj)dxdz

Using antiderivatives for x and integration by parts for Z:

= 1
∆x2∆z2

(
−1

3

)
(x − xi+1)3

∣∣∣∣xi+1

xi

(
−1

2

)
1
3(z − zj)3

∣∣∣∣zj+1

zj

= ∆x3∆z3

18∆x2∆z2 = ∆x∆z

18

5.
∫

Q
P2P2dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (x − xi)2(zj+1 − z)2dxdz

Using the antiderivatives:

= 1
∆x2∆z2

[
1
3(x − xi)3

]xi+1

xi

[
1
3(z − zj+1)3

]zj+1

zj

= ∆x3∆z3

9∆x2∆z2 = ∆x∆z

9

6.
∫

Q
P2P3dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (x − xi)(zj+1 − z)(x − xi)(z − zj)dxdz

Using antiderivative for x and integration by parts for z:

= 1
∆x2∆z2

(
−1

3

)
(x − xi)3

∣∣∣∣xi+1

xi

(
−1

2

)(
1
3

)
(z − zj)3

∣∣∣∣zj+1

zj

= ∆x3∆z3

18∆x2∆z2 = ∆x∆z

18

7.
∫

Q
P2P4dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (x − xi)(zj+1 − z)(xi+1 − x)(z − zj)dxdz

65

Using integration for both variables:

= 1
∆x2∆z2

(
1
3

)(
1
3

)(
1
4

)
(x − xi+1)3

∣∣∣∣xi+1

xi

(z − zj+1)3
∣∣∣∣zj+1

zj

= ∆x∆z

36

8.
∫

Q
P3P3dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (x − xi)2(z − zj)2dxdz

Using the antiderivatives for both variables:

= 1
∆x2∆z2

1
9(x − xi)3

∣∣∣∣xi+1

xi

(z − zj)3
∣∣∣∣zj+1

zj

= ∆x∆z

9

9.
∫

Q
P3P4dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (x − xi)(z − zj)(xi+1 − x)(z − zj)dxdz

Using the integration by parts for x, and antiderivative for z:

= 1
∆x2∆z2

1
2

1
3

1
3(x − xi+1)3

∣∣∣∣xi+1

xi

(z − zj)3
∣∣∣∣zj+1

zj

= ∆x∆z

18

10.
∫

Q
P3P4dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (xi+1 − x)2(z − zj)2dxdz

Using antiderivatives for both variables:

1
∆x2∆z2

1
9(x − xi+1)3

∣∣∣∣xi+1

xi

(z − zj)3
∣∣∣∣zj+1

zj

= ∆x∆z

9

11.
∫

Q

∂P1

∂x

∂P1

∂x
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (z − zj+1)2dxdz

Using the antiderivatives for both variables, we get:

= 1
∆x2∆z2

1
3(z − zj+1)3

∣∣∣∣zj+1

zj

x
∣∣∣∣xi+1

xi

= ∆x∆z3

3∆x2∆z2 = ∆z

3∆x

12.
∫

Q

∂P1

∂x

∂P1

∂z
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (z − zj+1)(x − xi+1)dxdz

66

Using the antiderivatives:

= 1
4∆x2∆z2 (z − zj+1)2

∣∣∣∣zj+1

zj

(x − xi+1)2
∣∣∣∣xi+1

xi

= 1
4

13.
∫

Q

∂P1

∂x

∂P2

∂x
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (z − zj+1)(zj+1 − z)dxdz

Using the antiderivatives for both variables, we get:

= − 1
∆x2∆z2

1
3(z − zj+1)3

∣∣∣∣zj+1

zj

x

∣∣∣∣xi+1

xi

= − ∆z

3∆x

14.
∫

Q

∂P1

∂x

∂P2

∂z
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (z − zj+1)(xi − x)dxdz

Using the antiderivatives:

= − 1
4∆x2∆z2 (z − zj+1)2

∣∣∣∣zj+1

zj

(x − xi)2
∣∣∣∣xi+1

xi

= 1
4

15.
∫

Q

∂P1

∂x

∂P3

∂x
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (z − zj+1)(z − zj)dxdz

Applying the integration by parts:

= − 1
∆x2∆z2

1
2

1
3(z − zj)3

∣∣∣∣zj+1

zj

x
∣∣∣∣xi+1

xi

= − ∆z

6∆x

16.
∫

Q

∂P1

∂x

∂P3

∂z
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (z − zj+1)(x − xi)dxdz

Using the antiderivative:

= 1
4∆x2∆z2 (z − zj+1)2

∣∣∣∣zj+1

zj

(x − xi)2
∣∣∣∣xi+1

xi

= −1
4

17.
∫

Q

∂P1

∂x

∂P4

∂x
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (z − zj+1)(zj − z)dxdz

67

Applying the integration by parts:

= 1
∆x2∆z2

1
2

1
3(z − zj)3

∣∣∣∣zj+1

zj

x

∣∣∣∣xi+1

xi

= ∆z

6∆x

18.
∫

Q

∂P1

∂x

∂P4

∂z
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (z − zj+1)(xi+1 − x)dxdz

Using the antiderivatives:

