
UNIVERSIDAD DE INVESTIGACIÓN DE
TECNOLOGÍA EXPERIMENTAL YACHAY

Escuela de Ciencias Matemáticas y Computacionales

Forecasting exchange rate with deep learning algorithms:
the US Dollar (USD) to Colombian Peso (COP) case

Trabajo de integración curricular presentado como requisito para la
obtención del t́ıtulo de Ingeniera en Tecnoloǵıas de la Información

Autora:

Lucero Burbano Alejandra Valeria

Tutor:

PhD - Cuenca Pauta Erick Eduardo

Urcuqúı, Abril 2024

Autoŕıa

Yo, LUCERO BURBANO ALEJANDRA VALERIA, con cédula de identidad 0401703012,

declaro que las ideas, juicios, valoraciones, interpretaciones, consultas bibliográficas, defini-

ciones y conceptualizaciones expuestas en el presente trabajo; aśı cómo, los procedimientos

y herramientas utilizadas en la investigación, son de absoluta responsabilidad de el/la au-

tora (a) del trabajo de integración curricular. Aśı mismo, me acojo a los reglamentos

internos de la Universidad de Investigación de Tecnoloǵıa Experimental Yachay.

Urcuqúı, Abril 2024

Alejandra Valeria Lucero Burbano

CI: 0401703012

Autorización de publicación

Yo, LUCERO BURBANO ALEJANDRA VALERIA, con cédula de identidad 0401703012,

cedo a la Universidad de Investigación de Tecnoloǵıa Experimental Yachay, los derechos de

publicación de la presente obra, sin que deba haber un reconocimiento económico por este

concepto. Declaro además que el texto del presente trabajo de titulación no podrá ser ce-

dido a ninguna empresa editorial para su publicación u otros fines, sin contar previamente

con la autorización escrita de la Universidad.

Asimismo, autorizo a la Universidad que realice la digitalización y publicación de este

trabajo de integración curricular en el repositorio virtual, de conformidad a lo dispuesto

en el Art. 144 de la Ley Orgánica de Educación Superior.

Urcuqúı, Abril 2024

Alejandra Valeria Lucero Burbano

CI: 0401703012

Dedicatoria

Este proyecto de tesis está dedicado principalmente a Dios por darme vida, salud y

permitirme llegar a este momento tan importante en mi formación profesional, a mis

familiares y amigos. De manera especial:

A mis padres, Por su amor y apoyo incondicional. Gracias por guiarme durante estos

años. Siempre estaré eternamente agradecida por inculcarme los mejores valores. Ustedes

son la razón de mi crecimiento y mejora. Aunque papá ya no estés conmigo, te dedico

este logro que, en algún momento, promet́ı cumplir. ¡Los quiero mucho!

A mi hermana, por siempre hacerme réır y ser esa fuente de alegŕıa en mi diario vivir.

Hemos vivido muchos momentos inolvidables y espero que en el futuro puedas contar con

mi apoyo incondicional.

Para mis amigos, Sherald, Carlitos, Stalyn, Mateo y Leonel ustedes fueron parte

fundamental de mi vida estudiantil. Gracias por apoyarme y animarme siempre a seguir

adelante. Liss, Anabel y Geme, gracias por demostrarme que una buena amistad perdura

aunque hayan kilometros de por medio

A mi pareja, Gracias por tu apoyo incondicional en cada momento de mi vida y por

animarme cuando sent́ı que no pod́ıa más. Gracias por darme al amor de mi vida,

nuestra hija, quien también ha sido mi apoyo y motivo para culminar esta etapa de mi

vida. Muchas gracias a todos por su apoyo incondicional.

Alejandra Valeria Lucero Burbano

v

Agradecimiento

En primer lugar, quisiera agradecer a mi asesor y profesor, Erick Cuenca, por toda su

paciencia y apoyo durante este proceso de tesis. Asimismo, quisiera expresar mi agradec-

imiento a todos los profesores que tuve durante mi carrera en Yachay Tech (YT), espe-

cialmente al profesor Rigoberto Foncesa, por ser quien supo apoyarme en los momentos

dif́ıciles de mi carrera y me motivó para continuar. Finalmente, quiero agradecer a cada

una de las personas que hicieron más llevadera mi vida universitaria, especialmente durante

mi último año. Gracias infinitas a todos.

Alejandra Valeria Lucero Burbano

vii

Resumen

La predicción de series temporales puede proporcionar información vital para ayudarnos

a tomar mejores decisiones. Cuanto mayor sea la profundidad y amplitud de nuestro

estudio, mayor será la calidad de la información que adquirimos. Este proyecto de tesis

compara tres modelos de aprendizaje profundo (ANN, LSTM, GRU) para la predicción

del tipo de cambio USD/COP. Para determinar cuál de los tres modelos es el apropiado

para predecir este tipo de cambio, se propone realizar 3 experimentos y utilizar MAE y

R2 como métricas. El primero tiene como objetivo elegir qué tamaño de conjunto de datos

tiene el mejor rendimiento. El segundo tiene como objetivo elegir el tamaño del conjunto

de datos, la relación entrenamiento-prueba, la configuración del tamaño del lote y el mejor

modelo. Finalmente, tomamos las mejores configuraciones de los experimentos anteriores

para probar nuestro modelo con un conjunto de datos desconocido. Como resultado de la

realización de los 3 experimentos anteriores se obtuvo que el mejor modelo para predecir

este tipo de cambio fue ANN en función de las métricas R2 y MAE.

Palabras Clave:

Series de tiempo, Predicción, Aprendizaje Profundo, Redes Neuronales Artificiales, Memo-

ria a largo y corto plazo, Unidad recurrente cerrada, Error absoluto medio, Coeficiente de

determinación R-cuadrado.

ix

Abstract

Time series prediction can provide vital information to help us make better decisions. The

greater the depth and breadth of our study, the greater the quality of the information we

acquire. This thesis project compares three deep learning models (ANN, LSTM, GRU) to

predict the USD/COP exchange rate. To determine which of the three models is appropri-

ate to predict this type of change, it is proposed to perform 3 experiments and use MAE

and R2 as metrics. The first aims to choose which data set size has the best performance.

The second aims to choose the data set size, train-test ratio, batch size configuration, and

the best model. Finally, we take the best configurations from the previous experiments to

test our model on an unknown data set. As a result of the 3 previous experiments, it was

obtained that the best model to predict this type of change was ANN based on the R2 and

MAE metrics.

Keywords:

Time Series, Forecasting, Deep Learning, Artificial Neural Networks, Long-Short Term

Memory, Gated Recurrent Unit, Mean Absolute Error, coefficient of determination R-

squared

xi

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer xii Graduation Project

Contents

Contents xiii

List of Tables xv

List of Figures xvii

1 Introduction 1

1.1 Background . 1

1.2 Problem statement . 2

1.3 Objectives . 2

1.3.1 General Objective . 2

1.3.2 Specific Objectives . 2

1.4 Justification . 3

2 Theoretical Framework 5

2.1 Time Series . 5

2.1.1 Time Series Components . 6

2.2 Time Series Forecasting . 10

2.3 Artificial Intelligence Methods . 11

2.3.1 Evolution of AI Methods . 11

2.3.2 Artificial Neural Networks . 12

2.3.3 Deep Learning . 16

2.3.4 Long Short Term Memory . 17

2.3.5 Gated Recurrent Unit . 22

3 State of the Art 27

3.1 Tlegenova, D. (2015) . 27

xiii

School of Mathematical and Computational Sciences Yachay Tech University

3.2 Soĺıs, E. 2021 . 28

3.3 Vega, O. 2021 . 29

3.4 Noboa, S. 2021 . 29

3.5 Yadav et al., 2020 . 31

3.6 Ranjit et al., 2018 . 31

3.7 Panda and Narasimhan, (2007) . 32

3.8 Discussion . 33

3.9 Summarize . 34

4 Methodology 37

4.1 Phases of Problem Solving . 37

4.1.1 Data Collection . 38

4.1.2 Data Preparation . 38

4.1.3 Models Preparation . 41

4.1.4 Train Models . 43

4.1.5 Models Evaluation . 44

5 Results and Discussion 45

5.1 Materials Description . 45

5.2 Experiments Description and Setup . 45

5.2.1 Experiment 1 . 46

5.2.2 Experiment 2 . 47

5.2.3 Experiment 3 . 48

5.3 Results . 49

5.3.1 Results Experiment 1 . 49

5.3.2 Results Experiment 2: train-test ratio and batch size 56

5.4 Discussion . 61

6 Conclusions 63

7 Future Works 65

Bibliography 67

Information Technology Engineer xiv Graduation Project

List of Tables

3.1 Summary table of all the related works. 36

5.1 Common hyper-parameters in all models. 46

5.2 ANN hyper-parameters in all models. 46

5.3 LSTM hyper-parameters in all models. 47

5.4 GRU hyper-parameters in all models. 47

5.5 Hyper-parameters tested. 47

5.6 Summary of Experiment 1 Results . 49

5.7 Summary Results of Experiment 2 . 57

xv

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer xvi Graduation Project

List of Figures

2.1 Time Series Components. Taken from [1] 6

2.2 Trend example in population. Taken from [2] 7

2.3 Seasonal variation in Antibiotic Prescribing. Taken from [3] 8

2.4 Ciclical variation in Solar Variations. Taken from [4] 8

2.5 Random Variation Component. Taken from [5] 9

2.6 ANN architecture . 12

2.7 Weight of each element and input and output of the ANN system. Taken

from [6] . 13

2.8 LSTM Architecture. Taken from [7] . 19

2.9 LSTM - Cell State. Taken from [7] . 19

2.10 LSTM - Forget Gate. Taken from [7] . 20

2.11 LSTM - Input Gate. Taken from [7] . 20

2.12 LSTM - Update cell state. Taken from [7] 21

2.13 LSTM - output state. Taken from [7] . 22

2.14 GRU architecture. Taken from [8] . 23

2.15 GRU - Update Gate. Taken from [8] . 24

2.16 GRU - Reset gate. Taken from [8] . 25

2.17 GRU - Candidate Hidden State. Taken from [8] 25

2.18 GRU - Hidden State. Taken from [8] . 26

4.1 Flowchart of the proposed methodology . 37

4.2 Data obtained from platform . 38

4.3 Data used to train and test the proposed networks 39

4.4 10 subsets obtained . 40

xvii

School of Mathematical and Computational Sciences Yachay Tech University

4.5 Three models . 43

5.1 Unseen Dataset . 48

5.2 Dataset with 10010 observations . 50

5.3 Train Test Split - 10010 observations . 50

5.4 ANN - Forecasting Test data - 10010 observations 51

5.5 Forecasting Test data in all models - 10010 observations 51

5.6 Dataset with 5720 observations . 52

5.7 Train Test Split - 5720 observations . 52

5.8 LSTM - Forecasting Test data - 5720 observations 53

5.9 Forecasting Test data in all models - 5720 observations 53

5.10 Dataset with 10725 observations . 54

5.11 Train Test Split - 10725 observations . 54

5.12 GRU - Forecasting Test data - 10725 observations 55

5.13 Forecasting Test data in all models - 10725 observations 55

5.14 Comparison of the three models for the 70:30 train-test ratio and batch size

of 64 . 58

5.15 Comparison of the three models for the 80:20 train-test ratio and batch size

of 32 . 59

5.16 Comparison of the three models for the 80:20 train-test ratio and batch size

of 64 . 60

Information Technology Engineer xviii Graduation Project

Chapter 1

Introduction

1.1 Background

Exchange rates are essential indicators in global economics because they influence interna-

tional commerce, investment choices, and the dynamics of financial markets. Forecasting

exchange rates with time series analysis entails evaluating past data trends to predict fu-

ture currency pair movements. To capture the patterns, seasonality, and volatility inherent

in exchange rate data, this forecasting approach employs a variety of statistical models,

machine learning algorithms, and hybrid techniques [9]. Additionally, time series forecast-

ing methods such as Autoregressive Integrated Moving Average (ARIMA), Exponential

Smoothing, and machine learning algorithms such as Recurrent Neural Networks (RNNs)

or Long Short-Term Memory (LSTM) networks examine historical exchange rate data to

identify patterns and build predictive models. These models seek to represent the intrinsic

complexity of currency fluctuations by considering elements such as economic data, interest

rates, geopolitical events, and market emotion. Accurate exchange rate forecasting using

time series analysis is critical for stakeholders in various industries. Investors use these es-

timates to make educated decisions about currency trading and portfolio management and

by companies to avoid the risks associated with currency changes in international trans-

actions. Governments and central banks use Exchange rate projections to establish mone-

tary policies and estimate the economic impact of currency fluctuations on their respective

countries. However, the market’s complexity and volatility make forecasting exchange

rates difficult. Currency changes are difficult to forecast due to unforeseen geopolitical

1

School of Mathematical and Computational Sciences Yachay Tech University

developments, unexpected economic swings, and the interconnectedness of global markets.

