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Autor:

Velasco Ramı́rez Byron Andrés

Tutor:

Ph.D. Infante Quirpa Saba Rafael
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Resumen

En los últimos años, ha habido una actividad significativa en el desarrollo y la aplicación

de algoritmos computacionales eficientes para estimar estados y parámetros en el modelo

estocástico SIR de epidemias. Estos modelos nos ayudan a comprender la realidad porque

la cuantifican. Las poblaciones en estudio se dividen en estados o categoŕıas. Las tasas

de transferencia entre estados se expresan matemáticamente como derivadas con respecto

al tiempo basadas en los tamaños de los estados utilizando sistemas de ecuaciones difer-

enciales ordinarias o ecuaciones diferenciales estocásticas. El objetivo principal de este

trabajo es modelar la dinámica de la propagación del brote de la enfermedad por coron-

avirus 2019 y estimar la curva de tendencia del número reproductivo efectivo. Modelar

la propagación de la epidemia facilita la inferencia estad́ıstica de los datos y ayuda a

planificar estrategias de contingencia para la prevención en la población. La metodoloǵıa

utilizada para estimar los estados y parámetros del modelo estocástico SIR implica aplicar

el algoritmo Euler-Maruyama, la aproximación Difussion Bridge, el filtro de Kalman y el

proceso Gaussiano. Ilustramos la metodoloǵıa utilizando estados epidémicos simulados y

datos recopilados por la Secretaŕıa Nacional de Gestión de Riesgos y Emergencias. De-

mostramos cómo los procesos o estados no observados pueden inferirse simultáneamente

con los parámetros subyacentes. Entre las principales contribuciones de este trabajo se

encuentra proponer estimaciones para el número de personas infectadas, susceptibles y

recuperadas y proporcionar una herramienta de monitoreo en tiempo real para el número

de casos acumulados.

Palabras Clave:

Modelo epidémico SIR, Euler-Maruyama, Diffusion Bridge, Filtro de Kalman, Proceso

Gaussiano.
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Abstract

In recent years, there has been significant activity in the development and application of

efficient computational algorithms for estimating states and parameters in the stochastic

SIR epidemic model. These models help us to understand reality because they quantify

it. The populations under study are divided into states or categories. The transfer rates

between states are mathematically expressed as derivatives with respect to time-based on

the sizes of the states using systems of ordinary differential equations or stochastic differ-

ential equations. The main objective of this work is to model the dynamics of the spread

of the 2019 coronavirus disease outbreak and estimate the trend curve of the effective re-

productive number. Modeling the epidemic’s spread facilitates statistical inference of the

data and helps plan contingency strategies for population prevention. The methodology

used to estimate the states and parameters of the stochastic SIR model involves applying

the Euler-Maruyama algorithm, the Diffusion Bridge approximation, the Kalman filter,

and the Gaussian process. We illustrate the methodology using simulated epidemic states

and data collected by the Secretaŕıa Nacional de Gestión de Riesgos y Emergencias. We

show how unobserved processes or states can be inferred simultaneously with the under-

lying parameters. Among the main contributions of this work are proposing estimates for

the number of infected, susceptible, and recovered individuals and providing a real-time

monitoring tool for the number of cumulative cases.

Keywords:

SIR epidemic model, Euler-Maruyama, Diffusion Bridge, Kalman Filter, Gaussian Pro-

cess.
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Chapter 1

Introduction

Epidemiology is a discipline of biology that deals with studying public health in the popu-

lation. Understanding the dynamics of infectious disease outbreaks can reduce their impact

on society and the economy. Epidemiology can be well-explained through mathematical

models. The fundamental reason is that phenomena observed at the population level are

generally complex and difficult to interpret. Modeling epidemics allows us to understand

the conditions under which an outbreak occurs and how it spreads. It also enables us to in-

terpret data, test hypotheses, discover patterns, predict epidemics, determine the duration,

evaluate intervention strategies to protect the population, and understand the properties

of disease dynamics.

In these models, each individual is classified based on disease states and attributes.

For example, the states in the SIR model are Susceptible, Infectious, or Recovered. The

dynamics of disease transmission are modeled through a system of differential equations

that describes the flow of interaction among individuals between states or categories. As

the population mixes, the disease spreads, and infected individuals evolve over time through

each stage of the disease. Models defined by a differential equation are the most appropriate

because they allow for reasonable assumptions about the probabilities of a person getting

infected or recovered.

In this study we propose four methods to estimate the curve that models COVID-

19 outbreak in Ecuador, considering the stochastic SIR epidemic model: two numerical

methods known as the Euler-Maruyama and Diffusion Bridge algorithms, a third method

based on the Kalman filter, and finally, we propose a non-parametric method based on a

1
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Gaussian process.

In recent years, the application of Gaussian processes has gained significant attention in

epidemiological research due to their ability to capture and model complex, non-linear re-

lationships in data. This is of paramount importance when dealing with infectious disease

outbreaks like COVID-19, where various factors, such as government interventions, behav-

ioral changes, and external influences, can lead to intricate and unpredictable dynamics.

The uniqueness of Gaussian processes lies in their capacity to offer a flexible framework

that can accommodate the inherent uncertainties and complexities of real-world data.

The Gaussian process methodology introduces a valuable tool for estimating the under-

lying epidemic curve in the context of COVID-19 in Ecuador. Unlike traditional methods,

Gaussian processes do not rely on predetermined parametric assumptions about the dis-

ease’s behavior. Instead, they allow us to infer the epidemic’s trajectory directly from

the observed data, adapting to the evolving nature of the pandemic. This adaptability is

particularly crucial in the case of COVID-19, where new variants and changing behaviors

can lead to significant shifts in the transmission dynamics.

Furthermore, Gaussian processes provide a powerful framework for uncertainty quan-

tification. This is essential when making predictions and policy recommendations based

on epidemic models. By incorporating uncertainty estimates, decision-makers can better

assess the range of possible outcomes and tailor intervention strategies accordingly. The

Gaussian process approach, when combined with other traditional modeling methods, of-

fers a comprehensive and holistic view of the COVID-19 epidemic in Ecuador, thereby

enhancing our ability to make informed decisions for public health and policy planning.

In addition to their flexibility in capturing complex dynamics and adapting to evolving

situations, Gaussian processes are particularly valuable in this context for their ability

to capture uncertainty and provide probabilistic estimates. In the realm of COVID-19

modeling, where data can be noisy and variable, the Gaussian process methodology offers

a powerful means to quantify the range of possible outcomes and account for uncertainties

in our predictions. This is essential for robust decision-making and for understanding the

limits of our models in the face of dynamic and evolving pandemics.

The following sections will delve into the details of our approach, highlighting the

specific methodologies and techniques employed to harness the potential of Gaussian pro-

Information Technology Engineer / Mathematician 2 Graduation Project
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cesses in modeling the COVID-19 epidemic, and we will demonstrate how these meth-

ods contribute to a more comprehensive understanding of disease dynamics and improved

decision-making for the benefit of the population of Ecuador.

1.1 Background

Modern epidemiological mathematical models have their roots in early work, with signifi-

cant contributions from pioneers such as McKendrick [1], who laid the foundation for the

field by introducing methods to determine the probability of an epidemic reaching a certain

size before extinguishing. McKendrick’s work included the formalization of mathemati-

cal models that considered population dynamics over time. This marked the inception of

models designed to understand and predict the spread of infectious diseases. Subsequently,

Kermack and McKendrick [2] derived an equation for determining the size of an epidemic,

considering a threshold based on population density. Their work provided valuable insights

into the dynamics of disease propagation.

As the field of epidemiology continued to evolve, Bartlett [3] introduced a stochastic

version of the McKendrick model, which allowed for a more nuanced exploration of the

uncertainties inherent in infectious disease outbreaks. In the years that followed, a range

of impactful models emerged, including deterministic models proposed by Anderson [4],

Andersson [5], and Daley [6], among others. These models have played a crucial role in

shaping our understanding of the dynamics of infectious diseases within populations.

The emergence of the COVID-19 pandemic in recent years has underscored the critical

importance of mathematical modeling in epidemiology. The pandemic has presented unique

challenges, demanding sophisticated modeling approaches to adapt to rapidly changing

conditions. The ongoing nature of the pandemic, the uncertainties associated with the dis-

ease’s behavior, and the interplay of various environmental, social, economic, and biological

factors have made the modeling of COVID-19 exceptionally complex.

One of the primary challenges in modeling infectious diseases like COVID-19 is the

inherent difficulty of studying infected individuals under controlled conditions, as repeated

observations are often unfeasible. Moreover, complete data on the epidemic is rarely avail-

able. Even when such data is accessible, critical information such as the precise exposure

Information Technology Engineer / Mathematician 3 Graduation Project
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time and the unique contextual factors influencing disease spread remain elusive. Select-

ing relevant factors to include in the model, while considering the limitations of partially

observed data, is another intricate aspect of epidemiological modeling. Furthermore, the

dynamism of disease transmission necessitates the consideration of inherent randomness,

which traditional models often struggle to address effectively.

In this context, the use of Gaussian processes emerges as a promising solution. These

processes not only offer the flexibility needed to capture the uncertainties and complexities

in the data but also adapt to evolving situations. By incorporating Gaussian processes

into the modeling framework, we aim to enhance the precision of predictions, provide more

accurate estimates, and offer a powerful means to quantify the uncertainty that character-

izes infectious disease outbreaks. The expected utility of Gaussian processes lies in their

ability to address the challenges posed by the COVID-19 pandemic, thereby contributing

to more informed decision-making and more effective public health strategies in Ecuador

and beyond.

1.2 Problem statement

The problem addressed in this study lies in the need to accurately understand and model

the dynamics of the COVID-19 epidemic in Ecuador. This understanding is essential for

making informed public health decisions and implementing effective strategies to control

and prevent the spread of the disease.

The inherent complexity of infectious diseases, particularly COVID-19, is one of the

primary causes of the problem. The dynamics of disease spread are subject to a range of

changing factors such as virus variants, government interventions, and population behavior.

These factors make it challenging to predict and accurately model the epidemic’s evolution.

The relevance of addressing this problem is undeniable, as it has a direct impact on the

health and well-being of Ecuador’s population. The ability to accurately predict disease

spread and its potential scenarios provides crucial information for decision-making, re-

source allocation, and intervention strategy implementation. Furthermore, the COVID-19

pandemic has placed significant strain on the country’s healthcare systems and economy,

underscoring the importance of effectively addressing this problem.

Information Technology Engineer / Mathematician 4 Graduation Project
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The proposed solution involves the application of Gaussian processes in modeling the

COVID-19 epidemic in Ecuador. These processes offer a flexible and powerful methodology

that can adapt to the complexities and inherent uncertainties in epidemic data. By using

Gaussian processes, the aim is to improve prediction accuracy and the ability to quantify

uncertainty in models, thereby enabling more evidence-based public health decisions and

disease control policies.

In this study, four methods are proposed for estimating the curve that models the

spread of COVID-19 in Ecuador. These methods are based on the stochastic SIR model

and employ numerical approaches, such as the Euler-Maruyama and Diffusion Bridge al-

gorithms, as well as the Kalman filter method. Additionally, a non-parametric approach

based on Gaussian processes is introduced. The inclusion of this latter method aims to ad-

dress the need to capture uncertainty in the data and provide probabilistic estimates that

support evidence-based decision-making and adaptability to changes in the epidemiological

situation.

The resolution of this problem will lead to a deeper understanding of the dynamics of

the COVID-19 epidemic in Ecuador and, consequently, contribute to the improvement of

intervention strategies, disease control, and, ultimately, the well-being of the Ecuadorian

population.

1.2.1 Author’s contribution

This study plays a crucial role in addressing a critical and complex issue in the field of

epidemiology during the COVID-19 pandemic in Ecuador. Its contribution lies in the ap-

plication of innovative methods and the implementation of Gaussian processes in epidemic

modeling, significantly expanding the toolkit available for understanding and predicting

disease spread. By proposing and developing four different approaches, the study demon-

strates a commitment to continuous improvement and the pursuit of more precise and

adaptable solutions. The implementation of these methods will not only enrich the scien-

tific understanding of the epidemic but also provide health authorities and decision-makers

with a more robust and flexible framework for addressing real-time epidemiological chal-

lenges. The valuable contribution of this study translates into a significant step towards

effective pandemic management and control in Ecuador.
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1.3 Objectives

1.3.1 General Objective

To develop a comprehensive epidemiological modeling approach to estimate the model

parameters and predict the spread of the COVID-19 epidemic in Ecuador using Gaussian

process methods, in order to provide a solid foundation for public health decision-making

and the effective implementation of disease control strategies.

