UNIVERSIDAD DE INVESTIGACION DE
TECNOLOGIA EXPERIMENTAL YACHAY

Escuela de Ciencias Matematicas y Computacionales

TITULO: Computer-Assisted Mispronunciation Detection
System for L2 Kichwa Speech

Trabajo de integracion curricular presentado como requisito para la
obtencién del titulo de Ingeniero en Tecnologias de la Informacién

Autor:
Velasco Silva Ricardo Isaias
Tutor:
PhD - Fonseca Delgado Rigoberto Salomén
Co-Tutor:

PhD - Morales Navarrete Diego Fabian

Urcuqui, Marzo 2024

Autoria

Yo, VELASCO SILVA RICARDO ISAiAS, con cédula de identidad 175027344-1,
declaro que las ideas, juicios, valoraciones, interpretaciones, consultas bibliograficas, defini-
ciones y conceptualizaciones expuestas en el presente trabajo; asi como, los procedimientos
y herramientas utilizadas en la investigacién, son de absoluta responsabilidad de el/la au-
tor/a del trabajo de integracién curricular. Asi mismo, me acojo a los reglamentos internos

de la Universidad de Investigacion de Tecnologia Experimental Yachay.

Urcuqui, Marzo 2024.

Velasco Silva Ricardo Isaias

CI: 175027344-1

Autorizacién de publicaciéon

Yo, VELASCO SILVA RICARDO ISAiAS, con cédula de identidad 175027344-1,
cedo a la Universidad de Investigacion de Tecnologia Experimental Yachay, los derechos
de publicacion de la presente obra, sin que deba haber un reconocimiento econémico por
este concepto. Declaro ademas que el texto del presente trabajo de titulaciéon no podra ser
cedido a ninguna empresa editorial para su publicacién u otros fines, sin contar previamente

con la autorizacién escrita de la Universidad.

Asimismo, autorizo a la Universidad que realice la digitalizaciéon y publicacién de este
trabajo de integracion curricular en el repositorio virtual, de conformidad a lo dispuesto

en el Art. 144 de la Ley Orgéanica de Educacién

Urcuqui, Marzo 2024.

s leéaAs\ ecnénlw LR
= VELASCO S| LVA
E _..n_h- n;

Velasco Silva Ricardo Isaias

CI: 175027344-1

Resumen

Se ha realizado una evaluacién inicial y experimental de un sistema de deteccion de errores
de pronunciacién para la lengua kichwa. Se empled arquitecturas de redes neuronales con-
volucionales preentrenadas para clasificar espectrogramas de palabras pronunciadas con
exactitud y palabras pronunciadas con inexactitud. El modelo inicial, conocido como un
modelo basado en caracteristicas de redes convolucionales, extrae caracteristicas de las
capas totalmente conectadas. A continuacién, emplea una técnica de seleccién de car-
acteristicas para separar las caracteristicas discriminativas de las no discriminativas. Por
ultimo, estas caracteristicas se clasifican mediante un clasificador KNN. El segundo modelo,
basado en el aprendizaje por transferencia con redes neuronales convolucionales (CNN),
utiliza el conocimiento de las capas convolucionales y adapta la capa clasificadora para la
clasificacion binaria, distinguiendo entre audios bien pronunciados y mal pronunciados. En
cuanto al conjunto de datos utilizado, se construyeron dos conjuntos de datos que se uti-
lizaron en este estudio: un conjunto de datos con palabras en Kichwa y palabras sintéticas,
y el mismo pero con palabras sintéticas para el entrenamiento. En conclusion, el método
basado en el aprendizaje por transferencia es superior al método basado en caracteristicas
en ambos conjuntos de datos. Concretamente, AlexNet con ajuste de hiperparametros
alcanza 0,90 y 0,92 en la métrica de valor predictivo equilibrado en ambos conjuntos de
datos, respectivamente.

Palabras Clave:

modelo basado en caracteristicas, modelo basado en aprendizaje por transferencia, redes
neuronales convolucionales, ajuste de hiperparametros, recopilacién de conjuntos de datos,

lengua Kichwa

1ii

Abstract

An initial and experimental evaluation of a mispronunciation detection system was devel-
oped for the Kichwa language. The study implemented pretrained convolutional neural
network architectures to classify spectrograms of accurately pronounced and inaccurately
pronounced words. The initial model, known as the CNN feature-based model, extracts
features from the fully connected layers. It then employs a feature selection technique to
separate discriminative features from non-discriminative ones. Finally, these features are
classified using a KNN classifier. The second model, which is based on transfer learn-
ing with convolutional neural networks (CNNs), uses the knowledge from convolutional
layers and adapts the classifier layer for binary classification, distinguishing between well-
pronounced and mispronounced audios. When referring to the used dataset, two datasets
were constructed and used in this study: a dataset with Kichwa words and synthetic
words, and the same but with synthetic words for training. In conclusion, the CNN trans-
fer learning-based method is superior to the CNN feature-based method in both datasets.
Concretely, AlexNet with hyperparameter tuning achieves 0.90 and 0.92 in the balanced
predictive value metric in both datasets, respectively.

Keywords:

features-based model, transfer learning-based model, convolutional neural networks, hy-

perparameter tuning, dataset collection, Kichwa language

iv

Contents

Resumen iii
Abstract iv
Contents v
List of Tables viii
List of Figures X
1 Introduction 1
1.1 Background 1
1.2 Problem statement 4
1.3 Objectives 4
2 Theoretical Framework 5
2.1 Artificial Intelligence 5
2.2 Machine Learning Lo 7
221 Data 8

222 Types . . .o 10

2.2.3 Tasks.o 10

3 State of the Art 17
4 Methodology 20
4.1 Available Datasets 20
4.2 Dataset Construction 22
4.3 Dataset Labelling o 23

4.4 Dataset Splitting and Audio Distribution 24
4.5 Preprocessing and Spectrogram Conversion 25
4.6 Selected CNN Architectures, 25
4.6.1 AlexNet 25
4.6.2 VGGI19 27
4.6.3 ResNeth0 27
4.7 Data Augmentation L 28
4.8 CNN Features-Based Model 29
4.8.1 Feature Extraction o oo 29
4.8.2 Dataset Discretization oL 30
4.8.3 Statistical-based Feature Selection Methods 30
4.8.4 Classification and Hyperparameter Tuning 31
4.9 CNN Transfer learning-based Model 31
4.9.1 Importing Pre-trained CNN Network 31
4.9.2 Modifying Final Layers 32
4.9.3 Hyperparameter Tuning 32
4.10 Model Performance Metrics 32
4.10.1 PPV (Positive Predictive Value) 33
4.10.2 NPV (Negative Predictive Value) 33
4.10.3 Custom Metric: BPV (Balanced Predictive Value) 34
Results and Discussion 35
5.1 Dataset Constructiono 35
5.2 Syntetic Data 36
5.3 Dataset Labelling 37
54 Model’s Testing 37
5.4.1 CNN Features-based Model 38
5.4.2 CNN Transfer Learning-based Model 39
5.4.3 Observations from Table 5.4 39
Conclusions 42
6.1 Observations and Limitations 42

vi

Bibliography 45
Appendices 54

A CNN Features-based Model Hyperparameter Tuning and Testing Re-
sults: Diagrams and Tables 55

B CNN Transfer Learning-based Model Hyperparameter Tuning and Test-

ing Results: Diagrams and Tables 61
C Exemplary Code 77
C.1 Dataset Splitting 7
C.2 Audio Dataset Augmentation, Resampling, and Conversion 78
C.3 ONN Features-based Model, 82
C.4 CNN Transfer Learning-based AlexNet Hyperparameter Tuning 91

C.5 CNN Transfer Learning-based AlexNet Testing 98

vii

List of Tables

4.1

5.1
2.2
2.3
0.4

Al

A2

A3

A4

B.1

B.2

B.3

B.4

Range of Parameters to be Chosen for Hyperparameter Tuning

Number of participants in the dataset
Distribution of words in Kichwa dataset
Syntetic Participants Details 00
Best Models’ Performance on Testing Datasets. Each model has been se-

lected according to validation metric.

CNN Features-based Hyperparameter Tuning on k and Testing in Original
Dataset
CNN Features-based Hyperparameter Tuning on k and Testing in Synthetic
Dataset
CNN Features-based Hyperparameter Tuning with Feature Selection and
Testing in Original Dataset
CNN Features-based Hyperparameter Tuning with Feature Selection and
Testing in Synthetic Dataset

AlexNet Hyperparameter Tuning on Original Dataset: best results per trial
using validation loss as metric. L.
AlexNet Hyperparameter Tuning on Original Dataset: best results per trial
using BPV asmetric. o000
AlexNet Hyperparameter Tuning on Synthetic Dataset: best results per trial
using validation loss as metric. oL
AlexNet Hyperparameter Tuning on Synthetic Dataset: best results per trial

using BPV as metric.00 o

viil

B.5 VGG19 Hyperparameter Tuning on Original Dataset: best results per trial
using validation loss as metric. L oo 66
B.6 VGG19 Hyperparameter Tuning on Original Dataset: best results per trial
using BPV as metric.00 67
B.7 VGG19 Hyperparameter Tuning on Synthetic Dataset: best results per trial
using validation loss as metric.o 68
B.8 VGG19 Hyperparameter Tuning on Synthetic Dataset: best results per trial
using BPV as metric.o oo 69
B.9 ResNet50 Hyperparameter Tuning on Original Dataset: best results per trial
using validation loss as metric. oL 70
B.10 ResNet50 Hyperparameter Tuning on Original Dataset: best results per trial
using BPV as metric.o 71
B.11 ResNet50 Hyperparameter Tuning on Synthetic Dataset: best results per
trial using validation loss as metric. 72

B.12 ResNet50 Hyperparameter Tuning on Synthetic Dataset: best results per

trial using BPV as metric.o oo 73
B.13 AlexNet Mispronunciation Results in Original Dataset 74
B.14 AlexNet Mispronunciation Results in Synthetic Dataset 74
B.15 VGG19 Mispronunciation Results in Original Dataset 75
B.16 VGG19 Mispronunciation Results in Synthetic Dataset 75
B.17 ResNet50 Mispronunciation Results in Original Dataset 76
B.18 ResNet50 Mispronunciation Results in Synthetic Dataset 76

X

List of Figures

2.1
2.2
2.3
24

4.1

4.2

4.3
4.4

4.5
4.6
4.7

Al
A2
A3
A4

Artificial intelligence Diagram [1] 6
Multi-layer Perceptron Diagram with 16 inputs, 2 hidden layers and 3 outputs 14
CNN Architecture Diagram L 15
The transfer learning process involves transferring knowledge from a pre-

trained model to a new deep learning model [1] 16

Textgrid with manual annotations from a L2-ARCTIC’s sample audio file
[2]. Top to bottom: speech waveform, spectrogram, words, phonemes, error
tags, and comments from the annotator. 20
Textgrid with manual annotations from a TIMIT’s sample audio file [3].
Top to bottom: speech waveform, spectrogram, phonemes, words 21
Folder directory labelling 24

Spectrogram representation of the word “allku” pronounced by a non-native

female speakero 25
AlexNet Architecture Diagram [4] 26
VGG19 Architecture Diagram [5] oL 27
ResNet50 Architecture Diagram 28
KNN Classifier Hyperparameter Tuning in Original Dataset. 57
KNN Classifier Hyperparameter Tuning in Synthetic Dataset. 58
Feature Selection Hyperparameter Tuning in Original Dataset 59
Feature Selection Hyperparameter Tuning in Synthetic Dataset 60

Chapter 1

Introduction

1.1 Background

The global population of indigenous people is estimated to be approximately 370 million
individuals, residing in more than 90 nations worldwide [6]. Despite constituting just 5%
of the global population, this group owns, inhabits, and/or uses 22% of the world’s land
area. A significant portion of the world’s cultural diversity is represented by indigenous
people, who speak a total of 7000 languages [7]. However, the enduring effects of histor-
ical inequality and marginalization have resulted in indigenous populations representing
approximately 19% of the global impoverished demographic. These individuals experi-
ence a significantly reduced life expectancy, which has been calculated to be 20 years less
than their non-indigenous counterparts worldwide. They encounter challenges such as the
absence of official recognition regarding their lands, territories, and natural resources, de-
layed access to public investments in essential services and infrastructure, and numerous
obstacles hindering their full engagement in the formal economy, access to justice, and
participation in political processes and decision-making [8].

Alongside the challenges faced by indigenous communities, their languages suffer from
similar issues. Many languages are currently facing the imminent threat of extinction, and

various factors contribute to this pressing concern [9]:

o Implementation of state policy. Several governmental institutions have imple-
mented initiatives with the objective of eradicating indigenous languages with legal

regulations that prohibit their usage. As a result, numerous nations deny the exis-

tence of indigenous populations and classify their languages as mere dialects, thus

undervaluing them, devaluing them compared to national languages.

Lack of support and attention. Because of their minority status, indigenous pop-
ulations frequently encounter a lack of recognition and support from governmental
initiatives aimed at preserving languages, resulting in the marginalization of their
linguistic heritage. Furthermore, even though there may be initiatives, they may not
be well executed and consequently be overlooked. In the Philippines, the govern-
ment has started to implement mother-tongue-based instruction in the classrooms
[9]. Nonetheless, due to the lack of available resources, including qualified teachers
and appropriate learning materials, the effective instruction of indigenous children
in their respective mother tongues may is hindered, and consequently, individuals
acquire proficiency in another language rather than their own, ultimately leading to

the deterioration of their native language skills.

Obsolescence. Due to a long history of discriminatory policies and practices, a
significant number of indigenous parents have made the decision to teach and speak in
current languages with their children [9]. This is done with the intention of fostering
an environment that is beneficial to their children’s development in a globalized
society. In most cases, indigenous children are currently unable to take part in
conversations with their grandparents, who commonly use their mother tongue to
communicate with each other, inevitably leading to the loss of oral traditions and

expressions.

Nevertheless, the increasing global recognition of indigenous knowledge systems has

restored optimism concerning the preservation and growth of indigenous languages in both

oral and written formats. Numerous indigenous communities have already implemented

autonomous mechanisms aimed at restoring their respective languages. Moreover, legisla-

tive provisions and measures have been proposed. For instance, in Ecuador, the following

articles support the right to education for indigenous people:

o "Article 29 of the Constitution declares that ‘the State shall guarantee the freedom

of teaching, academic freedom in higher education, and the right of individuals to

2

o 7Article 57, number 14, of the Constitution agrees that the State must ‘develop,
strengthen and enhance the system of bilingual intercultural education, on the basis
of quality criteria, from early childhood stimulation to the highest level, in accordance

with cultural diversity, for the safeguarding and preserving identities in harmony with

These articles guarantee the rights of communities, peoples, and nationalities, empha-
sizing the state’s obligation to integrate education with an intercultural environment [10].
By doing so, Ecuador acknowledges the significance of fostering inclusivity and demon-
strating respect for the diverse cultural backgrounds of its communities.

In the end, this legislative provision resulted in Ecuador having 1,834 bilingual inter-
cultural educational institutions that educated 156,027 students in 2015-2016, as well as
13 educational institutions designated as guardians of the language and staffed by teachers
who speak one of the indigenous languages [6]. Similarly, there are other countries that
have implemented similar legislation, such as Argentina, Australia, Bolivia, Brazil, Chile,
Guatemala, Honduras, Iran, Mexico, New Zealand, Norway, Sweden, and Venezuela [6].

Unfortunately, indigenous peoples must still overcome several challenges before break-
ing free from marginalization. One-third of the world’s impoverished population are in-
digenous, and in many countries, indigenous rights laws conflict with laws pertaining to
agriculture, land, conservation, forestry, mining and other sectors [9].

7% of the indigenous people in Ecuador use Kichwa and quite frequently it has been re-
duced to a peasant language [11]. In order to contribute to the preservation of the Kichwa
language, Yachay Tech University proposed a community service project called "Kichwa
Yachay App” whose head chairman is Sophia L. Cadoux from the Yachay Tech English
Department. Formerly, this was a software engineering project aimed at developing a
mobile application for learning and practicing the Kichwa language. As a result, all the
students gave a presentation presented prototypes of their applications. For one of the
projects, there was an open thesis statement to develop a computer-assisted mispronun-
ciation system. The development of such system will provide valuable insights into the
capabilities and limitations of the developed models and the developed data, allowing for

further improvements and advancements in the field of language learning for Kichwa.

1.2 Problem statement

It is important to know that recently, the adaptability of Computer-Aided Language Learn-
ing (CALL) has drawn a lot of attention because it lets students improve their language
skills at their own pace. To achieve this cause, it is necessary to use CALL technologies.
By definition, CALL involves using computers and computer-based resources like the In-
ternet, to present, reinforce, and assess learning. Specifically, for this work, we focus on
Computer-Aided Pronunciation Training (CAPT), a subset of CALL that focuses on find-
ing and correcting pronunciation mistakes made by non-native Kichwa language learners
[12].

Deep learning technology is considered one of the hot topics within the areas of machine
learning, artificial intelligence, data science, and analytics due to its learning capabilities
from the given data [1]. The problem begins with the scarcity of data for the Kichwa
language (see Section 4.1), to which two models for mispronunciation detection based on
convolutional neural networks and spectrograms were developed. In addition, two Kichwa
datasets were collected and proposed for the sake of the project and future research. These
models will be subjected to testing and measurement using various evaluation metrics,

such as positive and negative predictive values, to evaluate their performance.

1.3 Objectives

Generate two datasets of Kichwa words from both native and non-native speakers.

o Implement two models for Kichwa mispronunciation detection by means of convolu-
tional neural network architectures (AlexNet, VGG19, ResNet): CNN features-based

and transfer learning-based models.

o Compare the performance of the proposed models with adequate metrics: positive,

negative and balanced predictive value.

o Evaluate how the model performs whenever a word is well-pronounced or mispro-

nounced, without restricting only to evaluating the accuracy of the model.

Chapter 2

Theoretical Framework

2.1 Artificial Intelligence

The renowned author Karel Capek first used the term “robot” in his play “R.U.R.” (Rossum’s
Universal Robots) in 1921, and it originally meant a factory of biomechanical machines
used as forced labor [13]. During the mid-20th century, Isaac Asimov popularized the term
"robot” through a compilation of contemporary science-fiction short stories [13]. Even
though the word was slightly new, during the Renaissance period, Leonardo da Vinci per-
formed a comprehensive study of human anatomy with the purpose of guiding the design
of his humanoid robot, Leonardo’s robot. It was a mechanized knight automaton capable
of assuming many postures, including standing, sitting, and gesturing with its arms, as
well as articulating its head and jaw by using a combination of pulleys and cables [14].
Subsequently, the term ”Artificial Intelligence”, derived from the idea of a robot, appeared
years later. John McCarthy coined the term “artificial intelligence” (AI) in 1955, defining
it as “the science and engineering of making intelligent machines”. He was very influential
in the early development of Al. With his colleagues, he founded the field of Al in 1956 at a
Dartmouth College conference on artificial intelligence. The conference gave birth to what
developed into a new interdisciplinary research area. It provided an intellectual framework
for all subsequent computer research and development efforts [15].

Given the general historical background, Artificial Intelligence (AI) focuses on the repli-
cation of cognitive abilities to address real-world challenges and the development of systems

capable of learning and reasoning in a manner akin to human cognition [16]. More and

Implement human behavior and
intelligence into machines

Artificial Intelligence

Methods to learn from data or past
experience, which automates
analytical model building

Computation through multi-layer
neural networks and processing

Figure 2.1: Artificial intelligence Diagram [1]

more studies show how important it is to give artificial intelligence systems the ability to
build causal models of the world, giving explanation and understanding more weight than
just solving pattern recognition problems [17]. Finally, the branches of artificial intelligence
can be directly and informally represented in Figure 2.1.

With the advancement of technical elements such as data, algorithms, and computing
capabilities reaching a relatively mature stage, artificial intelligence (AI) has begun to
efficiently address problems and generate real economic advantages [18]. Thus, it is not

surprising that Al is currently being applied in [19]:

Automotive Industry.

» Financial Markets.

o Health Industry.

o Retailing Industry.

e Media Industry.

o Smart Payment Systems.

e Smart Homes

2.2 Machine Learning

The formulation of a singular, comprehensive definition for machine learning (ML) is chal-
lenging due to its broad scope, which covers several methodologies derived from computer
science and multivariate statistics [20]. However, machine learning is precisely defined as
"a set of methods that can automatically detect patterns in data and then use the uncov-
ered patterns to predict future data or to perform other kinds of decision-making under
uncertainty (such as planning how to collect more datal)” [21]. Given this definition, ma-
chine learning is defined as a subfield of artificial intelligence and a group of methods and
algorithms with the capacity to learn continuously from accumulated or past experience
and hone their skills through knowledge extraction from data without being specifically
programmed. On top of that, it is the most famous and modern technology in the fourth
industrial revolution [22], [23]. For example, in a real-world scenario where ML is used,
in the context of a sophisticated system like a self-driving vehicle, machine learning algo-
rithms must process extensive sensor data and utilize their acquired knowledge to identify
potential hazards and subsequently choose appropriate control actions [24].

At the moment, the discipline of machine learning is structured around three main

areas of research [25]:

o Task-Oriented Studies. It employs the engineering approach, which refers to
the process of designing and evaluating learning systems with the aim of enhancing
performance in a certain set of tasks. This involves the development and analysis of

these systems.

o Cognitive Simulation. The study and computational modeling of human learning

processes.

o Theoretical Analysis. The present study focuses on the theoretical investigation
of the expansive range of potential learning methods and algorithms, absent any

specific application domain.

When considering applications, machine learning is utilized across a diverse range of
domains, including robotics, virtual personal assistants such as Google, computer games,

pattern recognition, natural language processing, data mining, traffic prediction, online

7

transportation networks, product recommendation systems, share market prediction, med-
ical diagnosis, online fraud detection, agriculture advisory services, search engine result
optimization like Google’s search engine, chatbots for online customer support, e-mail
spam filtering, crime prediction through video surveillance systems, and face recognition
in social media [26].

In order to properly summarize the previously mentioned field of inquiry, it is necessary
to follow the appropriate structure suggested by [27], [28], [20] and [29]. Thus, in general,
the following sections are going to consist of data, types of algorithms, and tasks related

to machine learning.

2.2.1 Data

Because the machine learns by using specific data sets for training and then applying
algorithms to those data sets, the availability of data is the main factor in the development
of machine learning models in practical applications.

In the real world, data may appear in diverse formats, including structured, semi-

structured, and unstructured forms [30]:

o Structured. The data exhibits a clearly defined structure and follows a data model
that belongs to a standardized sequence, thereby enabling efficient organization and
accessibility machine learning algorithms. Structured data is commonly stored in
well-defined schemes, such as relational databases, where it is organized in a tabular

fashion.

¢ Semi-Structured. Semi-structured data, in contrast to the structured data dis-
cussed earlier, is not often stored within a relational database. However, it pos-
sesses particular organizational characteristics that make its analysis feasible. Semi-
structured data incorporates several forms, such as HTML, XML, JSON documents,
and NoSQL databases.

o Unstructured. Unstructured data lacks a predetermined format or organizational
structure, thereby making it considerably more challenging to gather, handle, and

analyze. This type of data mostly includes textual and multimedia content. There

are various forms of unstructured data, such as sensor data, emails, blog entries,
wikis, word processing documents, photographs, presentations, web pages, and other

business documents, can be classified as examples of unstructured data.

Furthermore, since datasets are made up of data objects (e.g. rows of the dataset,
observations) and attributes/features (e.g. columns of the dataset), it is important to be
clear with which types of attributes we are dealing with. Overall, there are four types of

attributes [31]:

« Binary Attributes. A binary attribute represents a nominal attribute that includes
merely two categories or states, namely 0 or 1. In this context, 0 signifies the absence
of the attribute, while 1 denotes its presence. Binary attributes are commonly known

as booleans when the two states they represent correspond to true and false.

e Nominal Attributes. The values associated with a nominal attribute consist of
symbolic representations or designations of entities. Values that represent nominal
attributes, also referred to as categorical attributes, correspond to various categories,
codes, or states. The values lack a recognizable or significant order. If haircolor
is an attribute, its possible nominal values may be black, brown, yellow, or blonde.
Besides, we can assign a code to such values, for instance, 0 for black, 1 for brown,

and so on.

e Ordinal Attributes. An ordinal attribute refers to an attribute that contains po-
tential values that indicate some sort of order or ranking, but the exact magnitude
between consecutive values remains unknown. If drinksize is an attribute, its pos-
sible ordinal values may be small, medium, and big. These values follow a sequence

by nature, but we cannot tell how much bigger “small” is than “medium.”

e Numerical Attributes. It is possible to classify a numerical attribute as quantita-
tive, indicating that it is a measurable quantity that has an integer or real value as

its representation.

Machine learning classification tasks often categorize attributes as discrete or contin-

uous. In this context, discrete attributes have a finite or countably infinite set of values;

otherwise, continuous attributes can be represented as floating-point numbers [31]. In ma-
chine learning, it is essential to determine whether the attributes are discrete or continuous,

as it affects the choice of appropriate algorithms and techniques.