Despite these limitations, continual advances in analytical methodologies and data-driven

approaches continue to improve the accuracy and reliability of exchange rate projections,

assisting stakeholders in navigating the volatile global financial landscape.

1.2 Problem statement

The exchange rate is one of the most crucial aspects of the economy. Not only is it essential

for macroeconomics as one of the critical indicators, but it is also essential at the micro

level for the individuals who make up the economy, such as global traders or even small

farmers, as it can impact the economy. Forecasting exchange rates and enabling accurate

expectations among economic actors is essential. Central banks, which govern monetary

policy, are the primary users of these forecasting models. While technology constantly

evolves, searching for and testing alternative approaches and exploring new opportunities

is excellent.

For the development of this work, we use the USD/COP as a currency exchange since

our country, which has the dollar (USD) as its official currency, is limited to the north

with Colombia. This country has the Colombian peso (COP) as its official currency, and

exchanging their currencies could directly affect trade in this area.

1.3 Objectives

1.3.1 General Objective

This project aims to predict the future values of the USD/COP exchange rate using dif-

ferent deep-learning algorithms.

1.3.2 Specific Objectives

• To obtain all the data from USD/COP exchange rate historical values.

• To implement and compare the Artificial Neural Networks (ANNs), Long Short-Term

Memory (LSTM), and Gated Recurrent Unit (GRU) methods against each other.

Information Technology Engineer 2 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• Select the most accurate model based on metrics such as R2 and Mean Absolute

Error (MAE).

1.4 Justification

Deep learning algorithms may prove effective in forecasting exchange rates because of

their capacity to deal with complicated patterns, nonlinear relationships, and massive

volumes of data. Several key justifications support the use of deep learning in exchange

rate forecasting:

Pattern Recognition and Nonlinear Relationships: Deep learning algorithms

such as recurrent neural networks (RNNs) and LSTM capture the complex patterns and

nonlinear relationships found in the data. The nature of exchange rate behavior is generally

highly complex and nonlinear, caused by economic, geopolitical, or market reasons. Deep

learning models can capture these nuances more accurately than linear models, leading to

more accurate predictions [10].

Feature Representation and Data Abstraction: The deep learning algorithms

autonomously learn high-level data abstractions. Such machines can derive important

characteristics from raw input data, allowing them to detect tiny links between economic

indicators, market sentiment, or exchange rates. The capacity to be abstract and represent

information makes forecasting more accurate [11].

Temporal Dynamics and Time Series Analysis: Time series analysis is funda-

mental in forecasting exchange rates, and deep learning models are appropriate. Due to

their nature, RNNs and LSTM networks “remember” past information, allowing a system

to comprehend temporal relationships in sequential data. This is especially beneficial in

getting the material aspects of the exchange rate, involving the movement patterns and

trends [12].

Handling Big Data and Information Complexity: Deep learning can process large

amounts of financial and economic data. They can work with macroeconomic indicators

and use news sentiment analysis and historical market data to integrate these inputs into

a more holistic forecasting process [13].

Adaptability and Model Flexibility: The deep learning models have adaptive ca-

Information Technology Engineer 3 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

pacity and can adjust to evolving data sets. Such forecasts are not set in stone but can be

continually updated and improved as new data surfaces, considering the evolving market

environments and other forces that affect exchange rates [14].

Research and Development in Deep Learning: Deep learning research continually

evolves, giving rise to new architectures, regularizers, and optimizers tailored for forecasting

tasks like exchange rates [13].

Thus, deep learning algorithms are promising for exchange rate forecasting because they

can manage complicated data connections, time variation, and substantial information sets.

Nevertheless, the issues of interpretability, data scarcity, and model overfitting should be

addressed for deep learning to significantly impact more accurate and reliable exchange

rate forecasts.

Information Technology Engineer 4 Graduation Project

Chapter 2

Theoretical Framework

This section explains the principles required to comprehend this work. It begins with a time

series definition, followed by characteristics, classification, and forecasting applications.

Second, specific artificial neural network models are examined and thoroughly explained.

2.1 Time Series

Time series prediction is a fundamental approach in data analysis that uses historical

data arranged by time to produce forecasts or projections. A time series, in other words,

is a succession of observations or data gathered at regular or irregular time intervals to

predict future values based on patterns and trends detected in prior data. A time series’

main components are trend, seasonality, cyclical, and random. This approach is used

in various sectors, including finance, e.g., forecasting stock prices [15]; economics, e.g.,

GDP (gross domestic product) [16]; meteorology, e.g., predicting daily temperatures [17];

sales, e.g., predicting monthly sales of a retail store[18]; and many more, where future

values must be expected [19]. In this situation, it is possible to construct an accurate

forecast by accounting for several factors. However, because of how this study is defined,

it exclusively concentrates on univariate time series. As a result, a univariate time series

refers to a sequence of data points collected or observed sequentially over time involving a

single variable or series of observations. In simpler terms, it represents a time-ordered data

sequence consisting of only one type of measurement or observation at each time point

[20], as shown in Eq. 2.1.

5

School of Mathematical and Computational Sciences Yachay Tech University

Yt = f(Yt−1, Yt−2, . . . , Yt−p, εt) (2.1)

Where:

• Yt represents the value of the variable at a time

• Yt−1, Yt−2, . . . , Yt−p denote lagged values of the variable at time points before t, up

to a certain lag order p. These lagged values are often called autoregressive terms in

an autoregressive model (AR)

• f represents the functional relationship or model that describes how the variable at

time t depends on its past values and potentially an error term (εt) that captures

unexplained variability or randomness

• εt is the random error term at time t representing the difference between the observed

value and the predicted value by the model

2.1.1 Time Series Components

The traditional approach to analyzing time series is predicated on the idea that the ob-

servation variable’s values result from three factors whose combined action produces the

measured values. These components are showing in Figure 2.1.

Figure 2.1: Time Series Components. Taken from [1]

Information Technology Engineer 6 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Trend

A trend is the inclination of a time series to increase, diminish, or stagnate over a long

period. In other words, a trend is a time series’ long-term orientation. For example, time

series data relating to population growth, the number of dwellings in a country, and so

on show an increasing tendency, whereas series relating to death rates, the quantity of

available natural resources, and so on show a falling trend [21].

Figure 2.2: Trend example in population. Taken from [2]

Seasonal

Many time series have a periodicity or variation over a period (half-yearly, monthly, etc.).

Weather and temperature conditions, customs, and other pertinent elements contribute

to seasonal fluctuations [22]. For example, Retail sales in Ecuador surged throughout

November and December due to the Christmas holidays. These impacts are simple to

grasp and can be explicitly measured or even deleted from the data series, known as

deseasonalizing the series [23].

Information Technology Engineer 7 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 2.3: Seasonal variation in Antibiotic Prescribing. Taken from [3]

Cyclical

Cycles in time series analysis refer to any repeating pattern in the mean level of a series

whose duration is not fixed or known and generally occurs over two or more years. The

magnitude of cyclical effects is generally more variable than seasonal effects. Cycles may

represent patterns of interest, but they are more challenging to identify and require more

extended series to be adequately captured [24].

Figure 2.4: Ciclical variation in Solar Variations. Taken from [4]

Information Technology Engineer 8 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Random

In the case of time series, another type of movement may be seen. It’s just erratic and

random movement. No hypothesis or trend, as the name implies, can be used to indicate

irregular or random movements in a time series. These consequences are unpredictable,

chaotic, and uncontrolled. Unexpected time series components include earthquakes, con-

flict, starvation, and floods [25].

Figure 2.5: Random Variation Component. Taken from [5]

Of these components, the trend and seasonal are deterministic, while cyclical and ran-

dom are random. For this reason, to account for the effects of these four components, two

types of models are commonly used for time series: multiplicative and additive.

• Multiplicative model.- This model assumes that the seasonal pattern also increases

as the data increases. Most series charts show this pattern. The trend and station

components are multiplied in this model and added to the error component.

Y (t) = T (t) × S(t) × C(t) × I(t)

Information Technology Engineer 9 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• Additive model.- A data model in which the effects of individual factors are dif-

ferentiated and aggregated together to model the data.

Y (t) = T (t) + S(t) + C(t) + I(t)

In both equations, Y(t) is the observation, and T(t), S(t), C(t), and I(t) are, respec-

tively, the trend, seasonal, cyclical, and irregular or random variation at time [26].

2.2 Time Series Forecasting

Time series data may be used to estimate the exchange rate using a variety of method-

ologies and approaches. The examination of historical patterns is one of the most used

methodologies. This strategy includes evaluating patterns and trends in previous exchange

rate data to forecast future movements. Moving averages and exponential smoothing are

two statistical procedures that may be used to find patterns in data [27]. In addition

to historical trend analysis, seasonal and cyclical component analysis is critical in pro-

jecting exchange rate time series. Seasonal trends and economic cycles can impact the

movement of exchange rates over time. Identifying and modeling these components can

enhance prediction accuracy. The use of complex mathematical and statistical models,

such as ARIMA models (AutoRegressive Integrated Moving Average) or GARCH models,

is another critical strategy in predicting temporary series of exchange rates. (Autoregres-

sive Conditional Heteroskedasticity with Generalized Autoregressive Heteroskedasticity).

These models consider self-correlation, seasonality, and data volatility, which can help fore-

cast future exchange rate movements. In addition to conventional methodologies, the use

of modern technologies such as machine learning and artificial intelligence in predicting

the pace of change has gained favor in recent years. Deep learning models, such as recur-

rent neural networks (RNNs) and convolutional neural networks (CNNs), can scan vast

datasets and find complicated patterns that other techniques may miss [28]. However, due

to the volatile and frequently unpredictable character of financial markets, it is necessary

to remember that projecting transitory series on the exchange rate is difficult. Macroeco-

nomic, political, and social variables can unexpectedly influence exchange rates, making

projections unpredictable. As a result, it is critical to employ numerous methodologies and

Information Technology Engineer 10 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

information sources to make more accurate forecasts. In brief, forecasting exchange rate

time series is a critical problem in the financial sector. It is based on the examination of

historical data, the identification of trends, the consideration of seasonal and cyclical com-

ponents, and the use of advanced mathematical and technical models. Although precise

precision may be impossible due to market volatility, these strategies help make educated

judgments in international commerce and financial risk management.

2.3 Artificial Intelligence Methods

Artificial intelligence (AI) is a science and engineering domain concerned with developing

systems that exhibit intelligent behavior, such as perception, natural language processing,

problem-solving, learning, and adaptation. It highlights the interdisciplinary nature of

AI, which intersects with many domains, including mathematics, linguistics, psychology,

neuroscience, mechanical engineering, statistics, economics, control theory, cybernetics,

and philosophy. The introduction also discusses AI’s scientific and engineering goals, such

as developing intelligent agents, formalizing knowledge, and mechanizing reasoning in all

areas of human endeavor [29].

2.3.1 Evolution of AI Methods

Developing AI techniques was very gradual; it had significant changes and discoveries.

Initially, classical AI approaches aimed at mimicking human thought and problem-solving

using rule-based systems and symbolic reasoning. However, the area underwent a change

owing to the evolution of machine learning, where the system could learn and have profi-

ciency over time using data.

Machine learning strategies such as supervised, unsupervised, and reinforcement learn-

ing are used in AI today. Such methods enable systems to see models, collect information,

and anticipate through learning from big data, allowing system decision-making capacity.

