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Resumen 

 

La simulación de diferentes sistemas a través de computadoras introduce 

un nuevo paradigma para estudiar y comprender la física. En particular, las 

herramientas computacionales pueden ayudar a físicos y futuros físicos a 

centrarse en conceptos clave, al contar con la asistencia matemática de 

cálculos computacionales. En la presente tesis, se informan los efectos de 

aplicar este paradigma en un estudio de caso de mecánica cuántica 

mediante la simulación del modelo teórico de la ecuación maestra 

Markoviana para sistemas no lineales. Se describe el proceso de 

pensamiento detrás de la simulación del estudio de caso con ilustraciones 

y un análisis que sirve como preludio de las ventajas que la introducción de 

la física computacional tiene para ofrecer. Se muestra la cantidad de 

información que se puede obtener y cómo puede ser tratada. Al hacer esto, 

los físicos y futuros físicos tendrán otra forma de estudiar que podría 

mejorar su comprensión de la física de manera más rápida, en el caso de la 

presente tesis, su comprensión de sistemas cuánticos abiertos no lineales. 

 

Palabras clave: Educación en física, Física computacional, Sistema cuántico 

abierto, Ecuación maestra, Sistemas no lineales, Python. 
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Abstract 

 

The simulation of different systems via computers introduces a new 

paradigm to study and comprehend physics. In particular, computational 

tools can help physicists and prospective physicists to focus on key concepts, 

by having the mathematical assistance of computer calculations. In the 

present thesis, the effects of applying this paradigm in a case study of 

quantum mechanics by simulating the theoretical model of the Markovian 

master equation for nonlinear systems is reported. The thinking process 

behind the simulation of the case study is reported with illustrations and an 

analysis that serves as a prelude of the advantages that the introduction of 

computational physics has to offer. It is shown the amount of information 

that can be obtained and how it may be treated. By doing this, physicists 

and prospective physicists will have another way of studying that might be 

able to improve their understanding of physics faster, in the case of the 

present thesis, their understanding of nonlinear open quantum systems.  

 

Keywords: Physics education, Computational physics, Open quantum 

system, Master equation, Nonlinear systems, Python. 
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Chapter 1

Introduction

The amount of knowledge that humans have been able to collect has been in expansion throughout the years, which
has led to novel ways to get new information and interpret it. In particular, the revolution in science and technology
since the last century has changed our understanding of the whole Universe. We still cannot understand it fully, hence,
what we are able to understand is tied to our knowledge, the technology we can use, and the ideas on how to use
both to their full potential to create new knowledge. Due to this, new topics in science have been developed and the
techniques to get new information from different systems or to understand how they work has to evolve accordingly.
Even so, although this idea seems logical, physics is still taught and understood in a traditional way of learning,
which is often seen as the only way to obtain knowledge.

The traditional way of studying intends to explore a theory, model or idea from a theoretical or experimental
point of view. In general, whether we study by either one of them, the procedure is the same: manipulate and control
certain inputs, the system responds, and measure results ². There is no visible harm in keeping this way of learning,
except that when someone focuses too much in theoretical or experimental science, that person would find difficulties
to understand the approach of the other one, even reaching a point where the physicist who is completely theoretical
will have a great degree of difficulty to reproduce the methods and way of analyzing of the experimental and vice
versa.

Furthermore, the time required for the analysis and calculations needed for test and design new theories or models
is increasing at a very high speed due to the growing complexity and the number of variables to be considered. We
need to deal with them in the most open space possible (less isolated possible) to reproduce those systems with the
best approximation to the reality it is based on. Thus, the need to delegate tedious work so as not to overload scientists
(in our case physicists) arrived.

In addition, we cannot neglect that the formation of prospect physicists has flaws. A common research assumption
is that in the formation of students, when studying physics, they develop defective knowledge based mainly from their
everyday experience creating beliefs and intuitions about physical phenomena. The change of that mindset generated
in high school (and sometimes in university) in most cases is beyond the reach of the teaching approaches since
students tend to ignore the simple idea that their perception may be different than that of their professor³. Hence, that

1



2 1.1. PROBLEM STATEMENT

problem leads sometimes to abandonment in the search for knowledge or a block, further complicating their studies.
It is at this point that computational physics can show its worth. As long as physicists (scientists in general) are

capable to explain to a computer what they want it to do and how to do it, the results can be obtained much more
quickly than without using computational means since the amount of data to be processed and its treatment is not
in the same level that is plausible for a person to perform in the same amount of time. The way in which computers
treat information is fail-safe in numerical and logical operations. In this way, a computer-based simulation is a must
when dealing with a large amount of information.

Even more, if the simulation is successful, it is possible to study the nature of a system giving different initial or
boundary conditions, and the importance of under what conditions it is reproduced. Similarly, students can explore
the physics of the system by adding more considerations to study a more complex and realistic system, and with
sufficient knowledge of programming, they can explore its physics through how the simulation was programmed.
Therefore, we have a new way to explore systems or at the very least a new form to relate the theoretical and exper-
imental data to improve the comprehension of the treated subject in those physicists or prospective physicists who
cannot relay information with the same ease as their theoretical or experimental counterparts can.

1.1 Problem statement
The amount of branches of physics and their complexity, together with a ”traditional teaching” have created an envi-
ronment where the study and comprehension of physical phenomena becomes superficial or requires great dedication
and takes up a great deal of time. This situation has led to a snowball effect, creating a deficit of new physicists, since
many physics students give up along the way. Focusing on this, computational physics might help to develop an
alternative to solve those problems by introducing simulations in the learning process and research. To understand
the benefits of computational physics, I have developed a Python code to simulate a case study of one of a fairly
complex branch of physics: quantum mechanics.

1.2 Objectives

1.2.1 General objective
• The present thesis is focused on the relevance of computer-based simulations as an alternative to improve
studies, strengthening comprehension of knowledge and reducing the time needed to solve problems on the
field of physics.

1.2.2 Specific objectives
• To investigate the tools that allow to perform computer-based simulations.

• To develop a computer-based simulation of the Markovian master equation for nonlinear systems as a case
studio.
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• To examine the information that the user can receive and investigate how the user should treat it.

1.3 Quantum mechanics
Quantum mechanics is a branch of physics that studies physics at the atomic or fundamental particle scales⁴. Both
prospective physicists and physicists (or scientists,) have difficulties treating this field. In particular its interpretation
and properties go against our common sense, along with a lack of images of what is happening in reality, and the
necessity of advanced mathematical techniques are restricting the ability to conceptualize this field. Therefore, as has
been exemplified in this topic, computer-based simulations are a fundamental tool or technique to be implemented
to sort these problems and facilitate scientists to approach quantum physics.

1.4 Master equation
In order to study quantum systems there is no way to leave out the behaviour when there is interaction of the system
with its surroundings. Quantum mechanics by itself involves an intimate relationship to the notion of an open system
through the action of the measurement process⁵. The master equation is a differential equation that describes the
time evolution of open quantum systems, i.e. systems with non-unitary behavior.

Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in
complex biological, chemical, and physical systems. For this reason, master equations and simulations algorithms
based on master equations are now being used in numerous fields of research. They are being applied in the contexts
of spin dynamics, gene regulatory networks, the spreading of diseases, epidermal homeostasis, nucleosome repo-
sitioning, ecological and bacterial dynamics, evolutionary game theory, surface growth, and social and economic
processes⁶.

1.4.1 History of the master equation
Formulation of the problem

In quantum mechanics, the evolution of a closed system is outlined by the Schrödinger equation (ℏ = 1 is assumed
for the following equations)

iψ̇ = Hψ ←→ ψt = Utψ0 (1.1)

Here, ψ is the wave function, H the Hamiltonian, the dot over the symbols indicate time derivative and Ut = e−iHt

is a one-parameter group. Putting this into another picture, we can transform it into the so-called von Neumann
equation for the density matrix ρ (the relationship of density matrix and wave function is explained in Section 2.4),

ρ̇ = −i[H, ρ] ←→ ρt = Utρ0U†t (1.2)
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In the case where the quantum system is open (the system is not isolated, but is exposed to an environment and
interacts with it), the former equation is no longer valid and must obey the following evolution law⁷

ρ′ = Λρ =
∑
α

KαρK†α (1.3)

As an observation, Eq. 1.3 is not a differential equation, conversely it ”snapshot” the quantum state at a particular
time t′ : ρ′ = ρt′ . Also, notice that in the case the summation is generated from a single value K = U = e−iHt, Eq.
1.3 returns to be Eq. 1.2.