= − 1
4∆x2∆z2 (z − zj+1)2

∣∣∣∣zj+1

zj

(x − xi+1)2
∣∣∣∣xi+1

xi

= −1
4

19.
∫

Q

∂P1

∂z

∂P1

∂z
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (x − xi+1)2dxdz

Using the antiderivatives:

= 1
∆x2∆z2

1
3(x − xi+1)3

∣∣∣∣xi+1

xi

z
∣∣∣∣zj+1

zj

= ∆x

3∆z

20.
∫

Q

∂P1

∂z

∂P2

∂x
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (x − xi+1)(zj+1 − z)dxdz

Using the antiderivatives:

= − 1
4∆x2∆z2 (z − zj+1)2

∣∣∣∣zj+1

zj

(x − xi+1)2
∣∣∣∣xi+1

xi

= −1
4

21.
∫

Q

∂P1

∂z

∂P2

∂z
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (x − xi+1)(xi − x)dxdz

Applying the integration by parts:

= 1
∆x2∆z2

1
6(x − xi)3

∣∣∣∣xi+1

xi

z

∣∣∣∣zj+1

zj

= ∆x

6∆z

22.
∫

Q

∂P1

∂z

∂P3

∂x
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (x − xi+1)(z − zj)dxdz

68

Using the antiderivatives:

= 1
4∆x2∆z2 (z − zj)2

∣∣∣∣zj+1

zj

(x − xi+1)2
∣∣∣∣xi+1

xi

= −1
4

23.
∫

Q

∂P1

∂z

∂P3

∂z
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (x − xi+1)(z − zj)dxdz

Applying the antiderivatives:

= − 1
∆x2∆z2

1
6(x − xi)3

∣∣∣∣xi+1

xi

z

∣∣∣∣zj+1

zj

= − ∆x

6∆z

24.
∫

Q

∂P1

∂z

∂P4

∂x
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (x − xi+1)(zj − z)dxdz

Using the antiderivatives:

= − 1
4∆x2∆z2 (z − zj)2

∣∣∣∣zj+1

zj

(x − xi+1)2
∣∣∣∣xi+1

xi

= 1
4

25.
∫

Q

∂P1

∂z

∂P4

∂z
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (x − xi+1)(xi+1 − x)dxdz

Using the antiderivatives:

= − 1
∆x2∆z2

1
3(x − xi+1)3

∣∣∣∣xi+1

xi

z
∣∣∣∣zj+1

zj

= − ∆x

3∆z

26.
∫

Q

∂P2

∂x

∂P2

∂x
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (zj+1 − z)2dxdz

Using the antiderivatives:

= 1
∆x2∆z2

1
3x
∣∣∣∣xi+1

xi

(z − zj+1)3
∣∣∣∣zj+1

zj

= ∆z

3∆x

27.
∫

Q

∂P2

∂x

∂P2

∂z
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (zj+1 − z)(xi − x)dxdz

69

Using the antiderivatives:

= 1
4∆x2∆z2 (z − zj+1)2

∣∣∣∣zj+1

zj

(x − xi)2
∣∣∣∣xi+1

xi

= −1
4

28.
∫

Q

∂P2

∂x

∂P3

∂x
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (zj+1 − z)(z − zj)dxdz

Applying integration by parts:

= 1
∆x2∆z2

1
6x
∣∣∣∣xi+1

xi

(z − zj)3
∣∣∣∣zj+1

zj

= ∆z

6∆x

29.
∫

Q

∂P2

∂x

∂P3

∂z
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (zj+1 − z)(x − xi)dxdz

Using the antiderivatives:

= − 1
4∆x2∆z2 (z − zj+1)2

∣∣∣∣zj+1

zj

(x − xi)2
∣∣∣∣xi+1

xi

= 1
4

30.
∫

Q

∂P2

∂x

∂P4

∂x
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (zj+1 − z)(zj − z)dxdz

Applying integration by parts:

= − 1
∆x2∆z2

1
6x
∣∣∣∣xi+1

xi

(z − zj)3
∣∣∣∣zj+1

zj

= − ∆z

6∆x

31.
∫

Q

∂P2

∂x

∂P4

∂z
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (zj+1 − z)(xi+1 − x)dxdz

Using the antiderivatives:

= 1
4∆x2∆z2 (z − zj+1)2

∣∣∣∣zj+1

zj

(x − xi+1)2
∣∣∣∣xi+1

xi

= 1
4

32.
∫

Q

∂P2

∂z

∂P2

∂z
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (xi − x)dxdz

70

Using the antiderivatives:

= 1
∆x2∆z2

1
3(x − xi)3

∣∣∣∣xi+1

xi

z

∣∣∣∣zj+1

zj

= − ∆x

3∆z

33.
∫

Q

∂P2

∂z

∂P3

∂x
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (xi − x)(z − zj)dxdz

Using the antiderivatives:

= − 1
4∆x2∆z2 (z − zj)2

∣∣∣∣zj+1

zj

(x − xi)2
∣∣∣∣xi+1

xi

= −1
4

34.
∫

Q

∂P2

∂z

∂P3

∂z
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (xi − x)(x − xi)dxdz

Using the antiderivatives:

= − 1
∆x2∆z2

1
3(x − xi)3

∣∣∣∣xi+1

xi

z
∣∣∣∣zj+1

zj

= − ∆x

3∆z

35.
∫

Q

∂P2

∂z

∂P4

∂x
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (xi − x)(zj − z)dxdz

Using the antiderivatives:

= 1
4∆x2∆z2 (z − zj)2

∣∣∣∣zj+1

zj

(x − xi)2
∣∣∣∣xi+1

xi

= 1
4

36.
∫

Q

∂P2

∂z

∂P4

∂z
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (xi − x)(xi+1 − x)dxdz

Applying integration by parts:

= − 1
∆x2∆z2

1
6(x − xi)3

∣∣∣∣xi+1

xi

z

∣∣∣∣zj+1

zj

= − ∆x

6∆z

37.
∫

Q

∂P3

∂x

∂P3

∂x
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (z − zj)2dxdz

71

Using the antiderivatives:

= 1
∆x2∆z2

1
3x

∣∣∣∣xi+1

xi

(z − zj)3
∣∣∣∣zj+1

zj

= ∆z

3∆x

38.
∫

Q

∂P3

∂x

∂P3

∂z
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (z − zj)(x − xi)dxdz

Using the antiderivatives:

= 1
4∆x2∆z2 (z − zj)2

∣∣∣∣zj+1

zj

(x − xi)2
∣∣∣∣xi+1

xi

= 1
4

39.
∫

Q

∂P3

∂x

∂P4

∂x
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (z − zj)(zj − z)dxdz

Using the antiderivatives:

= − 1
∆x2∆z2

1
3x
∣∣∣∣xi+1

xi

(z − zj)3
∣∣∣∣zj+1

zj

= − ∆z

3∆x

40.
∫

Q

∂P3

∂x

∂P4

∂z
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (z − zj)(xi+1 − x)dxdz

Using the antiderivatives:

= − 1
4∆x2∆z2 (z − zj)2

∣∣∣∣zj+1

zj

(x − xi+1)2
∣∣∣∣xi+1

xi

= 1
4

41.
∫

Q

∂P3

∂z

∂P3

∂z
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (x − xi)2dxdz

Using the antiderivatives:

= 1
∆x2∆z2

1
3(x − xi)3

∣∣∣∣xi+1

xi

z

∣∣∣∣zj+1

zj

= ∆x

3∆z

42.
∫

Q

∂P3

∂z

∂P4

∂x
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (x − xi)(zj − z)dxdz

72

Using the antiderivatives:

= − 1
4∆x2∆z2 (z − zj)2

∣∣∣∣zj+1

zj

(x − xi)2
∣∣∣∣xi+1

xi

= −1
4

43.
∫

Q

∂P3

∂z

∂P4

∂z
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (x − xi)(xi+1 − x)dxdz

Applying the integration by parts:

= 1
∆x2∆z2

1
6(x − xi)3

∣∣∣∣xi+1

xi

z

∣∣∣∣zj+1

zj

= ∆x

6∆z

44.
∫

Q

∂P4

∂x

∂P4

∂x
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (zj − z)2dxdz

Applying the antiderivative:

= 1
∆x2∆z2

1
3x
∣∣∣∣xi+1

xi

(z − zj)3
∣∣∣∣zj+1

zj

= ∆z

3∆x

45.
∫

Q

∂P4

∂x

∂P4

∂z
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (zj − z)(xi+1 − x)dxdz

Applying the antiderivative:

= 1
4∆x2∆z2 (z − zj)2

∣∣∣∣zj+1

zj

(x − xi+1)2
∣∣∣∣xi+1

xi

= −1
4

46.
∫

Q

∂P4

∂z

∂P4

∂z
dQ =

∫ xi+1

xi

∫ zj+1

zj

1
∆x2∆z2 (xi+1 − x)2dxdz

Applying the antiderivative:

= 1
∆x2∆z2

1
3(x − xi+1)

∣∣∣∣xi+1

xi

z

∣∣∣∣zj+1

zj

= ∆x

3∆z

Since the products are commutative, the other products are equal to the already cal-

culated ones.

73

.2 Appendix 2.