1.3.2 Specific Objectives

To achieve the main goal, we will accomplish the following objectives:

• To make a literature review on diffusion processes in pandemic modeling.

• To analyze and process the COVID-19 cases dataset in Ecuador.

• To propose a stochastic diffusion model to model the pandemic.

• To implement the algorithms: Euler-Maruyama, Diffusion Bridge, Kalman Filter,

and Gaussian Process.

• To estimate the solution states of the stochastic SIR model.

• To compare the results obtained with the real data.

• To assess the effectiveness of Gaussian processes as a tool for inference in the SIR

model based on observed epidemiological data.

Information Technology Engineer / Mathematician 6 Graduation Project



Chapter 2

Theoretical Framework

Below are key concepts that will help you understand the study topic.

2.1 SIR model

The SIR model is a widely used mathematical tool in epidemiology for studying the spread

of infectious diseases within a population. It was developed by Kermack and McKendrick in

1927 and is based on dividing the population into three main compartments: Susceptibles

(S), Infectious (I), and Recovered (R).

• Susceptible (S): Represents individuals who are vulnerable to infection because

they have not yet been exposed to the pathogen or have not developed immunity.

• Infectious (I): Includes individuals who are currently infected and can transmit the

disease to susceptibles.

• Recovered (R): Represents individuals who have recovered from the disease and

have developed immunity, making them unable to be infected again.

The SIR model is described by a set of differential equations that govern the dynamics of

these groups over time. These equations consider infection, recovery, and transmission rates

and are essential for understanding how an epidemic evolves within a given population.

The SIR model, proposed by Kermack and McKendrick in 1927, has been fundamental

in epidemiology and has served as the basis for the development of more complex models for

the study of infectious diseases. Its simplicity makes it a valuable tool for understanding

7
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key concepts in disease spread, such as the basic reproduction number (R0), and the

importance of control measures in epidemic mitigation.

Let XS(t), YI(t), and ZR(t) random integer numbers in the population denote suscep-

tible, infectious, and removed, respectively. Let N(t) =
(
XS(t), YI(t), ZR(t)

)
a continuous-

time Markov chain with events and rates:

(XS, YI , ZR) → (XS − 1, YI + 1, ZR) at rate β

N
XSYI

(XS, YI , ZR) → (XS, YI − 1, ZR + 1) at rate γYI

where the population size is:

N = XS + YI + ZR

Note that the vector N(t) is a Markov chain that can be treated as a diffusion process

using a stochastic differential equation, or can be treated as a Gaussian process, and is

modeled with a Kalman filter if the process is linear, or a Taylor approximation if it is

non-linear.

The stochastic SIR epidemic model is a continuous-time discrete-space Markov Chain.

We have the following considerations:

• Closed and fixed population with N + a individuals, homogeneously mixed and no

latent period,

• XS + YI + ZR = N + a, where N and a are constant. Then ZR = N + a − XS − YI ,

• XS(0) = N and YI(0) = a,

• All individuals are equally susceptible and infectious,

• An infected individual remains infected, before being removed, for a random period

with mean 1
µ
,

• A susceptible individual after contact with an infected individual immediately be-

comes infectious,

• A recovered individual acquires immunity to the disease,

Information Technology Engineer / Mathematician 8 Graduation Project
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• The epidemic ends when YI(t0) = 0 for some time t0 > 0.

At this point, the inference problem is to estimate the average infection rate β, the

average recovery rate γ (both are considered positive), and R0 known as the basic repro-

duction number (the average number of new infections caused by a single infected at an

earlier stage of the epidemic). This quantity gives us information about the final size of

the epidemic, thus, a large outbreak can occur if and only if R0 > 1. There are several

approaches for estimating R0, depending on assumptions and data limitations; most meth-

ods are based on deterministic models which cannot accommodate uncertainty regarding

parameter estimation.

The movement of individuals from one compartment to another is represented through

the ordinary differential equations below. For the remainder of this paper, we use X, Y ,

and Z to denote the number of individuals in the S, I, and R compartments, respectively.

dX

dt
= −βXY

N
dY

dt
= βXY

N
− γY

dZ

dt
= γY

That is, susceptible individuals become infected at a rate that is proportional to the

percentage of infected individuals multiplied by β, the infection rate, and the number of

susceptible individuals. Infectious individuals recover at a rate of γ multiplied by the

number of infected individuals. Individuals begin in the X state as susceptible individuals,

possibly become infectious and move to the Y state, and finally possibly recover in the Z

state. An outbreak occurs if the rate of change of infectious individuals is positive dY

dt
> 0,

That is, an outbreak occurs if the rate of new infections is greater than the rate of recovery.

Formally, an outbreak occurs if:

R0 = β

γ
> 1

Now, we consider the stochastic model which is discussed in this paper. The epidemic is

completely determined by {(X(t), Y (t)); t > 0} which is a continuous-time Markov Chain
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on the state space:

E = {(i, j); 0 ≤ i ≤ N, 0 ≤ j ≤ (N − i) + a}

The transition probabilities from time t to t + h are given in the Table 2.1:

Current state Transition Next state Probability

(i, l) −→ (i − 1, l + 1) β

N
ilh + o(h)

(i, l) −→ (i, l − 1) µlh + o(h)

(i, l) −→ (i, l) 1 −
(

β

N
ilh + µlh

)
+ o(h)

Table 2.1: Transition probabilities

For (i, l) ∈ E, we define the transition matrix:

pil(t) = p
(
S(t) = i, I(t) = l

)
= p

(
I(t) = l|S(t) = i

)
p
(
S(t) = i

)
The changes are given by dS(t) = S(t + h) − S(t), and dI(t) = I(t + h) − I(t). The

transition probabilities given in the Table 2.1 satisfy the Kolmogorov forward equations:

∂p(i,l)(t)
∂t

= β(i + 1)(l − 1)
N

p(i+1,l−1)(t) + µ(l + 1)p(i,l+1)(t) +
1 −

(
β

N
il + µl

) p(i,l)(t)

for (i, l) ∈ E, with pil(t) = 0 if (i, l) /∈ E and pNa(0) = 1. The Markov process given

previously leads to a stochastic model that allows us to understand the dynamics of the

epidemic.

The Markov chain defined by in the Table 2.1 is well approximated by the solution

X(t) of the SDE

dX(t) = µ
(
X(t), θ

)
dt +

√
Σ
(
X(t), θ

)
dBt (2.1)

where Bt denotes independent Brownian movements, µ = µ(X(t), θ) is called the drift

vector (describes the trend of the stochastic process), and Σ = Σ(X(t), θ), is the diffusion

matrix (determines the variability around the trend).
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When the drift and diffusion processes are sufficiently regular functions, the transition

density satisfies the forward Kolmogorov or Fokker-Planck-Kolmogorov equation, so-called

Kloeden and Platen:

∂pθ(t; x0, x)
∂t

= −
d∑

i=1

∂
(
µi(x, θ)pθ(t; x0, x)

)
∂xi

+ 1
2

d∑
i=1

d∑
j=1

∂2

∂xi∂xj

((
Σ(x, θ)QΣT (x, θ)

)
ij

)
pθ(t; x0, x)(2.2)

where Q is the diffusion matrix of Brownian motion, and the diffusion process by the

equation is given, that stationary and ergodic is considered. Instead of using S and I, we

normalise the process by the transformations

x(t) = S(t)
N

and y(t) = I(t)
N

, (2.3)

Now, a Fokker-Planck-Kolmogorov SDE for the bivariate stochastic process is obtained,

for the SIR epidemic model; that is, in the equation (2.2) d = 2, x = (x = x1, y = x2)T :

∂pθ(t; x0, x)
∂t

= −∂
(
µ1(x, θ)pθ(t; x0, x)

)
∂x

− ∂
(
µ2(x, t)pθ(x, t)

)
∂y

+ 1
2

∂2 (Σ11(x, θ)pθ(t; x0, x)
)

∂x2

+ 1
2

∂2 (Σ22(x, θ)pθ(t; x0, x)
)

∂y2 + ∂2 (Σ21(x, θ)pθ(t; x0, x)
)

∂x∂y
(2.4)

That is:  dx

dy

 =

 −βxy

βxy − γy

 dt + 1√
N


√

βxy 0

−
√

βxy
√

γy


 dB1

dB2

 (2.5)

where B1 and B2 are two standard independent Brownian motions. Also:

µ1(·) = −βxy , µ2(·) = βxy − γy , Σ11(·) =
√

βxy

N

Σ12(·) = 0 , Σ21(·) = −
√

βxy

N
and Σ22(·) =

√
γy

N
.

Additionally, in the diffusion process defined in the equation (2.1) the data are partially

known, this means that:

Zt = (Xt, Yt)T
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where Xt defines the unobservable part and Yt the observable part of the system. Also,

Xt and Yt have dimensions d1 and d2 respectively such that Zt has dimension d = d1 + d2.

Since the process Yt is subject to measurement error such that we actually observe:

Yt = f (Xt) + ζt , ζt ∼ N
(
0, σ2

ζ

)
, ζt = diag

(
σ2

ς1 , . . . , ς2
ζd1

)

where f(·) is a known real-valued vector non-linear function, and ζt represents an indepen-

dent noise process. The model object of study becomes:

dXt = µ (Xt, β, γ) dt +
√

Σ (Xt, β, γ)dBt

Yt = f (Xt) + ζt , ζt ∼ N
(
0, σ2

ζ

)
(2.6)

When the {Yt, t ≥ 0} are conditionally independent given {Xt, t ≥ 0} then (2.6) is a

state-space model (or a hidden Markov model). The unknown parameters are:

Θ =
(

β, γ, σ2
ς1 , . . . , ς2

ζd1

)

These models explain how data and a disease transmission model are related as they

consist of two components: an unobserved, time-continuous state process, which operates

on the population level and describes the dynamics of disease spread, and an observation

model, which describes how the data collected at discrete points in time is connected to

the transmission model.

The likelihood for the partially observed dynamic system given in equation (2.6) is as

follows: let Y1:T = (Y1, . . . , YT ) denote the random variable counting the observations at

time tn in each of the two states Xn =
(
S(tn), I(tn)

)
at that time tn. Our goal is to infer the

latent SIR population dynamic X0:T = (X0, . . . , XT ) and the rate parameters vector Θ over

time grid 0 = t0 < t1 < . . . < tn = T . Let p(X0) and p(Θ) denote the prior densities for the

initial compartment states and the SIR parameters respectively. The joint density of the

states and the observations is defined in terms of the transition density fXt|Xt−1

(
xt|xt−1, Θ

)
,

the observation density gYt|Xt

(
yt|xt, Θ

)
, and the initial density fX0 (x0, Θ) as:

fX0:T ,Y1:T (x0:T , y1:T , Θ) = fX0 (x0, Θ)
T∏

t=1
fXt|Xt−1

(
xt|xt−1, Θ

)
gYt|Xt

(
yt|xt, Θ

)
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Then the posterior distribution for the population trajectory X0:T and parameters Θ

given observed Y1:T is:

p
(
X0:T , Θ|Y1:T

)
∝ p

(
Y1:T |X0:T , Θ

)
p
(
X1:T |X0, Θ

)
p (Θ) p (X0)

where:

p
(
X1:T |X0, Θ

)
=

T∏
t=1

fXt|Xt−1

(
xt|xt−1, Θ

)
and p

(
Y1:T |X0:T , Θ

)
=

T∏
t=1

gYt|Xt

(
yt|xt, Θ

)
Note that the SIR transition density becomes intractable as population size N is large,

this makes the process of inference complicated in large populations. The general objective

of this work is to estimate the solution states X1:T of the given system in equation (2.6)

and the unknown parameters Θ.

2.2 Stochastic Differential Equations (SDE)

Stochastic Differential Equations (SDEs) constitute an essential field in the modeling of

dynamic phenomena in the presence of uncertainty. Unlike ordinary differential equations,

SDEs incorporate the component of stochastic noise, stemming from random sources, into

the mathematical descriptions of dynamic systems. These equations are fundamental in a

wide range of disciplines, from physics and biology to economics and engineering, where

randomness plays a critical role in the behavior of systems.

SDEs can be expressed in general form as:

dX(t) = F (X(t), t) dt + G(X(t), t) dW (t)

where:

• X(t) represents the state of the system at time t.