Eq. 1.3 defines a quantum channel and Λ is generally called a superoperator. It must follow some properties: it
must be linear, must preserve trace and hermiticity, and must be completely positive.

Applying the Markovian approximation, Eq. 1.3 reproduces the following differential (’master’) equation,

ρ̇ = Lρ ←→ ρt = etLρ0 (1.4)

where L is the representation of the generator of a quantum dynamical semigroup. The evolution (Eq. 1.4) inher-
its from Eq. 1.3 all the properties summarized before (linearity, trace and hermiticity preservation, and complete
positivity).

Master equation

Master equations since long agowere used to study dissipative phenomena. In spite of that, physicists were concerned
about positivity and trace-preservation without bothering to undergo a study about complete positivity before Gorini,
Kossakowski, Sudarshan and Lindblad (GKLS).

Already in 1927 Landau⁷⁸ obtained a kinetic equation for the elements of the density matrix that correspond
to the radiation field interacting with charged matter (in the dipole approximation). As noticed, in the very same
article, Landau establish the concept of density matrix (this was defined in a more formal way the same year by Von
Neumann⁷⁹). By now, the Landau equation may be (re)written in this way⁷:

ρ̇ =
1
2
γ (2aρa∗ − ρa∗a − a∗aρ) , (1.5)

where, a and a∗ constitute the annihilation and creation operators for the radiation field, while γ > 0 is a damping
constant.

Later, in optics, it was found a neutron-matter (complex) optical potential studying the scattering and absorption
of nucleons by nuclei. So, taking V ≥ 0 (optical potential), the non-Hermitian Hamiltonian,

H′ = H − iV (1.6)

generates the evolution
ψ = e(−iH−V)tψ0, (1.7)

which leads to the density matrix to evolve in conformity to

ρ̇ = −i[H, ρ] − (Vρ + ρV) (1.8)
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Notice that Eq. 1.8 has no trace nor probability-preserving properties.
After that, we have Lamb analyzing the theory of the optical maser⁷¹⁰. He reviewed the equation for the (unnor-

malized) density matrix ρ of a 2-level atom (Eq. 18 in¹⁰) which is displayed as,

ρ̇ = −i[H, ρ] − 1
2

(Γρ + ρΓ) (1.9)

Here, Γ is a diagonal matrix with positive diagonal elements (γ1 and γ2) that are regarded as the decay constants
of the two states of the atom. So, the legitimate evolution can be obtained,

ρ0 −→ ρt = e(−iH− 1
2 Γ)tρ0e(iH− 1

2 Γ)t, (1.10)

sadly, it is not trace-preserving.
Following the study ofmaster equations, Redfield, with the help of the Born-Markov approximation, the following

Markovian master equation is derived⁷¹¹,

ρ̇ = −i[H, ρ] −
∑
α

[
Vα, Xαρ − ρX†α

]
, (1.11)

where the operators Vα and Xα describe the coupling of the system to the environment. Here, the operators Vk are
described via the interaction Hamiltonian HI =

∑
α Vα ⊗ Bα, and

Xα =
∑
β

∫ ∞
0

hαβ(τ)Ṽβ(−τ)dτ (1.12)

where, hαβ(t) = tr
(
B̃α(t)BβρB

)
is the two-point bath correlation function. Notice that a bath correlation function

determines how the environment fluctuations affect the system. In addition, ρB is the initial state of the bath, and the
tilde manifests that it is in interaction picture. Being the interaction picture a way of describing the time evolution of
a quantum system interacting with a time-dependent external field.

Then, recalling a concept called complete positivity (CP) that was introduced by Stinespring in a seminal paper⁷¹²
we can delve into the derivation of a quantum master equation. Although CP maps were only appearing in the
mathematical literature in the ’60s, they proved to be useful by introducing a great simplification into the field of
analysis of dynamical maps and the corresponding master equations.

As a result of this, the Lindblad (or Gorini-Kossakowski-Sudarshan-Lindblad) master equation was fulfilled and
have been dominating the theory of quantum systems as it have been essential for the development of quantum
technology since it have been granted as the most general generator of Markovian dynamics in quantum systems⁷,

ρ̇(t) = − i
ℏ

[H(t), ρ(t)] +
∑

n

1
2

[
2Cnρ(t)C†n − ρ(t)C†nCn −C†nCnρ(t)

]
, (1.13)

being the Cn =
√
γnAn collapse operators, An are the operators that allow the environment to couples to the system

in Hint, and γn are the corresponding rates for the radiative decay.
Nevertheless, lately, the notion of nonlinear quantum deformed systems and their associated algebras has played a

preponderant role in many active fields of quantum physics, and as such, the novel nonlinear algebraic theory, called
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f-deformed oscillator formalism, is born. The f-deformed oscillator comes from the dependence of the operators by a
function f , which in turn depends on a continuous parameter in order to obtain the harmonic oscillator operators as a
limiting case. This theory works by putting the dynamical and statistical analysis in terms of its deformed (nonlinear)
coherent states in a straightforward way¹³. Since this is the master equation regarded as case studio of the present
thesis, its derivation is performed in Section 2.8.

1.5 Implication of technology
In the study and modeling of systems there have been two scenarios, what I called the traditional way above. To
perform an experiment, the observer must interact with the system and inevitably some kind of probe will cross the
system boundary. Thus, leading to isolated systems not being able to be studied experimentally. Though, it is possible
to make theoretical calculations on truly isolated systems and obtain meaningful results. From this it is possible to
comprehend that the fields of theoretical and experimental physics exhibit a fundamental interdependence and, while
occasional disagreements may arise between practitioners, these fields ultimately rely on each other for continued
progress.

Since Newton’s time, theoretical scientists relayed in a reductionist mode, where a complex system is reduced to
more simple subsystems, those subsystems are analyzed and finally transformed into models (mostly mathematical) ².
Accordingly, until some decades ago, mathematical models had to be simple enough to be tractable analytically, but
now with the use of computers and programming languages to automatise tasks, they have shortened our need to
treat each problem at a time, and allow us to do data analysis and data visualization in a clear way.

Simulations provide an alternative to study and analyze systems by reproducing a model. For example, what
the reductionist mode intents is to search into the system behavior by combining explanations and understanding for
the behaviors of its subsystem models. By doing so, the validity of the model and the theory would be tested when
comparing predictions with experimental measurements on a real case study. Having said that, there is an invisible
problem, they make implicit the relationship between inputs and outputs since it remains in the mathematical device
that make the predictions. On the other hand, simulations allow to explain nature even while they do not describe it.
Then, we can use computational physics to make simulations and even to approach both theoretical and experimental
ways of studying a specific case study: use simulated data on models to test theories and compare simulated data
with experimental data to test the realism of simulated models².

1.5.1 The case of Python
Python is a programming language, in essence, it is a system of notations whose application is to act as an inter-
mediary for the programmer to tell the computer what to do. Its syntax is much simpler than other programming
languages like Java or C++¹⁴. In addition, its simplicity allows people to write fully functional programs in just a
few lines of code, so the assimilation of the content to put it to practical use is smooth and with the use of packages
everyone with a beginner-intermediate level of Python can export, represent and format the generated data for fur-
ther implementation in other formats without the necessity to known the language in profundity. This is explained

https://www.python.org
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in more detail in the Section 2.3.
Due to the large number of open libraries that lessen the need to develop code from scratch, Python generates

an ecosystem in which scientists show great interest. Furthermore, as long as the scientist has the required level of
programming, they can improve the underlying framework of available packages, add new features, or even create a
whole new package. Nonetheless, they need to understand what they want the computer to do; otherwise, the results
may not be satisfactory.





Chapter 2

Theoretical Background

2.1 The way physics is taught
Anyone who is involved in topics of Physics Education knows and takes as a fact that few students choose a path
where is required to study physics at all levels of education, which is more prevalent in undergraduate studies. There-
fore, there is a shortage of physicists, which finally result in less graduates becoming lecturers or researchers. The
significance of this by no means should be neglected. As consequence, secondary school physics is often taught by
teachers whose primary qualification may be in a science other than physics¹⁵.

This has led to the perception of how physics actually works being wrong and from this thinking, Horst Schecke¹⁶
states the following:

• The way of teaching physics in several places seems to focus on solving equations and calculating numbers
without truly understanding the key concept.

• There are often many mathematical considerations, and some interesting physical phenomena which are ne-
glected by virtue of simplifying the problem.

Therefore, the real understanding of physics becomes blurry, and as the level advances, the worse the performance
becomes when studying and analyzing a physical phenomena. Simply put, students are conditioned to study in an
improper way, and that trait is ingrained so deeply that later, in most cases, they do not even understand why they
cannot follow up with physics.