2.2.2 Types

Algorithms for machine learning fall into the following categories [32]:

e Supervised learning. In a commonplace supervised situation, a teacher or supervi-
sor gives the agent a precise error measure that is equivalent to output values. When
referring to algorithms, actual methods use a training set of input-output pairs to
provide this function. Based on this knowledge, the agent may adjust its settings to
lower its minimize loss function. If the method is flexible and the data components
are coherent, accuracy improves, and the difference between predicted and expected
values approaches zero after each iteration. The applications of supervised learning
can be in the fields of predictive analysis, spam detection, pattern detection, natural

language processing, and sentiment analysis, among others.

o Unsupervised learning. This approach relies on the lack of a supervisor and,
consequently, the absence of absolute error measures. Cluster analysis is a valuable
tool for grouping elements based on their similarity or distance measure. In fact,
unsupervised learning provides an implicit descriptive analysis of the data in order
to obtain a complete understanding of the dataset. This approach can be applied to
object segmentation, similarity detection, automatic labeling, and recommendation

engines.

2.2.3 Tasks

Classification

Classification is a machine learning task that is employed to classify data into two or
more distinct classes. The classification of potato diseases based on deep learning and
computer vision methods has the potential to serve as an interesting instance of multi-class
classification [33]. From the last example, it can be inferred that there are commonplace

types of classification problems based on the label assigned to each instance.

10

« Binary Classification. The term ”binary classification” refers to classification tasks
in which there are two class labels that can be expressed by either numerical values

(0 or 1) or textual descriptors (true or false).

e Multi-Class Classification. Multi-class classification involves the classification
of more than two classes. In the context of a given set of classes, examples are

categorized as members of a specific class.

For instance, some popular classification algorithms used are Naive Bayes, logistic re-
gression, K-nearest neighbors (KNN), support vector machines, decision trees, random

forests, adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), etc [27].

Dimensionality Reduction

The objective of dimensionality reduction is to address the issue of high dimensionality in
data, also referred to as the curse of dimensionality. The primary purpose is to enhance
the quality of data by lowering its complexity [34]. In the fields of machine learning
and data science, processing high-dimensional data poses a significant challenge that both
researchers and application developers must address. Dimensionality reduction plays a
crucial role as it encourages improved human interpretations, reduces computational costs,
and decreases problems such as overfitting and redundancy by simplifying models [27].
Dimensionality reduction can be categorized into feature selection and feature extraction.
The main difference between feature selection and feature extraction lies in their respective
approaches: feature selection involves keeping a subset of the original features [35], whereas
feature extraction involves creating whole new features [36]. More precisely, in the former,
discriminative features are chosen to create a new subset of them, which allows us to delete
irrelevant or redundant features present in the data. The selection of an appropriate and
effective subset of features inside a given problem domain has the potential to reduce the
issue of overfitting by simplifying and generalizing the model, hence enhancing its accuracy
[35]. In the latter, a better understanding of the data is provided, which results in enhanced

predictive accuracy and a reduction in computing costs or training duration.

11

Deep Learning

The Fourth Industrial Revolution, also known as Industry 4.0, primarily centers around
technology-driven automation and intelligent systems, which are applied in various areas,
such as smart healthcare, business intelligence, smart cities, and cybersecurity intelligence
[37]. Due to its excellent learning capabilities from historical data, DL techniques can
play a key role in building intelligent data-driven systems that meet the needs of today
and potentially alter the world and the way people live in it through their automation
potential and their ability to learn from experience [1].

By definition, deep learning is a branch of machine learning that uses hierarchical
structures to try to find complex abstractions or architectures in high-dimensional data
[1], [38]. This branch of machine learning has become more popular and has been used
in many areas, such as semantic parsing, transfer learning, natural language processing,
computer vision, and many more. Furthermore, the current growth of DL can be attributed
to three key factors: the notable advancements in chip processing capabilities, including
GPU processing and Moore’s Law; the substantial reduction in hardware construction
costs; and the enormous progress made in machine learning algorithms [29]. Surprisingly,
there are already many areas where deep learning has exceeded human-level capability and
performance, e.g., predicting movie ratings, decisions to approve loan applications, and
estimating car delivery times [39].

In order to employ deep learning techniques, it is crucial to consider the following

properties and potential requirements [1]:

« Amount of Data. Deep learning relies on a substantial volume of data to construct
a data-centric model for a specific problem domain. Deep learning algorithms tend

to exhibit suboptimal performance when the dataset size is small [40].

« Hardware Dependency. Deep learning algorithms require significant computa-
tional resources when training models with extensive datasets. Due to the increased
computational demands, GPUs are commonly employed to boost running time effi-
ciency, as they offer significant advantages over CPUs. GPU hardware is essential

for effective deep learning training. Accordingly, deep learning algorithms require

12

high-performance computing machines, such as the HPC CEDIA Cluster, to be run
optimally [41].

« Feature Engineering Efficiency. Feature engineering involves extracting features
from raw data by applying domain knowledge. One key difference between DL and
other machine learning methods lies in the focus on extracting high-level features
directly from data [27], [42]. Fortunately, deep learning reduces the time and effort

needed to create a feature extractor for each problem.

e Training and Execution Time. Deep learning algorithms typically require a sub-
stantial amount of time for training due to the high number of parameters involved.
Deep learning models can require several weeks to complete a training session, while
training with machine learning algorithms typically takes significantly less time, rang-

ing from seconds to hours [43], [41].

e Blackbox Model. Interpretability is a crucial consideration when comparing DL
with ML. The process of obtaining a DL result can be challenging to explain due to

its "black-box” nature.

We can generally specify several technologies used in deep learning and intended to be

employed in this work [44], [1]:

o Multi-layer Perceptron (MLP). Multi-layer Perceptron (MLP) is a supervised
learning method [45] and the foundational structure of deep neural networks (DNN).
This type of architecture falls under the category of feedforward artificial neural net-
works (ANNs). A standard multi-layer perceptron (MLP) is a fully connected neu-
ral network consisting of an input layer for getting input data, an output layer for
making decisions or predictions, and one or more hidden layers that serve as the net-
work’s computational engine (See Figure 2.2) [31], [46]. The MLP network’s output
is determined by employing various activation functions, also referred to as transfer
functions, including ReLU (Rectified Linear Unit), Tanh, Sigmoid, and Softmax [45],
[47]. The most commonly used algorithm for training MLP is “backpropagation”,
which is a supervised learning technique and considered the fundamental component

of a neural network [31]. Different optimization approaches, including Stochastic

13

Input Layer € R® Hidden Layer € R*? Hidden Layer € R Output Layer € R?

Figure 2.2: Multi-layer Perceptron Diagram with 16 inputs, 2 hidden layers and 3 outputs

Gradient Descent (SGD), Limited Memory BEGS (L-BFGS), and Adaptive Moment
Estimation (Adam), are utilized in the training process. The MLP model needs hy-
perparameter tuning or adjusting the parameters, including the number of hidden
layers, neurons, and iterations, which can result in a computationally demanding
solution for complex models. MLP has the advantage of learning non-linear models

in real-time or online through partial fit [45].

« Convolutional Neural Networks (CNN). CNN are widely used deep learning
architectures that learn directly from input data without requiring human feature
extraction. Each layer in a CNN considers optimal parameters to produce a mean-
ingful output and also reduces the complexity of the model, thus improving the
architecture of conventional ANNs, such as regularized MLP networks. Moreover, on
top of that improvement, CNNs employ a ’dropout’ technique [48], which involves
randomly dropping out a certain percentage of nodes during training, which helps
prevent the model from memorizing the training data and generalizing better, to

address the issue of overfitting. CNNs are commonly used in various fields such as

14

24@48x48
8@128x128 24@16x16 1x256

0 |

O———— 1]

1x128

Max-Pool Convolution Max-Pool Dense

Figure 2.3: CNN Architecture Diagram

visual recognition, medical image analysis, image segmentation, and natural language
processing since they are intended to deal with 2D shapes such as images (See Figure
2.3) [49], [47]. The autonomous identification of crucial input features without hu-
man intervention enhances the potency of this network in comparison to traditional
networks. Various CNN variants have been developed in the field, such as VGG [50],
AlexNet [51] and ResNet [52].

o Deep Transfer Learning (DTL). Transfer learning is a method that leverages pre-
existing model knowledge to efficiently address a new task, requiring minimal training
or fine-tuning. Training DL models requires a large amount of data. However, this
can present a challenge for specific applications, such as medical image analysis. The
collection and annotation of large datasets of patient data are not only challenging
and expensive but also require significant computational resources for model training.
Hopefully, transfer learning could help address this issue by transferring knowledge
from a pretrained DL model to a specific or desired model to be trained. Because
of its ability to successfully train deep neural networks with minimal input data,
transfer learning has become a hot topic in the field of DL [53]. The process can be

visualized in Figure 2.4.

There are many other deep learning methods that deserve mention, such as Recurrent
Neural Networks (RNNs), Generative Adversarial Networks (GANs), Auto-Encoders
(AEs), Self-Organizing Maps (SOMs), Deep Belief Networks (DBNs), Hybrid Deep
Neural Networks, and Deep Reinforcement Learning, all of which are reviewed in

detail in [1], but not in this work since those architectures aren’t used at all.

15

Source Domain

- Pre-training

Dataset 1

Large Dataset

Small Dataset

- New Task

Y

Dataset 2

v

Learning
Task

\ 4

Knowledge

Pre-trained
model

Knowledge

\ 4

Learning
Task

Target Domain

Transfer

New DL
Model

Figure 2.4: The transfer learning process involves transferring knowledge from a pre-trained

model to a new deep learning model [1]

16

Chapter 3

State of the Art

There is no official state-of-art document for mispronunciation detection system. However,
in [54], a literature review detailed three main techniques: posterior probability-based
methods, classifier-based methods, and deep belief network-based methods. Probability-
based techniques have the capability to identify the quality of pronunciation; yet, these
scoring computations alone are insufficient to differentiate the type of error and accurately
pinpoint its position. To solve this, classifier-based methods are used [54]. These methods

can be summarized as follows:

o Posterior-Probability-based Methods

— The Goodness of Pronunciation (GOP) score was introduced by Witt and Young
[55], who based it on a standardization of log-probability values by the duration
of individual phone sections. A criterion was established for evaluating the

accuracy of pronunciation for each phone.

— In their study, Franco et al. [56] developed three recognition models that used
data from different levels of nativeness. The researchers also took into account
the log-likelihood-based scores in order to determine the proportionality of these

scores.

— The application of acoustic-phonetic parameters, such as log root mean square,
energy, and zero-crossing rate, for the recognition of velar fricative and velar

plosive was examined by Strik et al. [57].

17

— Minematsu et al. [58] introduced a widely recognized acoustic framework in

speech that effectively eliminates non-semantic information.

— Wang and Lee [59] additionally incorporated GOP scores with error pattern
identifiers to enhance the performance of identifying errors within the gathering

of students from 36 nations learning Mandarin Chinese.

— Zhang et al. [60] presented scaled log-posterior probability (SLPP) and weighted

phone SLPP to enhance measures of pronunciation quality.
o Classifer-based Methods

— The clusters of pronunciation rules were produced by Ito et al. [61], who also
established a threshold for each cluster. The researchers proposed a clustering
technique that is based on decision-making in order to improve the accuracy of

error detection.

— The features obtained by Georgoulas et al. [62] by the utilization of a discrete
wavelet transform. Wavelet analysis is a distinctive signal processing technique
that uses a support vector machine (SVM) classification algorithm to identify

instances of mispronunciation.

— In their work, Strik et al. [57] conducted a comparative analysis of four different
methods, specifically GOP, decision tree, LDA_APF, and LDA_MFCC. The
results of this study show that the LDA-APF and LDA-MFCC techniques did
a better job of classifying the velar fricative /x/ and the velar plosive /k/ than

the GOP scores and decision tree.

— Amdal et al. [63] conducted a study in which they made distinctions between
short and long vowels in speech. The researchers employed acoustic-phonetic
characteristics and conducted training on a linear discriminant analysis (LDA)

classifier.

— Liet al. [64] introduced a detection strategy that is based on GLDS-SVM (Gen-
eralized Linear Discriminant Sequence-Support Vector Machine) and has been

proven to be effective. The researchers integrated the GLDS-SVM method with

18

the UBM-GMM (universal background model) framework in order to improve

performance.

— In their study, Wei et al. [65] employed log-likelihood ratios obtained from
acoustic models as features for a support vector machine (SVM) classifier. Mul-
tiple acoustic models were used for each phone in order to determine the variety
of pronunciation variations of that phone across various degrees of capability.
This method facilitated the framework’s achievement of superior performance

compared to conventional likelihood-based strategies.

— In their study, Magsood et al. [66] employed the sequential floating-forward
selection method to identify the discriminative features for the purpose of de-
tecting Arabic mispronunciations. Additionally, a technique based on grouping
was presented by the researchers to identify distinctive properties of Arabic

phonemes.
e Deep Learning

— Nauzir et al. and Akhtar et al. in [54] and [67] propose similar mispronunciation
detection systems based on deep learning and machine learning. Most of them
work by extracting features from spectrograms. In the former, it proposes hand-
crafted features-based, CNN features-based, and transfer learning-based models
subjected to feature selection and feature extraction (depending on the case).
In the latter, it employs the same structure. The main differences between these

articles are the different locations from which features are extracted.

19

Chapter 4

Methodology

4.1 Available Datasets

There are several classical datasets used for state-of-the-art mispronunciation system de-
tection in Chapter 3. An example of big speech corpora designed for research purposes
are L2-ARCTIC and TIMIT for English. Every speech corpora implements Textgrid as a
tool for segmentation and labeling of the phonemes, words, and errors in an audio file as

in Figure 4.1 and 4.2.

_—

there was a change now

R.AHO, UH.CH

sil| DH | EHI w AHI ZSs AHO CH EYl] N N AWl

12,5 2.5.5 di.tfs

Figure 4.1: Textgrid with manual annotations from a L2-ARCTIC’s sample audio file
[2]. Top to bottom: speech waveform, spectrogram, words, phonemes, error tags, and
comments from the annotator.

20

L2-ARCTIC [2] targets non-native English speakers. It consists of recordings from a
total of 24 individuals whose first languages (L1s) are Hindi, Korean, Mandarin, Spanish,
Arabic, and Vietnamese. Fach L1 group includes two male and two female speakers, and
each speaker contributed approximately one hour of recorded speech, specifically reading
from CMU’s ARCTIC prompts. From these recordings, orthographic and forced-aligned
phonetic transcriptions were made, and each speaker’s 150 utterances were manually an-
notated to look for substitutions, deletions, and additions, which are three different types

of mispronunciation errors.

23537

cime |3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5
LPHDﬂ 531 |dh|th S |w|51ﬂ 7z | iv | Z | iv |f‘ er

.WRI| | THIS | WAS | ELASY | FOR

Figure 4.2: Textgrid with manual annotations from a TIMIT’s sample audio file [3]. Top
to bottom: speech waveform, spectrogram, phonemes, words

TIMIT [3] is a speech dataset corpus that supplies speech data that can be used for
acoustic-phonetic research as well as for the advancement and assessment of automatic
speech recognition systems. It is also a collection of broadband recordings of 630 people
who speak eight of the most common types of American English. Each person was asked
to read ten phonetically dense sentences. The TIMIT corpus consists of orthographic,
phonetic, and word transcriptions that are aligned with time, along with a speech waveform

file for each utterance, which is encoded in 16-bit format and has a sampling rate of 16 kHz.

21

The development of the corpus was a collaborative endeavor between the Massachusetts
Institute of Technology (MIT), SRI International (SRI), and Texas Instruments, Inc. (TT).
The lecture was recorded at T1, transcribed at the MIT, and then checked and prepared for
CD-ROM manufacturing by the National Institute of Standards and Technology (NIST).

There are other datasets like TIMIT and L2-ARCTIC that target other languages, such
as CU-CHLOE [68] and iCALL [69] for Chinese.

4.2 Dataset Construction

It was developed a simple and effective way to encourage participation and collect audio
files for the dataset. The desired user (native or non-native) is required to record short
audio clips using their own devices and send them to our number as WhatsApp audio files.
In this way, by implementing state-of-the-art deep learning methods, the audio file is only
required to generate its corresponding spectrogram to create a dataset, thus dealing with
data scarcity and a lack of resources. To expand the dataset, the following text was sent

to several test subjects in order to obtain different audios:

Hello, I need you to do me a favor, help me recording some audios of
some words in Kichwa, it is for a thesis. Send me as Whatsapp audios

right here.

Here are the requirements for the recordings:

e Record at a safe distance from the microphone.
e Speak at normal speed and timbre.

e Avoid at all costs blowing into your phone’s microphone to avoid
generating noise, being in a drafty environment, or being in an

environment with background noise.
e One audio per word. If there are 5 words, 5 audios.
e Record the word completely.

e Record the word as you think it is pronounced (depending on whether

or not you speak Quechua).

22

These are the words: yana, yanami, yurak, yurakmi, killu, killumi,
puka, pukami, misi, misika, allku, allkuka, wakra, wakraka, atallpa,
atallpaka, kuchi, kuchika, challwa, challwaka, amaru, amaruka, wiwa,

Maykan, Kan.

Thank you for your cooperation and please take the requirements into

account.

After that, they immediately send the audio files, and then the dataset collector can
easily download the audio files in a single batch by using WhatsApp Web.

4.3 Dataset Labelling

For the labeling process, a procedure is followed in order to save the tags corresponding
to the audio file. In this project, there are two labels: either well-pronounced or mispro-
nounced, which can also be represented with the integers 1 or 0, respectively. Therefore,
it is employed a folder structure in order to extract the labels from each audio file. This
method consists of creating a root directory for the Kichwa dataset, creating subdirecto-
ries with the names of the labels, and saving the corresponding audio files to each label
according to some criteria (see Figure 4.3). This type of labeling enables us to extract the
labels and preprocess them later.

The criteria employed for labeling each audio file were partly based on the fluency in
Kichwa of the participant in the non-synthetic case. This means that if the participant
was a native Kichwa speaker, the label of its audio files is 1. Otherwise, if the participant
is a non-native Kichwa speaker, the data collector, in this case the author himself, takes a
native Kichwa speaker as a model and compare the spoken word. If the word pronounced
by the non-native speaker matches up with the word pronounced by the other counterpart,
it was categorized as 1; otherwise, it was categorized as 0. Finally, in the case of synthetic
data (see Section 5.2), since all the speakers are pronouncing Kichwa words according their

languages, their respective audio files will be labelled as 0.

23

Kichwa
Dataset

Well

Mispronounced
Pronounced P

Figure 4.3: Folder directory labelling

4.4 Dataset Splitting and Audio Distribution

Given the non-synthetic and synthetic audio files of various speakers, it raises the question
of how the data is distributed over the dataset. For this work, it was decided to split and

distribute the data in two ways, therefore creating two datasets.

e Original Dataset. The synthetic data is considered only for the training set. Since
the dataset is imbalanced at the beginning, stratified dataset splitting is used on
the original dataset to obtain metrics such as PPV and NPV. In other words, the
training, validation, and testing sets have the same proportion of well-pronounced
and mispronounced words. After the splitting, all the synthetic audio samples were
added to the mispronounced training set. Only non-synthetic voices were added to

the validation and testing datasets.

o Synthetic Dataset. The synthetic data is considered for training, testing, and
validation sets. In this way, a balanced dataset is obtained and, in consequence,
split the data into 70%, 20%, and 10% for training, validation, and testing sets,

respectively.

24

Figure 4.4: Spectrogram representation of the word “allku” pronounced by a non-native
female speaker

4.5 Preprocessing and Spectrogram Conversion

Since a CNN-based deep learning model is used, it is necessary to decide how the audio
dataset is represented in a 2D input way. The traditional spectrogram (see Figure 4.4),
like other time-frequency representations, offers a visual representation of the temporal and
frequency distribution of energy in a signal, specifically in relation to Fourier’s frequency
[70].

After deciding the representation of the data, each audio file is resampled before the
spectrogram conversion. In the case of non-synthetic data, audio files are sampled at 48000
Hz, and in the case of non-synthetic data, at 24000. Then both audios are resampled to
44100 Hz. Finally, the duration of all audio files is adjusted to 3 seconds.

4.6 Selected CNN Architectures

4.6.1 AlexNet

Alexnet [71], [72] is a convolutional neural network (CNN) that achieved success in the
2012 Imagenet Large Scale Visual Recognition Challenge, specifically in the tasks of ob-
ject recognition and image categorization. The model performed training using ImageNet
dataset, which includes over 1.2 million photos belonging to 1000 distinct categories. It

includes a total of eight trainable layers. Those layers have been divided into a total of five

25

227

Overlapping
Max POOL
3x3,
stride=2

CONV Overlapping

11x11, Max POOL CONV
stride=4, 98 3x3, 95 5x5,pad=2
96 kernels stride=2 i 256 kemels
=" . 7

! ! (2742°2-5)1

! nH e Y [
" il 22711y 1 fgg (55-3)2+1 BT o =27
| i =55

CONV
3x3,pad=1
384 kernels

(27-3)/2 +1

13 7
o

(13+2°1-3)1
+1 =13

Overlapping
CONV Max POOL

3x3,pad=1 256 3x3, 256 O
256 kemels stride=2

CONY
3x3,pad=1
384 kernels

384

(13+2°1-3)/1 (13+2°1-3)1 (13-3)/2 +1 FC FC .
+1 =13 1 =13 =8
13 [O
_ 13 b
13 - 9216 1000
13 18 Softmax
4096 4096

Figure 4.5: AlexNet Architecture Diagram [4]

convolutional layers and three fully connected layers. The Rectified Linear Unit (ReLu)
activation function is employed in all trainable layers except for the last fully connected
layer, which adopts a softmax function. The architectural design also has non-trainable
layers, including three pooling layers, two normalization layers, and one dropout layer,
which fulfill the purpose of preventing overfitting (See Figure 4.5). Researchers choose to
employ the Rectified Linear Unit (ReLLU) function. It was shown that deep convolutional
neural networks implementing rectified linear units (ReLUs) exhibited much faster training
speeds compared to their counterparts employing hyperbolic tangent (tanh) units. When
compared to the tanh activation function, the use of the ReLLU activation function solely
generated a substantially faster training process, achieving a 25% error rate on the training
set six times more quickly. Stochastic Gradient Descent has been used with a learning rate
of 0.01, a momentum of 0.9, and a weight decay of 0.0005. The training process takes place
using two GPUs, specifically GTX 580, in order to achieve parallelism. The graphics pro-
cessing units (GPUs) employed in the system have a memory capacity of 3 gigabytes (GB)
each. The network is divided into two equal halves distributed across the two graphical

processing units (GPUs).

26

L=s oy

od — w [+ 0] =

b= 8 8 =] 8 2 in our case

(71 wn w 0 (73] 73]

— O O) T Y Y Y Y Y Y Y r—*"_'T

==} [=s] oy SN | N || N

3|13 8 8 < |8 |8 (8 18] S|F BB |5 2B |E 6] |5 <

<| |of € g ¥ Elgl lel el ol € o o] =] |ai & || || || || & § § §
S+ § i-f:"b»g NEARECEED eSS ASHESES WS F T =

S| (8| |88 3|88 (8] (888 |8 |=] |8
> > e P Fod ™| || ©3 [ag] 2]

sl s 138 (818818 |3 (888 B8 88

— e e — L T — T T e e
! | !
Block 1 Block 2 Block 3 Block 4 Block § Block &

Figure 4.6: VGG19 Architecture Diagram [5]

4.6.2 VGGI19

At the 2014 ILSVRC, A. Zisserman and K. Simonyan from the University of Oxford’s
convolutional neural network model, known as the VGG model or VGGNet, took first and
second place in the categories of object detection and image classification, respectively
[73]. The proposed approach substitutes the use of big kernel-sized filters with a sequence
of several 3x3 kernel-sized filters, resulting in a notable improvement compared to the
AlexNet architecture [73]. The VGG network is designed using convolutional filters of
reduced dimensions. The VGG-16 architecture consists of a series of 13 convolutional
layers, three fully connected layers, and a total of 16 layers in all. In contrast, VGG-
19 shows an identical architecture to VGG-16, although with the inclusion of three more

convolutional layers (See Figure 4.6) [73].

4.6.3 ResNet50

ResNets make it possible to train up to hundreds or even thousands of layers and still
achieve outstanding performance, which is the case with ResNet-152, while still having
lower complexity than VGGNet [74]. In general, training a deep neural network with
lots of layers involves the vanishing gradient problem. The backpropagation algorithm is
employed to iteratively adjust the weights of a neural network by using the chain rule of
derivatives. As the process progresses, the repeated multiplication of gradients can result
in the weights becoming exceedingly small as they propagate towards earlier layers [75]. To

avoid this problem, ResNets use the concept of skip connections. In a conventional network

27

ResNet50 Model Architecture

Input Output

Max Pool
Conv Block
ID Block
Conv Block
ID Block
Conv Block
ID Block
Conv Block
ID Block

Zero Padding
CONV
Avg Pool
Flattening
FC

e e

Stage 1 Stage 2 Stage3 Stage4 Stage5s

Figure 4.7: ResNet50 Architecture Diagram

architecture, the convolutional layers are sequentially arranged, but in skip connections,
the conventional layers are sequentially arranged, with the original input being added into
the output of the convolutional block [75].