• F (X(t), t) is the deterministic part that describes the expected evolution of the sys-

tem.

• G(X(t), t) is the stochastic part that models random fluctuations.

• dW (t) denotes a Wiener process, which is a source of stochastic noise.
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SDEs provide a powerful tool for analyzing systems affected by uncertainty and vari-

ability and are especially useful in situations where experimental data are limited or noisy.

A key reference illustrating the importance of Stochastic Differential Equations can

be found in [7]. This text delves deeply into the concepts and applications of SDEs in

the context of physics and natural sciences, highlighting their relevance in understanding

physical and chemical processes subject to random fluctuations.

2.3 Markov Chains

Markov chains, named in honor of the Russian mathematician Andrei Markov, are a widely

used probabilistic model for describing systems that evolve in discrete steps over time,

where the future depends solely on the current state and not on previous states. These

chains are fundamental in a wide range of applications in science, engineering, economics,

and other disciplines.

A Markov chain is characterized by the following key elements:

• State Space: It represents all possible states that the system can take at each time

step.

• Transition Matrix: This matrix defines the transition probabilities between states.

Each entry in the matrix indicates the probability of moving from one state to another

in a single step.

• Markov Property: The Markov property states that the probability of transition-

ing to a future state depends only on the current state and not on the previous history

of the system.

• Stationary State: Some Markov chains reach a stationary state where the proba-

bilities of being in each state no longer change over time.

Markov chains are used to model a variety of phenomena, from weather forecasting to

financial risk assessment. A common example is the ”Random Walk Problem,” where an

individual moves randomly along a timeline, and Markov chains are used to analyze the

probability of their future location.
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A valuable resource that explores Markov chains and their applications in detail can

be found [8]. This text provides a solid foundation in the theory and practice of Markov

chains and is widely used in academic courses on stochastic processes.

2.4 Monte Carlo Algorithms

Monte Carlo algorithms are a class of computational techniques used to solve numerical

problems by generating random samples and computing statistics on these samples. These

algorithms are named after the famous Monte Carlo casino in Monaco, known for its

randomness and games of chance, as they extensively rely on random numbers in their

implementation.

One of the most well-known Monte Carlo algorithms is the Monte Carlo Method for

estimating integrals. The main idea behind this method is to randomly sample points

within a region of interest and calculate a numerical approximation of the integral as the

average of function evaluations at these points multiplied by the total area of the region.

The Monte Carlo Method algorithm can be summarized in the following steps:

1. Define the region of interest containing the function to be integrated.

2. Generate a set of uniformly distributed random points within this region.

3. Evaluate the function at each of these points.

4. Calculate the average of the function evaluations and multiply it by the total area of

the region to obtain an estimate of the integral.

The power of Monte Carlo algorithms lies in their ability to tackle complex, high-

dimensional problems such as simulating physical systems, evaluating financial risks, opti-

mization, and solving integral equations, among others.

A widely used reference resource for understanding Monte Carlo algorithms and their

applications is [9]. This book provides a detailed introduction to concepts and techniques

related to Monte Carlo algorithms, including the Monte Carlo Method for estimating in-

tegrals, along with examples and applications in statistics and computational sciences.

Information Technology Engineer / Mathematician15 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

2.5 Monte Carlo Markov Chain Algorithms

Monte Carlo Markov Chain (MCMC) algorithms are computational techniques used for

efficiently and approximately sampling probability distributions, especially in situations

where obtaining samples directly is challenging. MCMC algorithms are based on Markov

chains, which are sequences of states that evolve according to specific transition probabil-

ities.

Two of the most commonly used MCMC algorithms are the Metropolis-Hastings (MH)

algorithm and Gibbs sampling. The MH and Gibbs sampling algorithms are essential

in Bayesian statistics and find applications in a wide variety of fields, including machine

learning, statistical modeling, and inference in complex systems.

A widely used reference resource for understanding Monte Carlo Markov Chain algo-

rithms, including Metropolis-Hastings and Gibbs sampling, is [10]. This book provides

a comprehensive introduction to Bayesian statistics and MCMC methods, with detailed

examples and applications.

2.5.1 Metropolis-Hasting Algorithm (MH)

The Metropolis-Hastings algorithm is used to sample from a desired probability distri-

bution, even when obtaining direct samples from this distribution is not straightforward.

Here are the steps of the MH algorithm:

1. Initialization: Begin with an arbitrary initial value for the variable you want to

sample.

2. Proposal of a New State: Generate a new candidate for the next state of the

Markov chain from a proposal probability distribution (e.g., a normal distribution

centered around the current state).

3. Acceptance or Rejection: Calculate the acceptance ratio, which is the probability

of accepting the new state based on its relative probability compared to the current

state and the proposal probability. If the new state is more probable than the current

state, it is accepted with high probability. If it is less probable, it is accepted with
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a probability equal to the acceptance ratio. If it is rejected, the current state is

repeated in the chain.

4. Iteration: Repeat steps 2 and 3 a sufficient number of times to obtain a represen-

tative sample of the distribution of interest.

2.5.2 Gibbs Sampling

Gibbs sampling is an MCMC algorithm used to sample from multivariate joint distributions

by breaking the sampling process into simpler conditional sub-processes. Here are the steps

of the Gibbs sampling algorithm:

1. Initialization: Start with an initial value for all the variables you want to sample.

2. Iteration: For each variable in turn, sample a new value from its conditional dis-

tribution given the updated information from the other variables. This sampling is

based on the conditional distributions of each variable as a function of the others.

3. Repetition: Repeat step 2 for each variable a sufficient number of times to obtain

a representative sample from the joint distribution.

2.6 Kalman filter

The Kalman filter is an algorithm used to estimate unobserved states of a system from

noisy observations. It is derived in two stages: the prediction stage and the update stage.

2.6.1 System model

Let’s assume we have a linear and dynamic system that can be described by two equations:

1. State model:

xk = A · xk−1 + wk

where xk is the true state at time k, A is the state transition matrix, and wk is the

process noise at time k.
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2. Observation Model:

zk = H · xk + vk

where zk is the observation at time k, H is the observation matrix, and vk is the

observation noise at time k.

The step-by-step derivation of the Kalman filter equations is as follows:

Step 1: Prediction (a priori): Prediction is the estimation of the state at time k

based on the information available at k − 1. In this step, the a priori state and covariance

are predicted.

1. State Prediction:

x̂−
k = A · x̂k−1

where x̂−
k is the a priori state estimate at time k, and x̂k−1 is the state estimate at time

k − 1.

2. Covariance Prediction:

P −
k = A · Pk−1 · AT + Q

where P −
k is the a priori covariance at time k, Pk−1 is the covariance at time k − 1, and Q

is the process noise covariance.

Step 2: Update (a posteriori): The update combines the prediction information

with the observations at time k to obtain a more accurate a posteriori estimate.

1. Residual (Innovation):

yk = zk − H · x̂−
k

where yk is the residual or innovation at time k, zk is the observation at time k, x̂−
k is the

a priori state estimate at time k, and H is the observation matrix.

2. Kalman Gain:

Kk = P −
k · HT · (H · P −

k · HT + R)−1

where Kk is the Kalman gain at time k, P −
k is the a priori covariance at time k, H is the

observation matrix, and R is the observation noise covariance.

3. Updated State Estimate:

x̂k = x̂−
k + Kk · yk
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where x̂k is the a posteriori state estimate at time k, x̂−
k is the a priori state estimate at

time k, Kk is the Kalman gain, and yk is the residual.

4. Covariance Update:

Pk = (I − Kk · H) · P −
k

where Pk is the a posteriori covariance at time k, P −
k is the a priori covariance at time k,

Kk is the Kalman gain, H is the observation matrix, and I is the identity matrix.

The Kalman filter allows for optimal state estimation, taking into account noisy obser-

vations and the system’s dynamics.

2.7 Gaussian processes

Gaussian processes (GPs) have emerged as a powerful tool in epidemiological modeling,

allowing for uncertainty capture and the adaptability necessary to address ever-evolving

infectious diseases, such as COVID-19. Recent studies in epidemiology have demonstrated

the value of GPs in modeling epidemic dynamics, providing robust and probabilistic esti-

mates of disease spread [11].

Formally, a Gaussian process is defined as a collection of random variables, where any

subset of them follows a joint Gaussian distribution. The Gaussian process is characterized

by its mean function and its covariance function. In the context of epidemic modeling,

GPs enable the representation of disease spread dynamics over time and the capture of

uncertainty in estimates.

2.7.1 Mean and covariance function

The mean function, denoted as µ(t), describes the expected value of the process function

at a specific moment, i.e., µ(t) = E[f(t)], where f(t) represents the process at time t. The

covariance function, denoted as K(t, t′), describes how different observations of the process

are correlated over time.

The covariance function K(t, t′) allows for capturing how observations at different times

interact and influence each other. The choice of a specific covariance function plays a

critical role in the Gaussian process’s ability to capture relevant patterns and features in

epidemiological data.
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2.7.2 Bayesian inference with Gaussian processes

Bayesian inference is a central approach in the application of Gaussian processes in epidemi-

ology. The goal is to estimate the parameters of the Gaussian process from the observed

data, taking uncertainty into account. For this purpose, the Bayesian theorem is used,

which relates the posterior distribution of the parameters to the likelihood function and

prior distributions.

Let’s assume we have observations y from the Gaussian process and we are interested

in the process parameters, represented by the vector θ. Bayesian inference allows us to

calculate the posterior distribution of θ given the observed evidence y.

This posterior distribution is expressed as:

p(θ|y) = p(y|θ)·p(θ)
p(y)

Here, p(θ|y) is the posterior distribution, p(y|θ) is the likelihood of the data given

the parameters, p(θ) is the prior distribution of the parameters, and p(y) is the marginal

likelihood of the data.

Bayesian inference with Gaussian processes enables us not only to estimate the process

parameters but also to quantify the uncertainty in these estimates. This is particularly

relevant in epidemiological modeling, where inherent uncertainty in disease spread can be

high and needs to be considered in public health decision-making.
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Chapter 3

State of the Art

In recent years, there has been a significant increase in theoretical development and ap-

plications of methodologies for analyzing data from infectious disease outbreaks. In most

cases, models governed by a system of differential equations are used. This increase is

mainly due to the appearance of the novel coronavirus (COVID-19) at the end of 2019,

which originated in Wuhan, China, and has spread to all countries worldwide. Markov

chain Monte Carlo (MCMC) methods have been one of the main tools used to analyze

infectious disease models in recent years. The implementation of MCMC methods allows

for greater flexibility in building a model. Likelihood functions that were previously in-

tractable can now be considered, leading to increasingly detailed inference. Pioneering

works in this line of research include [12], [13], and [14]. Recent works of note include [15],

[16], [17], [18], [19], [20], [21], among others.

Alternative approaches have been developed to overcome the intractability of models

dealing with epidemiological data. These include the Sequential Monte Carlo (SMC) algo-

rithm, also known as particle filters ([22], [23]), and the approximate Bayesian computation

(ABC) method ([24], [19]). SMC methods can be used to update the posterior distribution

of parameters and the state of the epidemic as the disease progresses. ABC algorithms are

a popular tool for analyzing epidemic data due to their simplicity in simulating samples.

However, these methods do not solve the problem of updating epidemic process estimates

as the disease progresses over time and new data becomes available.

Currently, many extensions of infectious disease models are being studied, with an

emphasis on non-parametric methods, which increase flexibility. This is achieved using
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Gaussian Processes in [25] and [19]. Other important developments can be found in [26]

and [27].

In ”Calibration and prediction for the inexact SIR model” by Yan Wan, et al [28],

the study proposes calibration and prediction methods for the SIR model, acknowledg-

ing heteroscedastic observation errors. It introduces two predictors: a calibrated one

and another corrected for discrepancy, integrating a calibrated SIR model with a Gaus-

sian Process-based predictor. It employs bootstrap resampling and numerical assessment,

demonstrating that the new predictors outperform existing ones by enhancing the accu-

racy of discrepancy-corrected prediction by at least 49.95%. Additionally, it introduces

a weighted least squares estimator that accounts for the heteroscedasticity of observation

errors. It shows that the calibrated SIR model has lower variance than the discrepancy-

corrected one, highlighting the inaccuracy of the SIR model and the strong relationship

between observation errors and cases.