2.2 Computers and their role in physics
Since the arrival of computers to the present, computers have become an important element in the lives and education
of physicists. Their importance has been increasing in each passing generation: the higher the level of abstraction
in any branch of physics, the more complex the system being studied. Since computers come with a feature that

9
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allows the simulation of physical phenomena through programming languages, they may also prevent the physicist
or prospective physicist from not focusing in the real problem while wasting time in unprofitable work.

On top of that, several areas in physics have problems that cannot be treated exactly or analytically and must
be solved numerically. In consequence, the introduction of computers was inevitable and led to the development of
a new branch of physics known as computational physics¹⁷. Computational physics combines three major research
fields: computer science, applied mathematics, and physics, in order to make a more accurate approximation to actual
physical systems. Therefore, computational physics allows the development of simulations of physical phenomena
and improves the understanding of said phenomena at depths not be possible in any other traditional way.

2.2.1 The implication of computers in the learning process by making models
Computer-based simulations might improve the performance and reduce the time required to understand the key
concepts of physical phenomenon and solve it. Regarding this Horst Schecker¹⁶ highlights:

• The student can study the consequences of how parameters interact by strengthening or reanalyzing their as-
sumptions of how the systems work. By analyzing the data generated by the simulation, the student can check
how much they have improved.

• Computers have proved to reduce the problem of taking into consideration the student’s restrictive mathematics
level, so the student can focus on the physics of the problem. Besides, the student can complicate the problem
to be studied by adding more parameters and delving in topics such as in the case of nonlinearity.

The attractive of introducing and appending computers to physics education did appear since the early stages of
computational sciences. As an example of this, we can find the research of Borghi L. and coworkers¹⁸, released in
1984, and Roberth G. Fuller ¹⁹, from 1986, where they remarked that computers would have a great impact on physics
education. In particular, Borghi L. et al. claimed that his students improved their performance, and although he did
not provide concrete evidence regarding this, more recent studies prove it.

At a closer date, 2008-2009, Ersin Bozkurt and Aslan Ilik¹ conducted a study on how the implementation of
simulators affects the study of physics for students who studied Physics 1 at Selcuk University in departments of
physics, chemistry, science, and computing teaching. The purpose was clear: to determine and to prove whether
the use computational simulations is effective in teaching process. As shown in figure 2.1, there is a substantial
difference between pre and post-achievements in regard to the test scores of the students.

Therefore, it can be seen that there is a correlation between the use of computers in the learning process and
the student learning improvement: the introduction of computational physics was inevitable as a new path in sci-
ence education. In short, computational physics focuses on recreating a model of the real world physics problems
by simulating an approximation of the system to be studied by making use of computer science knowledge, ap-
plied mathematics, and physics. And, as a result, the utility of computational physics to physicists and prospective
physicists has shown results.
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Figure 2.1: Average pre and post achievement test scores of the groups of students, subjects of the study, who studied
Physics 1 in different departments at Selcuk University. Retrieved from¹.

2.3 Python programming language
Python is a more modern take on programming languages. It supports object-oriented, functional, and imperative
programming styles. This programming language is ideal for beginners due to its readability and ease of use¹⁴.
Python does not require to code specific methods, functions, class or program declarations, then the programmer
can skip those requirements²⁰. As such, beginners can dedicate their time to the comprehension of programming
concepts related to the area of interest, instead of focusing on just learning a whole new language.

Besides, Python is an interpreted language, the programmer can save time in any project since there is not need
to bother about compiling (to create an immediate communication between the user and the computer). Thus, con-
sidering every Python feature and its millions of programmers around the world, the programmer will find support
for their query on forums or online platforms that support programmers in case there is any blockage. Even more,
as Python is a general purpose programming language, the programmer can program different kinds of algorithms,
models, simulations and numerical calculations unlike e.g. MATLAB, which is only specialized in computational
mathematics. It is for these reasons that Python is used for software applications like computer vision, supercomput-
ing, bioinformatics, drug discovery, computational physics, and many more²¹.

2.3.1 Comparison with other programming languages
Python is a high level programming language, i.e., it has low level requirement for humans to understand. To show
the simple and elegant yet powerful syntax from Python, and why it is recommended for beginners, coding of a ”hello
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world” in three different programming languages is shown,

• ”Hello world” in C++,

1 #include <iostream>
2 int main() {
3 std :: cout << ”Hello world”;
4 return 0;
5 }

• ”Hello world” in Java,

1 public class Hello{
2 public static void main(String args[]){
3 System.out.println(”Hello world”);
4 }
5 }

• ”Hello world” in Python,

1 print(”Hello world”)

It is remarkable how much Python can simplify the work load and avoid the need to introduce more expressions
and lines of code to accomplish tasks than one needs when using other languages.

2.4 Quantum mechanics
Quantum mechanics is a branch of physics that studies physical phenomena at the atomic and particle scales⁴. It
is a theory based on probability since there is no hope of solving its dynamical systems in a deterministic way, and
one has to make use of statistical functions²². It has two representations, product of two equivalent formulations that
appeared almost at the same time: wave mechanics and matrix mechanics. The first was introduced by Schrödinger,
born from the idea of a generalization of the notion of matter-wave and shows an equation of the propagation of
the wave function which represents a given systems. The second one starts from physically observable quantities
solely and expresses each one of them with a certain matrix. Thus, for matrix mechanics, the equations of motion
corresponding to the dynamical variables of a system turn up as equations between matrices⁴.
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2.4.1 Origin of Quantum mechanics
From the formulation of Rational Mechanics attributed to Newton until the end of the XIX century, physicists only
supported classical mechanics. By that time, it was concluded that mechanics requires to follow a strict logical
schemes to reach a theorem. Though, as the microscopical scale became more and more precise, it was only a matter
of time before they realized that classical theory does not work at the atomic or subatomic levels. For that reason, a
new theory that is consistent with those phenomena was required²².

The origins of quantum mechanics follows Planck’s studies on black body radiation and his introduction of the
universal quantum of action, h. This theory began to take form with Einstein’s considerations with respect to the
photoelectric effect and the specific heat of solids and Bohr’s theory of hydrogen spectrum. Subsequently, Heisenberg
added the limits of the treatment of classical particle concepts. Afterward, Bohr’s concept of complementarity
proposed that physical laws involved with events in space-time are complementary to physical laws related to the
energy-momentum relationship, laying the foundation for the development of modern quantum mechanics²³.

2.5 The Quantum Toolbox in Python (QuTiP)
The Quantum Toolbox in Python, or QuTiP, is a library written in Python, which is a fully open-source implementa-
tion designed for simulating open and closed quantum dynamics for different systems. In essence, it allows to create
arbitrary Hamiltonians, including time-dependent systems by generating operators and states defined by a quantum
object class, hence solving it by applying the Lindblad master equation or Monte-Carlo solvers. In addition, QuTiP
has been implemented to use effectively the multiple processing cores inherent in, technically, all modern computers
for high-performance²⁴.

QuTiP’s framework is especially powerful and interesting when dealing with fields of quantum optics, super-
conducting circuit devices, nanomechanics, and trapped ions. Its use is even recommended as a complement for
teaching and explaining quantum systems. Also, since it is open source, its source code is freely available on the
website of GitHub, allowing anyone to make changes to improve it or to suit any specific needs that have not been
implemented²⁴.

2.6 Master equation
The master equation is a picture of quantum noise complementary to the quantum operations formalism. It is the
standard approach for deriving the equations of motion of a system interacting with its environment, in the shape
of a differential equation²⁴. Essentially, open quantum systems occur in a wide range of disciplines, and quantum
operations (e.g. amplitude damping and state depolarization) are not the only tool for this, there many tools that
can be employed in their study, being master equation one example. Ergo, the main objective to describe the time
evolution of an open systemwith a differential equation that properly describes non-unitary behavior is accomplished
by a master equation²⁵.

https://github.com/qutip/qutip
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2.7 Lindblad master equation and QuTiP

2.7.1 Lindblad master equation
What is needed for deriving the equations of motion for a system interacting with its environment is the expansion of
the scope of the system to include the environment. The combined quantum system is then closed and its evolution
is governed by the Von Neumann equation,

ρ̇tot(t) = −
i
ℏ

[
Htot, ρtot(t)

]
, (2.1)

here, the total Hamiltonian,

Htot = Hsys + Henv + Hint, (2.2)

includes the original Hamiltonian of the system Hsys , the Hamiltonian of the environment (reservoir) Henv , and the
interaction Hamiltonian between the system and its reservoir Hint . The study of the dynamics of the system involves
a partial trace (Trenv) over the environmental degrees of freedom in Eq. (2.1), thus with that information obtain a
master equation for the motion of the original system density matrix. Hence, the Lindblad master equation for the
reduced density matrix ρ = Trenv

[
ρtot
]
can be expressed as,

ρ̇(t) = − i
ℏ

[H(t), ρ(t)] +
∑

n

1
2
[
2Cnρ(t)C+n − ρ(t)C+n Cn −C+n Cnρ(t)

]
(2.3)

where the Cn =
√
γnAn are collapse operators, An are the operators through which the environment couples to

the system in Hint, and γn are the corresponding rates for the radiative decay²⁴ .
In order to solve Eq. 2.3, the necessary approximations to reach the master equation are separability, Born

approximation, Markov approximation and secular approximation²⁴:

• Separability: The first one states that at t = 0 there are no correlations between the system and its environment,
the total density matrix can be written as ρI

tot (0) = ρI(0) ⊗ ρI
env (0).