Finally, ResNetb0 can be described as a CNN architecture that consists of 50 layers
that are divided into five residual blocks. Each residual block contains two convolutional
layers, a batch normalization unit, and a ReLu unit after it. The output of the second
convolutional layer is added to the input of the residual block and then passed to the next
residual block [76]. The final layer is a fully connected layer that retrieves a flattened
output from the last residual block and applies a softmax activation function to produce

the final output probabilities.

4.7 Data Augmentation

First of all, in order to standardize all the audios in the dataset, the duration of all the
audios was adjusted to 3 seconds. Then shifting time, shifting pitch, stretching time,
adding Gaussian noise, and masking time were considered as audio data augmentation

techniques. The following is a brief explanation of each audio augmentation technique

[77):
o Noise Injection. It inserts a random number into the data.

e Time Shift. It moves the audio to the left or right at an arbitrary second interval.

When The audio is moved to the left with x seconds, the first x seconds will be

28

marked as 0 (which indicates quiet) or rollover. When the audio is moved to the

right after x seconds, the final x seconds will be marked as 0 or rollover.
o Pitch Shift. It changes pitch randomly or within a range of semitones.

e Time Stretch. It stretches an audio file by a fixed rate, or in other words, changes

the speed of the audio.

o Time Masking. It deletes a portion of audio.

For this work, each audio is augmented 100 times, and the probability that each type

of audio augmentation is applied to such audio is 0.5.

4.8 CNN Features-Based Model

4.8.1 Feature Extraction

Abstract characteristics and concepts can be taught to CNN by feeding them with raw
image pixels. Features like edges and basic textures are taught to the first convolutional
layer(s); complex textures and patterns are examples of the types of characteristics that
later convolutional layers can learn; and the final convolutional layers are responsible for
learning features such as objects or parts of things [78]. Finally, the fully linked layers are
trained to establish associations between feature activations and target classes.

Thus, for the current work, knowledge of low-level features and high-level features
acquired from pretrained CNN architectures are used to extract the deep learning features
from the fully connected layers inspired by S. Akhtar et al. [67].

After obtaining the audio spectrograms and resampling the images to pass them through
the CNNs, pre-trained models from AlexNet, VGG19, and ResNet50 are imported, and
the point of extraction for the features are defined. For AlexNet, the features are extracted
from the output of the first and second fully connected layers; for VGG19, similarly, from
the output of the first and second fully connected layers; and for ResNetb0, from the
input of the first and only fully connected layer. The dimensions of the array of features
extracted (number of features) are 4096 in both layers for AlexNet and VGG19 and 2048
in ResNet50.

29

On top of that, in order to optimize the process of feature extraction, extraction was

performed in batches. Particularly, the batch size used was 1024 for every model specified.

4.8.2 Dataset Discretization

The majority of classification tasks in the field of machine learning often involve the process
of acquiring the ability to differentiate between different nominal class values. However, it
is important to note that these tasks can include features that possess ordinal or continuous
attributes in addition to their nominal characteristics. Discretization is a widely employed
method for achieving this objective. Discretization refers to the procedure of converting
attributes with continuous values into nominal values.

For the purpose of discretizing numerical features, Fayyad and Irani [79] proposed a
discretization technique that uses the minimum entropy heuristic. The approach employs
the concept of class entropy to determine the optimal cut point for discretization among
the candidate divisions. The aforementioned approach can be iteratively implemented on
the two intervals resulting from the previous split until certain halting criteria are met.
This process generates several intervals for the feature. Since a number of studies have
shown that this discretization technique is superior to any other technique overall [80], this

technique is used in this work.

4.8.3 Statistical-based Feature Selection Methods

Statistical-based feature selection methods originate from different statistical measures.
The majority of these methods are filter-based, utilizing statistical measures rather than
learning algorithms to evaluate feature relevance. Furthermore, the majority of statisti-
cal algorithms tend to analyze features in isolation, and therefore, feature redundancy is
neglected during the selection phase [81].

For our purpose, we are using the Chi-square score, proposed in [82] as a feature
selection method, that utilizes the test of independence to assess whether the feature
is independent of the class label. Since this feature selection method can only be used in
discrete or ordinal values [81], dataset discretization must be used before as a preprocessing

step.

30

4.8.4 Classification and Hyperparameter Tuning

For simplicity, KNN is used. In particular, KNN is a non-generalizing learning algorithm,
also referred to as an instance-based or lazy learning algorithm. The approach does not pri-
oritize the construction of a comprehensive internal model. Instead, it retains all instances
associated with the training data in an n-dimensional space. KNN uses data and classifies
new data points based on similarity measures (e.g., the Euclidean distance function) [45].
The classification process involves determining the class label of a point by taking into
account the majority vote of its k nearest neighbors. The model exhibits resilience to noisy
training data, and its accuracy is dependent upon the quality of the data [27]. A major
challenge in K-nearest neighbors (KNN) is determining the optimal number of neighbors
to consider. KNN is applicable for both classification and regression tasks [27].

In order to evaluate some possible effects between selecting features and not selecting
features, the best parameter for the number of neighbors (k) is searched in the dataset
without any preprocessing or feature selection methods. Then, using the same obtained
hyperparameter, preprocessing, feature selection and hyperparameter tuning in the best
parameter for the number of selected features is performed using validation datasets. Fi-
nally, KNN is tested on feature-selected data and non-feature-selected data using the test-
ing dataset and searched hyperparameters. For hyperparameter tuning the HPC CEDIA
Cluster was used. More precisely, a "gpu” partition with 64 CPU cores, 128000 MB of
memory, and 1 Nvidia A100 SXM4 with 40 GB of memory was reserved for 48 hours.

4.9 CNN Transfer learning-based Model

4.9.1 Importing Pre-trained CNN Network

The transfer learning model incorporates pre-trained versions of the AlexNet, VGG19,
and ResNet networks. After preprocessing the audio datasets, the models trained on the
ImageNet database were loaded, which comprises a large number of images. PyTorch

provides pre-trained models within its API.

31

4.9.2 Modifying Final Layers

The final three fully connected layers of both the pre-trained AlexNet and VGG models
are designed to classify 1000 different classes. ResNet employs a single, fully connected
layer consisting of 1000 classes. The layers in question acquire high-level features for
data classification, while others acquire low-level features. Consequently, these layers were
optimized to conduct classification on our dataset. In this scenario, it was opted to maintain
consistency in the number of fully connected layers across different architectures. However,
the output of the last layer were modified to two outputs, enabling binary classification.
Following the reset and modification of the final layers in each model, the parameters for
a fully connected layer were defined using new data. Cross-entropy was employed as the

loss function.

4.9.3 Hyperparameter Tuning

In order to perform hyperparameter tuning and training, it is need to define hardware
specifications and parameters to be tuned.

The HPC CEDIA Cluster for hyperparameter tuning was used. More precisely, it was
reserved a “gpu” partition for 48 hours, 64 CPU cores, 128000 MB of memory, and 1 Nvidia
A100 SXM4 with 40 GB of memory. Additionally, the learning rate and training batch
size were first set as hyperparameters to be tuned during the hyperparameter process in all
models. The learning rate determines the step size at each iteration, while the batch size
defines the number of samples processed in each training iteration. The optimizers em-
ployed were Stochastic Gradient Descent (SGD) with 0.09 momentum for Alexnet, Adam
for VGG19, and ResNet. In the case of Adam, we also set the weight decay parameter
to be tuned during the hyperparameter process. In the case of Alexnet and VGG19, the
number of output features of the first two fully connected layers were set to be tuned.

Table 4.1 summarizes the range of values to be chosen for hyperparameter tuning.

4.10 Model Performance Metrics

In order to access the mispronunciation system, distinctive metrics are introduced that

evaluate performance based on a particular class or label, such as PPV, NPV, and BPV.

32

Parameter/Model

AlexNet

VGG19

ResNet50

Learning Rate

Logarithmic
Random Value
from le-4 to le-1

Logarithmic
Random Value
from le-4 to le-1

Logarithmic
Random Value
from le-4 to le-1

Training Batch

64, 128, 256, 512

64, 128, 256, 512

64, 128, 256, 512

Size
First Fully 32, 64, 128, 256, 32, 64, 128, 256,
Connected Output 512, 1024, 2048, 512, 1024, 2048,
Features 4096 4096, 8192, 16384

Second Fully
Connected Output
Features

32, 64, 128, 256, 512,
1024, 2048, 4096

32, 64, 128, 256,
512, 1024, 2048,
4096, 8192, 16384

Weight Decay

Uniform Float Value
from led to le-2

Uniform Float Value
from led to le-2

Table 4.1: Range of Parameters to be Chosen for Hyperparameter Tuning

4.10.1 PPV (Positive Predictive Value)

It estimates the ratio of accurately predicted positive occurrences (true positives) to the
total number of cases that the model identified as positive (See Formula 4.1). Intuitively,
PPV is the ability of the classifier or model not to label as well-pronounced an audio that

is mispronounced [83].

TP

PPV =———"
V=Tp+rp

(4.1)

where TP and F' P stands for true positives and false positives.

4.10.2 NPV (Negative Predictive Value)

It estimates the ratio of accurately predicted negative occurrences (true negatives) to the
total number of cases that the model identified as negative (See Formula 4.2). Intuitively,
NPV is the ability of the classifier or model not to label as mispronounced an audio that

is well-pronounced [83].

TN

NPV =_——""
V= IN TN

(4.2)

where T'N and F'N stands for true negatives and false negatives.

33

4.10.3 Custom Metric: BPV (Balanced Predictive Value)

It is the arithmetic mean of the positive and negative predictive values (See Formula 4.3).
This metric aims to assess how well-balanced the model’s predictive power is. A high value
for BPV indicates that the model does a good job of not confusing well-pronounced words
with mispronounced words and vice versa. If not, the model does confuse a lot when trying

to distinguish well-pronounced words from mispronounced ones, and vice versa.

PPV + NP
BPV = V;V (4.3)

where PPV and N PV stands for positive and negative predictive values, respectively.

34

Chapter 5

Results and Discussion

5.1 Dataset Construction

When considering building a mispronunciation detection system taking into account the

state-of-the-art used datasets (See Section 4.1) for Kichwa, there were several problems.

There are no Kichwa language speech corpora for mispronunciation system detection.

In order to test and evaluate a mispronunciation system’s detection, it is necessary

to have a dataset like L2-ARCTIC and TIMIT, but for the Kichwa language.

Since L2-ARCTIC, TIMIT, and other similar datasets use Textgrid and audio files
to align the transcriptions and label the phonemes and mispronunciation errors, it
would be ideal to have a similar format for the Kichwa language dataset, but this is

clearly outrageously difficult due to the lack of personnel.

The process of text-gridding audio files in the Kichwa language requires extensive

resources, expertise, and lots of time.

It is extremely hard to find participants who are fluent in Kichwa and willing to
contribute to the dataset. This case also applies even when finding participants who

are not fluent in Kichwa, which is completely disheartening.

The process of collecting data can discourage Kichwa native speakers and non-native
speakers from participating in the process due to the duration of the process, lack of

incentives, potential privacy concerns, transportation issues, lack of time, etc.

35

For this work, to overcome these problems, the previously described method in Section
was employed. Then a Kichwa dataset that consists of a total of 500 recorded words
from various Kichwa speakers and non-speakers was constructed. Each participant in the
collection recorded and sent 25 audio files corresponding to the words in Kichwa: yana,
yanami, yurak, yurakmi, killu, killumi, puka, pukami, misi, misika, allku, allkuka, wakra,
wakraka, atallpa, atallpaka, kuchi, kuchika, challwa, challwaka, amaru, amaruka, wiwa,

Maykan, Kan. We summarize the dataset in Tables 5.1 and 5.2.

Number of Participants
Fluency Adult Male Adult Female Total

Native 3 6 9
Non-Native 6 5 11
Total 9 11 20

Table 5.1: Number of participants in the dataset

Words
Label Total
Well-pronounced 100

Mispronounced 400
Total 500

Table 5.2: Distribution of words in Kichwa dataset

5.2 Syntetic Data

As in Table 5.2, there is an imbalanced proportion of well-pronounced words. and mis-
pronounced words. When developing transfer learning models, or, to be more precise,
hyperparameter tuning, this imbalance can pose a challenge to accurately predict the mis-
pronounced words. In fact, the value of the negative predictive value was always 0, and
the positive predictive value was greater than it. This means that the model does not have
enough data to learn how to distinguish mispronounced words from pronounced words.
As a solution, it was decided to use synthetic data in the dataset. To generate such
data, a website called "Coqui Studio” was used. Initially, the website allows users to input
text and have it converted into audio, providing a large amount of data for the model

to learn from. Thus, by inputting Kichwa words into the generator, a person’s voice and

36

Name Gender Language
Aaron Dreschner Male English

Szofi Granger Female English
Ige Behringer Male English
Claribel Dervla Female German
Ilkin Urbano Male French
Camilla Holmstrom Female Portuguese
Baldur Sanjin Male Portuguese
Tanja Adelina Female French
Wulf Carlevaro Male German
Annmarie Nele Female German
Marcos Rudaski Male Portuguese

Vjollca Johnnie Female English

Table 5.3: Syntetic Participants Details

language can be selected to generate mispronounced Kichwa audio outputs. The synthetic
participants’ names and their respective languages used in this work can be detailed in
Table 5.3.

In total, 300 Kichwa audios were collected from each artificial participant. It is im-
portant to clarify that the website’s model used in this work was XTTS, which is a newer
and more expensive model. Therefore, it was expected that the voices generated by XTTS
would be of higher quality and more natural-sounding compared to other models, which,

in fact, they were.

5.3 Dataset Labelling

In fact, it should be ideal to have a voting mechanism in which if two of some experts in
Kichwa language agree on the same label, then that label is assigned to that data as in

[67], but that is not clearly possible given the circumstances.

5.4 Model’s Testing

The best models’ testing metrics can be shown in Table 5.4. Therefore, it might be found
appropriate to expose the results and discussion for this section by exposing how the afore-
mentioned table was constructed in addition to relevant observations in their respective

stages of construction.

37

5.4.1 CNN Features-based Model

e From Figure A.1 and A.2, it can be observed the hyperparameter best selection
given the number of neighbours k. The highest peak in the figure indicates the
best k selection. It is important to note that the original dataset was transformed
in another dataset given the feature extraction location in AlexNet, ResNet50 and
VGG19. Moreover, the hyperparameter tuning was done given the training set and

validation set.

e From Tables A.1 and A.2, it can be detailed better the model, its feature extraction
point, the best k£ hyperparameter selection and its corresponding validation balanced
predictive value metric given the dataset. Thus, from A.1 and A.2, it is seen that
"ResNet50: AvgPool” and "AlexNet: FC1” are the best models without feature se-
lection taking into account the validation BPV for the original and synthetic dataset,

respectively. Hereby, those models are also tested using the testing dataset and mea-

sured using PPV, NPV and BPV, and added to Table 5.4.

o After establishing the baseline models without feature selection, it is fixed k for each
model and then perform dataset discretization and use Chi-square statistical-based
feature selection method to obtain the best features. In Figures A.3 and A.4 we plot
the possible improvement of performance based on BPV metric against the number
of best important features taken into account. In Chi-square feature selection, the
greater the Chi-square score is, the better the feature is [81]. The red line is the best
BPV score without feature selection. Thus, the purpose of feature selection here,
similarly, is to search for the optimal number of features to be taken into account.
It can be observed that in some models, the feature selection method presuppose a
greater performance in the validation dataset, while in others, the performance is not

evident.

o In Tables A.3 and A.4, the best selection for the number of features according to
the validation BPV is extracted for each model, and then obtain the PPV, NPV and
BPV metrics using the testing dataset. Then, the best model given its validation
BPV is added to Table 5.4.

38

e When comparing Tables A.1, A.2, A.3 and A.4, it is noted that: in the original
dataset, feature selection improves the NPV value for the first three models, on the
other hand, in the synthetic dataset, the NPV performance is worsened in some

models;

5.4.2 CNN Transfer Learning-based Model

o For the hyperparameter tuning, it is selected a metric in order to optimize it, in
this case, validation loss. However, Ray Tune library allows to eventually save the
best models per trial given validation loss and validation BPV. This permits to
compare the performance between different metric targets when searching a metric

for optimization.

e In Tables B.1 to B.12, it is shown the best models given validation loss or balanced
predictive value. Moreover, we record some other valuable metrics, for instance, PPV,
NPV and BPV for training and validation sets. In the columns named “config”, it

can be seen the hyperparameters used in that trial.

o In Tables B.13 to B.18, it is extracted the TOP-5 best models by its corresponding
best validation metric (loss or BPV), and tested them by using the testing set. In
these tables, it is important to note that there are NPV perfect values, i.e. with
a value of 1, which can be a symptom of an inappropriate size of the dataset. By
the size of the dataset or the quality of the dataset, they may be deceivingly values.
Nevertheless, finally, we extract the best models and add them to the general table.

5.4.3 Observations from Table 5.4

o In general, transfer learning-based models achieve better performance in BPV metric.

o Feature selection technique did not show any improvement performance against mod-
els without feature selection. On the contrary, the testing metric shows that the best

models with feature selection are worse than the ones without it.

o It is not necessary to use deeper convolutional neural networks such as VGG19 or

Resnet50 to achieve the best results. For instance, AlexNet achieves the best results

39

in CNN Tranfer Learning-based Model for both original and synthetic datasets.

In terms of running time, in CNN Transfer Learning-based model, VGG19 took
roughly 24 hours to complete hyperparameter search using original dataset and syn-
thetic datasets. Meanwhile, the other two architectures took, in average, 4 hours
to complete hyperparameter search for both datasets. On the other hand, in CNN
Features-based model, running time was negligible since we performed feature ex-

traction in batches, and the KNN Classifier used 64 cores.

40

Best Models’ Performance on Testing Set

Original Dataset

CNN Features-Based Model

Test | Test | Test
Model PPV | NPV | BPV
ResNet50: AvgPool
Without Feature Selection 0.84 1 0.50 | 0.67
VGG19: FC2
with Feature Selection 0-85 0.37 0.61
CNN Transfer Learning Based Model
Test | Test | Test
Model PPV | NPV | BPV
AlexNet Loss 0.87 0.61 0.74
AlexNet BPV 0.80 1.00 0.90
VGG19 Loss 0.83 0.64 0.73
VGG19 BPV 0.81 0.40 0.60
ResNetb0 Loss 0.80 0.00 0.40
ResNetb0 BPV 0.80 0.00 0.40
Synthetic Dataset
CNN Features-Based Model
Test | Test | Test
Model PPV | NPV | BPV
AlexNet: FC1
Without Feature Selection 0.88 | 0.90 | 0.89
AlexNet: FC1
with Feature Selection 0.81 0.86 0.84

CNN Transfer Learning-Based Model

Test | Test | Test

Model PPV | NPV | BPV
AlexNet Loss 0.83 | 1.00 | 0.92
AlexNet BPV 0.83 | 1.00 | 0.92
VGG19 Loss 0.83 0.94 0.88
VGG19 BPV 0.79 0.91 0.85
ResNet50 Loss 0.52 1.00 0.76
ResNetb0 BPV 0.65 1.00 0.82

Table 5.4: Best Models” Performance on Testing Datasets. Each model has been selected
according to validation metric.

41

Chapter 6

Conclusions

This work represents an initial attempt at developing a mispronunciation system for the
Kichwa language. In this study, pretrained CNN architectures were employed to classify
spectrograms of both well-pronounced and mispronounced words. The first model, the
CNN features-based model, extracts the features from the fully connected layers, applies a
feature selection method technique in order to extract the discriminative features from the
non-discriminative ones, and classifies them with a KNN classifier. The second model, CNN
transfer-learning-based, uses knowledge from convolutional layers and modifies the classifier
layer for binary classification (well-pronounced or mispronounced). Overall, we can con-
clude that the CNN transfer learning-based method is better than the CNN feature-based
method, but nevertheless, the CNN feature-based method achieves similar performance to
the CNN transfer learning-based method in the synthetic dataset, With a larger dataset,
the transfer learning-based method may outperform the CNN feature-based method in the

original and synthetic datasets.

6.1 Observations and Limitations

o Drawing significant conclusions from a small dataset is nearly impossible, especially
from a small and imbalanced dataset. However, a larger and more balanced dataset
would allow for more meaningful conclusions, and it would facilitate a comprehensive
study of feature selection techniques and deep learning architectures with increased

reliability.

42

Since the majority of Kichwa words proposed were actually similar in pronunciation
to Spanish words, most of the audios went to the majority class of well-pronounced
words, leaving the minority class of poorly pronounced words underrepresented in
the recordings. Thus, it is probable that the selection of words may be unfavorable
for our work. In other words, it should have been chosen words with much more

difficult pronunciation.

The lack of participants and an official project for Kichwa preservation makes it
difficult to gather a diverse range of audio samples. Additionally, the absence of
standardized pronunciation guidelines further complicates the accuracy and consis-

tency of the recordings.

The use of synthetic data may ultimately distort the results and limit the reliability
of any conclusions drawn from the study, particularly in the use of the synthetic

dataset.

The way words were collected may not be appropriate due to their individual record-
ings. In fact, it could be better if a person recorded different sentences from different
sources. Hence, it should have been better to follow recording and organizational

guidelines from official mispronunciation datasets such as TIMIT or L2-Arctic.

It might be a risky decision to construct a mispronunciation model based on Kichwa
first rather than a model based on official mispronunciation datasets such as TIMIT
or L2-Arctic. In this way, it could have drawn better conclusions from the model,
given the official datasets and learning how such datasets are constructed, in order

to implement a similar one for Kichwa.

CNN architectures may not be suitable for phrases or sentences. Instead, recurrent
neural networks or transformer models are often employed due to their ability to

capture sequential dependencies.

The work only uses a KNN classifier and a feature selection method technique to

evaluate performance, thus probably ignoring better alternatives.

43

o It is necessary to implement and train the models in a high-performance computing

cluster.

44

Bibliography

1]

[7]

[. H. Sarker, “Deep learning: a comprehensive overview on techniques, taxonomy,
applications and research directions,” SN Computer Science, vol. 2, no. 6, p. 420,

2021.

G. Zhao, S. Sonsaat, A. Silpachai, 1. Lucic, E. Chukharev-Hudilainen,
J. Levis, and R. Gutierrez-Osuna, “L2-arctic: A non-native english speech
corpus,” in Proc. Interspeech, 2018, p. 2783-2787. [Online]. Available: http:
//dx.doi.org/10.21437 /Interspeech.2018-1110

J. S. Garofolo, “Timit acoustic phonetic continuous speech corpus,” Linguistic Data

Consortium, 1993, 1993.

A. Pujara, “Concept of alexnet:- convolutional neural network,”
Jun 2021. [Online]. Available: https://medium.com/analytics-vidhya/

concept-of-alexnet-convolutional-neural-network-6e73b4{9ee30

A. Khattar and S. Quadri, “Generalization of convolutional network to domain adap-
tation network for classification of disaster images on twitter,” Multimedia Tools and

Applications, vol. 81, no. 21, pp. 30437-30464, 2022.

UNESCO, “Indigenous peoples’ right to education: overview of the measures support-
ing the right to education for indigenous peoples reported by member states in the
context of the ninth consultation on the 1960 convention and recommendation against

discrimination in education,” 2019.

“Indigenous peoples - UNESCO,” https://www.unesco.org/en/indigenous-peoples,
(accessed Aug 28, 2023).

45

http://dx.doi.org/10.21437/Interspeech.2018-1110
http://dx.doi.org/10.21437/Interspeech.2018-1110
https://medium.com/analytics-vidhya/concept-of-alexnet-convolutional-neural-network-6e73b4f9ee30
https://medium.com/analytics-vidhya/concept-of-alexnet-convolutional-neural-network-6e73b4f9ee30
https://www.unesco.org/en/indigenous-peoples

8]

[18]

“Indigenous peoples overview,” https://www.worldbank.org/en/topic/

indigenouspeoples#1, (accessed Aug 28, 2023).

UNESCO, “The UNESCO Courier,” in 2019: the International Year of Indigenous
Languages, 2019.

M. de Educacion, “Informe en relaciéon a la “convencién relativa a la lucha contra
las discriminaciones en la esfera de la ensenanza (la convencién) y la recomendacion
relativa a la lucha contra las discriminaciones en la esfera de la ensenanza (la recomen-

dacién), aprobadas por la conferencia general de la unesco en 1960.”