Advances in a deeper level of artificial intelligence using deep learning, a subset of

machine learning with multiple layered neuronal networks, have triggered some changes.

Deep learning approaches have demonstrated outstanding performance in image recogni-

tion, natural language processing, and solving challenging tasks in various disciplines [30].

Information Technology Engineer 11 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

2.3.2 Artificial Neural Networks

The method of artificial neural networks (ANNs) has been proposed as an alternative

strategy to time series forecasting and has garnered enormous popularity in recent years.

The main goal of ANNs was to build a model that could mirror the intelligence of the

human brain in a machine. ANNs, like human brains, attempt to discover regularities

and patterns in input data, learn from experience, and then deliver generalized results

based on their previously existing knowledge. Although ANNs were developed primarily

for biological reasons, they have since been used in various applications, notably forecasting

and classification [31]. The following sections will highlight the key characteristics of ANNs

that make them popular for time series analysis and forecasting [32].

Neuron Layers

ANNs comprise multiple layers, most frequently three neuron layers. In Figure 2.6 we can

see a simple Network with three layers. The first is the input layer, the second is the hidden

layer, and the third is the output layer. Each layer is made up of a particular number of

nodes that are linked to one another. The input layer receives the data to distribute to the

hidden layer, which controls all computations and approximations. A single hidden layer

is usually sufficient to conduct simple computations. On the other hand, the number of

hidden layers is determined by the issues to be addressed. Finally, the network’s output

layer generates the final result [19].

Figure 2.6: ANN architecture

Information Technology Engineer 12 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Connections and weights

The connections between nodes, also called synapses, represent value and Weight. Each

Weight plays a part in decision-making since their values are not fixed; in other words,

they alter based on fresh data. In this way, ANN learns by varying the Weight of each

link, resulting in a dynamic and intelligent model [19].

Activation function

Neurons in the hidden and output layers often use activation functions to introduce non-

linearity into the network, enabling it to learn complex relationships in the data. Common

activation functions include ReLU (Rectified Linear Unit), Sigmoid, Tanh, etc.

However, the activation function should be chosen based on the demands of the situation

[33].

The connections, weights, and activation functions work together, as seen in Figure 2.7.

Figure 2.7: Weight of each element and input and output of the ANN system. Taken from
[6]

Learning algorithm

The learning rate is a hyperparameter that reflects the steps required to produce a weight

change during the training phase. That is, it determines how quickly the network will be

learned. Hyperparameters often have values ranging from 0 to 1. The algorithm is often

unstable if the learning rate is very high or near one, meaning the weights change very

fast during training. If it is deficient, the algorithm will take a long time to converge, and

learning will be sluggish [19].

Information Technology Engineer 13 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Loss function:

A loss function is a mathematical function used in machine learning and optimization

algorithms to quantify the difference between predicted and actual values. The primary

goal of the loss function is to minimize its value during the training process. Various loss

functions depend on the problem’s nature, such as regression, classification, or generative

tasks [34].

In a supervised learning context, where the model learns from labeled data, standard

loss functions include Mean Squared Error (MSE) for regression tasks and Cross-Entropy

Loss (also known as Log Loss) for classification tasks.

1. Mean Absolute Error MAE is a straightforward computation. It entails adding

the errors’ magnitudes (absolute values) to produce the ”total error” and dividing it

by n. The Eq. 2.2 describes this metric [35].

MAE = 1
n

n∑
i=1

∣∣∣Yi − Ŷi

∣∣∣ (2.2)

Where:

n = number of data records

Yi = true values

Ŷi = predicted values

2. Mean Squared Error (MSE): The Mean Squared Error measures the average of

the squared differences between predicted and actual values. It is commonly used in

regression problems [36]. Defined by Eq. 2.3.

MSE = 1
n

n∑
i=1

(Yi − Ŷi)2 (2.3)

Where:

n = number of data records

Yi = true values

Information Technology Engineer 14 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Ŷi = predicted values

3. R-squared (R2) The coefficient of determination, often known as R square, shows

the amount of the dependent variable’s variation that the linear regression model can

explain. It is a scale-free score, which means that regardless of how tiny or massive

the numbers are, the R-squared value is less than one. The Eq. 2.4 describes this

metric.

R2 = 1 −
∑n

i=1(Yi − Ŷi)2∑n
i=1(Yi − Ȳ)2

(2.4)

Where:

n = number of data records

Yi = true values

Ŷi = predicted value

Ȳ = mean value of true variables.

If the value of R2 is close to 1, we can deduce the accuracy of the model is the best,

while if it tends to −∞, we can say that the accuracy of the model is not good [37].

4. Cross-Entropy Loss (Log Loss): The cross-Entropy loss is used in classification

tasks, especially in scenarios with multiple classes. It calculates the distance between

the predicted probability distribution and the actual one-hot encoded labels [38].

Calculate Cross-Entropy Loss with the following Eq. 2.5.

Cross-Entropy Loss = − 1
n

Σn
i=1[YiLog(Ŷi) + (1 − Yi)Log(1 − Ŷi)] (2.5)

Where: n is the number of data points

Yi is the truth value takin a value 0 or 1

Ŷi is the Softmax probability for the ith data point

Information Technology Engineer 15 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

2.3.3 Deep Learning

Deep learning is a subset of machine learning that utilizes artificial neural networks to

model and solve complex problems. These neural networks are meant to imitate the struc-

ture and function of the human brain, allowing them to learn from massive volumes of

data and make accurate predictions or judgments on previously unknown data [39]. Deep

learning has grown in popularity and success in various domains, including computer vi-

sion, e.g., Object Detection [40], natural language processing, e.g., Conversational Agents

and Chatbots [41], speech recognition, e.g., Voice assistants like Siri [42], and others.

Multilayer Perceptron (MPL)

An MPL is an artificial neural network, a fundamental concept in machine learning and

deep learning. It is also known as a feedforward neural network because data flows through

it in one direction, from the input to the output layer, without any cycles or feedback loops.

The term ”multilayer” refers to the fact that it consists of multiple layers of interconnected

neurons (nodes) [43].

To provide a mathematical representation of an MPL, we’ll use the following notation:

• Let X be the input data with n features, represented as a column vector:

X =

x1

x2
...

xn

∈ Rn×1

• Let W (l) represent the weight matrix of layer l, where l can be 1 for the first hidden

layer, 2 for the second hidden layer, and so on. The dimensions of W (l) ar ml × ml−1,

where ml is the number of neurons in layer l and ml−1 is the number of neurons in

the previous layer.

• Let b(l) represent the bias vector of layer l. The dimensions of b(l) are ml × 1.

• Let A(l) represent the output (activation) of layer l, which is also the input to the

next layer. The dimensions of A(l) are ml × 1.

Information Technology Engineer 16 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• Let Z(l) represent the weighted sum of inputs to layer l before applying the activation

function. The dimensions of Z(l) are ml × 1.

• Let f (l)(·) be the activation function used in layer l.

• Let Y represent the output of the Multilayer Perceptron (MLP), which is the final

prediction. The dimensions of Y depend on the specific task (e.g., binary classifica-

tion, multi-class classification, regression).

With this notation, the forward propagation in the MLP can be expressed as follows:

1. Input Layer (Layer 0):

A(0) = X

2. Hidden Layers (Layer l, l ≥ 1):

Z(l) = W (l)A(l−1) + b(l)

A(l) = f (l)(Z(l))

3. Output layer (Layer L):

Z(L) = W (L)A(L−1) + b(L)

Y = A(L) = f (L)(Z(L))

During training, the MLP is optimized using a loss function L(Y, Ytrue) that measures

the discrepancy between the predicted output Y and the actual target values Ytrue. The

most common loss functions include mean squared error (MSE) for regression and cross-

entropy for classification tasks.

The backpropagation algorithm is then used to compute the gradients of the loss con-

cerning the model parameters (weights and biases) and update them accordingly to min-

imize the loss function. This process is iterated over multiple epochs until the model

converges to the desired performance [44].

2.3.4 Long Short Term Memory

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN) architec-

ture introduced by Sepp Hochreiter and Jürgen Schmidhuber in 1997. It was designed to

Information Technology Engineer 17 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

overcome the vanishing gradient problem, which occurs when training traditional RNNs

on long sequences, leading to difficulties in capturing long-range dependencies. LSTM has

gained popularity due to its ability to handle long-term dependencies and maintain infor-

mation over extended intervals. The main issue with standard RNNs is that they struggle

to capture long-term dependencies in sequential data due to the vanishing or exploding

gradient problem. When training RNNs on long sequences, gradients can become expo-

nentially small, making it difficult for the network to learn from distant events in the past

[45].

LSTM Architecture

LSTM overcomes the problem mentioned above by introducing a more sophisticated mem-

ory cell [45], which has three main components as seen in Figure 2.8:

1. Cell State (ct): The cell state serves as the memory of the LSTM and allows

information to flow through the network over time. It is designed to carry relevant

information while filtering out unnecessary information. This ensures that the LSTM

can remember relevant information for long periods.

2. Input Gate (it): The input gate determines how much fresh information is stored

in the cell state. It determines what new data from the current input and the prior

concealed state to let into the cell state.

3. Forget Gate (ft): The forget Gate determines what information should be dis-

carded from the cell state. It controls the flow of information from the previous cell

state to the current cell state.

4. Output Gate (ot): The output gate decides how much of the cell state should be

exposed to the output. It selectively filters and outputs the relevant information to

the next hidden state and the final output of the LSTM.

Main Idea

The cell state is the most essential component of LSTMs. A horizontal line runs across the

top of the diagram, as seen in Figure 2.9. Furthermore, it moves quickly across the entire

Information Technology Engineer 18 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 2.8: LSTM Architecture. Taken from [7]

chain with some interactions, yet it allows information to travel without alteration.

Using components known as gates, the LSTM carefully regulates the ability to delete

or add information to the cell state. These gates comprise a sigmoid neural network layer

and a pointwise multiplication operation.

Figure 2.9: LSTM - Cell State. Taken from [7]

The output of the sigmoid layer is a range of integers between 0 and 1, indicating

how much of each component should be allowed through. If the number is one, it allows

everything through, while if the number is zero, nothing through.

The mathematical interpretation of this is in Eq. 2.6.

ft = σ(Wf · [ht−1, xt] + bf) (2.6)

Where:

• [ht−1, xt] concatenates the previous hidden state and the current input.

Information Technology Engineer 19 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 2.10: LSTM - Forget Gate. Taken from [7]

• Wf and bf are learnable weight matrices and biases.

To determine what additional information we will store in the cell’s state. First, we

use a sigmoid layer called the ”input gate layer,” which decides what values we’ll update.

Also, we use a hyperbolic tangent layer to create a vector of new candidate values C̃t to

add to the state, as we can see in Figure 2.11.

Figure 2.11: LSTM - Input Gate. Taken from [7]

The mathematical interpretation about this is in Eq. 2.7 and Eq. 2.8.

it = σ(Wi · [ht−1, xt] + bi) (2.7)

C̃t = tanh(WC · [ht−1, xt] + bC) (2.8)

Where:

Information Technology Engineer 20 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• [ht−1, xt] concatenates the previous hidden state and the current input.

• Wi, WC and bi, bC are learnable weight matrices and biases.

The next step is to update the old to the new cell state. We do it by multiplying the

old state by f and adding the candidate values, scaled by how much we decided to update

each state value. We can see the graphical and mathematical interpretations in Figure 2.12

and Eq. 2.9, respectively.

Figure 2.12: LSTM - Update cell state. Taken from [7]

Ct = ft × Ct−1 + it × C̃t (2.9)

Finally, the output will be based on our cell state but in a filtered version. To do this,

we run a sigmoid layer, which decides what outputs to generate. Simultaneously, we pass

the cell state through the hyperbolic tangent to push the values between -1 and 1. After

that, we multiply both parts to obtain the desired outputs.

We can see the graphical and mathematical interpretations in Figure 2.12, Eq. ?? and

2.11, respectively

ot = σ(Wo · [ht−1, xt] + bo) (2.10)

ht = ot × tanh(Ct) (2.11)

Information Technology Engineer 21 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 2.13: LSTM - output state. Taken from [7]

2.3.5 Gated Recurrent Unit

The Gated Recurrent Unit (GRU) is a type of recurrent neural network (RNN) that was

introduced by Cho et al. in 2014 [46]. It was designed to address issues with traditional

RNNs, such as the vanishing gradient problem, making it difficult to train on long se-

quences.