• Born approximation: The second one indicates that, since the interaction is weak and the environment is
much larger than the system, we can use the expression ρtot (t) ≈ ρ(t) ⊗ ρenv .

• Markov approximation: The third one requires that environmental correlation functions decay on a time-
scale fast compared to those of the system, which caused this approximation to be considered as ”short-memory
environment”.

• Secular approximation: The last one stipulates that all fast rotating terms in the interaction picture can be
neglected, and also ignores terms that lead to a small renormalization of the system energy levels. It is required
for arriving at the Lindblad form which is used in qutip.mesolve (For more information on the function, see
the qutip documentation)

https://qutip.org/docs/4.0.2/apidoc/functions.html?highlight=qutip%20mesolve#qutip.mesolve.mesolve
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2.7.2 Unitary evolution in QuTiP
Given a Hamiltonian, it is possible to calculate the unitary (non-dissipative) time-evolution of an arbitrary state vector
|ψ0⟩ by the use of QuTiP function qutip.mesolve. For this case QuTip just simplifies the problem since employing the
Schrödinger equation is sufficient. Here qutip.mesolve evolves the state vector and evaluates the expectation values
for a set of operators at the different times described in the corresponding list time by using an ordinary differential
equation solver. As a representation of the function we have,

1 result = mesolve(H, psi0, times, [], [])

where the bracket in the fourth argument is an empty list of collapse operators as we are considering unitary
evolution.

Basically, the function qutip.mesolve returns an instance of qutip.solver.Result, which is a class that stores all
the crucial data needed for analyzing and plotting the results of a simulation. Also, considering the example above,
the attribute expect of the function result (result.expect) is a list of expectation values for the operators that are
included in the list in the fifth argument²⁴.

2.7.3 Non-unitary evolution in QuTiP
The existence of an environment in a system of interest allows us to induce stochastic transitions between energy
levels and to introduce uncertainty in the phase difference between states of the system. By using the density matrix
formalism, the state of an open quantum system can be described in terms of ensemble averaged states. And, since
we are dealing with an open system, there is the need for collapse operators.

In QuTiP the product of the square root of the rate and the operator that describes the dissipation process is
called a collapse operator. As such, a list of collapse operators is passed as the fourth argument to the qutip.mesolve
function in order to define the dissipation processes in the master equation. As the fourth argument in qutip.mesolve
function must be filled it will use the master equation instead of the unitary Schrödinger equation²⁴.

2.7.4 Limitations of Lindblad master equation implemented in QuTiP
QuTiP uses Lindblad master equation for it being the most general known one as one of its two solvers of open
quantum dynamics. The problem with this path, is that the existence of symmetries in the Lindblad master equation
is necessary, so there is a simplification of the problem²⁶. Meaning, it does not solve the damped dynamics of
nonlinear systems that interact with their environment.

2.8 Markovian master equation for nonlinear systems
Taking advantage of the f-deformed oscillator formalism which was introduced byMan’ko and coworkers¹³ ²⁷ ²⁸, O de
los Santos-Sánchez and coworkers performed a study with a quantum deformation process on the harmonic oscillator
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algebra generating a Markovian master equation to solve nonlinear systems on the basis of a nonlinear dipolar-type
coupling between the system and its environment¹³.

As reported by Man’ko et al. ¹³ ²⁷ ²⁸, an f-deformed oscillator is a deformed version of the harmonic oscillator.
Thus, this f-deformed oscillator is a nonlinear quantum system modeled by a Hamiltonian of the harmonic oscillator
form,

ĤS =
ℏΩ0

2

(
Â†Â + ÂÂ†

)
, (2.4)

where the deformation comes from Â and Â†. They are the deformed boson annihilation and creation operator
respectively and appears by deforming the standard ladder operators â and â† via the noncanonical transformation

Â = â f (n̂) = f (n̂ + 1)â, Â† = f (n̂)â† = â† f (n̂ + 1), (2.5)

where the operator n̂ = â†â is the usual number operator, and the operator function f (n̂) that depends on it is a
deformation function.

By substituting Eq. 2.5 into the deformed Hamiltonian (Eq. 2.4), and knowing that from a standard basis we
have

[
â, â†
]
= 1, it can reached an equivalent Hamiltonian, yet, now it is expressed in terms of the number operator

only,

ĤS =
ℏΩ0

2

(
(n̂ + 1) f 2(n̂ + 1) + n̂ f 2(n̂)

)
(2.6)

As it is shown in Eq. 2.6, the Hamiltonian model that embodies the f-deformed oscillator, it would not reproduce
a linear function of the number operator in general since additional powers of it may take place, which leads it to
being referred as nonlinear¹³.

It is also of interest to mention the effect that deformed operators have on the number operator basis |n⟩,

Â|n⟩ = f (n)
√

n |n − 1⟩ (2.7)

Â†|n⟩ = f (n + 1)
√

(n + 1) |n + 1⟩ (2.8)

Here, we can see that the change of the number of quanta in±1, and their corresponding matrix elements are modified
through the deformation function f ¹³. In essence, they deform the Hamiltonian by creating and annihilating a single
anharmonic quantum based on the nonlinearity of the system. This is also to being brought out by the commutation
property, [

ĤS , Â
]
= −ℏΩ(n̂)Â,

[
ĤS , Â†

]
= ℏÂ†Ω(n̂) (2.9)

where,
Ω(n̂) =

Ω0

2

(
(n̂ + 2) f 2(n̂ + 2) − n̂ f 2(n̂)

)
(2.10)

2.8.1 Oscillator-environment interaction Hamiltonian
By describing a nonlinear system interacting with a reservoir of harmonic oscillators with the Hamiltonian

Ĥ = ĤS + ĤR + ĤInt (2.11)
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where, ĤS is the Hamiltonian of the f-deformed oscillator given by Eq. 2.6, and ĤR is the reservoir Hamiltonian.
The model of the reservoir Hamiltonian will follow as,

ĤR = ℏ
∑

k

ωkb̂†k b̂k (2.12)

where b̂k, b̂
†
k , are the annihilation and creation operators of such a system of oscillators of frequencyωk in all its modes

of radiation. As per the interaction Hamiltonian (ĤInt), it is the contribution led by the influence of the environment
on the system under consideration. It will be represented as

ĤInt = d · E (2.13)

where d is the dipole moment operator, and E represent the electric field operator.

2.8.2 Markovian master equation
The interest of studying the dynamics of open quantum systems is focused in the influence of the environment on the
system. For this, it is necessary to represent it as a master equation which will be expressed in terms of its reduced
density operator computed by using

ρ̂S (t) = TrR {ρS R} (2.14)

where TrR is the trace over the variables from the environment and ρS R represents the density operator of the com-
posite system S R (where S stands for system and R stands for reservoir). Since our Hamiltonian is described as
Ĥ = ĤS + ĤR + ĤS R, the total density operator ρS R fulfills the Liouville equation of motion:

ρ̇(t)S R = −
i
ℏ

[
Ĥ, ρS R

]
(2.15)

For the purpose of acquiring the desired approximate equation of motion for the reduced operator ρ̂S (t), we will
assume that Born and Markov approximations are valid for our system-environment interaction¹³. The application
of these approximations implies the following assumptions¹³ ²⁹:

• The Born approximation: The interaction is sufficiently weak, and the environment is so large compared to
the system that the system is the only one that changes in time significantly by the interactions.

• The Markov approximation: The environment correlation functions decay rapidly in comparison with the
time scale on which the state of the system evolves, which leads to saying that the system has short memory
respect to its past.