In ”A Gaussian-process approximation to a spatial SIR process using moment closures

and emulators” by Parker Trostle, et al [29], the study presents an innovative approach

to model disease spread in spatial locations using Gaussian Processes. It extends the SIR

model to incorporate spatial aspects and develops a moment closure approximation to

simplify parameter estimation. The resulting differential equations are addressed using a

low-rank emulator, and a hierarchical model is applied to estimate actual infections from

noisy data. Results underscore the effectiveness of combining moment closure approaches

with emulators, addressing computational challenges. Areas for improvement are identified,

such as the need to investigate more specific conditions for the moment closure approxima-

tion and simplify the method’s implementation for broader adoption. It is suggested that

this approach could be extended to other Markovian processes in various research domains.

In ”Bayesian non-parametric inference for stochastic epidemic models using Gaussian

Processes” by Xiaoguang Xu, et al [25], the study introduces an innovative approach in

epidemiological modeling by using non-parametric Bayesian methods with Gaussian Pro-

cesses (GPs) to estimate infection dynamics in epidemics. Demonstrating its efficacy with

real and simulated data, it emphasizes the accuracy in capturing infection dynamics and

its adaptability across various contexts. The feasibility of non-parametric inference in epi-

demiological models through GPs is highlighted, yet there is an acknowledgment of the
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need for further exploration to broaden its applicability to other scenarios, particularly

those with more complex infection structures. The discussion includes the selection of

covariance functions, emphasizing their impact on the smoothness of estimates without

significantly affecting the outcomes. Additionally, it highlights the computational chal-

lenge, underscoring the need for improvements to handle larger datasets within suitable

time frames.

In ”SIR-SI model with a Gaussian transmission rate: Understanding the dynamics of

dengue outbreaks in Lima, Peru” by Max Ramı́rez, et al [30], the study focused on un-

derstanding the dynamics of dengue transmission in three districts of Lima, Peru, affected

by a recent outbreak. Weekly data on dengue cases in the districts of Comas, Lurigancho,

and Puente Piedra were utilized along with temperature data to investigate transmis-

sion dynamics. The susceptible-infected-recovered in humans and susceptible-infected in

the vector (SIR-SI) model was applied, adjusted through an infection rate modeled by

a Gaussian function. The results revealed that this adjusted model effectively captured

the behavior of the dengue outbreak in the analyzed districts, displaying a strong depen-

dence on meteorological, cultural, and demographic variables. The influence of climate

on transmission was highlighted, establishing a robust qualitative relationship between the

transmission rate and the effective reproduction number, Rt. These findings underscore the

importance of considering external factors beyond the classic SIR-SI model to comprehend

disease spread.

In ”Enhanced Gaussian process regression-based forecasting model for COVID-19 out-

break and significance of IoT for its detection” by Shwet Ketu and Pramod Kumar Mishra

[31], the study proposes the use of a Multi-Task Gaussian Process (MTGP) regression

model to predict the global outbreak of COVID-19. This prediction aims to assist coun-

tries in planning preventive measures against the disease’s spread. The proposed model

is compared with other prediction models such as Linear Regression, Random Forest Re-

gression, Support Vector Regression, and Long Short-Term Memory. Model accuracy is

assessed using performance metrics like Mean Absolute Percentage Error (MAPE) and

Root Mean Squared Error (RMSE) for various prediction horizons, ranging from 1 day to

15 days. The results demonstrate that the proposed model outperforms other models in

terms of MAPE and RMSE across all prediction horizons, showcasing its suitability and
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accuracy. Additionally, the study discusses the significant role of the Internet of Things

(IoT) in COVID-19 detection and prevention, exploring potential IoT-based solutions to

minimize the disease’s impact.

In ”Forecasting seasonal influenza with a state-space SIR model” by Dave Osthus, et

al [32], the study focused on predicting the intensity and timing of seasonal flu in the

United States using a Probabilistic State-Space Model (DBSSM) based on a deterministic

mathematical model (SIR). They emphasized the importance of carefully specifying the

prior distribution in the model, as the results critically depend on this specification. This

prior distribution enabled them to leverage known relationships between the latent initial

conditions of the SIR model and public health surveillance data. They compared their

approach with other alternatives, demonstrating significant advantages in terms of predic-

tion accuracy. They also proposed incorporating multiple disease surveillance systems and

stressed the need for standardized and meaningful forecast metrics to compare competing

models. They highlighted that clearly defining the predicted event and accuracy measures

is essential, emphasizing the importance of direct comparisons between different forecasting

approaches.

In ”Forecasting COVID-19 cases based on a parameter-varying stochastic SIR model”

by J Hespanha, et al [33], the study focused on predicting the evolution of COVID-19 using

a time-varying parameter SIR model, employing time series of new cases and deaths. De-

spite uncertainties within the model, they managed to generate reliable forecasts, validated

against a broad dataset. They emphasize the significance of confidence intervals, noting

that while the forecasts might not always be precise, these intervals typically encompass

future measurements.

In ”Gaussian process approximations for fast inference from infectious disease data” by

Elizabeth Buckingham-Jeffery, et al [34], the study focused on comparing Gaussian pro-

cess approximations with stochastic models of infectious diseases, presenting a framework

to evaluate the accuracy of these approximations in rapid inference from outbreak data.

Researchers developed a flexible framework to derive and quantify the accuracy of these

Gaussian process approximations for SIR and SEIR models. They highlighted the capabil-

ity of these approximations to make swift maximum likelihood inferences using estimates

of infected populations. They also demonstrated the feasibility of inferring unobserved pro-
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cesses simultaneously with underlying parameters. The results aim to encourage wider use

of Gaussian process approximations in infectious disease epidemiology, exploring multiple

approaches and assessing errors through simulated and real data. Additionally, they aim

to address future methodological challenges, including accuracy in case identification, the

need for real-time analysis methods, and the ability to make future predictions in uncertain

environments.

In ”When and How to Lift the Lock down? Global COVID-19 Scenario Analysis and

Policy Assessment using Compartmental Gaussian Processes” by Zhaozhi Qian, et al [35],

the study focused on developing a predictive model for COVID-19 lockdown policies glob-

ally, using a two-layer Gaussian Process approach. The first layer tailors specific models for

each country and policy, while the second layer shares data across countries and focuses on

each nation’s characteristics and policy indicators. The study compared COVID-19 mor-

tality projections with other models and assessed lockdown strategies, highlighting their

impact on mortality. The results underscore the importance of basing government deci-

sions on predictive models in times of crisis. It aims to inform governments and public

health about the impact of policies and social behavior on global health, contributing to

the global effort in managing this crisis.
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Chapter 4

Methodology

4.1 Phases of Problem Solving

4.1.1 Description of the Problem

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has posed an unprecedented

global challenge in public health and epidemiology. Ecuador, like many other countries,

has experienced the spread of this disease across its territories, leading to a critical need

to understand and predict the virus’s spread for informed decision-making and effective

mitigation strategies. The Susceptible-Infectious-Recovered (SIR) epidemic model has been

widely used to model the spread of infectious diseases, including COVID-19.

The application of the SIR model in epidemiology has been a valuable tool for un-

derstanding the spread of infectious diseases. However, the accurate estimation of its

parameters, such as the infection rate and recovery rate, is essential to make the model

more precise and useful in public health decision-making [36]. In the context of COVID-19

in Ecuador, the precise estimation of these parameters is crucial for planning effective re-

sponses and assessing the impact of interventions such as social distancing and vaccination.

As mentioned before, the SIR model is a simple model used to simulate the dynamics

of an infectious disease. In this context, numerical and stochastic methods are applied

to model the dynamics of COVID-19 infection in Ecuador. Implementing approaches like

Euler-Maruyama, Diffusion Bridge, Kalman filter, and Gaussian processes helps simulate

the infection dynamics by solving the proposed SDEs (Stochastic Differential Equations)

in the simple SIR model. Simulating contagious diseases, such as COVID-19, which led to
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a pandemic, is an extremely important resource for implementing safety measures and risk

planning in the affected area.

As previously established, the SIR model has several limitations that affect the true

dynamics of the disease. For example, in real life, it’s almost impossible to have a closed

population where there’s no migration, births, or deaths. Additionally, it overlooks the

variability in infection and recovery rates. In the case of COVID-19, different variants of

the virus have been observed, each with varying infection and recovery rates.

Despite these limitations, we will simulate the dynamics of the COVID-19 virus in

Ecuador based on real infection data and by proposing initial estimates of infection and

recovery rates for the virus. With the algorithms presented in this section, they can be

further used in more complex epidemiological models, such as the SEIR model, SIS model,

among others.

The challenge lies in the complexity of COVID-19 epidemiological data, which includes

multiple sources of uncertainty, such as data quality, variability in case detection, and

population dynamics. Directly estimating the parameters of the SIR model from this data

can be problematic and underestimate uncertainty [37]. Therefore, there is a need to

address this problem using more advanced approaches.

4.1.2 Analysis of the Problem

In recent years, there has been a growing interest in the use of Gaussian processes to

address parameter estimation in epidemiological models, including the SIR model. Gaus-

sian processes are machine learning techniques that can effectively model uncertainty and

variability in data [11]

In the context of COVID-19 in Ecuador, the application of Gaussian processes offers

several advantages. Firstly, it allows for a more realistic incorporation of uncertainty into

the estimation of SIR model parameters. This is especially valuable in situations where

data is limited or noisy.

Secondly, Gaussian processes can capture spatial and temporal relationships in disease

spread. Since the spread of COVID-19 can vary in different regions of Ecuador and over

time, this spatial-temporal modeling capability is essential for a better understanding of

disease dynamics.

Information Technology Engineer / Mathematician27 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

However, it is important to note that the application of Gaussian processes in epidemi-

ology also presents challenges, such as the proper selection of hyperparameters and the

integration of heterogeneous data sources.

4.1.3 Algorithm Design

Euler-Maruyama

The problem with the estimation of the parameters is that the model (2.6) is formulated

in continuous time, while the sampling data are naturally available only at discrete time

frequencies. A numerical solution of the stochastic differential equation:

dXt = µ (Xt, β, γ) dt +
√

Σ (Xt, β, γ)dBt in [0, T ], X0 = x0 (4.1)

is a stochastic process that solves the equivalent equation when the differentials are replaced

by difference approximations. Take a partition of [0, T ];

0 = t0 < t1 < . . . , tk < tk+1 < . . . < tn = T, ∆t = ti+1 − ti = T

k

So that:

ti+1 = ti + ∆t = i∆t, ∆Bi = ∆Bti
=
(
Bti+∆t − Bti

)

In the method of Euler-Murayama, which is the simplest one,

dXti
≈ ∆Xti

= Xti+1 − Xti
, dBti

≈ ∆Bi

Therefore:

Xi+1 = Xi + µ (Xi, θ) ∆t +
√

Σ (Xi, θ)∆Bi

Since ∆Bi ∼ N (0, ∆t) and η ∼ N(0, 1), then
√

∆tη ∼ N (0, ∆t). To generate a

trajectory or realization it is necessary to generate random values of ηi.

Xi+1 = Xi + µ (Xi, θ) ∆t +
√

Σ (Xi, θ) ∆tηi , i = 0, 1, . . . , k − 1 , X0 = x0
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Rewriting the expression dXt in terms of the random variables S(t) and I(t),if we as-

sume that ∆B1
t and ∆B2

t are independent Wiener processes, the Euler–Maruyama discrete

version would be:

Stk+1 = Stk
− βStk

Itk
∆t +

√
βStk

Itk

N
∆t∆B1

i , St0 = st0

Itk+1 = Itk
+
(
βStk

Itk
− γItk

)
∆t +

√βStk
Itk

N
∆B1

i +
√

γItk
∆B2

i

 , It0 = it0

with independent Brownian increments ∆B1
i = η1

i

√
∆ti, ∆B2

i = η2
i

√
∆ti where η1

i and η2
i

are independent draws from the standard normal distribution.