The code to create the matrices and implement the eq. 3.22, is presented:

Import libraries

import numpy as np

import matplotlib.pyplot as plt

from scipy import signal

from tqdm import tqdm

get ipython().run line magic(’matplotlib’, ’notebook’)

Show Plot in The Notebook

import matplotlib

matplotlib.use(”nbagg”)

Sub-plot Configuration

from matplotlib import gridspec

from mpl toolkits.axes grid1 import make axes locatable

Ignore Warning Messages

import warnings

warnings.filterwarnings(”ignore”)

Set the grid

Grid points

nx # number of grid points in the x direction

nz # number of grid points in the x direction

I = nx-2 # number of grid points in x-direction -2 (since the first and last values are 0)

J = nz-2 # number of grid points in z-direction -2

nt # maximum number of time steps

Increments

dt = 0.00060 # Time increment

xmax # Maximum length

74

hx = xmax/(nx-2) # calculate space increment

x = np.arange(0, nx)*hx # initialize space coordinates

x = np.transpose(x)

dx = np.diff(x)[0] # Element sizes [m]

zmax

hz = xmax/(nz-2) # calculate space increment

z = np.arange(0, nz)*hz # initialize space coordinates

z = np.transpose(z)

dz = np.diff(x)[0]

Position configuration

xi = 10 # coordinates of the element where the src is initialized

xz = 25 # i.e position i,j of the element

idisp = 10 # display frequency

isx = (xi-1)*J+xz-1 # source location in grid in the x-direction (k value)

isz = (xi-1)*J+xz-1 # source location in grid in the z-direction (k value)

Mass and Stiffness matrices and displacement vectors

Setting lame parameters

rho1 # Density kg/m3

vs1 # s-velocity m/s

vp1 # s-velocity m/s

mu1 = rho1 * (vs1 * vs1) # mu

lam1 = (vp1*vp1)*(rho1)-2*mu1 # lambda

Size of the matrices

KI = I*J

KJ = I*J

Create the matrices and fill them with 0

M = np.zeros((KI,KJ), dtype=float) # Mass matrix

Kxx = np.zeros((KI,KJ), dtype=float) # stiffness matrix with the x,x partial derivatives

Kzz = np.zeros((KI,KJ), dtype=float) # stiffness matrix with the z,z partial derivatives

75

Kxz = np.zeros((KI,KJ), dtype=float) # stiffness matrix with the x,z partial derivatives

Fill the matrices

for k in range(KI):

Filling the values for diagonal

M[k,k] = 4

Kxx[k,k] = 4

Kzz[k,k] = 4

Kxz[k,k] = 0

for i in range(J-1):

if k == J*i: # fill the iterations of the left column of the grid

Mass Matrix

M[k,k+1] = 1 #Right

M[k,k+J] = 1 #Down

M[k,k+J+1] = 1/4 #Dri

Rxx Matrix

Kxx[k,k+1] = -2 #Right

Kxx[k,k+J] = 1 #Down

Kxx[k,k+J+1] = -1/2 #Dri

Rzz Matrix

Kzz[k,k+1] = 1 #Right

Kzz[k,k+J] = -2 #Down

Kzz[k,k+J+1] = -1/2 #Dri

Rxz Matrix

Kxz[k,k+1] = 0 #Right

Kxz[k,k+J] = 0 #Down

Kxz[k,k+J+1] = 1 #Dri

if k == J*(i+1)-1: # fill the iterations of the right column of the grid

Mass Matrix

M[k,k+J] = 1 #Down

M[k,k+J-1] = 1/4 #Dle

Rxx Matrix

76

Kxx[k,k+J] = 1 #Down

Kxx[k,k+J-1] = -1/2 #Dle

Rzz Matrix

Kzz[k,k+J] = -2 #Down

Kzz[k,k+J-1] = -1/2 #Dle

Rxz Matrix

Kxz[k,k+J] = 0 #Down

Kxz[k,k+J-1] = -1 #Dle

if k == (I-1)*(J)+i: # fill the iterations of the last row of the grid

Mass Matrix

M[k,k+1] = 1 #Right

Rxx Matrix

Kxx[k,k+1] = -2 #Right

Rzz Matrix

Kzz[k,k+1] = 1 #Right

Rxz Matrix

Kxz[k,k+1] = 0 #Right

for j in range(J-2): # fill the iterations of the other elements

if k == J*i + (j+1):

Mass matrix

M[k,k+1] = 1 #Right

M[k,k+J] = 1 #Down

M[k,k+J+1] = 1/4 #Dri

M[k,k+J-1] = 1/4 #Dle

Rxx matrix

Kxx[k,k+1] = -2 #Right

Kxx[k,k+J] = 1 #Down

Kxx[k,k+J+1] = -1/2 #Dri

Kxx[k,k+J-1] = -1/2 #Dle

Rzz matrix

Kzz[k,k+1] = 1 #Right

77

Kzz[k,k+J] = -2 #Down

Kzz[k,k+J+1] = -1/2 #Dri

Kzz[k,k+J-1] = -1/2 #Dle

Rxz matrix

Kxz[k,k+1] = 0 #Right

Kxz[k,k+J] = 0 #Down

Kxz[k,k+J+1] = 1 #Dri

Kxz[k,k+J-1] = -1 #Dle

The previous filling was for the upper diagonal of the matrices, this step is to fill the

bottom diagonal since the matrices are symmetric; then, is just necessary to fill the bottom

with the upper values.