GRU is a variation of the Long Short-Term Memory (LSTM) network, which also

addresses the vanishing gradient problem but has a more complex architecture. GRU sim-

plifies the LSTM architecture by combining the forget and input gates into a single ”update

gate” and merging the cell and hidden states. This leads to a more compact and computa-

tionally efficient model while preserving the ability to capture long-term dependencies in

sequences.

GRU architecture

The GRU architecture show in Figure 2.14.

1. Update Gate (zt): It determines how much of the previous hidden state should be

passed on to the current time step. It takes the current input (xt) and the previous

hidden state (ht−1) as input and outputs a value between 0 and 1 for each element

in the hidden state.

2. Reset Gate (rt): It determines how much of the previous hidden state should be

forgotten when computing the candidate hidden state. Similar to the update gate,

Information Technology Engineer 22 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 2.14: GRU architecture. Taken from [8]

it takes the current input (xt) and the previous hidden state (ht−1) as input and

outputs a value between 0 and 1 for each element in the remote state. The reset gate

is computed as follows:

3. Candidate Hidden State (h̃t): It is the new candidate hidden state that will be

computed based on the current input and the previous hidden state. It is obtained

by applying the tanh activation function to the linear combination of the current

input and the reset gate:

4. Hidden State (ht): The final hidden state at time step t is a combination of the

previous hidden state (ht−1) and the candidate hidden state (h̃t), controlled by the

update gate (zt):

Main Idea

Here’s how GRU works based on [47].

We start with calculating the update gate zt for time step t using the Eq. 2.12.

zt = σ(Wz · xt + Uz · ht−1) (2.12)

When xt is plugged into the network unit, it is multiplied by its Weight Wz. The same

goes for ht−1, which holds the information for the previous t − 1 units and is multiplied

by its Weight Uz. Both results are added together, and a sigmoid activation function is

applied to squash the result between 0 and 1. Following the above Figure 2.15, we have:

The update gate assists the model in determining how much past knowledge (from

Information Technology Engineer 23 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 2.15: GRU - Update Gate. Taken from [8]

earlier time steps) should be passed on to the future. This is extremely powerful because the

model may replicate all of the knowledge from the past, eliminating the risk of disappearing

gradients. We’ll see how the update gate is used later. For the time being, recall the zt

formula.

Second, we determine how much of the past we will forget. Eq. 2.13 is used to compute

it. This formula is the same as the one for the update gate. The difference comes in the

weights and the Gate’s usage, which will be seen briefly. Figure 2.16 shows where the reset

gate is.

rt = σ(Wr · xt + Ur · ht−1) (2.13)

The preceding operations are discussed here. We plug in ht−1 (blue line) and xt (purple

line), multiply them with their appropriate weights, add the results, and apply the sigmoid

function as before.

The next step is to use Eq. 2.14 to update the candidate’s hidden state. Figure 2.17

shows this operation.

h̃t = tanh(Wh · xt + rt ⊙ (Uh · ht−1)) (2.14)

Information Technology Engineer 24 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 2.16: GRU - Reset gate. Taken from [8]

Figure 2.17: GRU - Candidate Hidden State. Taken from [8]

Firstly, multiply the input xt with a weight W and ht−1 with a weight U . Secondly,

calculate the Hadamard (element-wise) product between the reset gate rt and U · ht−1.

That will determine what to remove from the previous time steps. After that, add the

results and apply the non-linear activation function tanh.

The last step in the network is to compute the hidden state (ht) using Eq. 2.15, a

vector that carries information for the current unit and transmits it to the network. The

update gate is required to do this. It decides what to acquire from candidate hidden state

(h̃t) and what to collect from earlier stages (ht−1).

Information Technology Engineer 25 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

ht = (1 − zt) ⊙ ht−1 + zt ⊙ h̃t (2.15)

To accomplish this. First, multiply the update gates zt and ht−1 using element-wise

multiplication. Then, do element-wise multiplication on (1−zt) and h̃t and sum the results.

Figure 2.18: GRU - Hidden State. Taken from [8]

In Figure 2.18, we can see the operations described above, where zt (green line) is

used to calculate 1 − zt (dark green line), which, applying Hadamard multiplication with

h̃t (turquoise line), produces a result represented in the dark red line. We also perform

another Hadamard multiplication between zt and ht−1 (blue line), giving us the result

represented by the bright red line. Finally, ht (the blue line) results from the sum of the

outputs corresponding to the bright red and dark red lines.

Information Technology Engineer 26 Graduation Project

Chapter 3

State of the Art

This chapter examined time series forecasting approaches for finance, exchange rate, and

price prediction. It provided a quick description of five research publications published

between 2009 and 2021. These methods include recurrent networks, LSTM, GRU, and

others. Finally, a brief discussion and table summary were held.

3.1 Tlegenova, D. (2015)

In this work, Daniya Tlegenova [48] uses the ARIMA model as a time series analysis model

to simulate the annual exchange rate between USD/KZT, EUR/KZT, and SGD/KZT from

2006 to 2014. The exchange rate data used in this paper is from the National Bank of the

Republic of Kazakhstan. For building an ARIMA model for exchange rate forecasting, she

follows the three essential phases:

1. Test pattern detection: This step involves analyzing the time series data to iden-

tify existing patterns or tendencies. The paper uses graphical analysis to identify

patterns such as seasonality, trend, and cyclical behavior. To sum up, this step is

essential in constructing the ARIMA model as it helps to determine the appropriate

order of differencing, autoregressive, and moving average terms.

2. Model parameter estimates: The paper explains that this step involves estimat-

ing the parameters of the ARIMA model using the maximum likelihood method.

It is a crucial step in constructing the ARIMA model, as it helps to determine the

appropriate values of autoregressive and moving average terms.

27

School of Mathematical and Computational Sciences Yachay Tech University

3. Adequacy assessment: The paper explains that this step involves comparing the

forecasted value to determine the model’s accuracy. Additionally, this paper uses

three measures of forecasting accuracy, namely mean absolute error (MAE), mean

fundamental percentage error (MAPE), and root mean square error (RMSE). Finally,

this step is also essential, as it helps to determine the accuracy of the model and its

usefulness in forecasting future values.

4. Model prediction: The paper presents the actual and forecasted values for all three

currencies in a table and a graph. Moreover, this paper finds that the developed

ARIMA model can predict exchange rate values more accurately than the previous

forecast for the other two currencies.

The results of this paper show that the ARIMA model is an effective tool for forecasting

exchange rates because there are notable trends and patterns in the exchange rate data for

USD/KZT, EUR/KZT, and SGD/KZT over the period from 2006 to 2014. For example,

Figure 2 from the PDF file shows a tendency to increase the USD/KZT exchange rate

over eight years from 2006 to 2014, with a total increase of more than 44 percent. Also,

Figure 3 illustrates that the EUR/KZT exchange rates rose significantly from 2008 to 2009

and from 2012 to 2013, with significant changes of more than 16 percent during the first

increase and more than 5 percent during the second. Finally, the comparison of SGD/KZT

exchange rates is shown in Figure 4, which shows some fluctuations and trends from 2006

to 2014. The paper concludes that the ARIMA model can identify patterns and trends in

historical exchange rate data and be an effective tool for forecasting exchange rates.

3.2 Soĺıs, E. 2021

In this work, [49] presented a deep learning model that combines a CNN layer with two

LSTM layers and three regular densely connected NN layers for intraday stock price fore-

casting. The model was used to input the opening stock price for the last sixty days; its

dataset was batch-built from a non-stationary time series and was based on a sliding win-

dow approach. Moreover, this model performs one-step and multi-step ahead forecasting

with a low error rate. The testing findings demonstrate that the suggested design delivers

Information Technology Engineer 28 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

the most outstanding performance in a short amount of time. The best result was obtained

by training the model with a two-minute interval time series; in this case, the model’s er-

ror rate is 6.7. The model produces an error rate of 9.94 when trained on a five-minute

interval time series, which is greater than the model trained on two-minute intervals but

also delivers good performance over a more extended period.

3.3 Vega, O. 2021

Vega, O. (2021) [21] compares sequential (MPL, LSTM, CNN) and non-sequential models

(MLP&LSTM, LSTM&CNN, CNN&MPL) to forecast monthly banana exports. To reach

these models, one neuron was used for the input layer, three hidden layers with seven

neurons each, and one for the output layer. As optimizers, the activation functions em-

ployed were ReLU and ADAM. Furthermore, 700 seasons were used, with a micro-batch

size of 32. The average square error (RMSE) was used to assess the model’s performance.

Two sets of data were utilized, each having 248 values reflecting the number of monthly

banana exports, measured in metric tons and thousands of USD FOB, and acquired from

the Central Bank of Ecuador’s website between January 2000 and August 2020. The data

is divided into 75% for training, 5% for validation, and 20% for testing. It should be noted

that the sliding window approach was employed with input sizes of 6, 12, and 24 months

and output sizes of 1 month. The results showed that increasing the sliding window size

improved DNN performance by allowing better results in metrics like RMSE and Loss.

The proposed non-sequential DNNs outperformed sequential ones due to their combined

inference capacity. The computational complexity of these non-sequential DNNs was lesser

than sequential ones due to their small number of trainable parameters. The best model,

MLP&CNN, had 319 trainable parameters, outperforming CNN and LSTM networks.

3.4 Noboa, S. 2021

Noboa, S. (2021) [19] analyzes five ANN models (MLP, RNN, bi-directional LSTM, Conv-

LSTM, and Conv-LSTM-MLPs) to forecast avocado prices in Ecuadorian marketplaces,

notably the wholesale market of Ibarra. Two datasets were used: one with 472 avocado

prices per week and another with 118 monthly. From 6/6/2011 to 8/2/2021, these statis-

Information Technology Engineer 29 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

tics were acquired from Ecuador’s Public Agricultural Information System (SIPA) website.

70% of the data was set aside for training and 30% for testing. Three tests were carried

out to compare these models. The following hyperparameters were utilized for all models

in the first experiment: SGDm as optimizer and 0.9 as momentum; MAE as loss function;

200 epochs for training; a batch size of 32; and a look-back of 4. On the other hand, the

MLP model employed an input layer with ten neurons, two hidden layers with 20 and 10

neurons, respectively, and an output layer with one neuron. Furthermore, he employed

ReLU as an activation function and a learning rate of 10−7. The RNN model had an

input layer of 40 neurons, two hidden layers of 40 neurons each, and an output layer of

one neuron. Furthermore, he employed tanh as an activation function and a learning rate

of 10−5. An input layer with 32 neurons, two hidden layers with 32 neurons each, and an

output layer with one neuron were employed for the bidirectional LSTM model. Further-

more, he used tanh and Sigmoid as activation functions and a learning rate of 10−5. The

Conv-LSTM model had an input layer with 32 neurons, three hidden layers, one convo-

lutional layer, two LSTM layers with 32 neurons each, and a single neuron output layer.

Furthermore, he employed a learning rate of 10−5 and ReLU, Tanh, and Sigmoid as acti-

vation functions. The Conv-LSTM-MPLs model had an input layer with 32 neurons, five

hidden layers, one convolutional layer, two LSTM layers with 32 neurons, each two layers

with 30 and 20 neurons, respectively, and a single neuron output layer. Furthermore, he

employed a learning rate of 10−6 and ReLU, Tanh, and Sigmoid as activation functions.

The best model, in this instance Conv-LSTM-MLPs, was chosen based on the MAE er-

ror for the second experiment, and three hyperparameters were varied: the training-test

percentage between 60:40, 70:30, and 80:20; the look-back between 4, 8, and 16; and the

optimizer between SGDm and Adam. It is worth noting that the SGDm configuration

was already used in experiment one, and the Adam configuration is as follows: µ = 10−3,

β1 = 0, 9, β2 = 0, 999, ε = 10−7, and amsgrad = false. In the third experiment, the

model with the best configurations from experiment 2 was utilized on two unseen data

sets (avocado and red onion) that will prove the model’s performance. Two alternative

combinations were randomly picked because they performed well in experiment 2. For the

most recent weekly avocado prices, a test MAE of 1.51 was produced. In other words,

the model performs well with unknown data. Finally, the MAE for the weekly red onion

Information Technology Engineer 30 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

is 2.30. Despite trimming the red onion data set to make things even more difficult for

our model, our model can follow all patterns. Regarding the MAE measure, the results

revealed that the algorithms performed better with weekly data than with monthly data.