The path is simulated through a recursive application of

Xtk+1 |Xtk
∼ N

(
Xtk

+ µk∆t, Σ (Xi, θ) ∆t
)

The error satisfies:

E
(

|X (ti) − Xi|2
∣∣∣X (ti−1) − Xi−1

)
= o

(
∆t2

)
(one step)

and

E
(

|X (ti) − Xi|2
∣∣∣X(0) − X0

)
= o (∆t)

Order of weak convergence equal to 1. The joint density of this approximation is:

p
(
Xt1:T |X0, θ

)
∝

T∏
k=0

N
(
Xtk

+ µk∆t, Σ (Xi, θ) ∆t
)

Diffusion Bridge Approximation

Suppose the process given in (2.6), and that a discrete time realization of Xt is generated

conditional in x0 and YT . Let partition [0, T ] as

0 = t0 < t1 < . . . < tN−1 < tN = T, ∆t = T

m

The continuous-time conditioned process is then approximated by the discrete-time
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diffusion bridge, with latent values

x(0,T ] = (xt1 , . . . , xtm = xT )T

having the posterior density

p
(
x(0,T ]|x0, yT , Θ

)
∝ p

(
yT |xT , σ2

ζ

)m−1∏
k=1

p
(
xtk+1|xtk

, Θ
)

where

p
(
xtk+1|xtk

, Θ
)

∼ N
(
Xtk

+ µk∆t, Σ (Xi, θ) ∆t
)

is the transition density under the Euler–Maruyama approximation,

p
(
yT |xT , σ2

ζ

)
∼ N

(
f(xT ), σ2

ζ

)

For know xT , [38] derives a linear Gaussian approximation of p
(
xtk+1|xtk

, Θ
)

Extensions

are considered in [39]. Then the joint distribution p
(
Xtk+1 , YT |Xtk

)
is approximated by:

 Xtk+1

YT


∣∣∣∣∣Xtk

∼ N


 xtk

+ µk∆t

F
′
(
xtk

+ µk∆t
)
 ,

 Σk∆t ΣkF∆t

F
′Σk∆t F

′ΣkF∆k + σ2
ζ




where f(XT ) = F
′
XT is a constant d × d matrix, µk = µ(xtk

), Σk = Σ(xtk
) and

∆k = T − tk. Conditioning on YT = yT , is obtained:

µMDB

(
xtk

)
= µk + ΣkF

(
F

′ΣkF∆k + σ2
ζ

)−1
(

yT − F
′ (

xtk
+ µk∆t

))

and

ΣMDB

(
xtk

)
= Σk − ΣkF

(
F

′ΣkF∆k + σ2
ζ

)−1
F

′Σk∆t.

In the case of no measurement error and observation of all components then xT is known,

and

µMDB

(
xtk

)
= xT − xtk

T − ttk

, ΣMDB

(
xtk

)
= T − tk+1

T − tk

Σ(xtk
)
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Kalman Filter

Suppose that the joint distribution of the susceptible and infectious population can be

approximated by a bivariate normal distribution. In [34] is shown that for the SIR model,

we obtain a set of 5 ODEs for the mean, variance, and covariance of the susceptible and

infectious populations. To make an inference with the SIR model, suppose that, x(t) and

y(t) represent the number of susceptible and infectious people respectively at time t. We

consider priors
 x(t)

y(t)

 ∼ GP
(
µ(t), C(t, t)

)

where

µ =

 µx

µy

 =

 E
(
x (t)

)
E
(
y (t)

)
 , C(t, t) =

 Cxx Cxy

Cyx Cyy

 =

 Var
(
x (t)

)
Cov

(
x (t) , y (t)

)
Cov

(
y (t) , x (t)

)
Var

(
y (t)

)


This process satisfies the following system of ordinary differential equations

dµx

dt
= − β

N

(
µxµy + Cxy

)
dµy

dt
= β

N

(
µxµy + Cxy

)
− γµy

dCxx

dt
= β

N

(
µxµy + Cxy − 2µxCxy − 2µyCxx

)
dCxy

dt
= β

N

(
µx

(
Cxy − Cyy

)
+ µy

(
Cxx − Cxy

)
− µxµy − Cxy

)
− γCxy

dCyy

dt
= β

N

(
2µxCyy + 2µyCxy + µxµy + Cxy

)
− γ

(
2Kyy − µy

)

These equations are obtained by applying the assumption of normality to the moment

equations of the Markov chain. We now show the approximation of a linear stochastic

process proposed in [40], [41], and [34]. Here, assuming that the susceptible population

evolves deterministically, and the infective individuals are normally distributed, gives the

following set of three ODEs for the evolution of the deterministic susceptible population,

s(t), and the mean, µy = E
(
y (t)

)
, and the variance Cyy = Var

(
y (t)

)
of the infectious

Information Technology Engineer / Mathematician31 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

population:

ds

dt
= − β

N
sµy

dµy

dt
= β

N
sµy − γµy

dCyy

dt
= β

N

(
2sCyy + sµy

)
− γ

(
2Cyy − µy

)

For inferential purposes, it is preferable that the susceptible population be random,

and then can consider an approximation of a linear stochastic differential equation. Let

a finite set of noisy observations y1:N = (y1, . . . , yN) of a hidden state {Xt, t ≥ 0}; and

if assumed that the time evolution of Xt is described by an (Itô) stochastic differential

equation (SDE):

dxt = F (t, θ)x(t)dt + L(t, θ)dBt

yk = Hkx(tk) + rk , rk ∼ N (0, Rk) (4.2)

where x(tk) is the state at time tk, θ ∈ Θ ⊆ Rd is the vector of parameters to be estimated,

F (t, θ) = A(t)x + b, F : [0, ∞) → Rn is a linear dynamic model function, L : [0, ∞) × Θ →

Rn×s is a linear matrix valued function, Bt is s−dimension Brownian motion with diffusion

matrix Q ∈ Rs×s, yk ∈ Rm is the measurement at time tk, H : Rn → Rm is the measurement

model function. Archambeau et al. (2007) showed that the Gaussian process solution

p(x) ∼ GP
(
µ(t), C(t, t)

)
satisfying

dmt

dt
= Amt + b

dCt

dt
= ACt + CtA

T + Σt, Σt = L(t, θ)QLT (t, θ) (4.3)

For SIR model, [34] showed the following results:
 dS(t)

dt

dI(t)
dt

 =

 − β
N

(
s(t)I(t) + S(t)i(t) − s(t)i(t)

)
dt

β
N

(
s(t)I(t) + S(t)i(t) − s(t)i(t)

)
− γi(t)

 dt

+


β
N

s(t)i(t) − β
N

s(t)i(t)

− β
N

s(t)i(t) β

N
s(t)i(t) + γi(t)


1
2

dBt

Information Technology Engineer / Mathematician32 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

where: S(t) = s(t) + S̃(t), I(t) = i(t) + Ĩ(t), S̃(t), Ĩ(t) are assumed to be small in the

approximation, ignoring quadratic terms and considering only linear terms gives

A(t) =

 − β
N

i(t) − β
N

s(t)
β
N

i(t) β
N

s(t) − γ

 , b(t) =

 β
N

s(t)i(t)

− β
N

s(t)i(t)


and

Σ(t) =


β
N

s(t)i(t) − β
N

s(t)i(t)

− β
N

s(t)i(t) β

N
s(t)i(t) + γi(t)


Now we propose to make an approach using the Kalman filter (KF). For a review of the

KF see, e.g., [42], [43], [44], which originally appeared in [45]. The KF algorithm provides

a recursive efficient computation of dynamic states from which the mean of the squared

error is minimized. For the derivation of the filtering steps for the KF algorithm see [46]

——————————————————————————————————————–

Algorithm 1 The Kalman Filter

——————————————————————————————————————–

1. Initialize the mean m0 and covariance C0

2. For K = 1, 2, . . . , perform the following:

(a) Prediction step:

dm−
k

dt
= Am−

k (t) + b

dC−
t

dt
= AC−

t + C−
t AT + Σt

where m−
k (tk−1) = mk−1 and C−

k (tk−1) = Ck−1, and the prediction result is given

as m−
k = m−

k (tk), C−
k = C−

k (tk).
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3. Update step:

Sk = HkC−
k CT

k + Rk

Kk = C−
k HT

k S−1
k

mk = m−
k + Kk

(
yk − Hkm−

k

)
Ck = C−

k + KkSkKT
k

————————————————————————————————————————

where m−
k is a prior state estimate, mk is a posterior state estimate, C−

k is a prior estimate

error covariance, Ck is a posterior estimate error covariance and Σt = L(t, θ)QLT (t, θ).

Gaussian Process

A Gaussian Process (GP) is a collection of random variables, where any subset of these

variables follows a joint Gaussian distribution. A GP is completely specified by its mean

function and the covariance and variance function. We define mean function µ(x) and the

covariance function C(x, x) of a real process f(x) as

µ(x) = E
(
f(x)

)
, C

(
x, xT

)
= E

{[
f(x) − µ(x)

] [
f(x′) − µ(x′)

]}

where the mean function µ(x) : R → R, and the covariance function k : R × R → R will

write the GP as

f(x) ∼ GP
(
µ(x), k(x, x

′)
)

Let f(x) a GP prior and consider that the observations are given by

(T, Y ) =
{
(t1, y1) . . . , (tn, yn)

}
having likelihood N (y; xT , Λ) give rise to a posterior GPs (x; µs, ks) with

µpost
t = µprior + klT (kT T + Λ)−1 (y − µT ) and kpost

uv = kuv − kuT (kT T + Λ)−1 kT v
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GPs provide a distribution of overfitted functions and associated gradients. Incor-

porating priors (prior distributions) into the parameters of the GP model and the SDE

represents a powerful and highly versatile approach to parameter estimation in Bayesian

contexts. Gaussian processes are commonly used to model nonlinear relationships and

provide smooth and continuous predictions in various applications, such as regression and

prediction. Introducing priors into the parameters of these models allows the incorporation

of prior information or beliefs about parameter values, enhancing parameter estimation and

prediction by accounting for uncertainty in the data. This Bayesian approach not only of-

fers greater modeling flexibility but also provides enhanced statistical inference robustness

by leveraging the advantages of Bayesian statistics in handling uncertainty coherently and

efficiently.. These GP approaches have similar computational complexity and can run up

to two orders of magnitude faster than numerical integration. This plays a similar role

to numerical integration but without the corresponding high computational cost. GPs are

closed under linear maps, in particular, the joint distribution over x and its derivative is:

p


 x

ẋ


 = GP


 x

ẋ

 ;

 µ

µ∂

 ,

 k k∂

∂k ∂k∂




where:

µ∂ = ∂µ(t)
∂t

, k∂ = ∂k(t, t
′)

∂t′ , ∂k = ∂k(t, t
′)

∂t
, ∂k∂ = ∂2k(t, t

′)
∂t∂t′

We consider continuous time dynamical systems in which the motions of d states x(t) =(
x1(t), . . . , xd(t)

)
are represented by d−dimensional Itȯ process governed by the SDE

dxt = µ (xt, θ) dt +
√

Σ (xt, θ)dBt (4.4)

where θ is a vector of parameters of the SDE. For notational convenience, let X =(
x(t1), . . . , x(tT )

)
and k−th state sequence xk =

(
xk(t1), . . . , xk(tT )

)
, and given noisy ob-

servations model of X, then the task is to infer a posterior distribution over the parameters

θ. Let T observations y(t) =
[
y(t1), . . . , y(tT )

]
are obtained from the states X in terms of:

y(t) = x(t) + ϵt , ϵt ∼ N
(
0, σ2

)
(4.5)
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This leads to an observation model:

pOBS

(
Y |X

)
=

T∏
t=1

pOBS

(
y(t)|x(t)

)
, pOBS

(
y(t)|x(t)

)
∼ N

(
x(t), σ2I

)

We propose the following model over states X, their derivatives Ẋ, observations Y and

parameters, where the joint distribution is given by:

p
(
Y, X, Ẋ, ϕ+.θ

)
∝ p

(
ϕ+
)

p (θ) pGP

(
Y |Ẋ, ϕ+

)
pSDE

(
Ẋ|X, θ

)
p
(
X|ϕ+

)

where ϕ+ = (x0, ϕ). To generate data from this model the procedure is as follows:

1. Generate ϕ+ ∼ p1(.) and θ ∼ p2(.),

2. Generate X|ϕ+ ∼ pGP

(
X|ϕ+

)
,

3. Generate Ẋ|X, θ ∼ pSDE

(
Ẋ|X, θ

)
, and

4. Generate Y |Ẋ, ϕ+ ∼ pGP

(
Y |Ẋ, ϕ+

)
.

Prior on latent state p
(
X|ϕ+

)
is as follows; the GP prior assumes that the states are

a prior independent, then the prior on the latent state is given by:

pGP

(
xk|ϕ+

)
∼ GP

(
µ(t), k(t, t

′)
)

Also, we need to approximate pSDE

(
Ẋ|X, θ

)
, to achieve this objective, we proposed

to use a numerical procedure based on an ordinary differential equation (ODE), the gen-

eralization to the case of a stochastic differential equation (SDE) is immediate just add

Gaussian random noise to the equation.