As a result of these approximations applied to Eq. 2.15, an equation of motion for the reduced density operator
(Eq. 2.14) is reached,

˙̃ρS (t) = − 1
ℏ2

∫ ∞
0

dτTrR

{[
H̃S R(t),

[
H̃S R(t − τ), ρ̃S (t) ⊗ ρR

]]}
(2.16)
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Here, the tilde over the operators accounts that they are into the interaction picture originated by ĤS + ĤR, and
ρR indicates the state of the environment. Due to the influence of the Markov approximation, the limit of integration
is taken to be infinite.

Now, it seems suitable to work in the interaction representation¹³. Ergo, the interaction Hamiltonian in the
interaction picture produced by ĤS + ĤR is stated as

HInt(t) = ei(HS+HR)t/ℏHInt e−i(HS+HR)t/ℏ (2.17)

HInt(t) = ℏ
(
F̂†eiΩ(n̂)tQ̃(t) + e−iΩ(n̂)tF̂Q̃†(t)

)
(2.18)

where the following identifications have been made:

F̂ = Âη(n̂ − 1) (2.19)

Q̃(t) = eiĤRt/ℏQ̂−iĤRt/ℏ (2.20)

Q̂ =
∑

k

κkb̂k, κk = −i
(ϵ̂k · γ0êr)
ℏ

√
ωk

2ℏϵ0V
eik·rp (2.21)

By applying Eq. 2.18 into Eq. 2.16, along with the fact that the density operator of the reservoir is constant in the
interaction picture, due to the influence of Born approximation, that the reservoir is regarded as being in a stationary
state, and as consequence of working explicitly with a reservoir at thermal equilibrium, where the temperature of the
reservoir changes relatively little when a much more significant amount of heat is added or extracted, the correlation
functions involving terms like Q̃Q̃ and Q̃†Q̃† vanish. Then, the desired master equation is expressed as:

˙̃ρS (t) = −
∫ ∞

0
dτeiΩ(n̂−1)τ TrR

{
Q(τ)Q†(0)ρR

}
F̂†F̂ρ̃S (t)

−
∫ ∞

0
dτe−iΩ(n̂)τ TrR

{
Q†(τ)Q(0)ρR

}
F̂F̂†ρ̃S (t)

+ F̂†eiΩ(n̂)tρ̃S (t)e−iΩ(n̂)tF̂
∫ ∞

0
dτeiΩ(n̂−1)τ TrR

{
Q†(0)Q(τ)ρR

}
+ e−iΩ(n̂)tF̂ρ̃S (t)F̂†eiΩ(n̂)t

∫ ∞
0

dτe−iΩ(n̂)τ TrR

{
Q(0)Q†(τ)ρR

}
+

∫ ∞
0

dτe−iΩ(n̂−1)τ TrR

{
Q†(τ)Q(0)ρR

}
F̂†eiΩ(n̂)tρ̃S (t)e−iΩ(n̂)tF̂

+

∫ ∞
0

dτeiΩ(n̂)τ TrR

{
Q(τ)Q†(0)ρR

}
e−iΩ(n̂)tF̂ρ̃S (t)F̂†eiΩ(n̂)t

− ρ̃S (t)F̂†F̂
∫ ∞

0
dτe−iΩ(n̂−1)τ TrR

{
Q(0)Q†(τ)ρR

}
− ρ̃S (t)F̂F̂†

∫ ∞
0

dτeiΩ(n̂)τ TrR

{
Q†(0)Q(τ)ρR

}

(2.22)
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Rearranging Eq. 2.22 back to the Schrödinger picture¹³ by taking advantage of ρ̃S (t) = eiHS t/ℏρS e−iHS t/ℏ, the
Markovian master equation for the reduced density operator of a nonlinear oscillator driven by a thermal reservoir is
at last obtained:

ρ̇S =
Ω

2i

[
ÂÂ† + Â†Â, ρS

]
− i
[
δ1(n̂)F̂†F̂ + δ2(n̂)F̂F̂†, ρS

]
− i
[
δ3(n̂), F̂†ρS F̂

]
− i
[
δ4(n̂), F̂ρS F̂†

]
−
{
K1(n̂)F̂†F̂ + K2(n̂)F̂F̂†, ρS

}
+
{
F̂†ρS F̂,K3(n̂)

}
+
{
F̂ρS F̂†,K4(n̂)

} (2.23)

where the parenthesis [ , ] and { , } represent, respectively, the commutator and anticommutator between the
operators involved. In addition, the number-operator-dependent coefficients Ki and δi are set as

K1(n̂) + iδ1(n̂) =
∫ ∞

0
dτeiΩ(n̂−1)τ TrR

{
Q(τ)Q†(0)ρR

}
(2.24)

K2(n̂) + iδ2(n̂) =
∫ ∞

0
dτe−iΩ(n̂)τ TrR

{
Q†(τ)Q(0)ρR

}
(2.25)

K3(n̂) + iδ3(n̂) =
∫ ∞

0
dτeiΩ(n̂−1)τ TrR

{
Q†(0)Q(τ)ρR

}
(2.26)

K4(n̂) + iδ4(n̂) =
∫ ∞

0
dτe−iΩ(n̂)τ TrR

{
Q(0)Q†(τ)ρR

}
(2.27)

To have a better approximation of the former coefficients, it is necessary that the reservoir be in a form that the
correlated density operator can be determined by using the Boltzmann distribution, so it is expressed as a multi-mode
thermal field to have¹³,

ρR =
e−ĤR/kBT

Tr
{
e−ĤR/kBT

} (2.28)

Here, kB is the Boltzmann constant, and ĤR is the reservoir Hamiltonian (Eq. 2.12) previously discussed. Hence,
Eq. 2.28 transform into,

ρR =
∏

k

e−ℏωk b̂†k b̂k/kBT
(
1 − e−ℏωk/kBT

)
(2.29)

Then, the trace over the reservoir variables (Eq. 2.20) expanded through Eq. 2.21 in Eqs. 2.24-2.27 results in,

TrR

{
Q(τ)Q†(0)ρR

}
=
∑
λ

∫ ∞
0

d3ke−ikcτg(k)|κ(k, λ)|2[n̄(kc,T ) + 1] (2.30)

TrR

{
Q†(τ)Q(0)ρR

}
=
∑
λ

∫ ∞
0

d3keikcτg(k)|κ(k, λ)|2n̄(kc,T ) (2.31)
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TrR

{
Q†(0)Q(τ)ρR

}
=
∑
λ

∫ ∞
0

d3ke−ikcτg(k)|κ(k, λ)|2n̄(kc,T ) (2.32)

TrR

{
Q(0)Q†(τ)ρR

}
=
∑
λ

∫ ∞
0

d3keikcτg(k)|κ(k, λ)|2[n̄(kc,T ) + 1] (2.33)

Then, considering that the summation over k, in other words, the summation equivalent to adding all the wave
vectors and the polarization directions, can be replaced by the integration over the same variable in the continuum
limit by,

∑
k

=
∑
k,λ

→
∑
λ

∫ ∞
0

g(k)d3k (2.34)

where, g(k) represents the density of modes available per unit frequency interval in free space, through which it
can be denoted in polar coordinates (k, θ, ϕ) as,

g(k)d3k =
ω2V
8π3c3 dω sin θdθdϕ (2.35)

And by doing so, it now constitutes the total number of modes in the volume V between the frequencies ω and
dω. Also, κk has been restructured and now represented as κ(k, λ), and n̄(ω = kc,T ) = 1/

(
eℏω/kBT − 1

)
.