Furthermore, to demonstrate that all of the approaches investigated are still acceptable

for time series prediction, even if some outperform others; for example, composite mod-

els such as Conv-LSTM and Conv-LSTM-MLP predicted weekly avocado prices the most

accurately, even though these models required more time to train and, of course, had a

more complicated network architecture. Finally, the significance of changing deep learning

model hyperparameters during training was demonstrated.

3.5 Yadav et al., 2020

In this work, [50] compares the LSTM model in two experiments. The first experiment

evaluated state-less and stateful LSTM, while the second compared the LSTM with one

to seven hidden layer variations. The RMSE was employed as the loss function in both

investigations, while ADAM was used as the optimization approach. The root mean square

error (RMSE) was used to evaluate the performance of the various models. A batch size of

64 was utilized for training, whereas a batch size of 1 was used for testing. The number of

epochs was adjusted to 30 to ensure consistency, and the trials were repeated 30 times. The

model used input data from four businesses listed on the Indian stock exchange for 2560

days from 2008-12-29 to 2019-05-24, a span of more than ten years. For the training and

test data, an 80:20 ratio was used, resulting in 512 test days. The first experiment’s results

indicate that a stateless LSTM model is preferable for time series prediction problems due

to its higher stability. In contrast, the results of the second experiment suggest that n = 1

appears to be the best configuration in terms of mean RMSE. The one-way ANOVA test

also confirmed this because of improved accuracy, quicker training, and a decreased danger

of overfitting.

3.6 Ranjit et al., 2018

In this paper, Ranjit et al. (2018) [51] investigate the prediction of Nepalese currency

against the American Dollar, Euro, and Pound Sterling using different ANN models. Then,

Information Technology Engineer 31 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

they compare four distinct artificial neural network designs (MLP, SRNN, LSTM, and

GRU). To produce this comparison, ten different configurations of each model were tested,

with the number of neurons on the hidden layer ranging from 1 to 9. Moreover, the neurons

on the input layer are 4, and 1 on the output layer. The hyperparameters utilized for the

MPL model were sigmoid as the activation function and backpropagation as the training

strategy. In contrast, the hyperparameters used for the SRNN, LSTM, and GRU models

were tanh as the activation function and Root Mean Square Propagation (RMSProp) as

the training algorithm. Furthermore, MAE was employed as the loss function in all models.

The historical data utilized to forecast the USD/NPR, EUR/NPR, and GBP/NPR foreign

currencies came from Investing.com, where the high, open, close, and low values were

chosen as input since they were connected with the closing price, which is the exit price.

Data for each foreign currency was acquired for 25 to 27 days. The results show that

the LSTM model can forecast foreign exchange rates and outperform the other models.

Various experiments were conducted by varying the number of hidden neurons until the

best outcome was obtained. After multiple tests with different network designs, LSTM

with structure 4-5-1 produced the most accurate MAE findings.

3.7 Panda and Narasimhan, (2007)

This paper [52] compares the forecasting performance of artificial neural network models

with linear autoregressive and random walk models using six evaluation criteria. The

authors use weekly exchange rate data for INR/USD from the FX database from January

6, 1994, to July 10, 2003, for 495 observations. Moreover, they used a rolling window

approach to estimate the models and evaluate their forecasting performance using mean

absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE), mean

total error percentage (MAPE), directional accuracy (DA) and Theil’s U-statistic. The

neural network used in this paper is a single-hidden-layer feedforward with a sigmoid

transfer function in the hidden layer and a linear transfer function in the output layer.

The weights are initialized to small values based on the technique of Nugyen and Widrow

(1990) and mean squared error is taken as the cost function in their study. The rolling

window approach used to estimate the models uses a window of 100 observations and then

Information Technology Engineer 32 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

moves the window forward by one observation. This process is repeated until the end

of the sample period is reached. The authors use this approach to evaluate models that

predict performance over time and avoid over-fitting. In this work, a time series model

known as a linear auto-regressive model uses lagged values of the dependent variable as

predictors. The authors specifically regress the weekly exchange rate return, which is the

dependent variable, on a set of independent factors that also includes the first 20 lagged

values of the dependent variable. Subsequently, they identify a limited set of statistically

notable variables and use them as explanatory factors to predict the weekly performance

of exchange rates. The writers of this article employ a drift-free random walk model,

which assumes that there is no trend or drift and that the exchange rate moves in a

purely arbitrary walk manner. The best forecast value for tomorrow is derived from the

current period value. In summary, the authors find that neural networks outperform linear

autoregressive and random walk models in predicting exchange rates. However, linear

autoregressive models perform better regarding correlation coefficient and the percentage

of correct sign prediction. This paper’s findings have important policy implications, as

understanding exchange rate determination and forecasting can help authorities determine

the best way to influence exchange rates and limit exchange rate volatility.

3.8 Discussion

Time series prediction using deep learning models is a trendy issue recently getting much

attention. Several research have been described in this literature overview, and a brief

comment is required. Some authors, such as Tlegenova, D. [48], show the procedures in-

volved in building the ARIMA model, such as model identification, parameter estimates,

and adequacy assessment, explained in the paper. The significance of model diagnos-

tics in guaranteeing that the model is suitable for the data is also covered in the study.

The study’s constructed ARIMA model’s forecast performance is assessed utilizing non-

statistical techniques, including MAPE, RMSE, and MAE. However, in her paper, modeling

annual exchange rates is considered one of its limitations because this might not be enough

for some applications. The article offers a helpful overview of time series analysis and how

it is used to estimate exchange rates. On the other hand, Panda, C., and Narasimhan, V.

Information Technology Engineer 33 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

[52] use a rolling window approach to estimate the models and evaluate their forecasting

performance. They use a rolling window of 100 observations to assess the models, generate

forecasts, and evaluate the forecasting performance of the models using various measures

of forecast accuracy. The authors also discuss the policy implications of their findings, as

understanding exchange rate determination and forecasting can help authorities determine

the best way to influence exchange rates and limit exchange rate volatility. Moreover,

Yadav et al. [50] and Ranjit et al. [51] employed basic deep learning architectures such as

MLP, SRNN, LSTM, and GRU, finding that the LSTM model performs better in predic-

tion for the two data types (Indian stock market and Nepalese currency). Furthermore,

because of its concept of long-term dependencies, LSTM is the most extensively used RNN

model in the world, making it superior to RNN for data prediction. However, because the

settings for the two scenarios differed, we can conclude that selecting the correct hyper-

parameters, such as optimizers, cost functions, activation features, learning rate, weight

reduction, seasons, and batch size, is critical to improving the performance. Similarly, Solis

[49], Vega[21], and Noboa[19] employed LSTM in conjunction with various architectures

such as CNN, Conv, MPL, and others, yielding superior results by maximizing the benefits

of each model. They are making this approach a new trend to increase prediction perfor-

mance. Furthermore, the quantity of data divided for training and testing was shared by all

authors, with the majority using a 70:30 ratio. Finally, the cost functions for performance

criteria, like the training and test radius, vary between numerous alternatives, with MAE

and RMSE being the most commonly employed.

3.9 Summarize

Table 3.1 outlines all the research articles examined for the related works section in the next

section. It should be noted that this is arranged from oldest to newest papers. Furthermore,

context refers to which items were forecasted, temporality refers to the time employed, and

techniques refer to the algorithms used.

Information Technology Engineer 34 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

A
ut

ho
rs

C
on

te
xt

Te
m

po
-

ra
lit

y

Tr
ad

iti
on

al

st
at

ist
ic

al

m
od

el
s

A
rt

ifi
ci

al

N
eu

ra
l

N
et

wo
rk

s

D
ee

p
Le

ar
ni

ng

Si
m

pl
e

Si
m

pl
e

Si
m

pl
e

M
ix

tu
re

A
R

IM
A

,

Li
ne

ar

A
ut

o

re
gr

es
siv

e,

R
an

do
m

wa
lk

SR
N

N
,

M
LP

R
N

N
,

LS
T

M
,

G
RU

M
LP

&
LS

T
M

,

LS
T

M
&

C
N

N
,

C
N

N
&

M
PL

,

bi
di

re
c

LS
T

M
,

C
on

v
LS

T
M

,

C
on

v-
LS

T
M

-M
PL

Pa
nd

a

&

N
ar

ism
ha

n
[5

2]

IN
R

/U
SD

ex
ch

an
ge

ra
te

.
we

ek
ly

Ye
s

Ye
s

-
-

T
le

ge
no

va
,

D
.[4

8]

K
az

ak
hs

ta
n

ex
ch

an
ge

ra
te

an
nu

al
Ye

s
-

-
-

R
an

jit

et
al

.
[5

1]

N
ep

al
es

e

ex
ch

an
ge

ra
te

da
y

-
Ye

s
Ye

s
-

Ya
da

v

et
al

.[5
0]

In
di

an
st

oc
k

ex
ch

an
ge

da
y

-
-

Ye
s

-

So
ĺıs

,

E.
[4

9]

A
m

az
on

st
oc

k
pr

ic
es

in
tr

ad
ay

-
-

-
Ye

s

Information Technology Engineer 35 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

T
ab

le
3.

1
co

nt
in

ue
d

fr
om

pr
ev

io
us

pa
ge

R
ef

C
on

te
xt

Te
m

po
-

ra
lit

y

Tr
ad

iti
on

al

st
at

ist
ic

al

m
od

el
s

A
rt

ifi
ci

al

N
eu

ra
l

N
et

wo
rk

s

D
ee

p
Le

ar
ni

ng

Si
m

pl
e

Si
m

pl
e

Si
m

pl
e

M
ix

tu
re

A
R

IM
A

,

Li
ne

ar

A
ut

o

re
gr

es
siv

e,

R
an

do
m

wa
lk

SR
N

N
,

M
LP

R
N

N
,

LS
T

M
,

G
RU

M
LP

&
LS

T
M

,

LS
T

M
&

C
N

N
,

C
N

N
&

M
PL

,

bi
di

re
c

LS
T

M
,

C
on

v
LS

T
M

,

C
on

v-
LS

T
M

-M
PL

Ve
ga

,

O
.[2

1]

Ec
ua

do
ria

n

ba
na

na
ex

po
rt

s

pr
ic

e

m
on

th
-

Ye
s

Ye
s

Ye
s

N
ob

oa
,

S.
[1

9]

Ec
ua

do
ria

n

av
oc

ad
o

pr
ic

es

we
ek

ly

an
d

m
on

th
ly

-
-

-
Ye

s

Ta
bl

e
3.

1:
Su

m
m

ar
y

ta
bl

e
of

al
lt

he
re

la
te

d
wo

rk
s.

Information Technology Engineer 36 Graduation Project

Chapter 4

Methodology

4.1 Phases of Problem Solving

Figure 4.1 shows the methodology proposed for this work. It consists of five main stages:

data collection, data preparation, model preparation, training models, and models evalu-

ation. Each phase is explained in detail in the following sections.

Figure 4.1: Flowchart of the proposed methodology

37

School of Mathematical and Computational Sciences Yachay Tech University

4.1.1 Data Collection

The raw data was acquired manually from the Banco de la Republica de Colombia (BAN-

REP)1 in .xlsx format. This platform provides COP/USD historical values dating back

to November 27, 1991. Our data consists of COP/USD historical values from January 1,

1992, to April 28, 2023. This Data contains 11441 registers from around 31 years ago, as

shown in Figure 4.2.

Figure 4.2: Data obtained from platform

Figure 4.2 shows the metadata obtained from the downloaded file. Which consists of

the date with daily frequency, Market Representative Rate (TRM) in COP (Colombian

Peso), number and amount of negotiations in millions of US dollars, and opening, weighted,

closing, maximum, and minimum exchange rates.