The temporal evolution of the ODE can be modeled by assigning a probability distri-

bution over the solution. An ODE initial value problem is to find a function x(t) : R → Rd,

such that the ODE

ẋ = ∂x

dt
= f(x, t), holds for t ∈ T = [t0, tT ], and x(t0) = x0

We assume that a unique solution exists. Runge-Kutta methods (RKs) see [47], are

carefully designed linear extrapolation methods operating on small contiguous subintervals
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[tn, tn + h] ⊂ T of length h. These methods collect observations of approximate gradients

of the solved ODE, by evaluating the vector field f at an estimated solution, which is a

linear combination of previously collected observations. In an interval [t0, t0 + h], the RK

method is to evaluate:

yi = f (x̂i, t0 + hci) , i = 1, . . . , s

where:

x̂i = x0 + h
i−1∑
j=1

ωijyj

then returns a simple prediction for the solution of the IVP at t0 + h, as x̂(t0 + h) =

x0 + h
∑s

i=1 biyi. In compact form:

yi = f

x0 + h
i−1∑
j=1

ωijyj, t0 + hci

 , i = 1, . . . , s x̂(t0 + h) = x0 + h
s∑

i=1
biyi

Runge-Kutta methods can be constructed naturally from a Gaussian process over x(t),

where the yi are treated as observations of x̂ (t0 + hci) and the x̂i are subsequent posterior

estimates, see [48].

A recursive algorithm analogous to RK methods can be constructed see [49], and [47],

by setting the prior mean to the constant µ(t) = x0, then recursively estimating x̂i =

µi (t0 + hci) in some from the current posterior over x. We know that yi = f (x̂i, t0 + hci),

and yi|x ∼ N
(
ẋ (t0 + hci) , Λ

)
, this result allows us to obtain a recursive algorithm:

x̂ (t0 + hci) = x0 +
i−1∑
j=1

i−1∑
l=1

k∂ (t0 + hci, t0 + hcl) (∂k∂ + Λ)−1
lj yj = x0 + h

i−1∑
j=1

ωijyj

The prediction is the posterior mean at the point:

x̂ (t0 + h) = x0 +
s∑

i=1

s∑
j=1

k∂ (t0 + hci, t0 + hcl) (∂k∂ + Λ)−1
lj yj = x0 + h

s∑
i=1

biyi

To obtain p
(
Y |Ẋ, ϕ+

)
it is carried out using an implicit integration:

pGP

(
Y |Ẋ

)
=

T∏
k=1

pGP

(
yk|ẋk

)
, pGP

(
yk|ẋk

)
=
∫

pOBS

(
yk|xk

)
pGP

(
xk|ẋk

)
dxk ∼ GP

(
µ

y|ẋ
k , Σy|ẋ

k

)
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To simulate samples we can use either Monte Carlo Markov Chain (MCMC), Gibbs

sampling, or Metropolis-Hasting. We present an approach for generate from these condi-

tional distributions, the algorithm is summarized:

• Initialize ϕ0, θ0 at random and draw X0 ∼ pGP

(
X|Y, ϕ0

)
• For i = 1 : L do

1. Sample θi, ϕi|X i−1 ∼ p
(
θ, ϕ|X i−1, y

)
,

2. Sample X i ∼ p
(
X|θi, ϕi, Y

)
.

To simulate samples from parameters:

1. Set θi,0 = θi−1, ϕi,0 = ϕi−1

2. For j = 1 : Lp do

(a) Sample ϕi,j ∼ p
(
ϕ|X i−1, θi,j−1, Y

)
,

(b) Sample θi,j ∼ p
(
θ|X i−1, ϕi,j, Y

)
,

3. Set θi = θi,Lp ϕi = ϕi,Lp .

To simulate samples from p
(
X|θ, ϕ, Y

)
we can use either Metropolis-Hasting, with

X|θ, ϕ, Y ∼ pGP

(
X|ϕ, Y

)
as the proposal see [50].

4.1.4 Implementation

The first phase of the methodology involved the collection of epidemiological data on

COVID-19 in Ecuador. Weekly data on confirmed cases was obtained from the official

website of the Ministerio de Salud Pública. This data is essential to feed the SIR model

and evaluate its performance.

The collected data underwent a rigorous data preparation process. This included data

cleaning to remove duplicate or inconsistent entries, interpolation to fill in possible missing

data, and data transformation when necessary to achieve normalization.

The SIR model, based on a system of ordinary differential equations describing the

dynamics of disease spread, was implemented. Initial conditions of the model were con-

figured, considering the total population and the initial number of infected individuals,
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assuming that the estimation is always done at the beginning of the epidemic, meaning

the population of recovered individuals is zero.

To incorporate the proposed algorithms into the model, the approach was adapted to

the specific needs of epidemic parameter estimation.

The Euler-Maruyama approximation was used to make a first approximation to the

dynamic of COVID-19 in Ecuador. The Diffusion Bridge was used to simulate the dy-

namic of the virus inter-time (at a continuous time), interpolating the real data of the

infected population. Kalman filter was used to simulate the dynamic of the virus, through

an updating step of the covariance of the error of the simulations generated in previous

iterations. Gaussian processes were used to model uncertainty in the parameters of the

SIR model, including the infection rate and recovery rate. Appropriate hyperparameters

for the Gaussian process were selected, and iterations were performed to fit the model

parameters to the observed data.

Comparisons were made with real COVID-19 data in Ecuador, and the model’s ability

to predict disease spread over a specified time horizon was calculated. The results obtained

through the implementation of the model were interpreted in light of observed trends in

the spread of COVID-19 in Ecuador. Projected scenarios were examined, and the utility of

Gaussian processes in capturing uncertainty in epidemic parameter estimation was assessed.

The limitations of the methodology were acknowledged, including the availability of lim-

ited data at certain times, the assumption of homogeneity in virus transmission throughout

the population, and the possibility of changes in public health policies affecting disease dy-

namics.

4.1.5 Testing

When applying the proposed methods, graphs and tables were generated to allow for a

comparison of the quality of the generated simulations with actual observations of infected

individuals. To quantify the quality of the fit, the calculation of mean squared error and

the coefficient of determination were performed. Similarly, several configurations were

tested to visualize the impact on predictions, such as setting different values for the beta

and gamma parameters, hyperparameters of the Gaussian process, Kalman filter matrices,

proposed data variance, among others. This aids in understanding the robustness of the

Information Technology Engineer / Mathematician39 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

model. Additionally, uncertainty in predictions was assessed and how it changes when

performing sensitivity analysis.

4.2 Model Proposal

The aim of this study is to estimate the SIR epidemic model using the algorithms detailed

in Section 4.1.3. This will allow us to assess the effectiveness of these algorithms in making

predictions about the dynamics of the COVID-19 virus. In other words, we will evaluate

how well these predictions fit the actual data, how results vary with different initial pa-

rameter values, and the applicability of these algorithms to more complex epidemiological

models, such as the SEIR model, the SIS model, or other models.

4.2.1 Observed data description

The data analyzed for this study were collected from the official website of the Secretaŕıa

Nacional de Gestión de Riesgos y Emergencias (https://www.gestionderiesgos.gob.ec/informes-

de-situacion-covid-19-desde-el-13-de-marzo-del-2020/). The data represent confirmed COVID-

19 cases at the national level, collected on a weekly basis from March 13, 2020, until week

37 of 2023 (a total of 189 weeks). For the total population size (N), it is assumed to be

the population of Ecuador at the beginning of 2020, which was approximately 17,600,000

inhabitants. It’s important to note that one of the theoretical assumptions is that the

model is studied in a closed population, so it is assumed that from 2020 until week 37 of

2023, there was no immigration, emigration, births, or deaths.

4.3 Analysis Method

The results will be analyzed using a graphical method as we aim to visualize the infection

dynamics compared to actual observed data. The accuracy of the fit will be quantified

by calculating the mean squared error and the coefficient of determination. Alongside

the infection dynamics, we will graphically observe the dynamics of the parameters beta

and gamma through iterations when applying Gaussian processes. Estimates of these pa-

rameters will be calculated using the mean of all values produced until they reach their
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equilibrium point (when their dynamics remain nearly constant). Additionally, maximum

likelihood estimation will be used to provide an initial estimate of the SIR model parame-

ters, compared to an initial random simulation of the infected population.

As will be seen in section 5, a study of three scenarios based on observed data is

conducted: the first scenario includes all the data (referred to as the ”full group”), the

second scenario is formed by considering data from week 1 to week 90 (referred to as the

”first group”), and the third scenario is formed by considering data from week 91 to week

189. Therefore, the analysis of the results is conducted based on these three scenarios

(except in Euler-Maruyama approximation).

4.4 Experimental Setup

The application of the proposed algorithms is carried out with the assistance of the R

software, for which we utilize libraries such as ”deSolve”, ”stats”, ”MASS”, ”mvtnorm” and

”ggplot2”. These libraries are focused on solving ordinary differential equations (ODEs),

handling multivariate distributions (for the use of Gaussian processes), and creating custom

graphics.

4.4.1 Parameters

For each proposed scenario, the first step is to solve the ODE of the SIR model using the

”deSolve” package in R. With this initial approximation, parameter optimization for beta

and gamma is performed through Maximum Likelihood Estimation (MLE) to be used as

initial parameters in each scenario, resulting in the following values:

• First scenario: beta = 0.2, gamma = 0.07

• Second scenario: beta = 0.3, gamma = 0.1

• Third scenario: beta = 0.5, gamma = 0.11

4.4.2 Euler-Maruyama Approximation

The application of this method is carried out for four scenarios with different parameters.

Since this method indicates the dynamics of the S, I, and R populations, given initial values
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of beta and gamma, only the initial data of these populations are needed. So, we use the

following data:

• First scenario: N = 1000, S0 = 999, I0 = 1, R0 = 0, beta = 0.5, gamma = 0.1

• Second scenario: N = 1000, S0 = 999, I0 = 1, R0 = 0, beta = 5, gamma = 0.01

• Third scenario: N = 1000, S0 = 999, I0 = 1, R0 = 0, beta = 0.17, gamma = 0.1

• Fourth scenario: N = 1000, S0 = 999, I0 = 1, R0 = 0, beta = 0.1, gamma = 0.1

In all scenarios, it’s used a total time (T ) of 100 and a time-step (dt) equal to 0.1.

4.4.3 Diffusion Bridge Approximation

The application of this method is carried out for the three scenarios of observed data

described before, using the values of beta and gamma found with MLE and the observed

data from each group. The values of the other parameters for this algorithm are as follows:

• Total population: N = 17, 600, 000

• Initial susceptible population: S0 = N − Y [1], where Y [1] is the first real obser-

vation from the group.

• Initial infected population: I0 = Y [1], where Y [1] is the first real observation

from the group.

• Initial recovered population: R0 = 0 (start of the epidemic).

• Study time: times = length(Y ), where length(Y ) is the number of observations in

the group.

4.4.4 Kalman filter

The application of this method is carried out for the three scenarios of observed data

described above, using the values of beta and gamma found using MLE and the observed

data from each group. The values of the other parameters for this algorithm are as follows:

• Total population: N = 17, 600, 000
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• Initial susceptible population: S0 = N − Y [1], where Y [1] is the first real obser-

vation from the group.

• Initial infected population: I0 = Y [1], where Y [1] is the first real observation

from the group.

• Initial recovered population: R0 = 0 (start of the epidemic).

• Study time: times = length(Y ), where length(Y ) is the number of observations in

the group.

• Proposed variance: obs variance = var(Y ), where var(Y ) is the variance of the

observed data. This variance will be used for the proposal of the matrix R.

• State transition matrix: it is constructed using the differential equations of the

SIR model, with dt = 1:

A =


1 − β ∗ dt β ∗ dt 0

0 1 − γ ∗ dt γ ∗ dt

0 0 1


This matrix helps predict the state of the system at the next time step from the

current state.

• Process covariance matrix: represents the covariance of the process and describes

the uncertainty in the model predictions. In our case, we set Q as a diagonal matrix

of dimension 3x3, where its entire diagonal has the values of the variance of the

differences in the observed data (constant matrix as the initial proposal).

• Observation matrix: specifies how the state of the system relates to the observa-

tions. In our case, since we only have the values of the infected population, H is a

matrix of dimension nx3, where n is the total number of observations in the group,

and its second column has values of 1, while the other columns have a value of 0.

This indicates that the states are entirely dependent on the observed infected data.