Later, by taking advantage of Eqs. 2.30-2.33 and substituting them into Eqs. 2.24-2.27 respectively, along with
the next approximation, ∫ ∞

0
dτe−i(ω−Ωn)τ ≈ πδ (ω −Ωn) + i

P
Ωn − ω

(2.36)

and given that P is the Cauchy principal value and Ωn = ⟨n|Ω(n̂)|n⟩, we can reach explicit expressions for the
number-operator-dependent coefficients Ki and δi, i = 1, 2, 3, 4,

K1(n̂) =
γ(n̂ − 1)

2
[n̄(Ω(n̂ − 1),T ) + 1] (2.37)

K2(n̂) =
γ(n̂)

2
n̄(Ω(n̂),T ) (2.38)

K3(n̂) =
γ(n̂ − 1)

2
n̄(Ω(n̂ − 1),T ) (2.39)

K4(n̂) =
γ(n̂)

2
[n̄(Ω(n̂),T ) + 1] (2.40)

δ1(n̂) =
γ(n̂ − 1)

2π
P
∫ ∞

0

ω3

Ω3(n̂ − 1)
[n̄(ω,T ) + 1]
Ω(n̂ − 1) − ωdω (2.41)

δ2(n̂) = −γ(n̂)
2π

P
∫ ∞

0

ω3

Ω3(n̂)
n̄(ω,T )
Ω(n̂) − ωdω (2.42)
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δ3(n̂) =
γ(n̂ − 1)

2π
P
∫ ∞

0

ω3

Ω3(n̂ − 1)
n̄(ω,T )

Ω(n̂ − 1) − ωdω (2.43)

δ4(n̂) = −γ(n̂)
2π

P
∫ ∞

0

ω3

Ω3(n̂)
[n̄(ω,T ) + 1]
Ω(n̂) − ω dω (2.44)

where,

γ(n̂)
2
=

1
4πϵ0

2[Ω(n̂)]3γ2
0

3ℏc3 (2.45)





Chapter 3

Results & Discussion

Since ancient times humans have been gathering information and sorting it, motivating them to formulate different
models to generalize as much as possible the description of physical phenomena. Nevertheless, here, an issue arises:
the more general the algorithm to solve a problem, the more information is needed. That is why, some decades ago,
each problem had to be treated and solved as a whole by simplifying the system under study. Hence, it was necessary
to take into account first hand how accurate we want our approximation to follow a specific algorithm to get results.

Now, with the current technology at our disposal, it is possible to reproduce each problem and get results faster.
Essentially, computer-based simulations prevent mathematical errors and issues that limit the nature of the problem,
e.g., the need to isolate as much as possible the system to be studied. Thus, we can develop and automate different
systems to explore different problems until we find a suitable set of information that allows us to understand better
how the system works or to sort out a necessity (applications).

At present, QuTiP is the best tool to study quantum systems. One of its two solvers allows the user to solve
them by the implementation of the Lindblad master equation. From here, it can be inferred how the Lindblad master
equation has dominated the theory of quantum systems as the most general generator of Markovian dynamics in
quantum systems. Furthermore, with it being simulated, the development of research in quantum optics has been
more fruitful and faster. Having said that, the Lindblad master equation does not treat every possible case since it
does not treat nonlinear oscillators. Here is when O de los Santos-Sánchez and coworkers¹³ relying on the f-deformed
oscillator formalism, introduced byMan’ko et al. ¹³ ²⁷ ²⁸, developed aMarkovianmaster equation in the case of damped
dynamics of nonlinear systems that interact with their environment.

For the purpose of showing how the interaction of physicists and prospective physicists with a simulation, relying
on computational physics, might positively affect them, I have developed a simulation to solve a specific case study,
theMarkovianmaster equation for nonlinear systems. The idea of carrying out this simulation comes from the QuTiP,
which allows the user to solve quantum dynamics in closed and open systems, but with the limitation of having to
work on linear systems.

To investigate the dynamics of quantum systems, it is needed to implement a partial trace over the environmental
degrees of freedom, so that the desired master equation is formulated and solved. In our case, it is shown in Eq. 2.23.
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Therefore, by studying this simulation, depending of the level of the users, either by the results, what parameters
does the system need, or the relationship between the physics and the code of the simulation, the user might solidify
their knowledge about quantum open systems. Nevertheless, just as a reminder, this is just a case study to understand
how useful are simulations, in other words, more simulations can be reproduced into different branches of physics.

3.1 Methodology
While it is true that there is an actual equation to work on nonlinear systems in open quantum systems exists (Eq.
2.23), the difficulty of solving it by hand just makes it impractical. That being the case, here is when it is possible
to relegate tedious work, such as numerical calculation. Therefore, it is indispensable an algorithm that invokes
the different operators and number-operator-dependent coefficients involved as functions stated in the r.h.s. of said
equation. Those functions depend on the strictly necessary parameters, and solve numerically each of them so that
we can later proceed to work out the differential equation, and then arrive at the numerical result of the system with
the specific condition generated by the user’s parameters.

In the present simulation, for the sake of simplicity, I have skipped the influence of the frequency shifts (δi),
which accounts for frequency shift due to Stark effect and Lamb shift, since they are small enough to be disregarded
in the chosen system.

3.1.1 Parameters
The parameters are the data that allows the simulation to reproduce a system, its environment and their relationship.
The fundamental values that represent the parameters are seven. It is indispensable that the physicist or prospective
physicist has these details ready in advance. The way to make use of the simulation is to set the six parameters on
the main function of the framework in the same order as they are present below:

• Num: number of bound states of the system in terms of its coherent states.

• rho_0: initial density matrix or state vector (ket).

• n: the current bound state that is being treated, corresponding to the integers 0 ≤ n ≤ N − 1, with N being the
parameter Num.

• nx: the value chosen between the frequencies associated with the level of excitation and/or the transition
between two adjacent levels of the oscillator.

• T: temperature of the system.

• t: list of times at which we wish to evaluate the density matrix.
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3.1.2 Steps
Following are the steps the algorithm run in Python to simulate the Markovian master equation for nonlinear systems:

1. Evaluate the dimension of the parameter rho_0 to infer the dimension of the Hilbert space that is going to be
taken into account.

Since we want to simulate a nonlinear open quantum system, we start by laying the foundation. Namely, we
need to create a Hamiltonian of the system that represents a damped harmonic oscillator. Firstly, we determine
the dimension of the Hilbert space we are going to work. Then, as it is an open system, it is imperative
to use collapse operators, yet, the standard harmonic operators are inadequate for its nonlinearity. Thus, a
function that is equivalent to the deformation collapse operators through the non-canonical transformation
will be necessary. That deformation is generated by applying the operator function f (n̂), that depends on the
usual number operator (n̂ = â†â), to the respective annihilation or creation operator.

2. Get the value of χa, internally create the collapse operators, and obtain the deformation function f (n̂).

In view of that, the operator function depends on χa, because it adds the anharmonicity to the Hamiltonian, and
we calculate χa’s value. Additionally, since we extracted the dimension of the Hilbert space, we determined
the collapse operators of the number operator. Then, we complemented it by solving the operator function.

3. Construct the deformed boson annihilation and creation operators as in Eq. 2.6. And, subsequently, create the
Hamiltonian of the system.

Given that we already have the operator function and the collapse operators, we proceed to construct the
deformed boson annihilation and creation operators. Now, by following Eq. 2.6. we work out the Hamiltonian
of the system.

4. Find the value of the operator function η(n), so we can figure out the F̂ operator (Eq. 2.19) and its conjugate.

The focus now falls on the F̂ and F̂†. As they are operators that recognize the possible quantum jumps through
which the system passed, and that these jumps depend on the corresponding dipole matrix element that is
related to the quantum system of interest. Therefore, we evaluate η(n) by working out the relation between the
number of bound states of the system and the bound state treated. Hence, we multiply the deformed boson
annihilator operator and the value of η(n) to get F̂. After that, from F̂ we calculate its conjugate F̂†.

5. Create a function for the frequency Ω(n̂), since the operator γ(n̂) (Eq. 2.45) and the Bose-Einstein distribution
are dependent of it.

The main operators needed to solve our master equation have been effectively obtained. Subsequently, we need
to concentrate now into the number-operator-dependent coefficients Ki. Thereby, to figure out the values of
γ(n̂) and the Bose-Einstein distribution it is required to know Ω(n̂). Ω(n̂) is the frequency associated to the
respective level of excitation and/or the frequency separation between adjacent energy states pertaining to the
oscillator. Hence, by treating it as in Eq. 2.10, we get a diagonal matrix with the frequencies.
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6. Taking γ0, ℏ, kBc = 1 and ϵ0 = 1/4π, obtain γ.

By setting some constants, we obtain γ(n̂). This acts for the generalized decay coefficient. Its value will mainly
depend on the specific frequency in Ω(n̂).

7. From the frequency, temperature, and some set constants, get the Bose-Einstein distribution.

From the specific frequency, the temperature of the system, and two other constants, we attain the Bose-Einstein
distribution.

8. As the last two functions needed to solve the master equation, we calculate all the Ki and δi as specified in Eqs.
2.37-2.44.

For thismoment, we have succeeded in obtaining our generalized decay coefficient (γ(n̂)) and the representation
of thermal photon (n̄(Ω(n̂))). The last one is indispensable as it stimulates the Ki(n̂) coefficients to calculate
the transition rates between anharmonic states.

9. By now, we have all necessary information to treat the differential equation. Therefore, we apply the functions
spre() and spost() from QuTiP to the operators that pre- (post-) multiply the density operator (taken from
QuTiP) to form the Liouvillian superoperator and finally solve the differential equation. This return the full
density matrix that corresponds to the different times given by the user.