4.1.2 Data Preparation

Firstly, the TRM values obtained from the download were taken to train and test the

proposed networks. As a result, the data shown in Figure 4.3.

Secondly, the dataset was divided into ten sub-sets with a size of 11441, 11083, 10725,

10010, 8580, 5720, 2860, 1430, 715, and 358 registers, respectively.

These subsets are shown in Figure 4.4.
1https://www.banrep.gov.co/es/estadisticas/trm

Information Technology Engineer 38 Graduation Project

https://www.banrep.gov.co/es/estadisticas/trm

School of Mathematical and Computational Sciences Yachay Tech University

Figure 4.3: Data used to train and test the proposed networks

Information Technology Engineer 39 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 4.4: 10 subsets obtained

This process has been done to obtain the data set with the least minor influence of

volatility on the records. Since this is daily data, this volatility can influence our training

and testing of the proposed networks.

Moreover, resizing the dataset instead of training with the complete set offers prac-

tical advantages for various reasons. Firstly, it can improve generalization by mitigating

Information Technology Engineer 40 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

overfitting, as the model is less likely to memorize noise or outliers in the entire dataset.

Secondly, resizing helps address sampling variability issues, particularly in unbalanced or

skewed datasets, by allowing random sampling to create subsets that better represent the

underlying data distribution. Additionally, resizing facilitates exploratory data analysis

and model prototyping, as working with a smaller subset enables faster visualization and

insight generation to identify potential patterns or relationships in the data. Overall, re-

sizing the dataset provides more manageable and efficient model training processes while

still capturing essential characteristics of the data.

4.1.3 Models Preparation

This section introduces the three architectural models presented in this study. All models

share some hyperparameters, such as the optimizer, training method, loss function, number

of epochs, and techniques to avoid overfitting. The optimizer used is ADAM, the loss

function is a mean absolute error (MAE), the number of epochs is set to one hundred, and

the validation-based utilized is EarlyStopping.

Artificial Neural Network (ANN)

This model comprises three layers of a feedforward neural network (Figure 4.5a). The first

layer is an input layer with one input node, while the second layer is a hidden layer with

twelve neurons. Finally, the predictions are handled by a single node in the output layer.

The activation function in this design is RELU, and the learning rate is set at 0.001 by

default.

Choosing twelve hidden neurons in the ANN architecture could be justified based on

the complexity of the forecasting task and the size of the input feature space. With a

moderate number of hidden neurons, the ANN can capture essential patterns in the data

without excessive model complexity.

Too few hidden neurons may result in underfitting, while too many can lead to overfit-

ting. Therefore, selecting twelve hidden neurons balances the capture of complex patterns

and prevents overfitting in the ANN architecture.

Information Technology Engineer 41 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Long-Short Term Memory (LSTM)

The Long Short-Term Memory network, or LSTM network, is a recurrent neural network

that uses backpropagation over time to avoid the vanishing gradient problem. LSTM

networks employ memory blocks that are connected in layers rather than neurons. This

model comprises three layers (Figure 4.5b). The first layer is an input layer with one input

node, while the second layer is a hidden layer with fifty LSTM cells and a relu activation

function. It’s worth noting that the recommended model at the output layer only has one

prediction node [53].

Choosing fifty hidden neurons in the LSTM architecture allows a more sophisticated

memory mechanism to capture long-term dependencies in the time series data. LSTM

units have multiple internal gates that regulate the flow of information, requiring a more

significant number of hidden neurons to learn complex patterns effectively.

The increased number of hidden neurons in LSTM networks compared to traditional

ANNs reflects their ability to model intricate temporal dynamics and capture dependencies

across various time steps in the sequence.

Gated-Recurrent Unit (GRU)

Unlike the LSTM unit, the GRU unit does not need to employ a memory unit to manage

the flow of information. It has complete access to all secret states and can be used without

restriction. This model comprises three levels (see Figure 4.5c). The first layer consists of

one input node, whereas the second layer consists of seven GRU cells and a linear activation

function. The third layer is an output layer made up of one prediction node.

Selecting seven hidden neurons in the GRU architecture balances computational ef-

ficiency with modeling capacity. GRU units have fewer parameters than LSTM units,

allowing for fewer hidden neurons while still capturing relevant patterns in the data.

By choosing seven hidden neurons, we ensure that the GRU architecture remains

lightweight and computationally efficient while still capable of capturing essential tem-

poral dependencies in the time series data.

Information Technology Engineer 42 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) ANN model architecture
(b) LSTM model architec-
ture (c) GRU model architecture

Figure 4.5: Three models

4.1.4 Train Models

The training phase for the three suggested models is the same. It comprises fine-tuning

hyper-parameters such as the optimizer, epoch count, and activation function. Fine-tuning

these hyperparameters aims to reduce training time, avoid over-fitting, and discover the

values that best suit the proposed models.

Optimizer

Optimizer algorithms are optimization methods that help increase the performance of a

deep learning model. These optimization methods or optimizers significantly impact the

accuracy and speed of deep learning model training. Modify the weights of each epoch and

minimize the loss function while training the deep learning optimization model. Deep learn-

ing optimizers include Gradient Descent, Stochastic Gradient Descent, Stochastic Gradient

Descent with Boosting, Mini-Batch Gradient Descent, Adagrad, RMSProp, AdaDelta, and

Adam. Choosing the right optimizer to forecast exchange rates is crucial to achieving

accurate and efficient results. However, in this project, Adam (Adaptive Moment Estima-

tion) was used among the various optimization algorithms available as it is famous for its

adaptive learning rate and boosting capabilities [54].

Information Technology Engineer 43 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Epochs

Each iteration in training to modify weight is referred to as an epoch. Thus, the number of

epochs is critical since the correct number ensures proper learning. We picked one hundred

epochs to train these three models in this case. However, there are different stopping rules

for deciding when training ends. One of them is to prevent the training process when the

error measure has seen no improvement over a certain number of epochs (early stopping).

That is the rule we used [55]

4.1.5 Models Evaluation

The R-squared (R2) and mean absolute error (MAE) are frequently used in model evalu-

ation studies, particularly in regression tasks. Both, however, have advantages and down-

sides. For example, RMSE penalizes variation by giving greater weight to mistakes with

larger absolute values than errors with smaller fundamental values. The MAE, on the

other hand, provides equal weight to all faults. As a result, the RMSE is never smaller

than the MAE [56]. Consequently, we employ MAE as a model assessment metric to

improve forecast accuracy.

Information Technology Engineer 44 Graduation Project

Chapter 5

Results and Discussion

This section summarizes the findings of two experiments designed for this project. The

goal of this study is to anticipate correct results so that all studies and models assessed

aim for reduced error.

5.1 Materials Description

To create this work, we utilized Tensorflow 2.13.01 and Keras API 2.13.12, both Python3-

based deep learning frameworks. These were implemented in Google Colaboratory (Colab),

an environment combining all these tools in one location without needing pre-configuration.

Finally, the data for our models consists of ten data sets derived from the unprocessed data

set examined in Section 4.1.2

5.2 Experiments Description and Setup

This section describes the two experiments created for this project (see Section 4.1.2). In

short, the best-performing data size is sought in the first trial. The second experiment

aims to reduce the metric error measurement.
1https://www.tensorflow.org/install/pip?hl=es-419
2https://keras.io/

45

School of Mathematical and Computational Sciences Yachay Tech University

5.2.1 Experiment 1

This experiment compares the three models suggested by our methodology. As a result,

ten data sets with the USD/COP exchange rate are employed. In this experiment, the pro-

portion for training and testing was 80:20 for all the models and experiments in this work.

As a result, 80% of the Dataset’s registers will be used for training, while the remaining

20% will be used for testing. Splitting the Dataset into training and testing sets is crucial

for robust model evaluation, preventing overfitting, tuning hyperparameters, selecting the

best-performing model, assessing generalization, and controlling bias in evaluation. It en-

sures that the model’s performance metrics are reliable and accurately reflect its ability to

generalize to new, unseen data. This experiment aims to discover the lowest MAE and R2

values possible. The model and data set that yield values closest to the actual values will

be used in the following two tests.

Setup

The setup for experiment 1 is presented in this subsection. It is worth noting that several

hyper-parameters are shared between models, as indicated in Table 5.1. On the other

hand, Tables 5.2, 5.3 and 5.4 provide a brief synopsis of the hyper-parameters employed in

the models suggested in Section 4.1.3

Hyper-parameter Information
Optimizer Adam

Loss function MAE
Epochs 100

Batch size 32
Validation-based Early Stop

Table 5.1: Common hyper-parameters in all models.

Hyper-parameter Information
Input Layer (1) 1 neuron

Hidden Layer (1) 12 neurons
Output Layer (1) 1 neuron

Activation Function ReLU

Table 5.2: ANN hyper-parameters in all models.

Information Technology Engineer 46 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Hyper-parameter Information
Input Layer (1) 1 neuron

Hidden Layer (1) 50 neurons
Output Layer (1) 1 neuron

Activation Function ReLU

Table 5.3: LSTM hyper-parameters in all models.

Hyper-parameter Information
Input Layer (1) 1 neuron

Hidden Layer (1) 7 neurons
Output Layer (1) 1 neuron

Activation Function Linear

Table 5.4: GRU hyper-parameters in all models.

5.2.2 Experiment 2

In this experiment, we will alter two hyperparameters at the same time. The train-test

ratio is between 60:40, 70:30, and 80:20, and the batch size is between 1, 32, and 64. As

a result, this experiment aims to see if adjusting these hyperparameters affects the MAE

error and R2. It should be noted that the model chosen for this experiment depends on

the outcomes of Experiment 1.

Setup

Table 5.5 shows the values to be examined. First, we select a fixed train-test ratio, and then

that combination is tested with a single batch size. As a result, the initial combination is to

choose a train-test ratio of 60:40, followed by a batch size of 1. The following experiments

will have the same train-test ratio as the previous ones but with 32 and 64 batch sizes,

respectively. In all, 27 tests were conducted.

Hyper-parameter Information
Train-Test ratio 60:40, 70:30, 80:20

Batch size 1, 32, 64

Table 5.5: Hyper-parameters tested.

Information Technology Engineer 47 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

5.2.3 Experiment 3

This section will test experiment two’s optimal performance model and setups with an

unseen data set. The significance of this measurement is that we want to illustrate how

well our model performs in various settings. The initial data set comprises the last four

months’ worth of Colombian peso exchange rates (a continuation of our data); however,

our model will not use this data in training or testing processes. In other words, once the

training and testing processes are done, this portion of the data will be used. Remember

that the original data sets were collected for training and testing from January 1, 1992, to

April 28, 2023. In this sense, with this experiment, we will test our model predictability

from April 29, 2023, to September 11, 2023—a dataset with 136 observations.

Setup

The setup of this experiment is determined by the results of experiments one and two.

However, we know which data set will be examined, as seen in Figure 5.1.

Figure 5.1: Unseen Dataset

Information Technology Engineer 48 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

5.3 Results

5.3.1 Results Experiment 1

This experiment’s results are given in two ways: a summary table and a collection of

graphs. Table 5.6 models. However, LSTM in 5720 observations stands out compared to

other models, while GRU in 10725 observations stands out compared to other models. The

performance of ANN is seen in Figure 5.4. Figures 5.8 and 5.12 show the performance of

LSTM and GRU, respectively. Figures 5.5, 5.9, and 5.13 visually compare ANN, LSTM,

and GRU performance in test data.