• Observation covariance matrix: represents the covariance of the observations and

describes the uncertainty in the measurements made. In our case, R is a diagonal
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matrix of dimension nxn, where n is the total number of observations in the group,

and its entire diagonal has the value of the variance of the observations.

• Estimation error covariance matrix: represents the covariance of the error in

estimating the latent states of the system. This matrix is updated over time, depend-

ing on how well the current latent state fits, and is used for the next iteration. In our

case, as the initial value of P , we set P as a diagonal matrix of dimension 3x3, where

its entire diagonal has a large uncertainty value (1e6) to reflect high uncertainty.

4.4.5 Gaussian process

The application of this method is carried out for the three scenarios of observed data

described above, using the values of beta and gamma found using MLE and the observed

data from each group. The values of the other parameters for this algorithm are as follows:

Hiperparameters

The key hyperparameters in our model are ”length” and ”standard deviation.” The ”length”

determines the spatial scale over which the Gaussian process can vary, while the ”standard

deviation” controls the degree of variation around the predicted mean.

In the experimentation phase, we assigned a value of 10 to ”length” to allow the Gaus-

sian process to capture patterns over a broader spatial interval. This choice was supported

by our consideration that the spread of diseases may be influenced by geographic or demo-

graphic factors over long distances.

Regarding the ”standard deviation,” we opted for a value of 0.1 to indicate a moderate

level of uncertainty. This reflects our assumption that, while there may be variations, we

do not expect extremely abrupt changes in the spread of the disease.

To determine these values optimally, we employed optimization techniques. We used

the ”L-BFGS-B” optimization method to find values that minimize the sum of squared

errors between the model predictions and the observed data. Additionally, we implemented

constraints on the allowed values to ensure solutions that are realistic and consistent with

the epidemiological context.

This iterative process of hyperparameter tuning and optimization allowed us to find
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combinations that best fit the observed data and reflect our expectations about the behavior

of the underlying process. The final choice of hyperparameters is supported not only by

numerical optimization but also by problem interpretation and empirical validation of the

model predictions.

Mean function and Covariance matrix

We set the mean function to be m(t) = 0 for simplicity, since we expect the infected

population to reach its threshold and then decrease until it dissapears.

For the covariance matrix, we use the optimized hiperparameters as follows

K(t, t′) = σ2exp
(

− (t−t′)2

2l2

)
where σ is the optimized standard deviation, l is the optimized length and t and t′ are two

points in time.

Other parameters

• Total population: N = 17, 600, 000

• Initial susceptible population: S0 = N − Y [1], where Y [1] is the first real obser-

vation from the group.

• Initial infected population: I0 = Y [1], where Y [1] is the first real observation

from the group.

• Initial recovered population: R0 = 0 (start of the epidemic).

• Study time: times = length(Y ), where length(Y ) is the number of observations in

the group.

• Number of iterations: num iterations = 10000

• Proposal beta: we choose a normal distribution, with mean its previous value, and

standard deviation equal to the standard deviation proposed.

• Proposal gamma: we choose a normal distribution, with mean its previous value,

and standard deviation equal to the standard deviation proposed.

Information Technology Engineer / Mathematician45 Graduation Project



Chapter 5

Results and Discussion

In this chapter, We will show the results and discussions. In order to do this, we divide

the studies into the following sections: results and discussions of the observed data, Euler-

Maruyama approximation, Diffusion Bridge approximation, Kalman filter, and Gaussian

process.

5.1 Observed data

Figure 5.1 shows the observed data

Figure 5.1: Observed Data (complete group)

In this figure, we can observe the weekly dynamics of the COVID-19 virus at the

national level from March 13, 2020, to week 37 of year 2023. Around week 100, a peak

of rapid growth and decline can be seen. This is because historically, during these weeks
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(around December 2021), the Omicron variant of the virus emerged, which had a high

infection rate but a very short infection period. For this reason, the data was divided into

two groups: the first group spans from week 1 to week 90, and the second group spans

from week 91 to week 189. This division is made considering that graphically, the infection

rate and recovery rate differ in each group.

It should be noted that there were more variants of the COVID-19 virus, but a signifi-

cant difference in the infected population is only observed with the Omicron variant. The

graphs of these new data are shown below:

Figure 5.2: Observed Data (group 1)

Figure 5.2 displays the observations of infected individuals in Group 1 (from week 1 to

week 90). It can be observed that the highest peak occurs around week 60, with a value

of approximately 15,000. This illustrates the initial dynamics of the disease when there

was no vaccine available, resulting in a rising number of infected individuals. However, as

the vaccination campaign began (around week 60), the population of infected individuals

started to decrease significantly.
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Figure 5.3: Observed Data (group 2)

Figure 5.3 depicts the observations of infected individuals in Group 2 (from week 91

to week 189). It can be observed that the highest peak occurs around week 12 (week 102

in the complete data), with a value of approximately 53,000. This illustrates the initial

dynamics of the disease, which marked the onset of this highly contagious variant, resulting

in a rapid increase in the population of infected individuals, but with a short duration,

leading to a swift decline in the population of infected individuals.

The graph of observed infections demonstrates that the biosecurity measures imple-

mented in the country kept infection peaks low (except during the onset of the Omicron

variant). For example, measures such as border closures and travel restrictions, temporar-

ily closing air, land, and sea borders, preventing entry and exit from the country; curfews

and weekend movement restrictions, which significantly reduced social interaction; manda-

tory mask-wearing in both outdoor (initially) and indoor settings (where social distancing

couldn’t be maintained); the rapid distribution of vaccines, with the population receiving

up to four doses; among other measures, had an impact on containing the spread of the

COVID-19 virus.

5.2 Euler-Maruyama Approximation

As defined earlier, the Euler-Maruyama method allows us to understand and model the

spread of infectious diseases in the SIR model, addressing the dynamics of the disease in a

population over a specific period of time. This algorithm demonstrates that the dynamics
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of susceptible, infected, and recovered populations depend entirely on the parameters beta

(infection rate) and gamma (recovery rate).

To illustrate the effects of the Euler-Maruyama method, four scenarios have been cre-

ated, each showcasing different dynamics in the susceptible, infected, and recovered popu-

lations.

Figure 5.4: Euler-Maruyama Approximation (Scenario 1)

Figure 5.4 depicts the Euler-Maruyama approximation with a total population of N =

1000 individuals. The infection rate (beta) is 0.5, the recovery rate (gamma) is 0.1, and

the initial population is S = 999, I = 1, R = 0.

This scenario shows a dynamic where the disease infects the entire population, con-

cluding the infection when there are no more susceptible individuals to infect, and the

entire infected population starts recovering at a rate gamma until the entire population

is recovered. This scenario demonstrates that R0 = beta/gamma = 5 > 1, making the

disease a large-scale epidemic.
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Figure 5.5: Euler-Maruyama Approximation (Scenario 2)

Figure 5.5 depicts the Euler-Maruyama approximation with a total population of N =

1000 individuals. The infection rate (beta) is 5, the recovery rate (gamma) is 0.01, and

the initial population is S = 999, I = 1, R = 0.

This scenario shows a dynamic where the disease infects the entire population at a high

speed due to its high infection rate, and its recovery is slower because the recovery rate

is smaller. This scenario demonstrates that R0 = beta/gamma = 500 > 1, making the

disease a large-scale epidemic.

Figure 5.6: Euler-Maruyama Approximation (Scenario 3)

Figure 5.6 shows the Euler-Maruyama approximation with a total population of N =

1000 individuals. The infection rate (beta) is 0.17, the recovery rate (gamma) is 0.1, and

the initial population is S = 999, I = 1, R = 0.
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This scenario illustrates a dynamic in which the disease infects more than half of the

population but does not completely infect the susceptible population. This scenario demon-

strates that R0 = beta/gamma = 1.7 > 1, making the disease a large-scale epidemic but

eventually coming to an end without infecting the entire susceptible population.

Figure 5.7: Euler-Maruyama Approximation (Scenario 4)

Figure 5.7 shows the Euler-Maruyama approximation with a total population of N =

1000 individuals. The infection rate (beta) is 0.1, the recovery rate (gamma) is 0.1, and

the initial population is S = 999, I = 1, R = 0.

This scenario illustrates a dynamic in which the disease affects a few susceptibles and

quickly comes to an end. This scenario demonstrates that R0 = beta/gamma = 1 ≤ 1,

meaning the disease does not become a large-scale epidemic. This is because the infection

rate is equal to the recovery rate, causing the disease to extinguish immediately.

In all four scenarios presented, the following can be observed: the dynamics depend

entirely on the infection rate (beta) and the recovery rate (gamma). The susceptible

population is always decreasing, based on the assumption that once an infected individual

recovers, they acquire immunity to the disease, which prevents them from returning to

the susceptible population. The recovered population is increasing, following the same

assumption as for susceptibles. This population can be easily determined by subtracting

the total population from the sum of susceptibles and infected individuals (this keeps the

total population constant). Even when the susceptible population reaches zero, there is

still dynamic interaction between the infected and recovered populations. The dynamics
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of all three populations only end when the infected population reaches zero, indicating the

disease has been extinguished.

Additionally, one can identify the maximum peaks of the disease and the time required

for the number of recovered individuals to reach a significant value. These results are im-

portant for understanding disease dynamics and the effectiveness of control measures. The

graph provides valuable information about disease spread in the population under specified

conditions and parameters. These findings can be useful for assessing the effectiveness of

control measures such as quarantine or vaccination, identifying the critical point at which

an infection peak is reached, and understanding how parameter variations affect disease

dynamics.

Despite the advantages of this method, it’s essential to consider that this study is

based on simplifications of the SIR model and specific assumptions, which come with

several limitations. These limitations include not accounting for geographic dynamics,

assuming constant parameters throughout the simulation, and neglecting seasonal variation

or external fluctuations, among others.

5.3 Diffusion Bridge Approximation

As mentioned earlier, the Diffusion Bridge method simulates inter-time data in such a

way that the simulated data interpolates with the observed data. This approach allows

for a more precise modeling and estimation of disease dynamics, taking into account the

uncertainty in the observed data. In this case, we have three scenarios.

Information Technology Engineer / Mathematician52 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.8: Diffusion Bridge Approximation (Scenario 1)

Figure 5.8 shows the Diffusion Bridge approximation for the complete group of infected

individuals (189 weeks). The real total population is used (N = 17, 600, 000). The infection

rate (beta) is 0.2, and the recovery rate (gamma) is 0.07, with initial populations of S =

17, 599, 999, I = 1, and R = 0. The chosen variance is the variance of the observed data.

We can observe the dynamics of the infected population spanning all the weeks in ques-

tion. The Diffusion Bridge method simulated infected data between time points (between

each week) in a way that matches (interpolates) the observed infected data points.

Figure 5.9: Diffusion Bridge Approximation (Scenario 2)

Figure 5.9 displays the Diffusion Bridge approximation for the first group of infected in-

dividuals (from week 1 to week 90). We used the actual total population (N = 17, 600, 000).

The infection rate (beta) is 0.3, and the recovery rate is 0.1, with initial populations of

Information Technology Engineer / Mathematician53 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

S = 17, 599, 999, I = 1, and R = 0. The chosen variance is the variance of the observed

data.

We can observe the dynamics of the infected population within the first group of in-

fections (from week 1 to week 90). The Diffusion Bridge method simulated infected data

between time points (between each week) in a way that matches (interpolates) the observed

infected data points.

Figure 5.10: Diffusion Bridge Approximation (Scenario 3)

Figure 5.10 shows the Diffusion Bridge approximation for the second group of in-

fected individuals (from week 91 to week 189). We used the actual total population

(N = 17, 600, 000). The infection rate (beta) is 0.5, and the recovery rate is 0.11, with

initial populations of S = 17, 598, 439, I = 1, 561, and R = 0. The chosen variance is the

variance of the observed data.

We can observe the dynamics of the infected population within the second group of

infections (from week 91 to week 189). The Diffusion Bridge method simulated infected

data between time points (between each week) in a way that matches (interpolates) the

observed infected data points.

In all three cases presented, the application of the Diffusion Bridge method shows a

good approximation of the trajectory followed by the real observed data. The simulated

trajectories are consistent with the observations and capture the inherent variability in

the disease’s spread. In all three cases, it can be observed that the simulation’s trajectory

interpolates the points of the observed infected individuals.
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In the three scenarios presented, it can be observed that the use of the Diffusion Bridge

method creates a good approximation in simulating the infected population, interpolating

each of the real observations. With this method, an approximation of the inter-time in-

fection behavior can be obtained, meaning the dynamics of latent observations since their

dynamics are a continuous process. However, in reality, data cannot be collected at every

infinitesimal time step. In fact, the data collected in this study have a one-week time step,

which introduces significant variability in the data and results in a loss of information.