for i in range(KI):

for j in range(KJ):

M[j,i] = M[i,j]

Kxx[j,i] = Kxx[i,j]

Kzz[j,i] = Kzz[i,j]

Kxz[j,i] = Kxz[i,j]

Multiply the matrices with the constants

M = rho1*((dx*dz)/9)*M

Kxx = (dz/(3*dx))*Kxx

Kzz = (dx/(3*dz))*Kzz

Kxz = (1/4)*Kxz

Let’s assembly the following system

#(M 0)(u”) + ((lam+2mu)*Kxx + mu*Kzz = K1u lam*Kzz + mu*Kxz = K1w)(u) = src

#(0 M)(w”) + (lam*Kxz + mu*Kxx = K2u (lam+2mu)*Kzz + mu*Kxx = K2w)(w) =

src

Let’s create the matrices K1u, K1w, K2u, and K2w

K1u = (lam1+2*mu1)*Kxx + mu1*Kzz

K1w = lam1*Kzz + mu1*Kxz

K2u = lam1*Kxz + mu1*Kxx

K2w = (lam1+2*mu1)*Kzz + mu1*Kxx

78

For visualization and simplicity

#(M 0)(u”) + (K1u K1w)(u) = src

#(0 M)(w”) + (K2u K2w)(w) = src

Minv = np.linalg.inv(M)

Create the global mass and stiffness matrices

Mg = np.zeros((KI*2,KJ*2))

Mginv = np.zeros((KI*2,KJ*2))

Kg = np.zeros((KI*2,KJ*2))

Fill the global mass and stiffness matrices

for i in range(len(Mg)):

for j in range(len(Mg)):

if (i < (len(Mg)/2)) and (j < (len(Mg)/2)):

Mg[i,j] = M[i,j]

Mginv[i,j] = Minv[i,j]

Kg[i,j] = K1u[i,j]

if (i < (len(Mg)/2)) and (j >= (len(Mg)/2)):

Kg[i,j] = K1w[i,j-len(M)]

if (i >= (len(Mg)/2)) and (j < (len(Mg)/2)):

Kg[i,j] = K2u[i-len(M),j]

if (i >= (len(Mg)/2)) and (j >= (len(Mg)/2)):

Mg[i,j] = M[i-len(M),j-len(M)]

Mginv[i,j] = Minv[i-len(M),j-len(M)]

Kg[i,j] = K2w[i-len(M),j-len(M)]

Create the displacement vectors U and W

U = np.zeros((nx,nz), dtype=float)

W = np.zeros((nx,nz), dtype=float)

Create the global displacement vector theta = (u,w)

theta = np.zeros(I*J*2)

thetaold = np.zeros(I*J*2)

thetanew = np.zeros(I*J*2)

79

Source function

Plot Source Time Function

Ts=0.5

time = np.arange(0,(Ts-dt),dt) # Time vector

Source signal - Ricker-wavelet

f0= 25 # Center frequency Ricker-wavelet

q0= 1 # Maximum amplitude Ricker-Wavelet

t0= 1.5/f0

tau=np.pi*f0*(time-t0);

src=q0*(1-2*tau**2)*np.exp(-tau**2);

fx = np.zeros(I*J); fx[isx:isx+1] = fx[isx:isx+1] + 1.

fz = np.zeros(I*J); fz[isz:isz+1] = fz[isz:isz+1] + 1.

Create the global position vector for the source

F = np.zeros(I*J*2)

for i in range(len(F)):

if i < len(F)/2:

F[i] = fx[i]

if i >= len(F)/2:

F[i] = fz[i-int(len(F)/2)]

Plot Position Configuration

plt.ion()

fig1 = plt.figure(figsize=(12, 6))

gs1 = gridspec.GridSpec(1, 2, width ratios=[1, 1], hspace=0.3, wspace=0.3)

Plot Source Time Function

ax1 = plt.subplot(gs1[0])

ax1.plot(time, src) # plot source time function

ax1.set title(’Source Time Function’)

ax1.set xlim(time[0], time[-1])

ax1.set xlabel(’Time (s)’)

ax1.set ylabel(’Amplitude’)

80

Plot Source Spectrum

ax2 = plt.subplot(gs1[1])

spec = np.fft.fft(src) # source time function in the frequency domain

freq = np.fft.fftfreq(spec.size, d = dt / 4.) # time domain to frequency domain

ax2.plot(np.abs(freq), np.abs(spec)) # plot frequency and amplitude

ax2.set xlim(0, 250) # only display frequency from 0 to 250 Hz

ax2.set title(’Source Spectrum’)

ax2.set xlabel(’Frequency (Hz)’)

ax2.yaxis.tick right()

ax2.yaxis.set label position(”right”)

plt.show()

Plot the simulation

plt.ion()

fig1 = plt.figure(figsize=(9,9))

f1 = fig1.add subplot(2, 2, 1)

f2 = fig1.add subplot(2, 2, 2)

f1.set title(’X’)

f2.set title(’Z’)

xp = f1.imshow(U, interpolation=’nearest’, animated=True, vmin=-2.5e-11, vmax=2.5e-