ANN LSTM GRUObservation

Numbers R2 MAE R2 MAE R2 MAE

11441 0.974 0.095 0.969 0.118 0.932 0.146

11083 0.961 0.130 0.921 0.181 0.898 0.177

10725 0.943 0.153 0.967 0.115 0.994 0.057

10010 0.995 0.052 0.986 0.089 0.969 0.123

8580 0.813 0.365 0.91 1 0.157 0.993 0.039

5720 0.994 0.039 0.993 0.041 0.990 0.055

2860 0.965 0.177 0.886 0.293 0.983 0.114

1430 0.965 0.113 0.964 0.110 0.933 0.180

715 0.869 0.107 0.928 0.065 0.929 0.068

358 0.883 0.130 0.940 0.082 0.89 0.13

Table 5.6: Summary of Experiment 1 Results

Information Technology Engineer 49 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.2: Dataset with 10010 observations

Figure 5.3: Train Test Split - 10010 observations

Information Technology Engineer 50 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.4: ANN - Forecasting Test data - 10010 observations

Figure 5.5: Forecasting Test data in all models - 10010 observations

Information Technology Engineer 51 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.6: Dataset with 5720 observations

Figure 5.7: Train Test Split - 5720 observations

Information Technology Engineer 52 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.8: LSTM - Forecasting Test data - 5720 observations

Figure 5.9: Forecasting Test data in all models - 5720 observations

Information Technology Engineer 53 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.10: Dataset with 10725 observations

Figure 5.11: Train Test Split - 10725 observations

Information Technology Engineer 54 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.12: GRU - Forecasting Test data - 10725 observations

Figure 5.13: Forecasting Test data in all models - 10725 observations

Information Technology Engineer 55 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

5.3.2 Results Experiment 2: train-test ratio and batch size

According to the results obtained from experiment 1. We compare the best datasets for

each model; in this case, we use the datasets 10725, 10010, and 5720 for experiment 2. Table

5.7 shows the tests’ results on the three datasets. This way, we can deduce that the batch

size affects training and testing, so the MAE and R2 metrics fluctuate depending on this

number. Obtaining that using the ANN model and the data set with 10725 observations,

the training-test ratio of 70:30, together with the batch size of 64, gives us the best values

of R2 (0.999) and MAE (0.027). These results are shown in Figures 5.15, 5.14 and 5.16.

ANN LSTM GRUObservations

Number

Train-Test

ratio

Batch

size R2 MAE R2 MAE R2 MAE

1 0.757 0.545 0.377 0.810 0.602 0.681

32 0.904 0.285 0.987 0.093 0.999 0.03560:40

64 0.998 0.038 0.972 0.125 0.998 0.050

1 0.755 0.515 -0.256 1.087 -0.240 1.123

32 0.930 0.224 0.432 0.551 0.816 0.35270:30

64 0.999 0.027 0.865 0.276 0.995 0.065

1 0.932 0.184 0.392 0.547 0.799 0.317

32 0.969 0.113 0.997 0.032 0.943 0.145

10725

80:20

64 0.978 0.093 0.833 0.233 0.998 0.026

1 0.882 0.361 0.749 0.516 -0.979 1.237

32 0.999 0.042 0.998 0.047 0.985 0.13760:40

64 0.997 0.064 0.975 0.153 0.967 0.170

1 0.882 0.361 0.749 0.516 0.749 0.516

32 0.989 0.089 0.981 0.106 0.946 0.24370:30

64 0.996 0.060 0.928 0.216 0.827 0.303

1 0.846 0.312 0.806 0.361 0.848 0.320

32 0.993 0.061 0.991 0.068 0.615 0.431

10010

80:20

64 0.995 0.046 0.937 0.168 0.957 0.142

1 0.882 0.335 0.725 0.485 0.798 0.44360:40

32 0.876 0.287 0.981 0.128 0.969 0.150

Information Technology Engineer 56 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Table 5.7 continued from previous page

ANN LSTM GRUObservations

Number

Train-Test

ratio

Batch

size R2 MAE R2 MAE R2 MAE

64 0.862 0.301 0.927 0.218 0.996 0.057

1 0.820 0.368 -0.108 0.881 0.505 0.584

32 0.954 0.166 0.970 0.107 0.969 0.12070:30

64 0.805 0.326 0.991 0.060 0.932 0.172

1 0.957 0.105 0.963 0.102 0.941 0.130

32 0.981 0.077 0.994 0.034 0.882 0.177

5720

80:20

64 0.899 0.168 0.873 0.179 0.994 0.043

Table 5.7: Summary Results of Experiment 2

Information Technology Engineer 57 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.14: Comparison of the three models for the 70:30 train-test ratio and batch size
of 64

Information Technology Engineer 58 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.15: Comparison of the three models for the 80:20 train-test ratio and batch size
of 32

Information Technology Engineer 59 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.16: Comparison of the three models for the 80:20 train-test ratio and batch size
of 64

Information Technology Engineer 60 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

5.4 Discussion

We will support this discussion using the results from Tables 5.6 and 5.7. First, in Table

5.6, it was observed that changing the data size directly influences the calculation of the

R2 and MAE metrics. Furthermore, it can be seen that different models can achieve higher

performance if the data size is chosen correctly. Regarding the three models tested, let’s

start with the ANNs. Surprisingly, it can be said that this model works well with all data

sets, especially in the Dataset with 10010 observations. Therefore, it should always be

considered as a reference model. Regarding LSTM, its forecasting behavior was not as

expected as suggested by the literature since ANNs were better. However, LSTM gave us

better results in the Dataset with 5720 observations. Moreover, the GRU in the Dataset

with 10725 observations returns the best R2 and MAE metrics results. Thus, these models

are the perfect choice for gaining accuracy in our experiments.

From the results of experiment one, as shown in Table 5.7, we can say that adjusting all

possible hyperparameters for each model using the 3 data sets with the best performance is

critical to obtaining an error reduction. In this sense, models work best with the proper test

training and batch size combination. For example, for data size equal to 10725, combined

with a batch size similar to 64 and test-training of 70:30, an R2 of 0.999 and an MAE of

0.027 were obtained for the ANN model. Therefore, choosing the right hyperparameter

combination can guarantee good R2 and MAE metrics results. From this experiment, we

can also say that a ratio of 80:20 and batch size of 64 showed promising results for the

GRU model, obtained for R2 equal to 0.998 and MAE of 0.026. Therefore, when working

with deep learning models, the researcher must tune the most critical hyperparameters to

obtain a promising result.

A detailed comparison between the artificial neural network (ANN) and the other ar-

chitectures specifically designed to address the problem has been crucial to understanding

why the ANN produced better results. Although differences in the R2 metric may seem

minimal, each decimal can represent a significant variation in the model’s ability to explain

variability in the output data. In this case, the ANN outperforms the LSTM by 0.002 and

the GRU by 0.001 regarding R2.

It is a valid observation and crucial to fully understand the process of tuning and

Information Technology Engineer 61 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

training machine learning models. Hyperparameter optimization, which includes tuning

the learning rate, number of neurons, hidden layers, activation functions, and others, is an

essential part of the modeling process.

However, in this specific case, I focused on tuning parameters related to the data set due

to certain considerations. While hyperparameter optimization can significantly improve

model performance, it can also increase the complexity of the training and cross-validation

process. Additionally, it is important to note that hyperparameter tuning is an iterative

process that requires multiple experiments and validations. Tuning parameters related to

the data set first can provide a solid foundation on which to build later and tune model

hyperparameters.

Information Technology Engineer 62 Graduation Project

Chapter 6

Conclusions

In conclusion, this study embarked on a comprehensive journey encompassing the acqui-

sition, preparation, and forecasting of the Colombian peso’s exchange rate against the US

dollar.

The experimental phase revealed that optimal performance was achieved with specific

dataset sizes, with notable results observed for datasets comprising 10725, 10010, and 5720

instances.

The ANN model excelled in predicting time series, while the LSTM and GRU models

fell short of anticipated performance based on existing literature.

An essential takeaway from the study is the significance of hyperparameter tuning, par-

ticularly in deep learning models, to enhance predictive accuracy. By adjusting parameters

such as batch size and test-train ratio alongside data size, considerable improvements in

model accuracy were demonstrated, where the ANN model exhibited the most significant

error reduction.

63

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 64 Graduation Project

Chapter 7

Future Works

The prediction of time series applied to exchange rate prices is a field that must be studied

in great detail. Unfortunately, a single project is not enough due to the extension of this

field. Therefore, some ideas or projects that can be explored in the future are as follows:

• Improvement of the code to extract, forecast, and show the data obtained.

• Significant focus could be placed on optimizing hyperparameters within deep learning

models. Hyperparameters are crucial in determining a model’s performance and

generalization ability, yet finding the optimal configuration can be challenging and

time-consuming. One approach to address this challenge is to utilize automated

hyperparameter optimization techniques. Maybe using a Keras Tuner.

• To implement multivariate time series to understand better all the variables, such as

weather, oil prices, etc., that participate and affect the exchange rate.

• To experiment with new deep learning architectures, such as transformers and the

attention mechanism, that have shown better results.

65

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 66 Graduation Project

Bibliography

[1] J. Jose, “Introduction to time series analysis and its applications,” 08 2022.

[2] V. Arcila, “¿hacia donde debeŕıa apuntar la nueva formación del médico veterinario

zootecnista?” REDVET, vol. IX, 12 2008.

[3] Y. Lu, “Artificial intelligence: a survey on evolution, models, applications and future

trends,” Journal of Management Analytics, vol. 6, no. 1, pp. 1–29, 2019. [Online].

Available: https://doi.org/10.1080/23270012.2019.1570365

[4] S. V. Berdyugina and I. G. Usoskin, “Active longitudes in sunspot activity: Century

scale persistence,” Astronomy Astrophysics, vol. 405, no. 3, pp. 1121–1128, jun 30

2003.

[5] F. Parra, “8 Series Temporales | Estad́ıstica y Machine Learning con R,”

https://bookdown.org/content/2274/series-temporales.htmldescomposicion-

temporal.

[6] R. Dastres and M. Soori, “Artificial neural network systems,” International Journal

of Imaging and Robotics, vol. 21, pp. 13–25, 03 2021.

[7] C. Olah, “Understanding lstm networks,” Retrieved from https://colah.github.io/

posts/2015-08-Understanding-LSTMs/#fnref1, 2015, web page.

[8] S. Kostadinov, “Understanding GRU Networks - Towards Data Science,”

https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be, nov 10

2019.

67

https://doi.org/10.1080/23270012.2019.1570365
https://colah.github.io/posts/2015-08-Understanding-LSTMs/#fnref1
https://colah.github.io/posts/2015-08-Understanding-LSTMs/#fnref1

School of Mathematical and Computational Sciences Yachay Tech University

[9] M. Islam and E. Hossain, “Foreign exchange currency rate prediction using a GRU-

LSTM hybrid network,” Soft Computing Letters, vol. 3, p. 100009, Dec. 2021. [Online].

Available: https://www.sciencedirect.com/science/article/pii/S2666222120300083

[10] A. Mahmoud and A. Mohammed, “A Survey on Deep Learning for Time-Series Fore-

casting,” Studies in Big Data, pp. 365–392, dec 15 2020.

[11] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and

new perspectives,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 35, no. 8, pp. 1798–1828, 2013.

[12] R. H. Shumway and D. S. Stoffer, Time Series Analysis and Its Applications: With R

Examples. Springer.

[13] B. Jan, H. Farman, M. Khan, M. Imran, I. U. Islam, A. Ahmad, S. Ali,

and G. Jeon, “Deep learning in big data analytics: A comparative study,”

Computers Electrical Engineering, vol. 75, pp. 275–287, 2019. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0045790617315835

[14] A. Casolaro, V. Capone, G. Iannuzzo, and F. Camastra, “Deep learning for time

series forecasting: Advances and open problems,” Information, vol. 14, no. 11, 2023.

[Online]. Available: https://www.mdpi.com/2078-2489/14/11/598

[15] A. Harel and G. Harpaz, “Forecasting stock prices,” International Review

of Economics & Finance, vol. 73, pp. 249–256, 2021. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1059056020303191

[16] “FORECASTING AND MANAGEMENT OF GROSS DOMESTIC PRODUCT,”

Journal of International Studies, vol. 12, no. 4, pp. 214–228, 2019, publisher:

Fundacja Centrum Badań Socjologicznych. [Online]. Available: https://www.ceeol.

com/search/article-detail?id=982181

[17] M. Murat, I. Malinowska, M. Gos, and J. Krzyszczak, “Forecasting daily

meteorological time series using ARIMA and regression models,” International

Agrophysics, vol. 32, no. 2, pp. 253–264, Apr. 2018. [Online]. Available: http://archive.

sciendo.com/INTAG/intag.2018.32.issue-2/intag-2017-0007/intag-2017-0007.pdf

Information Technology Engineer 68 Graduation Project

https://www.sciencedirect.com/science/article/pii/S2666222120300083
https://www.sciencedirect.com/science/article/pii/S0045790617315835
https://www.mdpi.com/2078-2489/14/11/598
https://www.sciencedirect.com/science/article/pii/S1059056020303191
https://www.ceeol.com/search/article-detail?id=982181
https://www.ceeol.com/search/article-detail?id=982181
http://archive.sciendo.com/INTAG/intag.2018.32.issue-2/intag-2017-0007/intag-2017-0007.pdf
http://archive.sciendo.com/INTAG/intag.2018.32.issue-2/intag-2017-0007/intag-2017-0007.pdf

School of Mathematical and Computational Sciences Yachay Tech University

[18] Y. Ensafi, S. H. Amin, G. Zhang, and B. Shah, “Time-series forecasting of seasonal

items sales using machine learning – A comparative analysis,” International Journal

of Information Management Data Insights, vol. 2, no. 1, p. 100058, 2022. [Online].