J. G. Armijos Monar, B. N. Fuertes Lopez, J. E. Delgado Altamirano, and V. M. V.
Villa, “University indigenous students’ perceptions towards kichwa, spanish and en-

glish.” English Language Teaching, vol. 11, no. 2, pp. 131-148, 2018.

M. A. Peabody, “Methods for pronunciation assessment in computer aided language

learning,” Ph.D. dissertation, Massachusetts Institute of Technology, 2011.

T. R. Kurfess et al., Robotics and automation handbook. CRC press Boca Raton, FL,
2005, vol. 414.

M. Rosheim, Leonardo’s Lost Robots. Springer Science & Business Media, 2006.

P. Hamet and J. Tremblay, “Artificial intelligence in medicine,” Metabolism, vol. 69,

pp. S36—-540, 2017.

A. Holzinger, G. Langs, H. Denk, K. Zatloukal, and H. Miiller, “Causability and
explainability of artificial intelligence in medicine,” Wiley Interdisciplinary Reviews:

Data Mining and Knowledge Discovery, vol. 9, no. 4, p. e1312, 2019.

B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman, “Building machines
that learn and think like people,” Behavioral and brain sciences, vol. 40, p. €253, 2017.

7. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,” I[EEE Transac-
tions on Knowledge and Data Engineering, vol. 34, no. 1, pp. 249-270, 2020.

46

https://www.worldbank.org/en/topic/indigenouspeoples#1
https://www.worldbank.org/en/topic/indigenouspeoples#1

[19]

[20]

[21]

[22]

23]

[25]

[26]

[27]

28]

C. Zhang and Y. Lu, “Study on artificial intelligence: The state of the art and future
prospects,” Journal of Industrial Information Integration, vol. 23, p. 100224, 2021.

M. Bertolini, D. Mezzogori, M. Neroni, and F. Zammori, “Machine learning for indus-
trial applications: A comprehensive literature review,” Ezpert Systems with Applica-

tions, vol. 175, p. 114820, 2021.
C. Robert, “Machine learning, a probabilistic perspective,” 2014.

I. H. Sarker, A. Kayes, S. Badsha, H. Alqahtani, P. Watters, and A. Ng, “Cybersecurity
data science: an overview from machine learning perspective,” Journal of Big data,

vol. 7, pp. 1-29, 2020.

S. Das, A. Dey, A. Pal, and N. Roy, “Applications of artificial intelligence in machine
learning: review and prospect,” International Journal of Computer Applications, vol.

115, no. 9, 2015.

G. Carleo, 1. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto,
and L. Zdeborova, “Machine learning and the physical sciences,” Reviews of Modern

Physics, vol. 91, no. 4, p. 045002, 2019.

R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Machine learning: An artificial
intelligence approach. Springer Science & Business Media, 2013.

Y

S. Ray, “A quick review of machine learning algorithms,” in 2019 International con-
ference on machine learning, big data, cloud and parallel computing (COMITCon).

IEEE, 2019, pp. 35-39.

[. H. Sarker, “Machine learning: Algorithms, real-world applications and research

directions,” SN computer science, vol. 2, no. 3, p. 160, 2021.

D. Dhall, R. Kaur, and M. Juneja, “Machine learning: a review of the algorithms and
its applications,” Proceedings of ICRIC 2019: Recent Innovations in Computing, pp.
47-63, 2020.

47

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

L. Deng, “A tutorial survey of architectures, algorithms, and applications for deep
learning,” APSIPA transactions on Signal and Information Processing, vol. 3, p. €2,

2014.

A. Arya and S. Sridhar, “Overview of big data analytics technologies in smart grid,”

2023.

J. Han, J. Pei, and H. Tong, Data mining: concepts and techniques. Morgan kauf-

mann, 2022.
G. Bonaccorso, Machine learning algorithms. Packt Publishing Ltd, 2017.

A. Arshaghi, M. Ashourian, and L. Ghabeli, “Potato diseases detection and classifica-
tion using deep learning methods,” Multimedia Tools and Applications, vol. 82, no. 4,

pp. 5725-5742, 2023.

F. Anowar, S. Sadaoui, and B. Selim, “Conceptual and empirical comparison of dimen-
sionality reduction algorithms (pca, kpca, lda, mds, svd, lle, isomap, le, ica, t-sne),”

Computer Science Review, vol. 40, p. 100378, 2021.

[. H. Sarker, Y. B. Abushark, F. Alsolami, and A. I. Khan, “Intrudtree: a machine
learning based cyber security intrusion detection model,” Symmetry, vol. 12, no. 5, p.

754, 2020.

I. H. Sarker, Y. B. Abushark, and A. I. Khan, “Contextpca: Predicting context-aware
smartphone apps usage based on machine learning techniques,” Symmetry, vol. 12,

no. 4, p. 499, 2020.

[. H. Sarker, “Data science and analytics: an overview from data-driven smart com-
puting, decision-making and applications perspective,” SN Computer Science, vol. 2,

no. 5, p. 377, 2021.

Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew, “Deep learning for
visual understanding: A review,” Neurocomputing, vol. 187, pp. 27-48, 2016.

A. Ng, “Machine learning yearning: Technical strategy for ai engineers in the era of

deep learning. retrieved online at h ttps,” 2019.

48

[40]

[41]

[44]

[46]

[47]

[48]

[49]

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp.
436-444, 2015.

Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou, and C. Wang,
“Machine learning and deep learning methods for cybersecurity,” leee access, vol. 6,

pp. 35365-35381, 2018.

L. Deng, D. Yu et al., “Deep learning: methods and applications,” Foundations and
trends® in signal processing, vol. 7, no. 3—4, pp. 197-387, 2014.

I. H. Sarker, A. Kayes, and P. Watters, “Effectiveness analysis of machine learning
classification models for predicting personalized context-aware smartphone usage,”

Journal of Big Data, vol. 6, no. 1, pp. 1-28, 2019.

L. Deng, “Three classes of deep learning architectures and their applications: a tutorial
survey,” APSIPA transactions on signal and information processing, vol. 57, p. 58,

2012.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Machine learning in

python,” the Journal of machine Learning research, vol. 12, pp. 2825-2830, 2011.

I. H. Sarker, M. H. Furhad, and R. Nowrozy, “Ai-driven cybersecurity: an overview,
security intelligence modeling and research directions,” SN Computer Science, vol. 2,

pp- 1-18, 2021.

I. H. Sarker, “Deep cybersecurity: a comprehensive overview from neural network and

deep learning perspective,” SN Computer Science, vol. 2, no. 3, p. 154, 2021.

b

A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow.

O’Reilly Media, Inc.”, 2022.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEFE, vol. 86, no. 11, pp. 2278-2324, 1998.

49

[50]

[51]

[52]

[55]

[56]

[57]

[58]

K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional
networks for visual recognition,” IEFEFE transactions on pattern analysis and machine

intelligence, vol. 37, no. 9, pp. 1904-1916, 2015.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Advances in neural information processing systems,

vol. 25, 2012.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,

2016, pp. 770-778.

K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,” Journal
of Big data, vol. 3, no. 1, pp. 1-40, 2016.

F. Nazir, M. N. Majeed, M. A. Ghazanfar, and M. Magsood, “Mispronunciation de-
tection using deep convolutional neural network features and transfer learning-based

model for arabic phonemes,” IEEFE Access, vol. 7, pp. 52 589-52 608, 2019.

S. M. Witt and S. J. Young, “Phone-level pronunciation scoring and assessment for
interactive language learning,” Speech communication, vol. 30, no. 2-3, pp. 95-108,

2000.

H. Franco, L. Neumeyer, M. Ramos, and H. Bratt, “Automatic detection of phone-
level mispronunciation for language learning,” in Sixth European Conference on Speech

Communication and Technology, 1999.

H. Strik, K. Truong, F. De Wet, and C. Cucchiarini, “Comparing different approaches
for automatic pronunciation error detection,” Speech communication, vol. 51, no. 10,

pp. 845-852, 2009.

N. Minematsu, S. Asakawa, and K. Hirose, “Structural representation of the pronun-
ciation and its use for call,” in 2006 IEEE Spoken Language Technology Workshop.
IEEE, 2006, pp. 126-129.

20

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Y.-B. Wang and L.-S. Lee, “Improved approaches of modeling and detecting error
patterns with empirical analysis for computer-aided pronunciation training,” in 2012

IEFEF international conference on acoustics, speech and signal processing (ICASSP).

IEEE, 2012, pp. 5049-5052.

F. Zhang, C. Huang, F. K. Soong, M. Chu, and R. Wang, “Automatic mispronunci-
ation detection for mandarin,” in 2008 IEEE International Conference on Acoustics,

Speech and Signal Processing. TEEE, 2008, pp. 5077-5080.

A. Tto, Y.-L. Lim, M. Suzuki, and S. Makino, “Pronunciation error detection method
based on error rule clustering using a decision tree,” in Ninth Furopean Conference

on Speech Communication and Technology, 2005.

G. Georgoulas, V. C. Georgopoulos, and C. D. Stylios, “Speech sound classification
and detection of articulation disorders with support vector machines and wavelets,”
in 2006 International Conference of the IEEE Engineering in Medicine and Biology
Society. TEEE, 2006, pp. 2199-2202.

I. Amdal, M. H. Johnsen, and E. Versvik, “Automatic evaluation of quantity contrast
in non-native norwegian speech,” in International Workshop on Speech and Language

Technology in Education, 20009.

H. Li, J. Liang, S. Wang, and B. Xu, “An efficient mispronounciation detction method
using glds-svm and formant enhanced features,” in 2009 IEEE International Confer-

ence on Acoustics, Speech and Signal Processing. 1EEE, 2009, pp. 4845-4848.

S. Wei, G. Hu, Y. Hu, and R.-H. Wang, “A new method for mispronunciation de-
tection using support vector machine based on pronunciation space models,” Speech

Communication, vol. 51, no. 10, pp. 896-905, 2009.

M. Magsood, “Feature selection for arabic mispronunciation detection based on se-
quential floating forward selection and data mining classifiers,” Pakistan Journal of

Science, vol. 68, no. 4, 2016.

S. Akhtar, F. Hussain, F. R. Raja, M. Ehatisham-ul haq, N. K. Baloch, F. Ishmanov,

and Y. B. Zikria, “Improving mispronunciation detection of arabic words for non-

51

[68]

[69]

[70]

[71]

[72]

73]

[77]

native learners using deep convolutional neural network features,” Electronics, vol. 9,

no. 6, p. 963, 2020.

M. Wu, K. Li, W.-K. Leung, and H. Meng, “Transformer based end-to-end mispro-
nunciation detection and diagnosis.” in Interspeech, 2021, pp. 3954-3958.

N. F. Chen, R. Tong, D. Wee, P. Lee, B. Ma, and H. Li, “icall corpus: Mandarin chinese
spoken by non-native speakers of european descent,” in Sixteenth Annual Conference

of the International Speech Communication Association, 2015.

S. A. Fulop and K. Fitz, “A spectrogram for the twenty-first century,” Acoustics today,
vol. 2, no. 3, pp. 26-33, 2006.

B. Akera, “Alexnet: A brief review,” May 2020. [Online]. Available: https:

//medium.com/ai-research-lab-kampala/alexnet-a-brief-review-14979ce7cc84

M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin, B. C.
Van Esesn, A. A. S. Awwal, and V. K. Asari, “The history began from alexnet: A

comprehensive survey on deep learning approaches,” arXiv preprint arXiv:1803.01164,

2018.

G. Boesch, “Vgg very deep convolutional networks (vggnet) - what you need
to know - viso.ai,” Oct 2021. [Online]. Available: https://viso.ai/deep-learning/

vgg-very-deep-convolutional-networks /
Jan 2019. [Online]. Available: https://iq.opengenus.org/resnet/

S. R. Sapireddy, “Resnet-50: Introduction,” Jul 2023. [Online]. Available:
https://srsapireddy.medium.com/resnet-50-introduction-b5435fdba66f

wisdomml, “Understanding resnet-50 in depth: Architecture, skip connections, and
advantages over other networks - wisdom ml,” Mar 2023. [Online]. Avail-
able: https://wisdomml.in/understanding-resnet-50-in-depth-architecture-skip-\

connections-and-advantages-over-other-networks/

E. Ma, “Data augmentation for audio,” Jun 2019. [Online]. Available: https:
//medium.com/@makcedward/data-augmentation-for-audio-76912b01{df6

52

https://medium.com/ai-research-lab-kampala/alexnet-a-brief-review-14979ce7cc84
https://medium.com/ai-research-lab-kampala/alexnet-a-brief-review-14979ce7cc84
https://viso.ai/deep-learning/vgg-very-deep-convolutional-networks/
https://viso.ai/deep-learning/vgg-very-deep-convolutional-networks/
https://iq.opengenus.org/resnet/
https://srsapireddy.medium.com/resnet-50-introduction-b5435fdba66f
https://wisdomml.in/understanding-resnet-50-in-depth-architecture-skip-\connections-and-advantages-over-other-networks/
https://wisdomml.in/understanding-resnet-50-in-depth-architecture-skip-\connections-and-advantages-over-other-networks/
https://medium.com/@makcedward/data-augmentation-for-audio-76912b01fdf6
https://medium.com/@makcedward/data-augmentation-for-audio-76912b01fdf6

78]

[79]

[82]

C. Molnar, “Interpretable machine learning,” Aug 2023. [Online]. Available:
https://christophm.github.io/interpretable-ml-book /cnn-features.html

U. Fayyad and K. Irani, “Multi-interval discretisation of continuous-valued at-
tributes,[in:] proceedings of the xiii international joint conference on artificial intelli-

gence,” 1993.

M. A. Hall, “Correlation-based feature selection for machine learning,” Ph.D. disser-

tation, The University of Waikato, 1999.

J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and H. Liu, “Feature
selection: A data perspective,” ACM computing surveys (CSUR), vol. 50, no. 6, pp.
1-45, 2017.

H. Liu and R. Setiono, “Chi2: Feature selection and discretization of numeric at-
tributes,” in Proceedings of 7th IEEFE international conference on tools with artificial

intelligence. leee, 1995, pp. 388-391.

[Online]. Available: https://scikit-learn.org/stable/modules/generated /sklearn.

metrics.precision_score.html

53

https://christophm.github.io/interpretable-ml-book/cnn-features.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html

Appendices

o4

Appendix A

CNN Features-based Model
Hyperparameter Tuning and Testing
Results: Diagrams and Tables

Hyperparameter Tuning (k) and Testing without Feature Selection in Original Dataset
Best Results

Model K Validation | Test | Test Test

BPV PPV | NPV BPV

AlexNet: FC1 9 0.62 0.82 0.35 0.59
AlexNet: FC2 4 0.58 0.82 0.26 0.54
VGG19: FC1 9 0.60 0.84 0.38 0.61
VGG19: FC2 5 0.63 0.86 0.45 0.66
ResNet50: AvgPool | 5 0.64 0.84 | 0.50 0.67

Table A.1: CNN Features-based Hyperparameter Tuning on k and Testing in Original
Dataset

95

Hyperparameter Tuning (k) and Testing without Feature Selection in Synthetic Dataset
Best Results

Validation | Test | Test Test
Model k! "BPV |PPV | NPV BPV
AlexNet: FC1 9 0.90 0.88 | 0.90 0.89
AlexNet: FC2 9 0.88 0.83 | 0.94 0.88
VGG19: FC1 10 0.89 0.82 | 0.89 0.85
VGG19: FC2 1 0.90 0.82 | 091 0.87
ResNet50: AvgPool | 9 0.89 0.84 | 0.92 0.88

Table A.2: CNN Features-based Hyperparameter Tuning on k and Testing in Synthetic
Dataset

Hyperparameter Tuning (number of features) and Testing with Feature Selection in Original Dataset
Best Results
Number s 1o
Model of Validation | Test | Test Test
BPV PPV | NPV BPV
Features
AlexNet: FC1 245 0.69 0.82 | 043 0.62
AlexNet: FC2 88 0.62 0.83 | 0.29 0.56
VGG19: FC1 188 0.60 0.84 | 0.45 0.65
VGG19: FC2 47 0.72 0.85 | 0.37 0.61
ResNet50: AvgPool 346 0.65 0.82 | 0.32 0.57

Table A.3: CNN Features-based Hyperparameter Tuning with Feature Selection and Test-
ing in Original Dataset

Hyperparameter Tuning (number of features) and Testing with Feature Selection in Synthetic Dataset
Best Results
Number s
Model of Validation | Test | Test Test
BPV PPV | NPV BPV
Features
AlexNet: FC1 360 0.92 0.81 | 0.86 0.84
AlexNet: FC2 249 0.91 0.84 | 0.94 0.89
VGG19: FC1 249 0.91 0.80 | 0.82 0.81
VGG19: FC2 166 0.90 0.80 | 0.82 0.81
ResNet50: AvgPool 386 0.90 0.78 | 0.94 0.86

Table A.4: CNN Features-based Hyperparameter Tuning with Feature Selection and Test-
ing in Synthetic Dataset

o6

AlexNet Hyperparameter Tuning without Feature Selection in Original Dataset: FC1 AlexNet Hyperparameter Tuning without Feature Selection in Original Dataset: FC2

—— Validation BPV —— Validation BPV
.62
06 0.57
$o61 E
S T 056
v o
> >
S 0.60 S
3 B o055
I I
° °
o 3
§ 0.59 %
2 £ 054
@ @
0.58
0.53
0.57
2 4 6 8 10 2 4 6 8 10
Number of Neighbours (k) Number of Neighbours (k)

VGG19 Hyperparameter Tuning without Feature Selection in Original Dataset: FC1 VGG19 Hyperparameter Tuning without Feature Selection in Original Dataset: FC2
—— Validation BPV

0.60{ — Validation BPV
0.62
3058 s
2 2 0.60
o °
2 2
£ S
3 0.56 K
& & 058
© o
3 9
I3 I3
£ 5
o 0.54 2
@ @ 0.56
0.52 0.54
2 4 6 8 10 2 4 10
Number of Neighbours (k) Number of Neighbours (k)
ResNet50 Hyperparameter Tuning without Feature Selection in Original Dataset: AveragePool
0.64 —— Validation BPV
0.63
9
E]
3 062
2
So61
5
g
£
g 060
g
5
8059
0.58
0.57

4 6 10
Number of Neighbours (k)

Figure A.1: KNN Classifier Hyperparameter Tuning in Original Dataset.

57

AlexNet Hyperparameter Tuning without Feature Selection in Synthetic Dataset: FC1 AlexNet Hyperparameter Tuning without Feature Selection in Synthetic Dataset: FC2

0.90 { — Validation BPV 0.88 | — Validation BPV
0.89
Soss go086
K K
2087 2
é é 0.84
2086 [
© ©
g g
508 5082
3 ?
8 a8
0.84
0.83 0.80
2 10 2 10

4 6 4 6
Number of Neighbours (k) Number of Neighbours (k)

VGG19 Hyperparameter Tuning without Feature Selection in Synthetic Dataset: FC1 VGG19 Hyperparameter Tuning without Feature Selection in Synthetic Dataset: FC2

0.89 1 — Validation BPV —— Validation BPV
0.88 0.89
0 0.87 M
]]
3 3
> >
© 0.86 v 088
2 2
2 S
5085 b
& &
0.87
T 0.84 3
3 3
2 2
5 8
083 =
0.86
0.82
o8t 0.85
2 8 10 2 8 10

4 6 4 6
Number of Neighbours (k) Number of Neighbours (k)

ResNet50 Hyperparameter Tuning without Feature Selection in Synthetic Dataset: AveragePool

—— Validation BPV
0.89

° o o
@ ® ©
& 2 &

Balanced Predictive Value
°
©
&

0.84

4 6
Number of Neighbours (k)

Figure A.2: KNN Classifier Hyperparameter Tuning in Synthetic Dataset.

58

AlexNet Hyperparameter Tuning with Chi-Square Feature Selection in Original Dataset: FC1

0.675
0.650
@
3 | ol 1
s
2 0.625 1
e f ' T Ul'r I
2 0.600
[
a
0575
g
g
5
2 0550
0525
—— Validation BPV with Feature Selection
0.500 —— Validation BPV without Feature Selection

0 50 100 150 200 250 350 400

Number of Features

300

VGG19 Hyperparameter Tuning with Chi-Square Feature Selection in Original Dataset: FC1

0.60

Balanced Predictive Value

—— Validation BPV with Feature Selection
—— Validation BPV without Feature Selection

100 150 200 250 350 400

Number of Features

300

AlexNet Hyperparameter Tuning with Chi-Square Feature Selection in Original Dataset: FC2
0.62

—— Validation BPV with Feature Selection
—— Validation BPV without Feature Selection

0.60

Balanced Predictive Value
o o o
o @ @
£ & @

o
o
5

o
@
S

0 50 100 150 200 250 350 400

Number of Features

300

VGG19 Hyperparameter Tuning with Chi-Square Feature Selection in Original Dataset: FC2

—— Validation BPV with Feature Selection

0.70 —— Validation BPV without Feature Selection

14
Y
&

14
Y
3

Balanced Predictive Value
=4
o
&

0.50

0 50 100 150 200 250 350 400

Number of Features

300

ResNet50 Hyperparameter Tuning with Chi-Square Feature Selection in Original Dataset: AveragePool

0.650

)

0.625

0.600

0.575

0.550

Balanced Predictive Value

0.525

0.500

0.475

—— Validation BPV with Feature Selection
—— Validation BPV without Feature Selection

100 150

200 250 300 350 400

Number of Features

Figure A.3: Feature Selection Hyperparameter Tuning in Original Dataset

59

AlexNet Hyperparameter Tuning with Chi-Square Feature Selection in Synthetic Dataset: FC1 AlexNet Hyperparameter Tuning with Chi-Square Feature Selection in Synthetic Dataset: FC2
0.92

0.925 M}’Ld
0.900 A i n lYurjA ot 0.90 L ’1{ MMH ,—rn_mw
$ 0875 S 0.8 l H)
: : SN
v v
2 0.850 K
3 © 0.86
5 5
] 2
& 0.825 &
3 g 0.84
g g
5 0.800 &
K] ®
@ @ 0.82
0.775
0.750 —— Validation BPV with Feature Selection 0.80 —— Validation BPV with Feature Selection
: —— Validation BPV without Feature Selection —— Validation BPV without Feature Selection
4 50 100 150 200 250 300 350 400 4 50 100 150 200 250 300 350 400
Number of Features Number of Features

VGG19 Hyperparameter Tuning with Chi-Square Feature Selection in Synthetic Dataset: FC1 VGG19 Hyperparameter Tuning with Chi-Square Feature Selection in Synthetic Dataset: FC2
0.90

P
LT To e 0.85

0.90 AW L LYELEY
U

0.85

°
@
3

Balanced Predictive Value
S o <
3
&
Balanced Predictive Value
°
o
3

°
S
S

0.65

—— Validation BPV with Feature Selection —— Validation BPV with Feature Selection
0.60 —— Validation BPV without Feature Selection —— Validation BPV without Feature Selection

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Number of Features Number of Features

ResNet50 Hyperparameter Tuning with Chi-Square Feature Selection in Synthetic Dataset: AveragePool
0.90

Balanced Predictive Value
° ° °
3 ® ®
3 g &

°
3

0.65

—— Validation BPV with Feature Selection
—— Validation BPV without Feature Selection

0 50 100 150 200 250 300 350 400
Number of Features.