11, cmap=plt.cm.RdBu,aspect = ’equal’)

zp = f2.imshow(W, interpolation=’nearest’, animated=True, vmin=-2.5e-11, vmax=2.5e-

11, cmap=plt.cm.RdBu,aspect = ’equal’)

plt.show()

Data actualization

Calculating the displacement vector at each time step

for it in range(nt):

thetanew = (dt**2) * Mginv @ (F*src[it] - Kg @ theta) + 2*theta - thetaold

81

thetaold, theta = theta, thetanew

for i in range(1, nz - 1):

for j in range(1, nx - 1):

Filling the displacement elements

U[i,j] = theta[(i-1)*J + j - 1]

W[i,j] = theta[(i-1)*J + j - 1 + int(len(F)/2)]

Plot every time step (nt)

if (it % idisp) == 0:

f1.set title(”Time Step (nt) = %i” % (it))

xp.set data(U)

zp.set data(W)

plt.gcf().canvas.draw()

.3 Appendix 3.

Code to build matrices for 2 layered medium for 2D

Create and fill the Lamé parameter vector with values for each position

rho(nx*nz)

lam(nx*nz)

mu(nx*nz)

lams2mu(nx*nz)

Create the matrices and fill them with 0

M = np.zeros((KI,KJ), dtype=float) # Mass matrix

Kxx1 = np.zeros((KI,KJ), dtype=float) # stiffness matrix with the x,x partial derivatives

Kxx2 = np.zeros((KI,KJ), dtype=float) # stiffness matrix with the x,x partial derivatives

Kzz1 = np.zeros((KI,KJ), dtype=float) # stiffness matrix with the z,z partial derivatives

Kzz2 = np.zeros((KI,KJ), dtype=float) # stiffness matrix with the z,z partial derivatives

Kzz3 = np.zeros((KI,KJ), dtype=float) # stiffness matrix with the z,z partial derivatives

Kxz1 = np.zeros((KI,KJ), dtype=float) # stiffness matrix with the x,z partial derivatives

82

Kxz2 = np.zeros((KI,KJ), dtype=float) # stiffness matrix with the x,z partial derivatives

for k in range(KI):

for i in range(J-1):

Filling the values for diagonal

M[k,k] = 1/9 * dx*dz * (rho[k] + rho[k+i] + rho[k+J+i] + rho[k+J+i+1])

Kxx1[k,k] = 1/3 * dz/dx * (lams2mu[k] + lams2mu[k+i] + lams2mu[k+J+i] +

lams2mu[k+J+i+1])

Kxx2[k,k] = 1/3 * dz/dx * (mu[k] + mu[k+i] + mu[k+J+i] + mu[k+J+i+1])

Kzz1[k,k] = 1/3 * dx/dz * (mu[k] + mu[k+i] + mu[k+J+i] + mu[k+J+i+1])

Kzz2[k,k] = 1/3 * dx/dz * (lam[k] + lam[k+i] + lam[k+J+i] + lam[k+J+i+1])

Kzz3[k,k] = 1/3 * dx/dz * (lams2mu[k] + lams2mu[k+i] + lams2mu[k+J+i] +

lams2mu[k+J+i+1])

Kxz1[k,k] = - 1/4 * mu[k] + 1/4 * mu[k+i] + 1/4 * mu[k+J+i] - 1/4 * mu[k+J+i+1]

Kxz2[k,k] = - 1/4 * lam[k] + 1/4 * lam[k+i] + 1/4 * lam[k+J+i] - 1/4 * lam[k+J+i+1]