Available: https://www.sciencedirect.com/science/article/pii/S2667096822000027

[19] S. D. Noboa Chavez, “Deep Learning for Agricultural Products Price Forecasting:

The Case of Ecuador,” Graduation Project, UNIVERSIDAD DE INVESTI-

GACIÓN DE TECNOLOGÍA EXPERIMENTAL YACHAY, Urcuqúı, Dec. 2021.

[Online]. Available: https://repositorio.yachaytech.edu.ec/bitstream/123456789/456/

1/ECMC0088.pdf

[20] P. Newbold and C. W. J. Granger, “Experience with forecasting univariate time

series and the combination of forecasts,” Journal of the Royal Statistical Society:

Series A (General), vol. 137, no. 2, pp. 131–146, 1974. [Online]. Available:

https://rss.onlinelibrary.wiley.com/doi/abs/10.2307/2344546

[21] O. Vega, “Forecasting time series by using deep neural networks,” Ph.D. dissertation,

UNIVERSIDAD DE INVESTIGACIÓN DE TECNOLOGÍA EXPERIMENTAL

YACHAY, Urcuqúı, Dec. 2021. [Online]. Available: https://repositorio.yachaytech.

edu.ec/bitstream/123456789/430/1/ECMC0076.pdf

[22] R. Adhikari and R. K. Agrawal, “An introductory study on time series

modeling and forecasting,” CoRR, vol. abs/1302.6613, 2013. [Online]. Available:

http://arxiv.org/abs/1302.6613

[23] J. Villavicencio, “Introducción a Series de Tiempo,” Oct. 2011. [On-

line]. Available: http://www.estadisticas.gobierno.pr/iepr/LinkClick.aspx?fileticket=

4 BxecUaZmg%3D

[24] A. Jebb, L. Tay, W. Wang, and Q. Huang, “Time series analysis for psychological

research: Examining and forecasting change,” Frontiers in Psychology, vol. 6, 06 2015.

[25] J. Jose, “Introduction to time series analysis and its applications,” 08 2022.

[26] “Modelos aditivos y modelos multiplicativos - Minitab,”

https://support.minitab.com/es-mx/minitab/20/help-and-how-to/statistical-

Information Technology Engineer 69 Graduation Project

https://www.sciencedirect.com/science/article/pii/S2667096822000027
https://repositorio.yachaytech.edu.ec/bitstream/123456789/456/1/ECMC0088.pdf
https://repositorio.yachaytech.edu.ec/bitstream/123456789/456/1/ECMC0088.pdf
https://rss.onlinelibrary.wiley.com/doi/abs/10.2307/2344546
https://repositorio.yachaytech.edu.ec/bitstream/123456789/430/1/ECMC0076.pdf
https://repositorio.yachaytech.edu.ec/bitstream/123456789/430/1/ECMC0076.pdf
http://arxiv.org/abs/1302.6613
http://www.estadisticas.gobierno.pr/iepr/LinkClick.aspx?fileticket=4_BxecUaZmg%3D
http://www.estadisticas.gobierno.pr/iepr/LinkClick.aspx?fileticket=4_BxecUaZmg%3D

School of Mathematical and Computational Sciences Yachay Tech University

modeling/time-series/supporting-topics/time-series-models/additive-and-

multiplicative-models/.

[27] R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and practice. OTexts,

may 8 2018.

[28] R. Shumway and D. Stoffer, “Time series analysis and its applications : with r exam-

ples,” 2017.

[29] G. Tecuci, “Artificial intelligence,” WIREs Computational Statistics, vol. 4, no. 2,

pp. 168–180, Mar. 2012. [Online]. Available: https://wires.onlinelibrary.wiley.com/

doi/10.1002/wics.200

[30] Y. Lu, “Artificial intelligence: a survey on evolution, models, applications and future

trends,” Journal of Management Analytics, vol. 6, no. 1, pp. 1–29, 2019. [Online].

Available: https://doi.org/10.1080/23270012.2019.1570365

[31] D. K. Bebarta, A. K. Rout, B. Biswal, and P. K. Dash, “Forecasting and classification

of indian stocks using different polynomial functional link artificial neural networks,”

in 2012 Annual IEEE India Conference (INDICON), 2012, pp. 178–182.

[32] R. Adhikari and R. K. Agrawal, “An Introductory Study on Time Series Modeling

and Forecasting,” CoRR, vol. abs/1302.6613, 2013, arXiv: 1302.6613. [Online].

Available: http://arxiv.org/abs/1302.6613

[33] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward

neural networks,” in Proceedings of the Thirteenth International Conference on

Artificial Intelligence and Statistics (AISTATS 2010), 2010. [Online]. Available:

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

[34] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, chapter

5: Machine Learning Basics.

[35] Cort J. Willmott and Kenji Matsuura, “Advantages of the mean absolute error

(MAE) over the root mean square error (RMSE) in assessing average model

Information Technology Engineer 70 Graduation Project

https://wires.onlinelibrary.wiley.com/doi/10.1002/wics.200
https://wires.onlinelibrary.wiley.com/doi/10.1002/wics.200
https://doi.org/10.1080/23270012.2019.1570365
http://arxiv.org/abs/1302.6613
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

School of Mathematical and Computational Sciences Yachay Tech University

performance,” Climate Research, vol. 30, no. 1, pp. 79–82, 2005. [Online]. Available:

https://www.int-res.com/abstracts/cr/v30/n1/p79-82

[36] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical Learn-

ing: Data Mining, Inference, and Prediction. Springer, 2009, chapter 2: Supervised

Learning.

[37] D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared

is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression anal-

ysis evaluation,” PeerJ Computer Science, vol. 7, p. e623, jul 5 2021.

[38] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[39] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–44,

05 2015.

[40] J. Chai, H. Zeng, A. Li, and E. W. Ngai, “Deep learning in computer

vision: A critical review of emerging techniques and application scenarios,”

Machine Learning with Applications, vol. 6, p. 100134, 2021. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S2666827021000670

[41] A. S. Pillai and R. Tedesco, Machine Learning and Deep Learning in Natural Language

Processing. CRC Press, oct 18 2023.

[42] T. , “Speech Recognition with Deep Learning - CoderHack.com - Medium,”

https://medium.com/coderhack-com/speech-recognition-with-deep-learning-

c3633348e756, sep 15 2023.

[43] M.-C. Popescu, V. Balas, L. Perescu-Popescu, and N. Mastorakis, “Multilayer per-

ceptron and neural networks,” WSEAS Transactions on Circuits and Systems, vol. 8,

07 2009.

[44] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by

back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[45] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,

vol. 9, no. 8, pp. 1735–1780, 1997.

Information Technology Engineer 71 Graduation Project

https://www.int-res.com/abstracts/cr/v30/n1/p79-82
https://www.sciencedirect.com/science/article/pii/S2666827021000670

School of Mathematical and Computational Sciences Yachay Tech University

[46] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,

and Y. Bengio, “On the properties of neural machine translation: Encoder-

decoder approaches,” arXiv preprint arXiv:1409.1259, 2014. [Online]. Available:

https://arxiv.org/abs/1409.1259

[47] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated

recurrent neural networks on sequence modeling,” CoRR, vol. abs/1412.3555, 2014.

[Online]. Available: http://arxiv.org/abs/1412.3555

[48] D. Tlegenova, “Forecasting exchange rates using time series analysis: The sample of

the currency of kazakhstan,” 2015.

[49] E. D. Soĺıs Garcés, “Financial time series forecasting applying deep learning

algorithms,” Ph.D. dissertation, UNIVERSIDAD DE INVESTIGACIÓN DE TEC-

NOLOGÍA EXPERIMENTAL YACHAY, Urcuqúı, Aug. 2021. [Online]. Available:

https://repositorio.yachaytech.edu.ec/bitstream/123456789/397/3/ECMC0069.pdf

[50] A. Yadav, C. K. Jha, and A. Sharan, “Optimizing lstm for time series prediction

in indian stock market,” Procedia Computer Science, vol. 167, pp. 2091–2100, 2020,

international Conference on Computational Intelligence and Data Science. [Online].

Available: https://www.sciencedirect.com/science/article/pii/S1877050920307237

[51] S. Ranjit, S. Shrestha, S. Subedi, and S. Shakya, “Comparison of algorithms in foreign

exchange rate prediction,” in 2018 IEEE 3rd International Conference on Computing,

Communication and Security (ICCCS), 2018, pp. 9–13.

[52] C. Panda and V. Narasimhan, “Forecasting exchange rate better with artificial neural

network,” Journal of Policy Modeling, vol. 29, no. 2, pp. 227–236, 3 2007.

[53] O. Surakhi, M. A. Zaidan, P. L. Fung, N. Hossein Motlagh, S. Serhan, M. .Alkhanafseh,

R. Ghoniem, and T. Hussein, “Time-lag selection for time-series forecasting using

neural network and heuristic algorithm,” Electronics, vol. 10, 10 2021.

[54] A. Gupta, “A Comprehensive Guide on Optimizers in Deep Learning,”

https://www.analyticsvidhya.com/blog/2021/10/a-comprehensive-guide-on-deep-

learning-optimizers/, jul 12 2023.

Information Technology Engineer 72 Graduation Project

https://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1412.3555
https://repositorio.yachaytech.edu.ec/bitstream/123456789/397/3/ECMC0069.pdf
https://www.sciencedirect.com/science/article/pii/S1877050920307237

School of Mathematical and Computational Sciences Yachay Tech University

[55] H. Bhavsar and A. Ganatra, “A comparative study of training algorithms for super-

vised machine learning,” International Journal of Soft Computing and Engineering

(IJSCE), vol. 2, no. 4, pp. 2231–2307, 2012.

[56] T. Chai and R. R. Draxler, “Root mean square error (RMSE) or mean absolute

error (MAE)? – Arguments against avoiding RMSE in the literature,” Geoscientific

Model Development, vol. 7, no. 3, pp. 1247–1250, 2014. [Online]. Available:

https://gmd.copernicus.org/articles/7/1247/2014/

Information Technology Engineer 73 Graduation Project

https://gmd.copernicus.org/articles/7/1247/2014/

	Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Problem statement
	Objectives
	General Objective
	Specific Objectives

	Justification

	Theoretical Framework
	Time Series
	Time Series Components

	Time Series Forecasting
	Artificial Intelligence Methods
	Evolution of AI Methods
	Artificial Neural Networks
	Deep Learning
	Long Short Term Memory
	Gated Recurrent Unit

	State of the Art
	Tlegenova, D. (2015)
	Solís, E. 2021
	Vega, O. 2021
	Noboa, S. 2021
	Yadav et al., 2020
	Ranjit et al., 2018
	Panda and Narasimhan, (2007)
	Discussion
	Summarize

	Methodology
	Phases of Problem Solving
	Data Collection
	Data Preparation
	Models Preparation
	Train Models
	Models Evaluation

	Results and Discussion
	Materials Description
	Experiments Description and Setup
	Experiment 1
	Experiment 2
	Experiment 3

	Results
	Results Experiment 1
	Results Experiment 2: train-test ratio and batch size

	Discussion

	Conclusions
	Future Works
	Bibliography

		2024-04-12T16:51:41-0500

		2024-04-12T16:52:28-0500