Figure A.4: Feature Selection Hyperparameter Tuning in Synthetic Dataset

60

Appendix B

CNN Transfer Learning-based Model
Hyperparameter Tuning and Testing

Results: Diagrams and Tables

61

"OLIJOWN S® SSO[uorjepIfea suisn [err) 1od sjnsor 8o :jose)e(] [RUISLI() UO Juruny, rojourerediodA[JoNXO[y :T1'{ °o[qr],

9ISILFREGI00 0 |H02 96z L CLF1906°60Z [02122 6G1° 10 | 90 Wpo’vIpoy’(-0-0pou-X3p GLFI906°60Z | 6229909691 | 67861 RI-60E: 1£000°65C08 L 4NUL 09°0¢
9616269960000 [81 € 6106566918 | 02122 6G1°T0 | 90"NPo"vIpov'(-0-0pou-X3p. 6105G60°15 | 616090601 | 616618 1606202 | 05000 65<08 € 404l [Tnd
12E1066£98000°0 9601 821 9 26SL06T"LLT | 02122 6GT 102 | 90 NPo’vIpoo’(-)-opou-X3p. Z6SL0GT"LLT | LEZ990G69T | LS-EF-61R1-60-620Z | 6200076508 9 4NUL [id
C09ZZ168F100°0 9 81 01 SRLEPFL'GLT | 02122 6GT 10 | 90 NPovIpoo'(-)-opou-x3p. SRLEFTL'GLT. ﬁ.:é: 2691 [90-0F-61"R1-60-6202 | 8G00076GC08. 01 404l 19°68
ROZ9S0GTREO D 201 g 99E£2L9F 68 | 02122 6GT 102 | 90 Po"vIpod’(-0-opou-X3p. 99E£2L9F 68 | L£9G90G69T | LC-E€-61R1-60-620Z | L2000 6SC0R 0L 1608
SIFO1ZZ1E200°0 9601 g SRTTRL'L0T | 02122 651103 | 99 po 81pa’-0-0pou-xp SSTI8L°L0T | LFCG904691 | L2-26-61R1-606202 | 92000765C08 04l 0L 9108
GLEREELTFI0'0 RH0C 96z LGZRGER 001 | 02122 6GT 10 | 90 Pa"BIpod’(-)-opou-X3p. LGZ8GER 001 | 6676909691 | 6£-0£-6181-60-6202 | S2000765C08 A04L 0L |12E
9416210220000 9601 21 TE8CPE0Z'R6 | 02162 6ST 10T | 99 po v1pao*(-0-0pou-x3p TERCPE0Z 86 | 8EEGI0G69T | 8G-82-6181-60-620Z | FZ00065C08 A0YL 0L 201E
91ZEF6LIEE000°0) 21 SESCEE6S €D | 02122 6GT 10 | 90 TPaBIpod’(-0-9pou-x3p SERCEE6CED | 6026909691 | 67-92-6181-60-620 | £2000765C08 z]as1vd 0L 0898
LEFREREFL00°0 95z 96z TEHOSTRG'68 | 02122 6GT 107 | 90 PaBIpod’(-)-opou-X3p. TEHOSTRG 68 | 9F16909691 | 9F-GZ-6181-60-6202 | 2200076508 d04L 0L [
1GFRO8Z01Z00°0 9601 9 FL80€ZSTT | 02162 651107 | 99 po e1pa’-0-0pou-xp FLR0EZCTT | 82CPO0G69T | 82-CT-6181-60-620Z | 12000765508 A5V 404l L
£620029819000°0 8102 96z 8982219606 | 02122 6GT 107 | 90 pa"e1pod’(-)-opou-X3p. 8981219606 | 9266904691 | 91-9G-R18T-60-620 | 0200076508 404l 0L
05699682100 21g el TYGLIETTTE | 02122 6GT 10T | 99 PaBIpod’(-0-opou-X3p. TYCLIETTTE | 9226909691 | 9F-EG-RI8I-60-620Z | 6100076508 A5V 404l
6806¥FL92L2000°0 201 el 69061060°06 | 02122 6GT 10 | 99 pa"e1pod*(-)-opou-X3p. GODGTOS0'06 | 661903601 | ST-66-$T8T-60-620¢ ETT 40uL
8LVTEGSELIO0 g 9 TIVE86L6°F9 | 02162651 10T | 99" 1po e1pad -0-0pou-xp GLOE90GGIT | C1-14-RI81-60£20C A5V 40uL
el 1G8€099'ST1 | 02122 65T 10 | 99 1po)-0pou-x3p V62904691 | 9061818160202 ATV 4nuL
928311698000 [8PL0SIC 61T | 02122 651 10T | 201po;)-0pou-X3p 6592905691 | 61-7F-81781-60-£208 ATV 4nuL
VEC0ERE09100°0 s 56£GS8'06 | 02122 651" 10T | 201po;)-0pOu-X3p LG6ESEYR 06 | OPVZI0S69T | 0V-0F8IRI-60€202 g anuL
90SEEILVEL00 0 19 CORTG'ELY | 02122 66110 | 20 npo)-0POU-X3p CERE6ELY | LGZ1905691 | LE02RIRI60E202 | £1000765608 0L
6Z0S888097000°0 96z LLZIVIG 6] | 027122 6S1 10 | 90 poeipoy'(-)-0pou-X3p. £LLTIVICG8 | £F80006691 | E0-PT-RIRI-60-620Z | ZL0006SC0R HOML
S2FILITY000'0 v9 £221909°629 [02122 64110 | 90 WpovIpoy'(-0-0pou-Xap L21909°6L9 05691 | £6-6P-L181-60-620Z | 1100076508 404l 180
1689905210000 96z 96LEPIGLTL | 02122 6G1 10 | 90 MpovIpoy'(-)-0pou-Xap 96LEVIOLTL ;58 691 | LE-RE-LIRI-606202 | 0100076GC08' H0ML 140
GOSTRLFIRE000°0 SI£E88T'L2¢ | 02122 641" 10T | 90 MpovIpoy 0-)-0pou-x3p RIEZRRE LTE | 95GRE0G691 | 96-0£-LIRI-60-620Z | 6000076SC0R 0L £20
RPEGILEEST0'0 CE662ER6'18 | 02122 6G1 10 | 90 NPovIPoy'(-)-opou-X3p. GE6£2ER6'18 | 6262509691 | 62-62-LIRI-60-620Z | 8000076508 4nur L0
665601 | 02122 651103 | 99Mpo 8P 0-0-0pou-xsp GLRG6SE 0L | LPRAG0G69T | L0-F2-LT™R1-60-6202 | L0000™65S08 404l 60
GZ01C8LTE90"0 TIPERTLVET | 027122 6GT 102 | 90 NpovIpoo’(-0-opou-X3p. TITERE LVET | 6922509691 | 62-F1-LIR1-60-620Z | 9000076508 4nuL R0
£6L6S6E9E10°0 FI6LFORS TR | 027122 6GT 102 | 90 PovIpoo’(-0-opou-x3p. :23%3 2266509691 | 20-25-91R1-606202 | S000076G508 40Ul 60
G66E619L922000°0 96z [TZ6EL08R CS | 02162 65T 107 | 99" 1po 81 (-0-0pou-xsp TZ6EL088°GS | 60RGE0G69T | 60-06-0TR1-60-£20Z | F000065S08 0L 60
FOIZLLTIZL00°0 9 95z PE9ZLEGTOL | 02122 6GT 107 | 90 Po'BIpoo’(-)-opou-X3p. FGOTLEOTOL | £CLEG0S60T | £1-6F9TRI-60 6207 | £0000°65C08 04l 0L 080
9FL8LTLFEZ00°0 a0t 201 9TFLERYS TR | 02122 6GT 107 | 90 Pa'BIpoo’(-0-opou-X3p. 9TFLERIS TS | LL9GS0G69T | LG-LF-9TRT-60-6202 | Z0000765C08 d0YL 0L 610
COZ6CE0EIE00 0 a0t 9601 176022118 | 02162 65T 10T | 99 1po v1pao*(-0-0pou-x3p TPEL02Z1 T8 | G6SGE0G69T | Ce-0F-0T81-60-620Z | 10000765508 d04L 0L 780
Fe0r 21g [5a LIS691°TIZL | 02122 6GT 107 | 99 pa"BIpod’(-0-opou-X3p. 1286912121 | 6067509691 | 60-GE-9T8T-60-620Z | 0000076508 £F [ASTVeL 0L ceo] wol| 160] o] oro] 980
11/Syuoo | gun/Syguos | yu/sguos SI0}SOTODIS SUOITEIO) | 9101SaT9DUIS Uy dropou Suremsor Seioroun | dureysouy oep Prieny | nopwieyrswmes | auop | ywodpatp poys | S oyrsiqy-ewy | aduwa | add-a | aduay | adday | adqa | adqa

62

“OLIjoU

se AJg Sursn [err} 1od symsal

1s9q :jeseyR(] [RUISLI() U0 Surun], jeureredodA 1ONXOTY :g'd °19RI,

SPISFISIIS

TIESRILIES

63

"DLIJOUL S SSO[uoryeplfea Sulsn [eLI} Iod S}NSAI 1S9 :jose)e(] 213YuLG uo uruny, wjeurerediodAF JONXO[Y €€ 9[qeL

GGTPGLIPRG | 02 12 651 GOTVGLVTRG SC65-TT 1606 ANUL ANUL GVGLIZSTGL 0 | G6TIZO9VTL0 | €8621G 66616292820 | GF2196E£0L'0 EEVRLE] 1€
GLLTOEET € €6 05-LE-TT8T-60-E: ANUL ANUL G6S1998T 6T T90GZGR00E 0 | GOTESERG9Z 0 20 STITOVESTE D
RIGZE65Y G0 S162£659°C6 91-08-TT S1-606: ANUL ANUL 1201706 SLTT BLTL'0 | GOSRGL6TGR 0 | 8R169LGE
RITLIS6L 86 OVVETTRIGOE: ANUL ANUL 3196570 6z'0 TLEGIOSSIZ 0
LOZLOVEVEVOD'0 TTLLVOVGIE TETT8I60-E: ASTVA ANUL £LEVOLIO68°0 [PIEIZIEI0S'0
2 0 57 GI-9Z-TT 8160 A0UL ANUL STL69VL 0 V956816060
21g V1-GTT 1606 ANUL ANUL VGZSETSRCS 0 LU0 909TLVTLET 0
) 02122 65T 102 1E00CC RI60°E: ANUL T9I8EGTINE0 6.0
957 VTVESTEEGL | 02'1ET 64T L0T TZVESTEE 6L 800122 ST-60F: ANUL 91691198220
821 £9920929°26 | 02 182 65T 102 £9920929°26 GV 1-CT8I-G0-E: ANUL 6902266530
821 LVL0L68 TE 02122 65T 102 2 1€ LIICT S ANUL 1881228190
952 L606265°C8 | 02182651102 0-0-0pou-x5p LE0SIEG R ANUL FOEOLT69LL0 JTIECOSSTED | §
952 TS06TEST O 02122 641102 0-0-0pou-x5p PE0GFZSY 06 ANUL 99Z101STSL 0 | 9RIZE0TIZL 0 621810 120 | LTIEVOETC0 | £CIRIOIRIG0
821 1622042686 | 02182 651102 0-0-0pou-x5p 16220226°S6 ANUL L1299969£8°0 S6F1S"0 EVGTVO68'0 | ZITOVESORLO 9101998710
[T 219%f 02122 65T 102 0-0-0pou-x5p TI9EE6LE'SG ANUL PRO1LLT6IS'0 | ZHPRECTTES0 £9LP91LIER'0 [60166126220 9VELIGEIFG 0
[el 02122 651102 0-0-0pou-x5p FELEG608 60T ANUL LVEGGRGZ 1€ | C0T8ZIG028°0 | SRFOSISTOS'0 9VEPG69Z18°0 [GOGIELLIELD TP1619P9ES0
[6262695601 | 02122651 29°0-)-0pou-X5p 6282596 601 £CTIS6EITE | 10999999920 | GZHILESTHS 0 SHOGL9LF08'0 905ZEI9TLE 0
[[LIG621F921 | 03122651 29°0-0-0pou-X5p L1962 11921 $1000792626 LESTOFIOL6°0 GVS1GLE6L°0 SL0960FITH0
) €1 SISTE9EFOC SISTEIETOC £1000792626 £6RI0CTEC) ThoeIG TI68E£9918°0 GOLTCRFORE0
el €1 L98LT8E LYY L9ELTSE'LFY 21000792626 1LE8TF1LE6°0 SUSERTILLLO 9GLFOVG £L0£G0112°0 | LERFLVRG6E'0
) € 6029510'S0T 602910501 92626 FRAPPIETER 0 GIZE050TFL0 ZE69TPE0E0 | 16LPRLI6EH0
il 9 TE9FGR9 T (T LTS 160°E: 97626 CE963902: F0EL04699L°0 E 19965 TE1EF0
6LOPFISOFO0 [9 2920069 661 2920669661 L BITTRIG0-E: 9IE9TL01TR 0 6R9PG0S6L0 1201LL119F0
PEGIEOTPTIO [€ 66 186 66802£4 L8 1LGRTPILER'0 [L0 LOSZI910FF0
TLEEE0ECE0 szl b GEgTher 141 GTaTher 121 GS197902L0 LL6FOLLEF 0
9P LFEERFG600°0 b PRISPRLTCE FREGIOFR0 | L2GRI0ZSIR0 | 9FALRTLLGL0 CLOEIRIZHT0
GZESSPIVEG b 2692062696°0 | 91£9250128°0 | €620192628°0 | 12660795220 | FOOLIPIS68°0 L1257z 0
€ SEOEPPEER'D | SEGH091LTR'0 [CLasIRIE: 1829£12°0 | 69921061680 e
€ GLESD GLESD GLESD F900L89FE 0
€ T6YS16°0 | GrL909F 168°0 91892P£L8°0 992GEHTTTEQ
€ SEGTOPSECE) SPEZORIZRR0 LYOVESTELEQ
260 $961208°0 0
Sas Addn SsorA

64

DLW se A J§ Sursn (et} 1od sjmsel 9s9q :joseie(] JIOYIUAG U0 Suruny, mjeurerediodA 1ONX[Y F'q 9[qR],

TLECTLILT oporxap

02122 651 TERETTSI-606T 97626 4 ASTV EPOZITEORO0 9GEEOTTORL 0 1290 TEP659L029°0 | T&

TRECEGGE 1 opou-Xsp SP-08CZ 81-606207 | 08000726 T ASTVA 0 69526785 LEESETTIOLO 0
RIGZE65Y'G6 opou-Xsp 91-08C 81-606207 | 620007C6 ANUL L0 SR6L6158°0. TOSLVLELTY 0

2S620V89°6E opou-Xsp GE-LETTSI-G0ET0T | ST00079T626 T ASTVA [0 6z'0

EVELZREVTO opou-X5p 81-L2TT S1-6062! 0007926 ASTVA 1L682P1L68°0 | STPSZ09108°0 012910
9IESE9LT 16 opou-Xsp GI-92CT 81-60£207 | 92000792626 OVIVEOVTIR0 | LEOLCGERTL0 9LGRVG05 0

OVLVILET'0

9CT6LIE0'RG VI8 8160207 | SZ0007926L6

LIGOSETIIRO SO0GTLZ88°0

RIVLEZG 922 GEB12E 8160207 | 1200079266 TLERTVILER 0 | GRGRITELER 0 GVL98207T6'0

ERITIEL TG £1-G122 8T-60£207 | £20007926 SITSPISIIR 0 SRIRILO

SLBLVTLOVO

GEPOTL LI €12 81606202 | 220007056

LVL0L68 TE 2122 661 LIZIZTRIG0°EL

TLSRIZERID 0 | L8E0STELSE D

FOEOLI 99V09RGEEL'0 | GPEVOGETGR'0 | SREGRITGEL0

LE0GLG5CS 122 GT1-CE S1-60 62!

9088£7256°0 | T

G99E9Z8T 6!

G0£2! £LEEPRO1LLO | T £488001690°0 | ST909T9T8L°0 | 9TIRRIG089'0

€2 G6OGSVTLEE £288G66°0 [L1259G69E8°0 1129v2°0 | ELEV6TFOGS0 | ZLI0PESOSL0

9101998710

€2 GLGTIVICIE | PROTLLZOIS'0 | CPVRSSTIIRO

06120 9VELIGEIFG 0

L €2 LVEGGRGZ 1€ | C0T8ZIG028°0 | SRFOSISTOS'0 IVEPG69Z180 TP1619P9ES0
628259¢ 9EGFL0SGIT 6202 | S100079G626 £CTIS6EITE | 10999999920 | GZHILESTHS 0 SHOGL9LF080 905ZEI9TLE 0
GE16THG'6ET | LGEPLOSGIT 2 | ¥100079%626 £86G009TEE | 6029FL0986'0 | 9S9E29F6FR 0 | EFFO0RETER) 2968922160 TE8LLTCLTI O
6ZE690€"99F | £100079G626 LISE99G6'SE | GGRGOESTLG0 | FGPFOFOLE0 | Fecaseso 10FLLTTFZ60 S8CT601L COTTLOFGREQ
TL9GECT 11T TEGEOLOY'LE | £GEESRE0L6°0 | LROITSLIS'D 1191202606°0 LFSGPOFLE 0 [LE96LECEOT0

6029510 C9¥ELOS6IT

11000702626

1L68246°0 | PRPPITTFS 0 9296917E05°0 | T6LFSLIGST0

9989722 S8 9989FCZ 68 | Z1EL0S69T 01000792626 L128966°0 [Z9FRECTONS'0 926LLEET060 19999970220 L8610

698092195 | OFSECTOFSG'0 | FLFGSLCIERD

65

6LOPFISOFO0 201 8816099001 8]FG099'001 0 | 9912608060 2E60LLE6T 0
PEGIEOTPTIO) 66802£4 L8 i 1LGRTPILER'0 0 £6581262°0 | L9821910FF0
TLTELIESED) GTETPE LR L 19998°0 GS197902L0 GESFOEET 0| LI6P9LLEHT0 | L
OFLVEERI G 9 7992612 PECSS | OPSESIOPSGO | FLFGSLCIER) 9F1GEFGL0 POLISERSIT0 [9
GTESRPOVE: il £CRIERT 29816409 6969696960 | PECLRL6ES D LG2026512°0 G [
16ZLGR06°E6 L8YGGRES SEOEPPEER'0 | SEGHO91LTR0 1LET1R29E1L°0 b
1

2880 192971970

OFFSFIS0LL ThLO09F 180 91892P£L8°0 02ESFTTE)

SOPOPOVG 16 SPEZORIZRR0 orelelen | 1

GFPFIL99F0

"DLIJOUIL S® SSO UOIYRPI[RA SUIST [eLI) Iod S}MNSOI 159q :jose)R(] [RUISLI() UO SUIUNT,

preowreredodA 6TOHOHA

-G'd 9l9®L

i | ouop | v

66

DLIJOW s A Jg Sursn (e} Iod synsol 9soq :jesejr(] [RULSLI() U0 Suruny, wijoweredodAg 6THOHA 9°g 9[qR],

67

i | ouop | v

"OL139W S® SSO[UoIjeplfea uisn [err} 1od s nsal 389q :3oseje(] S13JuAg uo Suruny, ojpuwerediodA] 6TOHDHA L'd 9[98L

68

DLW S8 A J¢ Sursn [err) 1od sjmsol 959 :joseje(] dIYIUAG U0 Suruny, wjewrerediod A GTHDHA R 9[qR],

69

"OLIJOW S SSO[uoIjepIfea Suisn [er1} 1od S}NSaI 189 :joseje(] [eUIStI() uo uruny, rejeurerediadA ()GI1ONSOY :6°q 2[RI,

sal 1 G18G €0 PLF0-1E I Z0CI8C 602 | SIGLE0SF610 196SE019F 92901£109F0
9 1 SSILEPSLOF X SRILEPCL O P9E9E9E PRSI0
O0C0LT L8R sat € 696653 GET G9266£T GET > THGOIRGE GF ETTTT0TI890 GOPPOYEzLE
LOVPPTISLEY 1 SLYITVOY SLPLIVFO 98V6£20TL 0 9CELTOGETH O
1 9ESLODEE T 9EGL90EE T
¢ TPG6E12ST | 02 12a 65T [IRtaeEd > E£7OTSCGF 5
1 £6T8629V T | 02122651 £9T86LIV T S T1-0Z 816 > 62966266220 [1668T£6T600 | SES0IVGEC O | C1169CLETL0 1£90LT621°0
6SGTGIFREL 1 P669R621°9F | 02122 651 FOO9S6ZL 1 8G9E-0T 816 LO9LT01LPL 0 | £26962665G°0 10 [6026160690 66296521280
LEGGTEGEDT 4 R L DFGEIZOR 961PZLETEE
1 02122 651 L2200606°11 TRIVPIITIE O LVILILGTIS
1 9RGEOFTE T T6LEFTIT0 THTT996EER L1966012°0
952 0z 226L296°0: OFIPEOIPED PESGLIEROR

19779512220
@

(e 610892126 CIOVSECTIZ 0 VZETSG69G] VETSL0
) £FR0GZL6 T 792£L9G168 SFCEGG0S
[0 THETTS09° 01 z z8 2FGER0STZO'L

966VG5T ES

TESTELIROL(RIOTSGZI6Y

TOEEVSOTL60

TLVOLTTVGL 0 | TI9£7298e8

)
) GL8°0 | L126116ET8

19691 SES0LY LLGEESSRO T

LTRGETSTL 1129

r

GTORT

LL6EL6ES0200°0 s CTH0LE9L°0 | STROTVGES 9SEEVOVSE
FLOGFPRLOT000°0 RIGO65TR G 0 £166186010 1 292TLTEOLE D

9VTILIROL! 9GPPEIR0 ST GEGITELIER O SGERTRIEELD) | 9L065T192¢ CTPLR0 | PGERLCTOF

TORETTECST £1S0IRICTY PRVCEGIPLLO 9669 TTISY £ETEOVCG0'T | ELVTZSGOSY
ZFR0ZZI9EE000°0 0 CILLPFG6°0 | £F20L86R06°0

1 96L8ZE0G1E

GOTVICETIT 80 | REZCERIOGR 9V0LELL9E

CLGTGLGOFL ZRISISISIN(| GGTI826168°0 [SFOSR1294 R1GZ10L0f

OSILITGSY £L2LTLTLELO 6812689°0 8¢ A

62212996 Y TVGTGETRER') LEGTLOVG6ELD 260VSEI0RLD GISLGSTTOp
SOEELTTF TT 0 | 6686208 9ELETZIE 0 E 9F00ETLIZE 0
GEEROISEET GEEROISEET 0] 90106129620 | 2209F81425°0 68081020£9°0 FZELGBLEES D

TESTEH0TST GIEGRISLTS 0ZRT-OTRI6 > 1| €0z TPP99EELLL 0 26GR0VLOVT
pas/Bguo D7 PR /FYN0D | 210380 TodTIS SUOTL DT, Add add-y adqa adqny Ssorny

70

DLIjOW SR A J¢ SuIsn

[erry 1od sjnsar 9soq :1esejr(] [eulsLI() uo suruny, wjeureredodAH 0GIONSOY 0T d °19%L

SESGPEITFI000°0 | 629Z8LTEL S6SE0GT ET 292 | SGRE06Y'ECE | FLTIL0S69T TE000TF¥26. L96PGL9861°0 [2682¥12682°0 | £2692988°0 | GGLOGZR6SL0 [ZL6SFOIE6H 0 PLLZIRCG66'0 | 2806E6F6SE0 [1€
600°0 | 20rzlasen 3 aligaryL z LOVL0FL0E0 | EEEEEEEEER'0 | £EGOELIGR'0 | SETTTEC00L°0 | POLEOLEOZS GLELLOES6
TISS600°0 z z 214612108 1 £992G76289 0 90 | 8672Te29L 0
LOFYLISLEH00'0 [SIGL0L1'8E € TLGRVGST 0C 1 SOSFPO1662°0_| 6E6GIZE109°0 | FZ9TLEROISD
0£L00°0 € PEPGPLLEET PErGTLLEET € 260461661 1 19569898990 | 652860190 [GGRIT06562°0 | £2SE9€TFO'T
9 1PGC06T 68T TPSC06T 682 9 LI0T019L°9¢ | 965, 1 SLTGEEVELLD TPOSETLONR) | RLEVEOTERT
ETL9EET S GEZ19€E z 98629599°€Y_| THP689610Z 1 TYICITIOL LET: 0
0£L1096°E6 € 96°£6 4 1FF689610Z 1 Gl 0
9169022°92 03T € EFLLCSTIIT 1 CO561F0918 0
P98LL691ET 1 L2200506°11 | 8516906691 0260 1 TRPVPPITIE O | EEEEEEEECs'0 TETLLVLT6L)
ZESTER 1206906691 z 9GPIIECZ0Z 0 | 1LG8TFTLCR0 920£F89018 0
0 0z 122 3 EFILESTPIT 1 8 GCST0GT6:
€ 0z 122 € TORVORVOR'0 | CGRICERLGR 0 | 19VS0RORILD ZVT0ESTEOR D £162E 61
3 CIIITIETLS QOLFOLTTFG0 | 19GCT09€98°0 | ZISOG0LE£L°0 | PEFEIGISLC0 | 98TECCORGL 0 F10L9269660 | 8T
3 PPIOROL z FRL R0L6££992°0 | 98211266250 | 2169060218°0 | ¥4
a1 TISTLOVC. a GZIOTSTI0T G0 9921€ TPLVROPTLLD) | GO0RSTEESS TV6I8 0 | 6rO61ErLE T
1 S06S££00°TE £86G905691 1 1999128602 L8 LIZOTICCIS'0 | PRLIG6ZS1L0 | ST801F6ES'0 | 1069906992°0 | 2266666801 | Zksiticzaio | 1
CO6ZEIST b G 6EZ905691 v 29020 1 9619 62REEL069L°0 | G21£090 | Z10STFGERLD 9192929510 | b1
LESGEISTL 1 1 TOZRLVEVOE SITEOTIRILD) | EORGTTERLS
T16£L66802 3 € 6Z191GF90Z 082299592 0
FLOGFFRLOT000°0 b v 529020 929RGT6TRL D
STISTIGERLO 9VZ1L980.H 96FPEIRO'GY 1 PIVZLICETE SUERTRUEEL) LEVLOGLRRLD
TGLGEELECR00'0 TOVTVEG TET € £99G0VET €V SVGLILSGL 9ESEORCEGY D 5099698920 TLOLGTLLGY
4 GLO6GLLLTY 928£99F19L°0 £90L7LT6RL0)LGO8861F0 | &
0I¥T6 z GEVGOETG'RY GSRIL61Z9L0 999212840 2961£8€8T1
0326 z GR0RVE ST CEGEOSTRIL 0 20902811180 OTEETISEOE
LL1992°2HST £ SI209F1°T £0096£929L 0)RFOZSG08 0 R9GEFOTLIED | &
RIPPGFOTHI 3 GETO1L86°T T GRLOFLLLO 9IGHELETR L [