if k == J*i: # fill the iterations of the left column of the grid

Mass Matrix

M[k,k+1] = 1/18 * dx*dz * (rho[k+i] + rho[k+J+i+1]) #Right

M[k,k+J] = 1/18 * dx*dz * (rho[k+J+i] + rho[k+J+i+1]) #Down

M[k,k+J+1] = 1/36 * dx*dz * rho[k+J+i+1] #Dri

Rxx Matrix

Kxx1[k,k+1] = -1/3 * dz/dx * (lams2mu[k+i] + lams2mu[k+J+i+1]) #Right

Kxx1[k,k+J] = 1/6 * dz/dx * (lams2mu[k+J+i] + lams2mu[k+J+i+1]) #Down

Kxx1[k,k+J+1] = - 1/3 * dz/dx * lams2mu[k+J+i+1] #Dri

Kxx2[k,k+1] = -1/3 * dz/dx * (mu[k+i] + mu[k+J+i+1]) #Right

Kxx2[k,k+J] = 1/6 * dz/dx * (mu[k+J+i] + mu[k+J+i+1]) #Down

Kxx2[k,k+J+1] = - 1/3 * dz/dx * mu[k+J+i+1] #Dri

Rzz Matrix

Kzz1[k,k+1] = 1/6 * dx/dz * (mu[k+i] + mu[k+J+i+1]) #Right

Kzz1[k,k+J] = - 1/3 * dx/dz * (mu[k+J+i] + mu[k+J+i+1]) #Down

Kzz1[k,k+J+1] = -1/6 * dx/dz * mu[k+J+i+1] #Dri

83

Kzz2[k,k+1] = 1/6 * dx/dz * (lam[k+i] + lam[k+J+i+1]) #Right

Kzz2[k,k+J] = - 1/3 * dx/dz * (lam[k+J+i] + lam[k+J+i+1]) #Down

Kzz2[k,k+J+1] = -1/6 * dx/dz * lam[k+J+i+1] #Dri

Kzz3[k,k+1] = 1/6 * dx/dz * (lamsmu[k+i] + lamsmu[k+J+i+1]) #Right

Kzz3[k,k+J] = - 1/3 * dx/dz * (lamsmu[k+J+i] + lamsmu[k+J+i+1]) #Down

Kzz3[k,k+J+1] = -1/6 * dx/dz * lamsmu[k+J+i+1] #Dri

Rxz Matrix

Kxz1[k,k+1] = 1/4 * mu[k+i] - 1/4 * mu[k+J+i+1] #Right

Kxz1[k,k+J] = - 1/4 * mu[k+J+i] + 1/4 * mu[k+J+i+1] #Down

Kxz1[k,k+J+1] = 1/4 * mu[k+J+i+1] #Dri

Kxz2[k,k+1] = 1/4 * lam[k+i] - 1/4 * lam[k+J+i+1] #Right

Kxz2[k,k+J] = - 1/4 * lam[k+J+i] + 1/4 * lam[k+J+i+1] #Down

Kxz2[k,k+J+1] = 1/4 * lam[k+J+i+1] #Dri

if k == J*(i+1)-1: # fill the iterations of the right column of the grid

Mass Matrix

M[k,k+J] = 1/18 * dx*dz * (rho[k+J+i] + rho[k+J+i+1]) #Down

M[k,k+J-1] = 1/36 * dx*dz * rho[k+J+i] #Dle

Rxx Matrix

Kxx1[k,k+J] = 1/6 * dz/dx * (lams2mu[k+J+i] + lams2mu[k+J+i+1]) #Down

Kxx1[k,k+J-1] = - 1/6 * dz/dx * lams2mu[k+J+i] #Dle

Kxx2[k,k+J] = 1/6 * dz/dx * (mu[k+J+i] + mu[k+J+i+1]) #Down

Kxx2[k,k+J-1] = - 1/6 * dz/dx * mu[k+J+i] #Dle

Rzz Matrix

Kzz1[k,k+J] = - 1/3 * dx/dz * (mu[k+J+i] + mu[k+J+i+1]) #Down

Kzz1[k,k+J-1] = - 1/6 * dx/dz * mu[k+J+i] #Dle

Kzz2[k,k+J] = - 1/3 * dx/dz * (lam[k+J+i] + lam[k+J+i+1]) #Down

Kzz2[k,k+J-1] = - 1/6 * dx/dz * lam[k+J+i] #Dle

Kzz3[k,k+J] = - 1/3 * dx/dz * (lamsmu[k+J+i] + lamsmu[k+J+i+1]) #Down

Kzz3[k,k+J-1] = - 1/6 * dx/dz * lamsmu[k+J+i] #Dle

Rxz Matrix

Kxz1[k,k+J] = - 1/4 * mu[k+J+i] + 1/4 * mu[k+J+i+1] #Down

84

Kxz1[k,k+J-1] = - 1/4 * mu[k+J+i] #Dle

Kxz2[k,k+J] = - 1/4 * lam[k+J+i] + 1/4 * lam[k+J+i+1] #Down

Kxz2[k,k+J-1] = - 1/4 * lam[k+J+i] #Dle

if k == (I-1)*(J)+i: # fill the iterations of the last row of the grid

Mass Matrix

M[k,k+1] = 1/18 * dx*dz * (rho[k+i] + rho[k+J+i+1]) #Right

Rxx Matrix

Kxx1[k,k+1] = -1/3 * dz/dx * (lams2mu[k+i] + lams2mu[k+J+i+1]) #Right

Kxx2[k,k+1] = -1/3 * dz/dx * (mu[k+i] + mu[k+J+i+1]) #Right

Rzz Matrix

Kzz1[k,k+1] = 1/6 * dx/dz * (mu[k+i] + mu[k+J+i+1]) #Right

Kzz2[k,k+1] = 1/6 * dx/dz * (lam[k+i] + lam[k+J+i+1]) #Right

Kzz3[k,k+1] = 1/6 * dx/dz * (lamsmu[k+i] + lamsmu[k+J+i+1]) #Right

Rxz Matrix

Kxz1[k,k+1] = 1/4 * mu[k+i] - 1/4 * mu[k+J+i+1] #Right

Kxz2[k,k+1] = 1/4 * lam[k+i] - 1/4 * lam[k+J+i+1] #Right

for j in range(J-2): # fill the iterations of the other elements

if k == J*i + (j+1):