Finally, all the necessary information to make use of our master equation has been found. Then, we go forward,
and transform the right-hand side of Eq. 2.23 into a form of ρ̇ = L ρ(t), where L is called Liouvillian
superoperator. The Liouvillian represents both coherent and dissipative terms. As a consequence of this, we
have a simpler form of differential equation and can solve ourMarkovian master equation for nonlinear systems
to reach the end of our simulation.

3.1.3 Output
The result can be a list of state vectors for the times specified in the parameter of time t or the expectation values
for the operators that are included in the list in the last parameter. Moreover, by taking advantage of matplotlib’s
package, it is possible to visualize the data produced by this simulation.

3.2 Level of the user
According to how much knowledge the physicist or prospect physicist has over quantum systems and programming,
they can do different levels of things on this model:

• To use the simulation and get results, it is just necessary a basic understanding of Python and a clear notion
of what system will be treated. It will be useful when giving initial parameters and studying how it behaves
in specifics environments. Thus, the user will relate which parameters can vary according to the study interest
and even get the optimal case studio.

https://qutip.org/docs/latest/apidoc/functions.html#qutip.superoperator.spre
https://qutip.org/docs/latest/apidoc/functions.html#qutip.superoperator.spost
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• To strengthen knowledge, it is necessary a basic understanding of Python and a certain comprehension of the
physical limitations of how the parameters of the system and its environment can change to follow how similar
systems evolve.

• To review the steps that undergo the model, improve it or to add new features, a minimum of intermediate level
in python programming is required to prevent confusion.

3.3 Examples generated by the computer-based simulation
As a reminder, parameters may change according to the need of the user, and I only chose to experiment with the
parameters to explore what useful information may be extracted from simulations.

3.3.1 Deformed Hamiltonian
In the construction of deformed Hamiltonians there are three parameters that we can change according to the needs
of the system under study: number of bound states, number of Hilbert space, and the lowest number state that is
included in the finite number state representation of the operator. As illustrative example, ℏ = 1 and ω0 = 2 have
been assumed.

Figure 3.1: Deformed Hamiltonian, where the initial conditions are the dimension of Hilbert space = 3, and the
number of bound states of the system N = 10.

Figure 3.2: Deformed Hamiltonian created by stating the dimension of Hilbert space = 3, and the N = 15.

The number of bound states is the quantity that represents the vibrational evolution of the diatomic molecule
that we are wanting to work. From this, it is also calculated the anharmonicity of the Hamiltonian. In addition, from
having the dimension of Hilbert space set to a positive integer, we receive a matrix of nxn. In the case of Fig. 3.1-3.3,
n=3, so they are 3x3 matrices.

Comparing Fig. 3.4-3.6 to Fig. 3,1-3.3, respectively, we can observe that since the number of bound states
of the system remain the same, the values of the Hamiltonian are preserved. Nevertheless, as can be seen from
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Figure 3.3: Deformed Hamiltonian, taking as a particular case dimension of Hilbert space = 3 and N = 20 bound
states.

Figure 3.4: Deformed Hamiltonian for the damped harmonic oscillator with N = 10 and dimension of Hilbert space
= 4.

Figure 3.5: Deformed Hamiltonian in case bound states N = 15, and dimension of Hilbert space = 4.

Figure 3.6: Deformed Hamiltonian assuming N = 20 and dimension of Hilbert space = 4.

this comparison, as the dimension of Hilbert space grew the Hamiltonian occupies more regions of space. Thus, by
increasing the dimension of Hilbert space we are bound to have more energy levels. Due to this, the new Hamiltonian
matrices have a 4x4 form. Thereby, as the dimension of the Hilbert space needed by the user increases, our deformed
Hamiltonian will grow accordingly.

3.3.2 Evolved states of the Master equation
The thinking process of the simulation of the Markovian master equation for nonlinear systems¹³ has been structured
and explained in Section 3.1.2. By following that, we can reach the state vector at the arbitrary points given by
the user. In the following examples, I worked simulating a real physical quantum system, which is the vibrational
evolution of a H2 molecule in a

∑
state that is in contact with a thermal reservoir. Therefore, to represent that desired

quantum system we need make an approximation and set our deformed oscillator to posses N = 15 (χa ≈ 0.032)
bounds states¹³. For the sake of simplicity, ℏ = c = 1 and ω0 = 2 have been assumed. Also, we have taken the first
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value of matrix Ω(n̂) and ten time instants in an interval from 0 to 10 to avoid showing too much evolved states.

Figure 3.7: Evolved state vectors from a Fock state in ground state, where the dimension of Hilbert space is 2 and
bound states N=15. As particular case, n = 14 and temperature T = 293K.

As has been verified in Fig. 3.7-3.10, the simulation can solve the Markovian master equation for nonlinear
systems. In these cases there are ten groups of evolved state vectors due to the ten different times. It is shown the
difference that the change of parameters led to different evolved states in the evolution of the chosen system. This
being the case, it is possible to alternate parameters to investigate an optimal path evolution on behalf of the interest
of possible applications or future research.
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Figure 3.8: Evolved state vectors where the initial density matrix is Fock state in ground state of dimension of Hilbert
space = 2, being N = 15. Also, n = 10 and T = 293K.



CHAPTER 3. RESULTS & DISCUSSION 31

Figure 3.9: Evolved state vectors from a system where N = 15. Particularly, n = 5, and T = 293K in a case where the
dimension of Hilbert space is 2.
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Figure 3.10: Evolved state vectors from a system where N = 15 and the initial density matrix is a Pauli matrix, so
dimension of Hilbert space is 2. Particularly, the chosen Pauli matrix was σz, n = 14, and T = 293K.



Chapter 4

Conclusions & Outlook

This thesis aimed to illustrate with practical examples of Python the power of computational tools to simulate systems
and the usefulness of those simulations into the preparation and study of physicists and prospective physicists in
different problems. It was carried out exemplifying the case of quantum mechanics problems in open quantum
systems. Based on former studies, it was determined that the idea of using computational tools in the learning process
of physics is not something new, yet their implementation have been neglected. With that in mind, I developed an
algorithm to run a simulation of a theoretical model addressed to a topic related to quantummechanics to demonstrate
the worth and possibilities by implementing simulations to study physics. Then, the case studio is the Markovian
master equation for nonlinear system, since quantum mechanics represents a great challenge both for physicists and
prospective physicists.

As I have stated in Chapter 3, by studying with simulations and depending of the level of the users, there might
be improvement when studying physics. To disclose whether there is any change in the mindset or comprehension,
I suggest to professors to propose ideas and generate a debate having two groups, one that has played with the
simulation and one that has no. This exchange of ideas can be taking into account the nature of the problem, the
importance of some parameters, their physical implication, the relationship between parameters or the sensitivity of
the parameters to understand how their changes will affect the results. Also, when possible, compare the answers of
those students with students of former generations, i.e. those who have not experimented with the simulation. Being
this the case of the model of nonlinear quantum systems, there should be a better estimate due to the difficult of the
subject. Even more, professors could ask for feedback in case their students have changed their understanding in any
of the above aspects from before and after experiencing simulations, giving a clearer understanding of what is the
origin of their misconceptions and at the same time solidify their knowledge.

To begin with my methodology, I studied what a master equation in quantum mechanics is, how it can be applied
and what can be expected when applying it to quantum systems, that there are more than one master equation and the
frameworks that have been developed for quantum systems. Furthermore, for the specific master equation simulated,
it was necessary to comprehend a novel algebraic theory to represent the deformation in the harmonic oscillator.
This research was by no means trivial, particularly since the premise was not simply to solve a specific system but to
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develop a simulation that could solve several systems. In addition, it was necessary to deepen an understanding of
why it might be beneficial or if simulations can lead to a new way of studying physics.

By doing so, I also gained insight of how the parameters, or more specifically, the conditions of the systems and
their environments intervene in their evolution. Then, with that knowledge, I ran my simulation, obtained deformed
Hamiltonians and the consequent evolved space vectors in a time interval. So I can conclude that the research
accomplished its goal by showing the importance of introducing computational physics tools and what the users can
do with their proficiency in physics and programming.

For future work on this simulation, as stated in section 3.2 it is necessary a certain level of expertise on Python
and quantum mechanics. Some new feature would be the implementation of the delta values, δi and functions to
visualize and delve into the applications of the acquired results. Finally, I reiterate that I motivate physics professors
to implement and explore the possibilities of computational physics and simulations with their students.