EEETGLOL

TOSEZTTLTY

TGLOGTL9°0

T6L6GTT

TORLGEVETR)

TRVOELEVT T

£691269'18

GIC8I1E8109'C

96.G£08L6100°0_| ZFZ00L19Z 100! £69 CZ9EFFRE OF TE0FG10092°0 £22£91978L°0 | 2726061666°0 [£728666270 | T
860610711000 PEOLY66'63 1 0L SPZ0-LIS 96110868°T POFLE9L'0 92EVLLY 9 01| 8e042r0E1HD0 | 1
TESTGHOTST000 z GPEGRIRL TR 0ZRT-OT 8T 9ROBLETT OF ST0619.264°0 | 6 0] 0 OPLOVE0 | 0

P/

SI0JSOT OIS IOV

JSOTOUL T

STeioyoun

o

S 1ojrsmyyouny

adwa

AddA

dd-1y

Ss0rA

Ssory

71

"OLI39W SB SSO[UoIjepIfea uisn [er1} 1od sjNsal 189q :1ose)e(] S13YIUAG uo Surun], ejeurerediodA (GIONSOY 11°¢ °[9RI,

9GROGRG0TT0'0 z1s T 02122 65T T C12901T 2826806691 [2291207616 OIEE6EES'SY | GLPL960L°0 | TOLLFTOTGL O 6109219720 | LIGOTOE0GL CLO9ETEOC 0 | GEPELGEETS)

TIGFEI90L10°0 as € 9ISRES'SEL 129917 | 9I8SER'SET GL8818181°0 | 9669221200 COVSTEIR9L() | LETZE00GHL T260VCT9950 | VGPFFOFTOT0

0SLLCRGELT00 Sz 4 8614262128 129912 | 8614262128 £08££96092°0 | 689) | 1096921£92°0 | ¥9L6H6R¢FL°0 | PLzrIareL 92£96R02950

6 v L99T 6 9:0-0-9pou-x8p | ¢12¢912 | L99r6 6T1916P90) | £Le5T) | £21628692L°0 REIGIZEELY GL16295E8 1

G19V£95T [29°(0-0-0poux3p [¢1z¢91z G80680569T CO9R09Z8L 0 | Geczsy) | 16020902620 9616920599 9GEOVLITLY O

£L0E 1RG0) 1 129917 FL8SR0669T 9°0 | PRFOTGERTY'0 | PEEGFROEIL'0 1116100229 GL8T61L2C 0

8 szl € €12991e 628650 | G0981H 9829TETTLLO 6LG0E98PEE D

TEGETRRI! a1s z 9°0-0-0pou-x8p [¢1z¢91z 826107616 £6289262800 | £269L0£269°0 ST0LRFTOCLD SROTRTLO0LE D)

LOGSSO6T 821 1 9°0-0-0pouX3p [¢12C91Z | PECOHOGE T 805691 | G660 6161 (SSSRSSRED) | GRECTOVSSL O STORGT0RVL0 | LETZSLOETL ZL030689650)

1 91EGGFT 0T 129917 | 9TECHGYT9F | 1228806691 G 62616926090 | 2699698092°0 [PO06E6FEL0 | 62STEFETFL0 | 9196990689 92601952650 | 12L98T1F19°0

1 POCESLLIGY 28917 | POSERLLTGE | L80SR0S691 £P0TLISRY0) | 62011280610 POEOERIVE. 1602620860 | 1)

€ 6T LET C1291Z | ROOEETTLET | ZHORROSGIT £2OVS6TTTY | TLGSEVTLERD) TEOTOTGIED D | GIPOEGTEL 0

€ 22ea1Ty ETl 129917 | 22ee1gh eel | 9reL80669 C1018000°1F_[29999999990 [££081GH0LL0 PROGS1£401°0 | PROPGETISE D | 6IG0SIITSTO

4 699901F6Z8 129917 | 6999017628 | 1862806691 12299929°0F OFSECTOTSL 0 | SRIZZSR9RL0 CLGEGFTY, GEEPCTSIOFD

4 £6.69019°€6 129912 | £6269019°€6 | 2622806691 | TL-TE- 1076161 £9006£L5°0 EEEELEEEEL0) | GLOOGERGLLO 62L69ETE9L 0 LSERRGILID

4 6265265 68 C1291T | S6E65T6% C8 | SELOROCHIT | 8E-CT- 107611 GEOPECLLTY | 86T LOEGYGGL 0 0 TLGEVRICLLD TESSTOSTON 0

1 TO9EVLTE T 2°0-0-0pOuX3p [€12¢917 | Z698FLEE TH | 0269805691 2698PLTE 1Y | 89202919190 | 6SF2S88981°0 [£6RET1926YL'0 | £6VL6EC0FL0 | £19792816L°0 | €L1GSPICL0 [1069918260 | £F195291¢

€ 129917 | £0z286'921 | 6259806691 9OFLLSSE T) | 96676200920 | 1662001852°0 | 1672298959 LLOLSLO0 | PPI9LLF090)

v C12991T OTE9R0S69T GPLSTOURILD OSRLETL JG6LL 0 | TOROETEG!)

1 129917 SF0980569T 91C8RL0L'0 | 1GLESOLGVLO L ESESTGIRGI D

¥ 12991 L2¥G0'891 | GLPER0G69T 96909629L°0_| EZRFISLISL0 TFPRIGLIGE0
1 RELSLRI0GH 12991 | RELRIRI0GH | 8L0ER0G69T GEOETFFFPL0 | 82H6PORGZL'0 | £42LTLELTL LLIPRELEEE0 | ¢

4 TTI0ERGR G C12SO1Z | Z1T0ERGR G | 8R6280G69T 96VGEILLRL O L0 | G8LGTE0ZSL 6 LT

16ZSGSGE000 € 129917 EFOIR0S69T 918E81088L°0 | 21100212920 P9GITSGL TRVELRRELTD)
SPETTTFZO0L0'0 1 129912 2F90805691 TE1920£8FL0 £998G1661G0 1N
GPFIL09: 0'C 3 129912 1650806691 690621790 is 12912926240 | 60SF09TREL°0 |9
LT1GZLE0T000 09 921011 S162 C1291Z | 9ZL0TTGIGE | SOE0R0SGIT 9LGSGLITGL 0 | LESSIGIRIL0 90GELIETSL) [
868910212600°0 8916017C €S 129917 | 89260VZE €S | LPLLL0G69T £02219188L°0 | LEL612F992°0 229162LLL°0 | 9116E9R19G°0 | v
L2Se80'0 1 129917 | 22eees6°6L1 | £262206691 86010982 91 RG0ER6ELL'0_| 9EG08896FL0 8666668 FIG9SSRTEE 0 €
912l 129912 £6ELLOS69T LEOLLYGO T 6RLTZVEGGL 0 | SIPIELIZLL0 POILLELERLO)|z
i C1291Z | 2021999'S0T | 2667205691 VREGEL TS LTVT862662°0 | 2PeeeL062°0 GIIREITEGL0 GTLL6L1 |1

T66656F266 29°0-0-0pO! 129917 | 1666567266 | L162206691 90861FZ0°ES 861801288L°0 | 100F295H9L'0 8099869210 6SR9T06F9F0

Do oy I |~] s

72

DLW S A J¢ Suisn ety 1od s3msal 389 :joseie(] d139YjuAg uo Jurung, wjeureredadA[] 0GI1ONSOY 21 °[qRL

73

9GROGRG0TT0'0 z1s T 02122 65T T C12901T 2826806691 [2291207616 9IEE6EES ST L0 [T9L2VT016 6109219720 | LIGOTOE0GL GLO9ETEOG0 | GEVELGEETS
TIGFEI90L10°0 as € 9ISRES'SEL 12917 | 9ISSER'SET | S6C680G69T GL8L8I8I8L°() | 9669221202 COVSTEIR9L() | LETZE00GHL T260VET9950
08LLER6ELE00 [4 8612262128 129917 | 86122621°28 | 9626809691 £EIC09L'0 $OLCVORGFL0 | PPLEFITHEL D | PROGCEGHGL 950
6 v 1 LGTETE0E €Y 09°0-0-9pou-X8p | ¢12¢912 | L62GrE08°6Y | 6216806691 1 ZOVPOLOTILY) | Z8EESRTIRL0 [LLGZOPGLTLO | GLSPEOLLLO
G19V£95T [1 GGTSYIVITY 9°0-0-0poux3p [¢12¢917 | GezCr IV ey | 1006805691 1 TVSOVTIENS 20 | SSVLGCTIEL0 | L2ETLEIGL0 | GOGRVGETEL 0 | SGELZORS0T | OT9GGOGTOT
£L0E 1RG0) € 8092261221 129917 | 809228 1°L21 | GE6RR0G69T 89102405090 | 8SFOSL8F08 6291K256L0 | STE0096F0L 0 | 2669R9FFOL 0 | osrzeessico [9z
& szl 4 SOIETETY TS 129917 | 6916262928 | 1628806691 90LPOLITFGD) | baselphas 10Z189FL 0 | se9egqL1g
TEGETRRI! a1s v 9°0-0-0pou-x8p [¢1z¢91z R | LTOSR05601 v R2r0g LTPOY TLGREVILGL 10 [2662121250 [12
LOGSSO6T 821 1 9°0-0-0pouX3p [€12¢91Z | PECGHOGE TY | GCESROSGIT SRRRREO'0 | GRECTOVRSL ST0861(LETZSLOETL 22080689650 | 901211280¢
4 9LF1GG01°26 129917 | 9LP1S501°26 | 0128806691 FIFZL1CE96°0 | TGEPES0E09 SESPIIZ09L0 PPI6LE19
1 POSERLLIGY 28917 | POSERLLTGE | L80SR0S691 1 £P0TLISRY0 1£0LET!
€ 6T LET C12901T ET1LET | ZHORS0SG9T € £2OVS6TTTY | TLGSEVTLERD TEOTOTGIED D | G
€ 22ea1Ty ETl 129917 | 22ee1gh eel | 9reL80669 C1018000°TF_| 29999999990 [E£0STGHOLL 9SET0019L'0 FROPGEZIRG () | 69608991
4 S99901F6 28 €12€917 | 6999017628 | 1862806691 12299929°0F | 12F8962769°0 | 9FRECIOFSL £91GR0FS9L°0 GEEPCTCIOFD | 8T
1 ELGLLE0'LY 129912 | £LGT1LE0°LY | GOZLR0G69T | GZ-E€-10761-6I 1 LGTLED'LY 1 2LRIEGLOLD LP0GL0ZE T
4 6265265 G C1291T | S6E65T6% C8 | SELOROCHIT | 8E-CT- 107611 4 GLOPECLLTY | SGIVOS0ESLO 0 | SR0RLIREILO TZSGT0STOV
1 TO9EVLTE T 2°0-0-0pOuX3p [¢12¢917 | Z69FLTE TH | 0269806691 1 T698VLTE 1Y | 89202919190 | 6SFZCR898L £6VLGEC0FL) | £197928T16L £1196291¢
4 SOSTHEGE TS 129917 | G6RTFEGHTS | 9879806691 4 GO9RTTFLOL SEG686E0GLD) | 1622998289 651920£82E
v GETIRRRLT 99°0-0-0pou-X8p [¢12CI1Z | 0I£980S691 v L EFPGEROPL GPLSTOUROLD
4 129917 6809805691 4 PUGITEGE 1T) | GOSREZLERL0 | 1620LEL09L°0 TICT6E008G'0 | LORECOSTLY
¥ 12991 LTk LPER0G69T ¥ 9261FL60°TH) | 96909£292°0 | £28FISLFSL0 T6YR68E9LG() | THPRIGIIGH
1 RELSLRI0GH 12991 | RELRIRI0GH | 8L0ER0G69T 1 SELRISTOGH 6 SEHEPIRGEL0 Z61£96°0 | 14118242260 | ¢
4 C12SO1Z | Z1T0ERGR G | 8R6280G69T T TOU0ZTET T 96V6EIGLRL O | 69 L0
16ZSGSGE000 € 129917 | EEPSSOP91E | EHOIS0S69T PIZPP9LILTY GZISL0__ | OISERV0SRL0 | GITONZILOL0 TSVELSRELG
SPETTTFZO0L0'0 FO9LTIER'TS 129917 | PO9LITESPS | FRI0R0G69T | Pr-it-6z 8161 C60L8E9T T £F1.G82F9G°0 | £0PRLE008L0 | L6VG008GL0 L
GPFIL09: 0'C ROVERZSLTH 129917 | 899682822 | G1G0R06691 | G4 Th-£2R1-61 1 RO0£RTRLTY | SPLIFG1099°0) 9
LT1GZLE0T000 962081 Z9.T €121 | 9GZ08TZILT | ZSG6L0S69T o COLRVRORTY_| GOLTIVGESLD) | LT1GLGC866L°0 | LES0VGT692°0 | 9126508692 [
868910212600°0 8916017C €S 129917 | 89260VZE €S | LPLLL0G69T T £6508226 11) | £022191882°0 | L616127992°0 [2099999992 9TICEIRTIT0 [
L2Se80'0 129917 | 22eees6°6L1 | £262206691 ¥ 86010982 91) | R60£6642°0 | 9£G08896FL°0 | 6TF126RL0L FIG9SSRECE €
129912 £6ELLOS69T € LGOLLVGO 1Y | 1 90 GRLTZVECGL0 | SIPIELIZLL0 [LGGTPOLELY 4
TEIELLI 1OV 129917 9SECL0S69T | 9G-CT2E 816 VETLIVEY TS | GELIEEG69'0) | 6100912620 | 226906920 | TSZ0G6LI0EL T
T66656F266 29" TP" BP9)-9pO! 129912 | 1666567266 | 2162206691 | L6-82-12- 8161 90S61FZ0°S | 12821C0Z8L°0) | 86180128820 | 100$296F92°0 | GT861LICLL L1560
Do 5 I |~)) \

AlexNet Mispronunciation Results:
Original Dataset

Top-5 Best Trials with Validation Loss

Validation

Trials | Epoch Loss hnl | hn2 | PPV | NPV | BPV
21 33 0.386 4096 | 512 | 0.87 | 0.61 | 0.74
11 22 0.391 2048 | 256 | 0.84 | 0.64 | 0.74
9 11 0.393 512 | 2048 | 0.81 | 0.67 | 0.74
0 13 0.393 512 | 1024 | 0.83 | 0.64 | 0.73
6 a7 0.403 1024 | 2048 | 0.84 | 0.67 | 0.75

Top-5 Best Trials with BPV

Trial | Epoch Vag‘;a\t;"“ hnl | hn2 | PPV | NPV | BPV
16 1 0.907 4096 | 2048 | 0.80 | 1.00 | 0.90
28 8 0.843 64 | 64 | 081 | 0.67 | 0.74
6 10 0.831 1024 | 2048 | 0.83 | 0.78 | 0.81
0 9 0.796 512 | 1024 | 0.82 | 0.55 | 0.69
11 6 0.782 2048 | 256 | 081 | 0.67 | 0.74

Table B.13: AlexNet Mispronunciation Results in Original Dataset

AlexNet Mispronunciation Results:

Synthetic Dataset

Top-5 Best Trials with Validation Loss

Trial | Epoch Vali‘lzzmn hnl | hn2 | PPV | NPV | BPV
12 13 0.22 256 | 2048 | 0.83 | 1.00 | 0.92
0 45 0.23 128 | 128 | 0.86 | 0.94 | 0.90
13 13 0.23 2048 | 128 | 0.83 | 0.97 | 0.90
8 3 0.23 4096 | 64 | 0.81 | 0.97 | 0.89
7 4 0.23 1024 | 64 | 0.82 | 1.00 | 0.1
Top-5 Best Trials with BPV
Trial | Epoch Vag‘;)a\t;‘m hnl | hn2 | PPV | NPV | BPV
13 12 0.92 2048 | 128 | 0.83 | 1.00 | 0.92
7 4 0.92 1024 | 64 | 0.82 | 1.00 | 091
14 4 0.92 1024 | 64 | 0.82 | 1.00 | 091
8 3 0.91 4096 | 64 | 0.81 | 0.97 | 0.89
24 6 0.91 4096 | 128 | 0.87 | 0.97 | 0.92

Table B.14: AlexNet Mispronunciation Results in Synthetic Dataset

74

VGG19 Mispronunciation Results:
Original Dataset
Top-5 Best Trials with Validation Loss
Trial | Epoch Vali‘lizlon hnl | hn2 | PPV | NPV | BPV
29 3 0.42 1024 | 4096 | 0.83 | 0.64 | 0.73
2 64 0.42 128 | 64 0.83 | 0.53 | 0.68
20 4 0.43 1024 | 64 0.84 | 0.50 | 0.67
19 6 0.43 256 | 2048 | 0.85 | 0.52 | 0.69
10 6 0.43 8192 | 1024 | 0.84 | 0.50 | 0.67
Top-5 Best Trials with BPV
Trial | Epoch Vag‘;f‘\t;on hnl | hn2 | PPV | NPV | BPV
5) 18 0.91 512 | 1024 | 0.81 0.40 0.60
2 1 0.90 128 | 64 0.80 | 1.00 | 0.90
8 7 0.90 32 128 | 0.81 | 0.50 | 0.65
20 1 0.90 1024 | 64 0.80 | 1.00 | 0.90
18 62 0.90 4096 | 1024 | 0.81 1.00 | 0.90

Table B.15: VGG19 Mispronunciation Results in Original Dataset

VGG19 Mispronunciation Results:
Synthetic Dataset

Top-5 Best Trials with Validation Loss

Trial | Epoch Vali‘izzmn hnl | hn2 | PPV | NPV | BPV
25 59 0.21 16384 | 8102 | 0.83 | 0.94 | 0.88
24 3 0.23 1024 | 128 | 0.82 | 0.89 | 0.85
6 62 0.24 4096 | 1024 | 0.82 | 0.91 | 0.87
B 12 0.24 1024 | 4096 | 0.87 | 0.83 | 0.85
2 7 0.24 16384 | 256 | 0.83 | 0.87 | 0.85
Top-5 Best Trials with BPV
Trial | Epoch Va};‘i,a\t/_“’“ hnl | hn2 | PPV | NPV | BPV
2 3 0.92 16384 | 256 | 0.79 | 0.91 | 0.85
25 2 0.92 16384 | 8192 | 0.80 | 1.00 | 0.90
8 60 0.92 256 | 256 | 0.81 | 0.94 | 0.87
i1 1 0.92 512 | 8192 | 0.83 | 0.94 | 0.88
17 16 0.92 4096 | 16384 | 0.80 | 0.89 | 0.84

Table B.16: VGG19 Mispronunciation Results in Synthetic Dataset

75

ResNet50 Mispronunciation Results:
Original Dataset
Top-5 Best Trials with Validation Loss
Trial | Epoch Vali‘izzlon PPV | NPV | BPV
13 4 0.56 0.80 | 0.00 | 0.40
20 20 0.65 0.80 | 0.00 | 0.40
27 1 0.73 0.81 | 0.40 | 0.60
3 1 0.77 0.80 | 0.00 | 0.40
22 1 0.80 0.80 | 0.00 | 0.40
Top-5 Best Trials with BPV
. Validation
Trial | Epoch BPV PPV | NPV | BPV
27 3 0.61 0.80 | 0.00 | 0.40
20 28 0.61 0.80 | 0.00 | 0.40
23 3 0.61 0.80 | 0.00 | 0.40
5 37 0.60 0.80 | 0.00 | 0.40
26 6 0.60 0.80 | 0.00 | 0.40

Table B.17: ResNet50 Mispronunciation Results in Original Dataset

ResNet50 Mispronunciation Results:
Synthetic Dataset
Top-5 Best Trials with Validation Loss
Trial | Epoch Vali‘izzmn PPV | NPV | BPV
3 4 0.55 0.52 1.00 | 0.76
16 2 0.55 0.61 1.00 | 0.80
9 2 0.56 0.66 1.00 | 0.83
5 60 0.56 0.68 1.00 | 0.84
0 19 0.56 0.63 1.00 | 0.82
Top-5 Best Trials with BPV
. Validation
Trial | Epoch BPV PPV | NPV | BPV
22 2 0.78 0.65 1.00 | 0.82
28 1 0.78 0.51 1.00 | 0.76
0 19 0.78 0.63 1.00 | 0.82
5 42 0.77 0.66 1.00 | 0.83
3 4 0.77 0.52 1.00 | 0.76

Table B.18: ResNet50 Mispronunciation Results in Synthetic Dataset

76

Appendix C

Exemplary Code

This appendix is devoted to present the code used in the graduation project. In the case
of the CNN Features-based model, feature extraction for all models is shown. However, in
the case of the CNN Transfer Learning-based model, part of the code shown for AlexNet
is already identical to the other models, but with some modifications. Therefore, we only

show the CNN Transfer Learning-based model using AlexNet architecture.

C.1 Dataset Splitting

1 import splitfolders

N

3 #Split original dataset
. input_folder = ’/home/ricardo.velasco/TT_kichwa/resources/ds’
5 output_folder = "/home/ricardo.velasco/TT_kichwa/

transfer_learning _model/split_ds"

7 #Stratified sampling for imbalanced data
s splitfolders.ratio(input_folder, output=output_folder, seed=42, ratio
=(.34, .33, .33), group_prefix=None)

10 #Split syntetic dataset
11 input_folder = ’/home/ricardo.velasco/TT_kichwa/resources/syn_ds’
12 output_folder = "/home/ricardo.velasco/TT_kichwa/

transfer_learning_model/split_syn_ds"

14 splitfolders.ratio(input_folder , output=output_folder , seed=42, ratio
=(.7, .2, .1), group_prefix=None)

7

C.2 Audio Dataset Augmentation, Resampling, and

Conversion

1 from glob import glob

2 from audiomentations import Compose, AddGaussianNoise, TimeStretch,
PitchShift, Shift, AdjustDuration, TimeMask

3 import numpy as np

4 import matplotlib.pyplot as plt

5 import torchaudio

6 import os

7 import shutil

g import torch

9 import librosa

11 default_sample_rate = 44100

12 augment_size = 100

14 #Define augmentation parameters

15 audio_augmentation = Compose ([

16 AdjustDuration(duration_seconds=3, p=1.0),

17 Shift (min_shift=-2, max_shift=2, p=1.0, shift_unit="seconds",

rollover=True),

18 PitchShift (min_semitones=-4, max_semitones=4, p=0.5),

19 TimeStretch(min_rate=0.5, max_rate=1.5, p=0.5),

20 AddGaussianNoise(min_amplitude=0.001, max_amplitude=0.015, p=0.5),
21 TimeMask (min_band_part=0.05, max_band_part=0.15, fade=True, p=0.5)
22 1)

24 #Given a training folder of audios, augment them and convert them into
spectrograms

25 def spectrogramAugmentation (path, save):

26 #Define spectrogram function

27 toSpectrogram = torchaudio.transforms.Spectrogram(n_fft=512)
28

29 #Create a list of .ogg and .wav audio files to convert

30 audio_files = glob(os.path.join(path, "*x.ogg")) + glob(os.path.

join(path, "*x.wav"))
32 for audio in audio_files:

33 #Extract audio name for spectrogram image name

34 spectogram_name = (audio.split("/")[-1]).split(".") [0]

78

39

40

41

42

#Read audio file (normalization takes place by default)

waveform, sample_rate = torchaudio.load(audio)

#Define resampling audio function and resample

resamplingAudio

default_sample_rate,

= torchaudio.transforms.Resample (sample_rate,

dtype=waveform.dtype)

waveform = resamplingAudio(waveform)

#Save augmentations in .png format (100 augmentations for each

audio file)

for i in range(l, augment_size + 1):

#Augment audio file

aug = audio_augmentation(samples = np.asarray(waveform),

sample_rate=default_sample_rate)

#Transform raw audios into spectrograms

audio_spec

)))

toSpectrogram(torch.from_numpy(np.asarray (aug

#Save spectrograms in save folder

plt.imsave (os.path.join(save, spectogram_name +

n _aug_ Il+

str(i)) + ".png", librosa.power_to_db(audio_spec[0]))

#Given a validation and testing folder of audios, convert them into

spectrograms

; def spectrogram(path, save):

#Define spectrogram function

toSpectrogram = torchaudio.transforms.Spectrogram(n_fft=512)

#Create a list of .ogg and .wav audio files to convert

audio_files = glob(os.path.join(path, "*x.ogg")) + glob(os.path.

join (path, "*x.wav"))

for audio in audio_files:

#Extract audio name for spectrogram image name

spectogram_name

= (audio.split("/")[-11) .split(".") [0]

#Read audio file (normalization takes place by default)

waveform, sample_rate = torchaudio.load(audio)