Mass matrix

M[k,k+1] = 1/18 * dx*dz * (rho[k+i] + rho[k+J+i+1]) #Right

M[k,k+J] = 1/18 * dx*dz * (rho[k+J+i] + rho[k+J+i+1]) #Down

M[k,k+J+1] = 1/36 * dx*dz * rho[k+J+i+1] #Dri

M[k,k+J-1] = 1/36 * dx*dz * rho[k+J+i] #Dle

Rxx matrix

Kxx1[k,k+1] = -1/3 * dz/dx * (lams2mu[k+i] + lams2mu[k+J+i+1]) #Right

Kxx1[k,k+J] = 1/6 * dz/dx * (lams2mu[k+J+i] + lams2mu[k+J+i+1]) #Down

Kxx1[k,k+J+1] = - 1/3 * dz/dx * lams2mu[k+J+i+1] #Dri

Kxx1[k,k+J-1] = - 1/6 * dz/dx * lams2mu[k+J+i] #Dle

Kxx2[k,k+1] = -1/3 * dz/dx * (mu[k+i] + mu[k+J+i+1]) #Right

Kxx2[k,k+J] = 1/6 * dz/dx * (mu[k+J+i] + mu[k+J+i+1]) #Down

Kxx2[k,k+J+1] = - 1/3 * dz/dx * mu[k+J+i+1] #Dri

85

Kxx2[k,k+J-1] = - 1/6 * dz/dx * mu[k+J+i] #Dle

Rzz matrix

Kzz1[k,k+1] = 1/6 * dx/dz * (mu[k+i] + mu[k+J+i+1]) #Right

Kzz1[k,k+J] = - 1/3 * dx/dz * (mu[k+J+i] + mu[k+J+i+1]) #Down

Kzz1[k,k+J+1] = -1/6 * dx/dz * mu[k+J+i+1] #Dri

Kzz1[k,k+J-1] = - 1/6 * dx/dz * mu[k+J+i] #Dle

Kzz2[k,k+1] = 1/6 * dx/dz * (lam[k+i] + lam[k+J+i+1]) #Right

Kzz2[k,k+J] = - 1/3 * dx/dz * (lam[k+J+i] + lam[k+J+i+1]) #Down

Kzz2[k,k+J+1] = -1/6 * dx/dz * lam[k+J+i+1] #Dri

Kzz2[k,k+J-1] = - 1/6 * dx/dz * lam[k+J+i] #Dle

Kzz3[k,k+1] = 1/6 * dx/dz * (lamsmu[k+i] + lamsmu[k+J+i+1]) #Right

Kzz3[k,k+J] = - 1/3 * dx/dz * (lamsmu[k+J+i] + lamsmu[k+J+i+1]) #Down

Kzz3[k,k+J+1] = -1/6 * dx/dz * lamsmu[k+J+i+1] #Dri

Kzz3[k,k+J-1] = - 1/6 * dx/dz * lamsmu[k+J+i] #Dle

Rxz matrix

Kxz1[k,k+1] = 1/4 * mu[k+i] - 1/4 * mu[k+J+i+1] #Right

Kxz1[k,k+J] = - 1/4 * mu[k+J+i] + 1/4 * mu[k+J+i+1] #Down

Kxz1[k,k+J+1] = 1/4 * mu[k+J+i+1] #Dri

Kxz1[k,k+J-1] = - 1/4 * mu[k+J+i] #Dle

Kxz2[k,k+1] = 1/4 * lam[k+i] - 1/4 * lam[k+J+i+1] #Right

Kxz2[k,k+J] = - 1/4 *lam[k+J+i] + 1/4 * lam[k+J+i+1] #Down

Kxz2[k,k+J+1] = 1/4 * lam[k+J+i+1] #Dri

Kxz2[k,k+J-1] = - 1/4 * lam[k+J+i] #Dle

86

	=Acknowledgment
	=Resumen
	=Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Full Waveform Inversion
	Introduction to Numerical Methods
	Applications in Earth Science
	Problem statement
	Objectives
	General Objective
	Specific Objectives

	Theoretical Framework
	Seismic waves in a nutshell
	Types of seismic waves
	Snell's Law
	Derivation of the elastic wave equation

	Finite Element Method (FEM) in 1D
	Problem development
	Analytical Solution
	Finite Difference Method (FDM) in Homogeneous Medium
	Finite Element Method (FEM) in Homogeneous Medium
	Finite Element Method (FEM) for Two Layers in 1D

	Finite Element Method (FEM) in 2D
	Obtaining semi-discrete equations in space
	Time approximation scheme

	Results and Discussion
	Finite Element Method (FEM) in 1D
	Homogeneous Media
	Two Layers

	Finite Element Method (FEM) road to 2D
	1-Layer homogeneous medium
	Two Layers

	Conclusions
	Bibliography
	Appendices
	Appendix 1.
	Appendix 2.
	Appendix 3.