Appendix A

Documentation of the framework that
reproduces the model
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CHAPTER

ONE

ABOUT THIS PROJECT:

Markovian master equation for nonlinear systems 1.0.0

Since ancient times humans have been gathering information and sorting it. This has lead to create different models to
generalize as much as possible each topic. Nevertheless, here, an issue arise, the more general the algorithm to solve
a problem the more information is needed and hence it is required more time and focus due to no one is exempt from
human error. That is why before computers each problem had to be treated as a whole and to solve each problem it was
totally necessary take into account first hand how accurate we want our approximation to follow an specific algorithm
to get results.

1.1 Contributing to this project:

Anyone is welcomed as long as that person is interested in helping to develop this framework further.

Now, with the current technology at our disposal it is possible not only to reproduce each problem to get results faster
avoiding math errors or physical issues such as the isolation of the system to be studied, but, we can automate and model
different systems to explore different problems until we find a suitable set of information that allow us to understand
better how the system works or to sort out a necessity (applications). The Lindblad master equation has dominated the
theory of quantum systems as the most general generator of Markovian dynamics in quantum systems. Furthermore,
with it being modelled in QuTiP, the development of research in quantum optics has been more fruitful and faster. Even
so, it does not treat every possible case since human knowledge is always evolving and new inquiry occurs. Here is
when O de los Santos-Sánchez and coworkers leaning on f-deformed oscillator formalism introduced by Man’ko etal.
developed a Markovian master equation in the case of damped dynamics of nonlinear systems that interactwith their
environment. For the purpose of modeling this Markovian master equation for nonlinear systems, it has beenbuilt a 
framework to solve this kind of quantum dynamics.





CHAPTER

TWO

USAGE

2.1 Installation

To work out on this framework, there is a necessity to install the following packages:

$ pip install qutip    
              $ pip install odeintw





CHAPTER

THREE

USERS GUIDE

Import the functions

Put constants

Call the function states() or exp_val_mme()

import numpy as np
from qutip import *
from qutip.qobj import Qobj
from qutip.fastsparse import fast_csr_matrix, fast_identity
import matplotlib.pyplot as plt
from odeintw import odeintw

h_bar= 1
c=1
freq_sep=2
e0= 8.8541878128*(10**-12)
kB= 8.617333262 *(10**-5)

states(Num, rho_0,n,nx,T)
exp_val_mme(Num, rho_0,n,nx,T,t,np_exp)
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FOUR

API DOCUMENTATION

4.1 Functions

Xa(Num)

Parameters Num (int) – Number of bound states of the system

Returns The value of anharmonicity parameter

Return type int

defor_func(N, Num, iden)

Parameters

• N (int) – The dimension of the Hilbert space

• Num (int) – Number of bound states of the system

• iden (int) – The lowest number state that is included in the finite number state representa-
tion of the operator

Returns Qobj for the matrix that represents the matrix of deformation function

Return type qutip.qobj

defor_destroy(N, Num)

Parameters

• N (int) – The dimension of the Hilbert space

• Num (int) – Number of bound states of the system

Returns Qobj for the matrix that represents the deformed lowering operator

Return type qutip.qobj

defor_create(N, Num)

Parameters

• N (int) – The dimension of the Hilbert space

• Num (int) – Number of bound states of the system

Returns Qobj for the matrix that represents the deformed raising operator

Return type qutip.qobj



freq_separation(N, Num, extra)

Parameters

• N (int) – The dimension of the Hilbert space

• Num (int) – Number of bound states of the system

• extra (int) – Integer that represent the displacement of the lowest number state that is
included in the finite number state representation of the operator to match the corresponding
the equation

Returns Matrix that represents the different modes of radiation (frequencies)

Return type array of complex

braket_n_freq_sep(N, Num, extra, nx)

Parameters

• N (int) – The dimension of the Hilbert space

• Num (int) – Number of bound states of the system

• extra (int) – Integer that represent the displacement of to the lowest number state that is
included in the finite number state representation of the operator to match the corresponding
equation

• nx (int) – Integer corresponding to the desired mode of radiation (frequency)

Returns Desired mode of radiation

Return type complex

eta_n(Num, n, iden)

Parameters

• Num (int) – Number of bound states of the system

• n (int) – The current bound state that is being treated, corresponding to the integers
0 ≤ 𝑛 ≤ 𝑁 − 1, with N being parameter Num

• iden (int) – Integer that represent the displacement of the parameter n to match the corre-
sponding equation

Returns The value of 𝜂

Return type int

F_op(N, Num, n)

Parameters

• N (int) – The dimension of the Hilbert space

• Num (int) – Number of bound states of the system

• n (int) – The current bound state that is being treated, corresponding to the integers
0 ≤ 𝑛 ≤ 𝑁 − 1, with N being parameter Num

Returns Matrix that represents the 𝐹 operator, which is related to the interaction Hamiltonian

Return type array of complex



F_op_conj(N, Num, n)

Parameters

• N (int) – The dimension of the Hilbert space

• Num (int) – Number of bound states of the system

• n (int) – The current bound state that is being treated, corresponding to the integers
0 ≤ 𝑛 ≤ 𝑁 − 1, with N being parameter Num

Returns Matrix that represents the 𝐹 † operator

Return type array of complex

gamma_n(N, Num, extra, nx)

Parameters

• N (int) – The dimension of the Hilbert space

• Num (int) – Number of bound states of the system

• extra (int) – Integer that represent the displacement of to the lowest number state that is
included in the finite number state representation of the operator to match the corresponding
equation

• nx (int) – Integer corresponding to the desired mode of radiation (frequency)

Returns The value of 𝛾 depending on how the parameter of the number operator is displaced

Return type complex

n_avg(N, Num, extra, nx, T)

Parameters

• N (int) – The dimension of the Hilbert space

• Num (int) – Number of bound states of the system

• extra (int) – Integer that represent the displacement of to the lowest number state that is
included in the finite number state representation of the operator to match the corresponding
equation

• nx (int) – Integer corresponding to the desired mode of radiation (frequency)

• T (int) – Temperature (in K)

Returns The value of the Bose-Einstein distribution correspondent

Return type int

K(N, Num, nx, T)

Parameters

• N (int) – The dimension of the Hilbert space

• Num (int) – Number of bound states of the system

• nx (int) – Integer corresponding to the desired mode of radiation (frequency)

• T (int) – Temperature (in K)

Returns The different transition rates between anharmonic states induced by thermal photons
(K_1,K_2,K_3,K_4)



Return type complex, complex, complex, complex

Liuvil(Num, rho_0x, n, nx, T)

Parameters

• Num (int) – Number of bound states of the system

• rho_0x (qutip.Qobj) – Initial density matrix or state vector (ket)

• n (int) – The current bound state that is being treated, corresponding to the integers
0 ≤ 𝑛 ≤ 𝑁 − 1, with N being parameter Num

• nx (int) – Integer corresponding to the desired mode of radiation (frequency)

• T (int) – Temperature (in K)

Returns Liouvillian superoperator (coherent and dissipator parts)

Return type qutip.Qobj

deriv(rho, t, L)

Parameters

• rho (qutip.Qobj) – Initial density matrix or state vector (ket)

• t (list) – A sequence of time points for which to solve for rho

• L (qutip.Qobj) – Liuvillian of the system

Returns An exponential series that describes the time evolution for the initial density matrix (or state
vector) rho0

Return type array

states(Num, rho_0, n, nx, T, t)

Parameters

• Num (int) – Number of bound states of the system

• rho_0 (qutip.Qobj) – Initial density matrix or state vector (ket)

• n (int) – The current bound state that is being treated, corresponding to the integers
0 ≤ 𝑛 ≤ 𝑁 − 1, with N being parameter Num

• nx (int) – Integer corresponding to the desired mode of radiation (frequency)

• T (int) – Temperature (in K)

• t (list) – A sequence of time points for which to solve for rho

• L (qutip.Qobj) – Liuvillian of the system

Returns The state vector at arbitrary points in time (t)

Return type ndarray

exp_val_mme(Num, rho_0, n, nx, T, t, op_exp)

Parameters

• Num (int) – Number of bound states of the system

• rho_0 (qutip.Qobj) – Initial density matrix or state vector (ket)

• n (int) – The current bound state that is being treated, corresponding to the integers
0 ≤ 𝑛 ≤ 𝑁 − 1, with N being parameter Num



• nx (int) – Integer corresponding to the desired mode of radiation (frequency)

• T (int) – Temperature (in K)

• t (list) – A sequence of time points for which to solve for rho

• op_exp (qutip.Qobj) – Single operator or list of operators for which to evaluate expectation
values.

Returns The expectation values of the provided operators

Return type ndarray
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