#Define resampling audio function and resample

resamplingAudio

default_sample_rate,

= torchaudio.transforms.Resample (sample_rate,

dtype=waveform.dtype)

79

78

79

80

81

85

90

91

92

93

94

95

96

97

98

G

100

101

102

103

104

waveform = resamplingAudio(waveform)

#Make all audios have a fixed duration of 3 seconds
adjust_duration = AdjustDuration(duration_seconds=3, p=1.0)
waveform = adjust_duration(np.asarray(waveform), sample_rate=

default_sample_rate)

#Transform raw audios into spectrograms
audio_spec = toSpectrogram(torch.from_numpy(np.asarray(

waveform)))

#Save spectrogram in .png format
plt.imsave(os.path. join(save, spectogram_name) + ".png",

librosa.power_to_db(audio_spec[0]))

#Convert training data with O and 1 label
spectrogramAugmentation (" /home/ricardo.velasco/TT_kichwa/
transfer_learning _model/split_ds/train/0",
"/home/ricardo.velasco/TT_kichwa/

transfer_learning_model/spec/train/0")

spectrogramAugmentation ("/home/ricardo.velasco/TT_kichwa/
transfer_learning_model/split_ds/train/1",
"/home/ricardo.velasco/TT _kichwa/

transfer_learning_model/spec/train/1")

#Convert validation data with O and 1 label
spectrogram("/home/ricardo.velasco/TT_kichwa/transfer_learning_model/
split_ds/val/o0",
"/home/ricardo.velasco/TT _kichwa/

transfer_learning_model/spec/val/0")

spectrogram("/home/ricardo.velasco/TT_kichwa/transfer_learning_model/
split_ds/val/1",
"/home/ricardo.velasco/TT _kichwa/

transfer_learning_model/spec/val/1")

#Convert testing data with O and 1 label

spectrogram("/home/ricardo.velasco/TT_kichwa/transfer_learning_model/

80

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

split_ds/test/0",
"/home/ricardo.velasco/TT _kichwa/

transfer_learning _model/spec/test/0")

spectrogram (" /home/ricardo.velasco/TT_kichwa/transfer_learning_model/
split_ds/test/1",

"/home/ricardo.velasco/TT _kichwa/
transfer_learning_model/spec/test/1")

SYNTETIC DATASET CONVERSION

#Convert training data with O and 1 label
spectrogramAugmentation ("/home/ricardo.velasco/TT_kichwa/
transfer_learning_model/split_syn_ds/train/0",
"/home/ricardo.velasco/TT _kichwa/

transfer_learning_model/syn_spec/train/0")

spectrogramAugmentation ("/home/ricardo.velasco/TT_kichwa/
transfer_learning_model/split_syn_ds/train/1",
"/home/ricardo.velasco/TT _kichwa/

transfer_learning _model/syn_spec/train/1")

#Convert validation data with O and 1 label
spectrogram("/home/ricardo.velasco/TT_kichwa/transfer_learning_model/
split_syn_ds/val/o0O",
"/home/ricardo.velasco/TT _kichwa/

transfer_learning_model/syn_spec/val/0")

spectrogram("/home/ricardo.velasco/TT_kichwa/transfer_learning_model/
split_syn_ds/val/1",
"/home/ricardo.velasco/TT _kichwa/

transfer_learning_model/syn_spec/val/1")

#Convert testing data with O and 1 label
spectrogram("/home/ricardo.velasco/TT_kichwa/transfer_learning_model/
split_syn_ds/test/0",
"/home/ricardo.velasco/TT _kichwa/

transfer_learning_model/syn_spec/test/0")

spectrogram("/home/ricardo.velasco/TT_kichwa/transfer_learning_model/

81

split_syn_ds/test/1",
"/home/ricardo.velasco/TT _kichwa/

transfer_learning _model/syn_spec/test/1")

C.3 CNN Features-based Model

from collections import OrderedDict
from glob import glob

from PIL import Image

import os

import torch

import torchvision

import numpy as np

import torchextractor

import itertools

import Orange

import matplotlib

import matplotlib.pyplot as plt

from torchvision.datasets import ImageFolder

from torch.utils.data import Dataloader

s from torchvision.transforms import transforms

from sklearn.metrics import precision_score, make_scorer, log_loss

from sklearn.neighbors import KNeighborsClassifier
#Feature selection methods

from skfeature.function.statistical_based.chi_square import chi_square

, feature_ranking

matplotlib.rcParams ["figure.dpi"] = 500

; num_cores = 64
device = "cuda" if torch.cuda.is_available() else "cpu"
__

def alexnetFeatureExtraction (path):
#Define resampling function

resample = transforms.Compose ([

82

39

40

41

60

61

62

63

66

67

68

69

70

transforms.Resize(size=(224, 224)),

transforms.ToTensor (),

transforms.Normalize (mean=[0.485, 0.456, 0.406], std=[0.229,
0.224, 0.225]1),
iD)

Array containing datasets using corresponding layers
d = np.array([{"train":np.empty ([0, 4096]), "val":np.empty ([0,
40961), "test":np.empty ([0, 4096]1)},

{"train":np.empty ([0, 4096]), "val":np.empty ([0,
4096]), "test":np.empty ([0, 4096]1)}])

1 = {"train":np.array([]), "val":np.array([]), "test":mp.array ([])
+

#Target layers in order to extract features, select inference mode
and send it to GPU

layers = ["classifier.1", "classifier.4"]

model = torchvision.models.alexnet(weights=’AlexNet_Weights.
IMAGENET1K_V1°)

model = torchextractor.Extractor(model, layers)

model .eval ()
model . cuda ()

#Perform feature extraction by batches
for i in ["train", "val", "test"]:
data = ImageFolder (os.path.join(path, i), transform=resample)
dataloader = Dataloader (dataset=data, batch_size=1024,
num_workers=num_cores)
for j, (inputs, labels) in enumerate(dataloader):

with torch.no_grad():

inputs = inputs.to(device)

outputs, features = model (inputs)

f0 = features[layers[0]].detach().cpu().numpy ()
f1 = features[layers[1]].detach().cpu() .numpy ()
d[0][i] = np.concatenate((d[0]J[i], £0))

d[1]1[i] = np.concatenate ((d[1][i]l, f1))

1[i] = np.concatenate((1[i], labels.numpy()))

return d, 1

83

73 #VGG19 Feature Extraction

76 def vggFeatureExtraction (path):

77 #Define resampling function

78 resample = transforms.Compose ([

79 transforms.Resize(size=(224, 224)),

80 transforms.ToTensor (),

81 transforms.Normalize (mean=[0.485, 0.456, 0.406], std=[0.229,
0.224, 0.225]1),

82 D

83

84 # Array containing datasets using corresponding layers

85 d = np.array([{"train":np.empty ([0, 4096]), "val":np.empty([O,
4096]), "test":np.empty ([0, 4096])},

86 {"train":np.empty ([0, 4096]), "val":np.empty([O,

4096]), "test":np.empty ([0, 4096]1)3}]1)

88 1 = {"train":np.array ([]1), "val":np.array([]), "test":np.array([])
3

90 #Target layers in order to extract features, select inference mode

and send it to GPU

91 layers = ["classifier.0", "classifier.3"]

92 model = torchvision.models.vggl9(weights=’VGG19_Weights.
IMAGENET1K_V1°)

93 model = torchextractor.Extractor (model, layers)

94 model.eval ()

95 model . cuda ()
96

97 #Perform feature extraction by batches

98 for i in ["train", "val", "test"]:
99 data = ImageFolder (os.path.join(path, i), transform=resample)
100 dataloader = DatalLoader (dataset=data, batch_size=1024,

num_workers=num_cores)

101 for j, (inputs, labels) in enumerate(dataloader):

102 with torch.no_grad():

103 inputs = inputs.to(device)

104 outputs, features = model (inputs)

105

106 fO = features[layers[0]].detach().cpu().numpy ()
107 f1 = features[layers[1]].detach().cpu() .numpy ()
108

109 d[0][i] = np.concatenate((d[0][i], £0))

84

110

111

112

113

114

119

120

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

d[1]1[i] = np.concatenate((d[1][i], £1))
1[i] = np.concatenate((1[i], labels.numpy()))

return d, 1

def resnetFeatureExtraction (path):

#Define resampling function
resample = transforms.Compose ([
transforms.Resize(size=(224, 224)),
transforms.ToTensor (),
transforms.Normalize (mean=[0.485, 0.456, 0.406], std=[0.229,
0.224, 0.225]),
D

Array containing datasets using corresponding layers
d = {"train":np.empty ([0, 2048]), "val":np.empty ([0, 2048]), "test
":np.empty ([0, 2048])}

1 = {"train":np.array([]), "val":np.array([]), "test":np.array([])
+

#Target layers in order to extract features, select inference mode
and send it to GPU

layers = ["avgpool"]

model = torchvision.models.resnet50(weights="ResNet50_Weights.
IMAGENET1K_V2")

model = torchextractor.Extractor (model, layers)

model.eval ()

model . cuda ()

#Perform feature extraction by batches
for i in ["train", "val", "test"]:

data = ImageFolder (os.path.join(path, i), transform=resample)

dataloader = Dataloader (dataset=data, batch_size=1024,
num_workers=num_cores)

for j, (inputs, labels) in enumerate(dataloader):

with torch.no_grad():
inputs = inputs.to(device)

outputs, features = model (inputs)

85

160

161

162

163

164

165

166

167

168

169

170

186

fO0 = features[layers[0]].detach().cpu() .numpy ()

d[i]
1[il]

np.concatenate ((d[i], np.squeeze(£0)))

np.concatenate ((1[i], labels.numpy()))

return d, 1

#Discretize continuous data into categorical data by method of Fayyad
and Irani [FI93]. Returns the discretized dataset.

def discretize(X, y):
domain = Orange.data.Domain.from_numpy (X, y)

data = Orange.data.Table.from_numpy(domain, X, y)

disc = Orange.preprocess.Discretize() #Define discretize function
disc.method = Orange.preprocess.discretize.EntropyMDL () #Select

desired method

discrete_data disc(data) #Discretize dataset

return discrete_data.X

#Discretize the entire dataset and split the training, validation and
testing sets again

def discretizeDataset(X_train, X_val, X_test, y_train, y_val, y_test):
#Concatenate all sets to form a unique dataset for discretization
X = np.concatenate((X_train, X_val, X_test))

y = np.concatenate((y_train, y_val, y_test))

#Discretize the dataset

X_disc = discretize (X, y)

#Retrieve discretized datasets from training, validation and
testing sets

X_train_disc = X_disc[:X_train.shape[0], :]

X_val_disc = X_disc[X_train.shape[0]:X_train.shape[0] + X_val.
shape [0], :]

X_test_disc = X_disc[X_train.shape[0] + X_val.shapel[O0]:, :]

return X_train _disc, X_val _disc, X_test_disc

86

188

189

190

193

194

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

214

215

216

def

def

metric(y_true, y_pred):
ppv = precision_score(y_true, y_pred)
npv = precision_score(y_true, y_pred, pos_label=0)

bpv = (ppv + npv) / 2

return ppv, npv, bpv

knnWithoutFeatureSelection(X_train, X_val, X_test, y_train, y_val
y_test, title):

val_results = np.array([])

val_best = 0

best_k = 0

for k in range(1l, 11):
#Declare KNN Neighbours Classifier
knn_classifier = KNeighborsClassifier(n_neighbors=k, n_jobs =

num_cores)

#Train the model with training set.

knn_classifier.fit(X_train, y_train)

#0btain prediction using validation set and testing set
y_pred_val = knn_classifier.predict(X_val)

y_pred_test = knn_classifier.predict(X_test)

#0btain validation bpv
val_bpv = metric(y_val, y_pred_val) [2]

#Save best k with best bpv
if val_best <= val_bpv:

>

test_ppv, test_npv, test_bpv = metric(y_test, y_pred_test)

val_best = val_bpv
best_k = k

val_results = np.append(val_results, val_bpv)
print ("PPV: " ,test_ppv, "NPV:", test_npv, "BPV: ", test_bpv, "k:
, best_k, "val_bpv", val_best)

plt.plot ([i for i in range(1,11)], val_results, label="Validation
BPV")

87

227 plt.xlabel ("Number of Neighbours (k)")

228 plt.ylabel ("Balanced Predictive Value")
229 plt.title(title)

230 plt.legend()

231 plt.show ()

32

234 def knnChi(X_train, X_val, X_test, y_train, y_val, y_test, k ,title,

last):
235 #Create array to save results
236 val_results = np.array ([])
237 val_best = 0
238 best_number_features = 0
239
240 #Discretize datasets
241 X _train, X_val, X_test = discretizeDataset(X_train, X _val, X_test,

y_train, y_val, y_test)

243 #Get selected features by ranking

244 ranking = feature_ranking(chi_square(X_train, y_train))

245

246 for i in range (10, 401):

247 #Declare KNN Neighbours Classifier

248 knn_classifier = KNeighborsClassifier(n_neighbors=k, n_jobs =

num_cores)

249

250 #Best ith features

251 best_features = ranking[:i]

252

253 #Train the model with training set.

254 knn_classifier.fit(X_train[:,best_features], y_train)

255

256 #0btain prediction using validation set and testing set

257 y_pred_val = knn_classifier.predict(X_vall[:,best_features])
258 y_pred_test = knn_classifier.predict(X_test[:,best_features])
259

260 #0btain metrics for validation and testing set

261 val_bpv = metric(y_val, y_pred_val) [2]

262

263 #Save best k with best bpv

264 if val_best <= val_bpv:

265 test_ppv, test_npv, test_bpv = metric(y_test, y_pred_test)
266 val_best = val_bpv

267 best_number_ features = i

88

269 val_results = np.append(val_results, val_bpv)

270

271

272 print("PPV: ",test_ppv, "NPV:", test_npv, "BPV: ", test_bpv, "
num_features: ", best_number_features, "val_bpv", val_best)

273 plt.plot ([i for i in range(10,401)], val_results, label="
Validation BPV with Feature Selection")

274 plt.axhline(y = last, color = ’r’, linestyle = ’-’, label = "
Validation BPV without Feature Selection")

275 plt.xlabel ("Number of Features")

276 plt.ylabel("Balanced Predictive Value")

277 plt.title(title)

278 plt.legend ()

279 plt.show O

281 #0btain dataset matrix and labels for dataset

282 alexData, alexLabels = alexnetFeatureExtraction("/home/ricardo.velasco
/TT_kichwa/transfer_learning_model/spec")

283 vggData, vgglabels = vggFeatureExtraction("/home/ricardo.velasco/
TT_kichwa/transfer_learning_model/spec")

284 resData, reslLabels = resnetFeatureExtraction("/home/ricardo.velasco/
TT_kichwa/transfer_learning_model/spec")

285

286 #0btain transformed dataset matrix and labels for syntetic dataset

257 synalexData, synalexLabels = alexnetFeatureExtraction("/home/ricardo.
velasco/TT_kichwa/transfer_learning_model/syn_spec")

2ss synvggData, synvgglabels = vggFeatureExtraction("/home/ricardo.velasco
/TT_kichwa/transfer_learning_model/syn_spec")

280 synresData, synreslLabels = resnetFeatureExtraction("/home/ricardo.
velasco/TT _kichwa/transfer_learning_model/syn_spec")

290

291

202 #KNN HyperParameter on Original Dataset, plot graphics and test

parameter with testing set

294 knnWithoutFeatureSelection(alexData[0]["train"], alexDatal[O]["val"],
alexData[0] ["test"], alexLabels["train"], alexLabels["val"],
alexLabels["test"], "AlexNet Hyperparameter Tuning without Feature
Selection in Original Dataset: FC1")

295 knnWithoutFeatureSelection(alexData[1]["train"], alexDatal[1]["val"],
alexData[1]["test"], alexLabels["train"], alexLabels["val"],
alexLabels["test"], "AlexNet Hyperparameter Tuning without Feature

Selection in Original Dataset: FC2")

89

296

297

298

299

300

301

302

303

304

305

306

307

308

309

knnWithoutFeatureSelection(vggData [0] ["train"], vggData[0]l["val"],
vggData [0] ["test"], vgglabels["train"], vgglLabels["val"], vggLabels
["test"], "VGG19 Hyperparameter Tuning without Feature Selection in
Original Dataset: FC1")
knnWithoutFeatureSelection(vggData [1]["train"], vggDatal[1]l["val"],
vggData[1]["test"], vgglabels["train"], vgglLabels["val"], vggLabels
["test"], "VGG19 Hyperparameter Tuning without Feature Selection in
Original Dataset: FC2")
knnWithoutFeatureSelection(resData["train"], resDatal["val"], resDatal"
test"], resLabels["train"], resLabels["val"], resLabels["test"], "
ResNet50 Hyperparameter Tuning without Feature Selection in

Original Dataset: AveragePool")

#KNN HyperParameter on Synthetic Dataset, plot graphics and test
parameter with testing set

knnWithoutFeatureSelection(synalexData [0]["train"], synalexData[0]["
val"], synalexData[0]["test"], synalexLabels["train"],
synalexLabels["val"], synalexLabels["test"], "AlexNet
Hyperparameter Tuning without Feature Selection in Synthetic
Dataset: FC1")

knnWithoutFeatureSelection(synalexData[1]["train"], synalexDatal[1]["
val"], synalexData[1]["test"], synalexLabels["train"],
synalexLabels["val"], synalexLabels["test"], "AlexNet
Hyperparameter Tuning without Feature Selection in Synthetic
Dataset: FC2")

knnWithoutFeatureSelection (synvggData [0] ["train"], synvggData[0]["val"
], synvggData[0]["test"], synvgglabels["train"], synvggLabels["val"
], synvgglabels["test"], "VGG19 Hyperparameter Tuning without
Feature Selection in Synthetic Dataset: FC1")

knnWithoutFeatureSelection (synvggData [1] ["train"], synvggData[1]["val"
1, synvggDatal[1]["test"], synvgglabels["train"], synvgglLabels["val"
], synvgglabels["test"], "VGG19 Hyperparameter Tuning without
Feature Selection in Synthetic Dataset: FC2")

knnWithoutFeatureSelection(synresData["train"], synresDatal["val"],
synresData["test"], synresLabels["train"], synresLabels["val"],
synresLabels ["test"], "ResNet50 Hyperparameter Tuning without

Feature Selection in Synthetic Dataset: AveragePool")

#KNN Feature Selection in Original Dataset with Chi Score

knnChi (alexData[0] ["train"], alexData[0]["val"], alexData[O0]["test"],
alexLabels["train"], alexLabels["val"], alexLabels["test"], 9 ,"
AlexNet Hyperparameter Tuning with Chi-Square Feature Selection in
Original Dataset: FC1", 0.6239935587761675)

90

310

311

3182

313

314

315

316

317

318

319

320

321

knnChi (alexData[1]["train"], alexDatal[1]["val"], alexDatal[1]["test"],
alexLabels["train"], alexLabels["val"], alexLabels["test"], 4 ,"
AlexNet Hyperparameter Tuning with Chi-Square Feature Selection in
Original Dataset: FC2", 0.5754750175932442)

knnChi (vggData [0] ["train"], vggData[O0]["val"], vggDatal[O0]["test"],
vgglabels["train"], vgglLabels["val"], vgglabels["test"], 9 ,"VGG19
Hyperparameter Tuning with Chi-Square Feature Selection in Original
Dataset: FC1", 0.6018518518518519)

knnChi (vggData [1] ["train"], vggData[1]["val"], vggDatal[l1]["test"],
vgglabels["train"], vgglLabels["val"], vgglabels["test"], 5 ,"VGG19
Hyperparameter Tuning with Chi-Square Feature Selection in Original
Dataset: FC2", 0.6323902027027027)

knnChi (resData["train"], resData["val"], resData["test"], resLabels["
train"], resLabels["val"], resLabels["test"], 5 ,"ResNetb50
Hyperparameter Tuning with Chi-Square Feature Selection in 0Original
Dataset: AveragePool", 0.6414285714285715)

#KNN Feature Selection in Synthetic Dataset with Chi Score

knnChi (synalexData [0] ["train"], synalexData[0]["val"], synalexData [0][
"test"], synalexLabels["train"], synalexLabels["val"],
synalexLabels["test"], 9 ,"AlexNet Hyperparameter Tuning with Chi-
Square Feature Selection in Synthetic Dataset: FC1", 0.9)

knnChi (synalexData[1]["train"], synalexData[1]["val"], synalexDatal[1][
"test"], synalexLabels["train"], synalexLabels["val"],
synalexLabels["test"], 9 ,"AlexNet Hyperparameter Tuning with Chi-
Square Feature Selection in Synthetic Dataset: FC2",
0.8827450980392156)

knnChi (synvggData [0l ["train"], synvggData[0]["val"], synvggDatal[0]["
test"], synvgglabels["train"], synvgglLabels["val"], synvgglLabels["
test"], 10 ,"VGG1l9 Hyperparameter Tuning with Chi-Square Feature
Selection in Synthetic Dataset: FC1", 0.8896920175989944)

knnChi (synvggData [1] ["train"], synvggData[1]["val"], synvggDatal[1]["
test"], synvgglabels["train"], synvgglLabels["val"], synvggLabels["
test"], 1 ,"VGG19 Hyperparameter Tuning with Chi-Square Feature
Selection in Synthetic Dataset: FC2", 0.8952941176470588)

C.4 CNN Transfer Learning-based AlexNet Hyper-

parameter Tuning

91

9

10

11

12

28

29

30

from functools import partial

import os

import torch

import torch.nn as nn

import torch.nn.functional as F

import torch.optim as optim

import torchvision

import torchvision.transforms as transforms
from torchvision.datasets import ImageFolder
from torch.utils.data import Dataloader

import ray

from ray import tune
from ray.air import session, RunConfig, CheckpointConfig, Checkpoint

from ray.tune.schedulers import ASHAScheduler

device = "cuda" if torch.cuda.is_available() else "cpu"
num_cores = 64

gpus_per_trial = 1

max_num_epochs = 64

num_samples = 32 #Number of items in hyperparameter search
trainingPath = "/home/ricardo.velasco/TT_kichwa/

transfer_learning _model/spec/train"
validationPath = "/home/ricardo.velasco/TT_kichwa/

transfer_learning_model/spec/val"

testingPath = "/home/ricardo.velasco/TT_kichwa/transfer_learning_model
/spec/test"
synTrainingPath = "/home/ricardo.velasco/TT_kichwa/

transfer_learning_model/syn_spec/train"
synValidationPath = "/home/ricardo.velasco/TT_kichwa/

transfer_learning_model/syn_spec/val"
synTestingPath = "/home/ricardo.velasco/TT_kichwa/

transfer_learning _model/syn_spec/test"

#Load training, testing and validation function for hyperparameter
searching
def load_data(train, val):

#Input resmampling

transform = transforms.Compose ([

transforms.Resize(size=(224, 224)),

92

38 transforms.ToTensor (),

39 transforms.Normalize (mean=[0.485, 0.456, 0.406], std=[0.229,
0.224, 0.225]),

40 D

41

42 trainset = ImageFolder (train, transform=transform)

43

44 valset = ImageFolder(val, transform=transform)

46 return trainset, valset

190 def metrics (outputs, labels):

50 TP = ((outputs == 1) & (labels == 1)).sum().item()
51 FP = ((outputs == 1) & (labels == 0)).sum().item()
52 TN = ((outputs == 0) & (labels == 0)).sum().item()
53 FN = ((outputs == 0) & (labels == 1)).sum().item()
54

55 ppv = (TP / (TP + FP)) if (TP + FP) > 0 else O

56 npv = (TN / (IN + FN)) if (TN + FN) > O else O

58 return ppv, npv

60 def training(config, train=None, val=None):

61 #Import Alexnet pretrained model

62 net = torchvision.models.alexnet (weights=’AlexNet_Weights.
IMAGENET1K_V1°)

64 #Freeze features’ layer for transfer learning
65 for param in net.features.parameters():

66 param.requires_grad = False

68 #Reset and modify classification layer suitable for binary
classification

69 net.classifier = torch.nn.Sequential(

70 torch.nn.Dropout (p=0.5, inplace=False),

71 torch.nn.Linear (in_features=9216, out_features=config["hnil"],
bias=True),

72 torch.nn.RelLU(inplace=True),

73 torch.nn.Dropout (p=0.5, inplace=False),

74 torch.nn.Linear (in_features=config["hnl1"], out_features=config
["hn2"], bias=True),

75 torch.nn.RelLU(inplace=True),

76 torch.nn.Linear (in_features=config["hn2"], out_features=2,

93

bias=True))

~
~

78 #Send the model to GPU and put it in training mode

79 net.to(device)

80 net.train ()

81

82 #Run always on GPU, if there are more GPUs, allow parallel data

parallel training

83 if torch.cuda.device_count () > 1:

84 net = nn.DataParallel(net)

85

86 #Define Loss Function

87 criterion = nn.CrossEntropyLoss ()

88

89 #Define optimizer and establish a traininable parameter for

learning rate

90 optimizer = optim.SGD(net.classifier.parameters(), lr=config["1lr"
], momentum=0.9)

91

92 # To restore a checkpoint, use ‘session.get_checkpoint () ‘.