The results of this method are valuable for assessing the accuracy of estimates and

the capability of the Diffusion Bridge method to model disease dynamics, identify possible

gaps or significant deviations between estimates and observed data, and understand the

associated uncertainty in the estimates of the infected population.

Similar to the Euler-Maruyama method, this method is subject to various limitations

due to simplifications of the SIR model. These limitations include the dependence on model

parameters (beta and gamma), the assumption of a probability distribution for estimation,

and the need for high-quality observed data and proper error modeling.

5.4 Kalman filter

The implementation of the Kalman filter allows us to simulate the population of infected

individuals with great accuracy in its propagation dynamics, taking into account both the

observed data and the associated uncertainty. In this case, we have three scenarios.

Figure 5.11: Kalman Filter (Scenario 1)
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Figure 5.11 shows the Kalman filter for the complete group of infected individuals (189

weeks). The actual total population is considered (N = 17600000). The infection rate

(beta) is 0.2, and the recovery rate is 0.07, with initial populations of S = 17599999,

I = 1, and R = 0. The variance is chosen as the variance of the observed data.

The dynamics of the infected population over all the weeks in question are observed.

The Kalman filter method simulated the dynamics of the observed data, coming very close

to passing through the actual points of infected individuals.

Figure 5.12: Kalman Filter (Scenario 2)

Figure 5.12 shows the Kalman filter for the first group of infected individuals (from week

1 to week 90). The actual total population is considered (N = 17600000). The infection

rate (beta) is 0.3, and the recovery rate is 0.1, with initial populations of S = 17599999,

I = 1, and R = 0. The variance is chosen as the variance of the observed data.

The dynamics of the infected population covering the first group of infection (from

week 1 to week 90) are observed. The Kalman filter method simulated the dynamics

of the observed data, coming very close to passing through the actual points of infected

individuals.
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Figure 5.13: Kalman Filter (Scenario 3)

Figure 5.13 shows the Kalman filter for the second group of infected individuals (from

week 91 to week 189). The actual total population is considered (N = 17600000). The

infection rate (beta) is 0.5, and the recovery rate is 0.11, with initial populations of S =

17598439, I = 1561, and R = 0. The variance is chosen as the variance of the observed

data.

The dynamics of the infected population covering the second group of infection (from

week 91 to week 189) are observed. The Kalman filter method simulated the dynamics

of the observed data, coming very close to passing through the actual points of infected

individuals.

In all three cases presented, it is observed that the simulations created by the Kalman

filter are consistent with the observed data and reflect the uncertainty in the spread of the

disease.

In the three scenarios shown, the Kalman filter managed to create simulations that

closely match reality. Through updates in the simulations and the covariance matrix of

estimation error, an equilibrium (convergence) can be reached, resulting in simulations

that closely align with reality. This takes into account the variability of the observed data

and its relationship with the estimated SIR model.

The results of the simulations of infected individuals in the SIR model provide valuable

insights into the spread of infectious diseases and the ability of the Kalman filter to model

this dynamic. This is important for assessing the accuracy of the simulations and the
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Kalman filter’s ability to fit the observed data, understanding the associated uncertainty

in the simulations and its impact on future projections, and evaluating how changes in

model parameters affect the simulations and disease spread.

Limitations of this method include its dependence on model parameters (beta and

gamma), the need for high-quality observed data and proper error modeling, and the

assumption that the SIR model is an accurate representation of the disease in question.

5.5 Gaussian Process

The application of the Gaussian process for estimations in SDEs is a very powerful tool.

Through this method, simulations of the infected population were successfully conducted

to observe its dynamics, taking into account the observed data and associated uncertainty.

Additionally, it allows us to track the evolution of the parameters beta and gamma over

iterations until they reach an equilibrium. For the results of this method, the constant

value of the standard deviation of phi is initially set as a first approximation to its value

(proposal sd = 0.1). The following are three scenarios presented.

Figure 5.14: Gaussian Process (Scenario 1)

Figure 5.14 shows the Gaussian process applied to the entire group of infected indi-

viduals (189 weeks). The real total population is used (N = 17, 600, 000). The initial

infection rate (beta) is 0.2, and the initial recovery rate is 0.07, with initial populations

S = 17, 599, 999, I = 1, and R = 0.
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The simulation displays the dynamics of the entire group of infected individuals. The

simulation demonstrates significant growth around week 100 of the data. However, it needs

further adjustment to match the true data better, which can be achieved by improving the

initial parameter values or the proposed standard deviation of phi.

Figure 5.15: Beta and gamma evolution (Scenario 1)

mean beta mean gamma
0.3072605 0.1992114

Table 5.1: Beta and gamma mean value (Scenario 1)

Figure 5.15 displays the evolution of beta and gamma over the iterations. The values

of beta and gamma reach an equilibrium almost immediately, around 100 iterations. Table

5.1 presents the mean values of beta and gamma. According to this data, the initial values

of 0.2 and 0.07, respectively, were a good initial assumption, with an increase of 0.11 in

beta and 0.13 in gamma.
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Figure 5.16: Gaussian Process (Scenario 2)

Figure 5.16 shows the Gaussian process for the first group of infected individuals (from

week 1 to week 90). The actual total population is used (N = 17, 600, 000). The ini-

tial infection rate (beta) is 0.3, and the initial recovery rate (gamma) is 0.1, with initial

populations S = 17, 599, 999, I = 1, and R = 0.

The dynamics of the simulation for the first group of infected individuals are observed.

The simulation demonstrates a similar behavior to the observed data from around week

45 onwards, although it needs further adjustments to match the actual data. This can be

achieved by improving the initial parameter values or the proposed standard deviation of

phi.

Figure 5.17: Beta and gamma evolution (Scenario 2)

Information Technology Engineer / Mathematician60 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

mean beta mean gamma
0.3193035 0.1115379

Table 5.2: Beta and gamma mean value (Scenario 2)

Figure 5.17 displays the evolution of beta and gamma throughout the iterations. The

values of beta and gamma exhibit nearly constant behavior throughout the process. Table

5.2 shows the mean of beta and gamma. According to this data, the initial values of 0.3 and

0.1, respectively, were good initial assumptions, with an increase of 0.1 in both parameter

values.

Figure 5.18: Gaussian Process (Scenario 3)

Figure 5.18 shows the Gaussian process applied to the second group of infected in-

dividuals (from week 91 to week 189). The real total population (N = 17, 600, 000) is

considered. The initial infection rate (beta) is 0.5, the initial recovery rate (gamma) is

0.11, and the initial populations are S = 17, 598, 439, I = 1, 561, and R = 0.

The dynamics of the simulation of the second group of infected individuals are observed.

The simulation exhibits similar high growth behavior before week 115 (week 25 according

to the graph), although it needs further adjustment to match the true data. This can be

achieved by improving the initial parameter values or the proposed standard deviation of

phi.
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Figure 5.19: Beta and gamma evolution (Scenario 3)

mean beta mean gamma
2.279166 1.930900

Table 5.3: Beta and gamma mean value (Scenario 3)

Figure 5.19 displays the evolution of beta and gamma over the iterations. Beta and

gamma values reach their equilibrium after 500 iterations. The graph in Table 5.3 repre-

sents the mean of beta and gamma. According to these data, the initial values of 0.5 and

0.11, respectively, were not good initial assumptions, as there is an increase of 1.8 in the

value of both parameters.

In the three scenarios presented, despite the simulations not fitting reality as closely,

they show the trends of high peaks in each case and their decreasing behavior toward the

end of the process. The dynamics of the parameters reveal the trend of their values until

reaching an equilibrium point, which could provide an initial estimation of the parameters

in the study population to improve the quality of the fit.

The results of the estimation in the simple SIR model using the Gaussian process

provide a detailed view of the spread of infectious diseases. These findings can be valuable

for assessing the accuracy of the estimates and the Gaussian process’s ability to fit the

observed data, understanding the associated uncertainty in the estimates and its impact

on future projections, and evaluating how changes in model parameters affect the estimates

and disease spread, as well as the trend of parameter values.

Like the previous methods, this method has limitations, including its dependence on
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model parameters (beta and gamma), the need for high-quality observed data and proper

error modeling, and the assumption that the SIR model is an accurate representation of

the disease in question.
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Chapter 6

Conclusions

In conclusion, the Euler-Maruyama approach implemented for the SIR model provides

a valuable initial insight into the spread of infectious diseases in a population, such as

COVID-19. The Diffusion Bridge approach offers a powerful tool for estimating the infected

population in the SIR model. The results enable a deeper understanding of the spread

of infectious diseases and the assessment of estimation quality. The use of the Kalman

filter to perform simulations of infected individuals in the SIR model provides a valuable

tool for understanding and estimating the spread of infectious diseases. The obtained

results allow for a detailed assessment of the simulations and the evaluation of uncertainty

in these projections. The use of the Gaussian process for estimation in the SIR model

provides a valuable tool for understanding and estimating the spread of infectious diseases.

The obtained results allow for a detailed assessment of estimations and the evaluation of

uncertainty in these projections.

All of these results contribute to a better understanding of the dynamics of the disease

in a given population and can be useful in making decisions related to public health and

resource planning.

This study provides a solid insight into the SIR model applied to the spread of COVID-

19 in Ecuador, as well as a deep understanding of the implementation of Gaussian processes

in parameter estimation. Some of the future work identified includes:

• Using other epidemiological models such as the SEIR model (susceptible-exposed-

infected-recovered) or stochastic compartmental models.

• Consideration of external factors such as the impact of control measures, virus vari-
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ants, and other factors that allow for the evaluation of effective intervention strategies.

• Expanding the temporal focus of the research to make longer-term predictions about

the evolution of the pandemic to improve long-term planning and decision-making.

• Optimization of control strategies, which would assess different combinations of pub-

lic health measures and their impact on mitigating virus spread.

• Applying these methodologies to the study of other infectious diseases that exhibit

similar dynamics, such as influenza, dengue, Ebola, to enhance understanding and

response to future epidemiological threats.

In summary, future work should be focused on refining models, collecting additional

data, and developing effective control strategies, contributing to preparedness and response

to future health emergencies.
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[46] S. Särkkä, Bayesian Filtering and Smoothing. Cambridge University Press, 2013.

[47] D. D. M Schober and P. Hennig, “Probabilistic ode solvers with runge-kutta means,”

Advances in Neural Information Processing Systems, pp. 739–747, 2014.

[48] P. Hennig and S. Hauberg, “Probabilistic solutions to differential equations and their

application to riemannian statistics,” Proceedings of the Seventeenth International

Conference on Artificial Intelligence and Statistics, vol. 33, pp. 347–355, 2014.

[49] J. Skilling, Maximum Entropy and Bayesian Methods, 1st ed. Springer, Dordrecht,

1991.

[50] Y. Wang and D. Barber, “Gaussian processes for bayesian estimation in ordinary

differential equations,” Conference on International Conference on Machine Learning,

vol. 32, no. 2, pp. 1485–1493, 2014.

Information Technology Engineer / Mathematician70 Graduation Project



Appendices

71


	=Dedication
	=Acknowledgment
	=Resumen
	=Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Problem statement
	Author's contribution

	Objectives
	General Objective
	Specific Objectives


	Theoretical Framework
	SIR model
	Stochastic Differential Equations (SDE)
	Markov Chains
	Monte Carlo Algorithms
	Monte Carlo Markov Chain Algorithms
	Metropolis-Hasting Algorithm (MH)
	Gibbs Sampling

	Kalman filter
	System model

	Gaussian processes
	Mean and covariance function
	Bayesian inference with Gaussian processes


	State of the Art
	Methodology
	Phases of Problem Solving
	Description of the Problem
	Analysis of the Problem
	Algorithm Design
	Implementation
	Testing

	Model Proposal
	Observed data description

	Analysis Method
	Experimental Setup
	Parameters
	Euler-Maruyama Approximation
	Diffusion Bridge Approximation
	Kalman filter
	Gaussian process


	Results and Discussion
	Observed data
	Euler-Maruyama Approximation
	Diffusion Bridge Approximation
	Kalman filter
	Gaussian Process

	Conclusions
	Bibliography
	Appendices