93 checkpoint = session.get_checkpoint ()

94

95 if checkpoint:

96 checkpoint_state = checkpoint.to_dict ()
97 start_epoch = checkpoint_state["epoch"]
98 net.classifier.load_state_dict (checkpoint_statel["

classifier_state_dict"])

99 optimizer.load_state_dict (checkpoint_statel["
optimizer_state_dict"])

100 else:

101 start_epoch = 0

102

103

104 #Import training, validation and testing datasets
105 trainset, valset= load_data(train, val)

106

107 #Load training dataset

108 trainloader = DataLoader (

109 dataset=trainset,

110 batch_size=int (config["batch_size"]),

111 num_workers=num_cores,
112 shuffle = True
113)

114

94

115 #Load validation dataset

116 valloader = DatalLoader (
117 dataset=valset,
118 batch_size=len(valset), #Due to hardware, pick largest batch

size possible to compute metrics

119 num_workers=num_cores,

120 shuffle = True

121)

122

123

124 for epoch in range(start_epoch, max_num_epochs):

125 # —----—-———————-

126 # TRAINING STEP

127 # -

128 train_loss, train_ppv, train_npv = 0.0, 0.0, 0.0
129 for i, (inputs,labels) in enumerate(trainloader):
130 # get the inputs; data is a list of [inputs, labels]
131 inputs, labels = inputs.to(device), labels.to(device)
132

133 # zero the parameter gradients

134 optimizer.zero_grad ()

135

136 # forward + backward + optimize

137 outputs = net(inputs)

138 loss = criterion(outputs, labels)

139 loss.backward ()

140 optimizer.step ()

141

142 #Accumulate statistics across a single batch
143 _, ¥y = torch.max(outputs.data, 1)

144 train_loss += loss.item()

145 train_ppv += metrics(y, labels) [0]

146 train_npv += metrics(y, labels) [1]

147

148 #Compute average of metrics across all batches
149 train_loss /= len(trainloader)

150 train_ppv /= len(trainloader)

151 train_npv /= len(trainloader)

152

153 -

154 # VALIDATION STEP

155 #-—-—— -

156 val_loss, val_ppv, val_npv = 0.0, 0.0, 0.0

95

160

161

162

163

164

165

166

188

189

190

191

192

193

194

196

197

198

for i, (inputs, labels) in enumerate(valloader):
with torch.no_grad():

inputs, labels = inputs.to(device), labels.to(device)

#Compute outputs
outputs = net(inputs)

_, y = torch.max(outputs.data, 1)

#Compute loss

loss = criterion(outputs, labels)

#Accumulate statistics across a single batch
val_loss+= loss.item()

val_ppv += metrics(y, labels) [0]

val_npv += metrics(y, labels) [1]

#Compute average of metrics across all batches
val_loss /= len(valloader)
val_ppv /= len(valloader)

val_npv /=len(valloader)

Here we save a checkpoint. It is automatically registered
with
Ray Tune and can be accessed through ‘session.get_checkpoint

O

API in future iterations.
#Checkpoint data
checkpoint_data = {
"epoch": epoch,
"classifier_state_dict": net.classifier.state_dict (),

"optimizer_state_dict": optimizer.state_dict ()

checkpoint = Checkpoint.from_dict(checkpoint_data)

session.report ({"tr_loss":train_loss, "v_loss": val_loss,
"tr_bpv": (train_ppv + train_npv) / 2,
"v_bpv": (val_ppv + val_npv)/2,
"tr_ppv":train_ppv, "tr_npv":train_npv,
"v_ppv": val_ppv, "v_npv": val_npv,},

checkpoint=checkpoint)

#Hyperparameter Tuning and Testing for Dataset

96

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

238

239

240

241

config = {

"lr": tune.loguniform (

le-4, le-1),

"batch_size": tune.choice([64, 128, 256, 512]),

"hnl": tune.choice ([32
"hn2": tune.choice ([32

scheduler = ASHAScheduler (
max_t=max_num_epochs,
grace_period=3,

reduction_factor=2,)

, 64, 128, 256, 512, 1024, 2048, 4096]),
, 64, 128, 256, 512, 1024, 2048, 4096]1)

tune.with_parameters(training, train=trainingPath, val=

scheduler2 = ASHAScheduler
max_t=max_num_epochs,
grace_period=3,

reduction_factor=2,)

num_cores, "gpu": gpus_per_trial}

CheckpointConfig(
None, #SAVE ALL CHECKPOINTS

tuner = tune.Tuner (
tune.with_resources (
validationPath) ,
resources={"cpu":
),
tune_config=tune.TuneConfig(
metric="v_loss",
mode="min",
scheduler=scheduler,
num_samples=num_samples,
s
run_config=RunConfig(
checkpoint_config=
num_to_keep =
)
),
param_space=config,
)
3 results = tuner.fit ()
oo e

(

97

243 tuner2 = tune.Tuner(
244 tune.with_resources (
245 tune.with_parameters(training, train=synTrainingPath, val=

synValidationPath),

246 resources={"cpu": num_cores, "gpu": gpus_per_trial}
247),

248 tune_config=tune.TuneConfig(

249 metric="v_loss",

250 mode="min",

251 scheduler=scheduler?2,

252 num_samples=num_samples,

253 R

254 run_config=RunConfig(

255 checkpoint_config=CheckpointConfig(

256 num_to_keep = None #SAVE ALL CHECKPOINTS
257)

258),

259 param_space=config,

260)

261

262 results2 = tuner2.fit ()

C.5 CNN Transfer Learning-based AlexNet Testing

1 from functools import partial
2 import os
3 import torch
4 import torch.nn as nn
5 import torch.nn.functional as F
6 import torch.optim as optim
7 import torchvision
¢ import torchvision.transforms as transforms
9 from torchvision.datasets import ImageFolder
10 from torch.utils.data import Dataloader

11 import ray

13 from ray import tune
14 from ray.air import session, RunConfig, CheckpointConfig, Checkpoint

15 from ray.tune.schedulers import ASHAScheduler

17 device = "cuda" if torch.cuda.is_available() else "cpu

98

26

N
~

29

30

31

32

num_cores = 64

gpus_per_trial = 2

max_num_epochs = 64

num_samples = 64 #Number of items in hyperparameter search
trainingPath = "/home/ricardo.velasco/TT_kichwa/

transfer_learning_model/spec/train"

5 validationPath = "/home/ricardo.velasco/TT_kichwa/

transfer_learning_model/spec/val"

testingPath = "/home/ricardo.velasco/TT_kichwa/transfer_learning_model
/spec/test"
synTrainingPath = "/home/ricardo.velasco/TT_kichwa/

transfer_learning _model/syn_spec/train"
synValidationPath = "/home/ricardo.velasco/TT_kichwa/

transfer_learning_model/syn_spec/val"
synTestingPath = "/home/ricardo.velasco/TT_kichwa/

transfer_learning_model/syn_spec/test"

#Load training, testing and validation function for hyperparameter
searching

def load_data(train, val):

#Input resmampling
transform = transforms.Compose ([

transforms.Resize(size=(224, 224)),

transforms.ToTensor (),

transforms.Normalize (mean=[0.485, 0.456, 0.406], std=[0.229,
0.224, 0.225]),

D
trainset = ImageFolder (train, transform=transform)
valset = ImageFolder(val, transform=transform)

return trainset, valset

def metrics (outputs, labels):

TP = ((outputs == 1) & (labels == 1)).sum().item()
FP = ((outputs == 1) & (labels == 0)).sum().item()
TN = ((outputs == 0) & (labels == 0)).sum().item()
FN = ((outputs == 0) & (labels == 1)).sum().item()

99

55 ppv = (TP / (TP + FP)) if (TP + FP) > 0 else O
56 npv = (TN / (TN + FN)) if (TN + FN) > O else O
58 return ppv, npv

60 def training(config, train=None, val=None):

61 #Import Alexnet pretrained model

62 net = torchvision.models.alexnet(weights=’AlexNet_Weights.
IMAGENET1K_V1°)

64 #Freeze features’ layer for transfer learning
65 for param in net.features.parameters():

66 param.requires_grad = False

68 #Reset and modify classification layer suitable for binary
classification

69 net.classifier = torch.nn.Sequential(

70 torch.nn.Dropout (p=0.5, inplace=False),

71 torch.nn.Linear (in_features=9216, out_features=config["hnl"],
bias=True) ,

72 torch.nn.RelLU(inplace=True),

73 torch.nn.Dropout (p=0.5, inplace=False),

74 torch.nn.Linear (in_features=config["hni1"], out_features=config
["hn2"], bias=True),

75 torch.nn.ReLU(inplace=True),

76 torch.nn.Linear (in_features=config["hn2"], out_features=2,

bias=True))

78 #Send the model to GPU and put it in training mode

79 net.to(device)

80 net.train()

81

82 #Run always on GPU, if there are more GPUs, allow parallel data

parallel training

83 if torch.cuda.device_count() > 1:

84 net = nn.DataParallel (net)

85

86 #Define Loss Function

87 criterion = nn.CrossEntropyLoss ()

88

89 #Define optimizer and establish a traininable parameter for

learning rate

90 optimizer = optim.SGD(net.classifier.parameters(), lr=config["1lr"

100

], momentum=0.9)

91

92 # To restore a checkpoint, use ‘session.get_checkpoint () ‘.
93 checkpoint = session.get_checkpoint ()

94

95 if checkpoint:

96 checkpoint_state = checkpoint.to_dict ()

97 start_epoch = checkpoint_state["epoch"]

98 net.classifier.load_state_dict(checkpoint_statel["
classifier_state_dict"])

99 optimizer.load_state_dict (checkpoint_statel["

optimizer_state_dict"])

100 else:

101 start_epoch = 0

102

103

104 #Import training, validation and testing datasets
105 trainset, valset= load_data(train, val)

106

107 #Load training dataset

108 trainloader = DataLoader (
109 dataset=trainset,
110 batch_size=int (config["batch_size"]),

111 num_workers=num_cores,
112 shuffle = True

113)

114

115 #Load validation dataset

116 valloader = DatalLoader (
117 dataset=valset,
118 batch_size=len(valset), #Due to hardware, pick largest batch

size possible to compute metrics

119 num_workers=num_cores,

120 shuffle = True

121)

122

123

124 for epoch in range(start_epoch, max_num_epochs):

125 R cocooooooooooos

126 # TRAINING STEP

127 # ———-—-—-——————-

128 train_loss, train_ppv, train_npv = 0.0, 0.0, 0.0
129 for i, (inputs,labels) in enumerate(trainloader):
130 # get the inputs; data is a list of [inputs, labels]

101

131

1132

133

134

137

138

139

140

141

142

143

144

145

146

160

161

162

163

164

165

inputs, labels = inputs.to(device), labels.to(device)

zero the parameter gradients

optimizer.zero_grad()

forward + backward + optimize
outputs = net(inputs)

loss = criterion(outputs, labels)
loss.backward ()

optimizer.step ()

#Accumulate statistics across a single batch
_, y = torch.max(outputs.data, 1)
train_loss += loss.item()

train_ppv += metrics(y, labels) [0]

train_npv += metrics(y, labels) [1]

#Compute average of metrics across all batches
train_loss /= len(trainloader)
train_ppv /= len(trainloader)

train_npv /= len(trainloader)

val_loss, val_ppv, val_npv = 0.0, 0.0, 0.0

for i, (inputs, labels) in enumerate(valloader):
with torch.no_grad():

inputs, labels = inputs.to(device), labels.to(device)

#Compute outputs
outputs = net (inputs)

_, y = torch.max(outputs.data, 1)

#Compute 1loss

loss = criterion(outputs, labels)
#Accumulate statistics across a single batch
val_loss+= loss.item()

val_ppv += metrics(y, labels) [0]

val_npv += metrics(y, labels) [1]

#Compute average of metrics across all batches

102

180

181

182

183

184

186

187

188

189

190

191

194

195

val_loss /= len(valloader)
val_ppv /= len(valloader)

val_npv /=len(valloader)

Here we save a checkpoint. It is automatically registered
with
Ray Tune and can be accessed through ‘session.get_checkpoint

ON

API in future iterations.
#Checkpoint data
checkpoint_data = {
"epoch": epoch,
"classifier_state_dict": net.classifier.state_dict (),

"optimizer_state_dict": optimizer.state_dict ()

checkpoint = Checkpoint.from_dict(checkpoint_data)

session.report ({"v_loss": val_loss,"v_ppv": val_ppv,
"v_npv": val_npv, "tr_loss":train_loss,
"tr_ppv":train_ppv, "tr_npv":train_npv},

checkpoint=checkpoint)

106 def testing(path, hnl, hn2, c_path):

197

198

199

200

201

202

203

204

205

206

208

209

210

211

212

#Resample function
transform = transforms.Compose ([
transforms.Resize(size=(224, 224)),
transforms.ToTensor (),
transforms.Normalize (mean=[0.485, 0.456, 0.406], std=[0.229,
0.224, 0.225]),
ip)

#Define testing dataset from folder

test = ImageFolder (path, transform=transform)

#Load testing dataset
testloader = torch.utils.data.DatalLoader (
test, batch_size=len(test), shuffle=True, num_workers=

num_cores

)

#Load pretrained AlexNet model

net = torchvision.models.alexnet(weights=’AlexNet_Weights.

103

IMAGENET1K_V1°)

215 #Modify classification layer with best parameters

216 net.classifier = torch.nn.Sequential(

217 torch.nn.Dropout (p=0.5, inplace=False),

218 torch.nn.Linear (in_features=9216, out_features=hnl, bias=True)
219 torch.nn.ReLU(inplace=True),

220 torch.nn.Dropout (p=0.5, inplace=False),

221 torch.nn.Linear (in_features=hnl, out_features=hn2, bias=True),
222 torch.nn.ReLU(inplace=True),

223 torch.nn.Linear(in_features=hn2, out_features=2, bias=True))
224

225 net.to(device)

226 net.eval ()

227

228 #Load checkpoint and weights

229 checkpoint = Checkpoint.from_directory(c_path)

230 checkpoint_state = checkpoint.to_dict ()

231 net.classifier.load_state_dict(checkpoint_statel["

classifier_state_dict"])

232

233 test_ppv, test_npv = 0, O

234

235 with torch.no_grad():

236 for data in testloader:

237 images, labels = data

238 images, labels = images.to(device), labels.to(device)
239

240 outputs = net(images)

241 _, y = torch.max(outputs.data, 1)

242

243 test_ppv += metrics(y, labels) [0]

244 test_npv += metrics(y, labels) [1]

245

246 test_ppv /= len(testloader)

247 test_npv /= len(testloader)

248

249 return test_ppv, test_npv, (test_ppv + test_npv)/2

251 #Save table with best results from each trial given a metric and
filter_mode
252 def saveFile(results, metric, filter_mode, save):

253 df = results.get_dataframe(filter_metric = metric, filter_mode =

104

260

261

262

263

264

265

266

267

268

269

271

279

280

281

filter _mode)

df .to_csv(save)

#Restore tuners given training folders corresponding to original
dataset and synthetic dataset

tuner = tune.Tuner.restore("/home/ricardo.velasco/ray_results/
training_2023-09-18_16-14-45", trainable=training)

syn_tuner = tune.Tuner.restore("/home/ricardo.velasco/ray_results/
training_2023-09-18_19-57-26", trainable=training)

#Get results from each tuner
results = tuner.get_results()

syn_results = syn_tuner.get_results ()

#Save results given metrics, filter_mode and save path for dataset

saveFile(results, "v_loss", "min", "/home/ricardo.velasco/TT_kichwa/
transfer_learning _model/tuning/tables/alexnet_ds_loss.csv")

saveFile (results, "v_bpv", "max", "/home/ricardo.velasco/TT_kichwa/

transfer_learning_model/tuning/tables/alexnet_ds_bpv.csv")

#Save results given metrics, filter_mode and save path for synthetic
dataset

saveFile (syn_results, "v_loss", "min", "/home/ricardo.velasco/
TT_kichwa/transfer_learning _model/tuning/tables/alexnet_syn_ds_loss
.csv"

saveFile (syn_results, "v_bpv", "max", "/home/ricardo.velasco/TT_kichwa

/transfer_learning_model/tuning/tables/alexnet_syn_ds_bpv.csv")

#Test data given checkpoints

#0riginal dataset best TOP 5 MODELS LOSS

a, b, ¢ = testing(testingPath, 4096, 512, "/home/ricardo.velasco/
ray_results/training_2023-09-18_16-14-45/
training_80559_00021_21_batch_size=64,hn1=4096,hn2=512,1r=0.0021
_2023-09-18_16-14-53/checkpoint_000032/")

; print(a, b, c)

a, b, ¢ = testing(testingPath, 2048, 256, "/home/ricardo.velasco/
ray_results/training_2023-09-18_16-14-45/
training_80559_00011_11_batch_size=64,hn1=2048,hn2=256,1r=0.0004
_2023-09-18_16-14-53/checkpoint_000021")

print(a, b, c)

a, b, ¢ = testing(testingPath, 512, 2048, "/home/ricardo.velasco/

105

ray_results/training_2023-09-18_16-14-45/
training_80559_00009_9_batch_size=64,hn1=512,hn2=2048,1r=0.0006
_2023-09-18_16-14-53/checkpoint_000010")

282 print(a, b, c)

283

284 a, b, ¢ = testing(testingPath, 512, 1024, "/home/ricardo.velasco/
ray_results/training_2023-09-18_16-14-45/
training_80559_00000_0_batch_size=64,hn1=512,hn2=1024,1r=0.0052
_2023-09-18_16-14-53/checkpoint_000042")

285 print(a, b, c)

286

287 a, b, ¢ = testing(testingPath, 1024, 2048, "/home/ricardo.velasco/
ray_results/training_2023-09-18_16-14-45/
training_80559_00006_6_batch_size=512,hn1=1024,hn2=2048,1r=0.0635
_2023-09-18_16-14-53/checkpoint_000046")

288 print(a, b, c)

289

290

201 #0riginal dataset best TOP 5 MODELS BPV

202 a, b, ¢ = testing(testingPath, 4096, 2048, "/home/ricardo.velasco/
ray_results/training_2023-09-18_16-14-45/
training_80559_00016_16_batch_size=128,hn1=4096 ,hn2=2048,1r=0.0438
_2023-09-18_16-14-53/checkpoint_000000")

203 print(a, b, c)

294

205 a, b, ¢ = testing(testingPath, 64, 64, "/home/ricardo.velasco/
ray_results/training_2023-09-18_16-14-45/
training_80559_00028_28_batch_size=128,hnl1=64,hn2=64,1r=0.0015_2023
-09-18_16-14-53/checkpoint_000007")

206 print(a, b, c)

297

208 a, b, ¢ = testing(testingPath, 1024, 2048, "/home/ricardo.velasco/
ray_results/training_2023-09-18_16-14-45/
training_80559_00006_6_batch_size=512,hn1=1024,hn2=2048,1r=0.0635
_2023-09-18_16-14-53/checkpoint_000009")

200 print(a, b, c)

300

301 a, b, ¢ = testing(testingPath, 512, 1024, "/home/ricardo.velasco/
ray_results/training_2023-09-18_16-14-45/
training_80559_00000_0_batch_size=64,hn1=512,hn2=1024,1r=0.0052
_2023-09-18_16-14-53/checkpoint_000008")

302 print(a, b, c)

303

304a, b, ¢ = testing(testingPath, 2048, 256, "/home/ricardo.velasco/

106

305

306

307

308

309

310

311

312

313

314

315

319

320

321

323

324

325

326

327

ray_results/training_2023-09-18_16-14-45/
training_80559_00011_11_batch_size=64,hn1=2048,hn2=256,1r=0.0004
_2023-09-18_16-14-53/checkpoint_000005")

print(a, b, c¢)

#Synthetic dataset best TOP 5 LOSS TESTING

a, b, ¢ = testing(synTestingPath, 256, 2048, "/home/ricardo.velasco/
ray_results/training_2023-09-18_19-57-26/
training_9792e_00012_12_batch_size=128,hn1=256,hn2=2048,1r=0.0034
_2023-09-18_19-57-27/checkpoint_000012")

print(a, b, c)

a, b, ¢ = testing(synTestingPath, 128, 128, "/home/ricardo.velasco/
ray_results/training_2023-09-18_19-57-26/
training_9792e_00000_O_batch_size=64,hn1=128,hn2=128,1r=0.0016_2023
-09-18_19-57-27/checkpoint_000044")

print(a, b, c)

a, b, ¢ = testing(synTestingPath, 2048, 128, "/home/ricardo.velasco/
ray_results/training_2023-09-18_19-57-26/
training_9792e_00013_13_batch_size=64,hn1=2048,hn2=128,1r=0.0102
_2023-09-18_19-57-27/checkpoint_000012")

print(a, b, c)

a, b, ¢ = testing(synTestingPath, 4096, 64, "/home/ricardo.velasco/
ray_results/training_2023-09-18_19-57-26/
training_9792e_00008_8_batch_size=512,hn1=4096,hn2=64,1r=0.0114
_2023-09-18_19-57-27/checkpoint_000002")

print(a, b, c)

a, b, ¢ = testing(synTestingPath, 1024, 64, "/home/ricardo.velasco/
ray_results/training_2023-09-18_19-57-26/
training_9792e_00007_7_batch_size=128,hn1=1024,hn2=64,1r=0.0354
_2023-09-18_19-57-27/checkpoint_000003")

print(a, b, c)

#Synthetic dataset TOP 5 BEST BPV TESTING

a, b, ¢ = testing(synTestingPath, 2048, 128, "/home/ricardo.velasco/
ray_results/training_2023-09-18_19-57-26/
training_9792e_00013_13_batch_size=64,hn1=2048,hn2=128,1r=0.0102
_2023-09-18_19-57-27/checkpoint_000011")

print(a, b, c)

107

328

329

330

331

332

333

334

335

336

337

338

a, b, ¢ = testing(synTestingPath, 1024, 64, "/home/ricardo.velasco/
ray_results/training_2023-09-18_19-57-26/
training_9792e_00007_7_batch_size=128,hn1=1024,hn2=64,1r=0.0354
_2023-09-18_19-57-27/checkpoint_000003")

print(a, b, c)

a, b, ¢ = testing(synTestingPath, 1024, 64, "/home/ricardo.velasco/
ray_results/training_2023-09-18_19-57-26/
training_ 9792e_00014_14 _batch_size=256,hn1=1024,hn2=64,1r=0.0265
_2023-09-18_19-57-27/checkpoint_000003")

print(a, b, c)

a, b, ¢ = testing(synTestingPath, 4096, 64, "/home/ricardo.velasco/
ray_results/training 2023-09-18_19-57-26/
training_9792e_00008_8_batch_size=512,hn1=4096,hn2=64,1r=0.0114
_2023-09-18_19-57-27/checkpoint_000002")

print(a, b, c)

a, b, ¢ = testing(synTestingPath, 4096, 128, "/home/ricardo.velasco/
ray_results/training_2023-09-18_19-57-26/
training_9792e_00024_24_batch_size=64,hn1=4096,hn2=128,1r=0.0008
_2023-09-18_19-57-27/checkpoint_000005")

print(a, b, c)

108

	=Resumen
	=Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Problem statement
	Objectives

	Theoretical Framework
	Artificial Intelligence
	Machine Learning
	Data
	Types
	Tasks

	State of the Art
	Methodology
	Available Datasets
	Dataset Construction
	Dataset Labelling
	Dataset Splitting and Audio Distribution
	Preprocessing and Spectrogram Conversion
	Selected CNN Architectures
	AlexNet
	VGG19
	ResNet50

	Data Augmentation
	CNN Features-Based Model
	Feature Extraction
	Dataset Discretization
	Statistical-based Feature Selection Methods
	Classification and Hyperparameter Tuning

	CNN Transfer learning-based Model
	Importing Pre-trained CNN Network
	Modifying Final Layers
	Hyperparameter Tuning

	Model Performance Metrics
	PPV (Positive Predictive Value)
	NPV (Negative Predictive Value)
	Custom Metric: BPV (Balanced Predictive Value)

	Results and Discussion
	Dataset Construction
	Syntetic Data
	Dataset Labelling
	Model's Testing
	CNN Features-based Model
	CNN Transfer Learning-based Model
	Observations from Table 5.4

	Conclusions
	Observations and Limitations

	Bibliography
	Appendices
	CNN Features-based Model Hyperparameter Tuning and Testing Results: Diagrams and Tables
	CNN Transfer Learning-based Model Hyperparameter Tuning and Testing Results: Diagrams and Tables
	Exemplary Code
	Dataset Splitting
	Audio Dataset Augmentation, Resampling, and Conversion
	CNN Features-based Model
	CNN Transfer Learning-based AlexNet Hyperparameter Tuning
	CNN Transfer Learning-based AlexNet Testing

		2024-03-08T14:49:30-0500

		2024-03-08T14:50:28-0500

