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publicación de la presente obra, sin que deba haber un reconocimiento económico por este
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Resumen

La electromiograf́ıa (EMG) capta las señales eléctricas producidas por la contracción de los
músculos esqueléticos. El análisis de la electromiograf́ıa de superficie (sEMG) es el princi-
pal método para identificar el agotamiento muscular. La identificación de la fatiga permite
crear técnicas de apoyo, y ayuda tanto a la rehabilitación cĺınica como a la prevención de
lesiones, ya que el agotamiento muscular aumenta el riesgo de lesiones deportivas. Por
ello, el presente trabajo tiene como objetivo principal el análisis de las señales sEMG en
el músculo vasto lateral para la detección de la fatiga muscular después de la realizar
actividades f́ısicas que involucre a las extremidades inferiores. Con este fin, se aplicó la
Transformada Wavelet a las señales sEMG adquiridas antes y después de ejercicios de gim-
nasio. El estudio utiliza un amplificador de señales sEMG, una tarjeta NI USB 6212 y la
plataforma MATLAB para la adquisición, procesamiento y análisis de señales. La descom-
posicion de las señales mediante la transformada wavelet con la función base biortogonal
3.5 y un 4to nivel de descomposición, permitió analizar las variaciones en la actividad mus-
cular y caracterizarlas a través del cálculo de los parametros valor medio absoluto (MAV),
valor cuadrático medio (RMS), y frecuencia media (MNF) de las señales sEMG, mejorando
aśı la capacidad de identificar patrones asociados con la fatiga muscular. Finalmente, se
concluyó que la amplitud de los parámetros de las señales sEMG en dominio del tiempo au-
menta y de los parámetros en el dominio de la frecuencia disminuyen en el estado de fatiga.

Palabras Clave:
Señales electromiográficas, sEMG, transformada wavelet, función base Bio 3/5, extracción
de caracteŕısticas, valor medio absoluto, ráız cuadrada media, frecuencia media.
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Abstract

Electromyography (EMG) captures the electrical signals produced by skeletal muscle con-
traction. Surface electromyography (sEMG) analysis is the main method for identifying
muscle exhaustion. Identifying fatigue allows for the creation of supportive techniques and
aids in both clinical rehabilitation and injury prevention, as muscle exhaustion increases
the risk of sports injuries. Therefore, the main objective of the present work is the analysis
of sEMG signals in the vastus lateralis muscle for the detection of muscle fatigue after phys-
ical activities involving the inferior extremities. For this purpose, the Wavelet Transform
was applied to the sEMG signals acquired before and after gymnastic exercises. The study
uses a sEMG signal amplifier, an NI USB 6212 card, and the MATLAB platform for signal
acquisition, processing, and analysis. The decomposition of the signals using the wavelet
transform with the biorthogonal basis function 3.5 and a 4th level of decomposition made
it possible to analyze the variations in muscle activity and characterize them through the
calculation of the parameters mean absolute value (MAV), root mean square value (RMS),
and mean frequency (MNF) of the sEMG signals, improving the ability to identify pat-
terns associated with muscle fatigue. Finally, it was concluded that the amplitude of the
parameters of the sEMG signals in the time domain increases and the parameters in the
frequency domain decrease in the fatigue state.

Keywords:
Electromyographic signals, sEMG, wavelet transform, Bio 3/5 basis function, feature ex-
traction, mean absolute value, mean square root, mean frequency.
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Chapter 1

Introduction

1.1 Fatigue detection by using sEMG
Surface Electromyography (sEMG) is a common tool for detecting muscle fatigue and
helps to program a suitable rehabilitation training plan. The sEMG signal is incredibly
non-linear and non-stationary, and the acquisition strategy and external factors have a
significant impact on it. In therapeutic sessions, it has always been difficult to successfully
extract information about surface fatigue from sEMG signals [4]. There are numerous
instances of sEMG signals being utilized to describe muscle fatigue in works of literature
from the previous century. In 1912, Piper was one of the pioneering researchers to employ
sEMG methods to monitor myoelectric symptoms of muscle exhaustion [5]. During iso-
metric voluntary sustained contractions, he observed a progressive “slowing” of the EMG
signal, which was actually a shift of the sEMG signals’ spectral components toward lower
frequencies. Since then, EMG has been widely employed to assess muscle fatigue. sEMG
techniques first focused on studying isometric or static contractions. It is simpler to record
sEMG signals during isometric contractions in comparison with dynamic contractions.
Since there is no movement during isometric contractions, there is less movement inter-
ference than during dynamic contractions. Although it is simpler to record sEMG signals
during static contractions, there are still additional factors that could affect the recording
of the signals and hence make it more difficult to interpret the results. These variables
include the attenuation effect of the sEMG signal brought on by various subcutaneous
tissue layer thicknesses, such as the fat tissue layer, or the various signal features that can
be obtained depending on where the recording electrodes are placed over the muscle, such
as close to tendons or innervation zones. Crosstalk, or the electrical activity of neighboring
muscles, which can be captured using surface electrodes, is another important considera-
tion [6]. In dynamic circumstances, the challenges of deciphering sEMG signals in static
contractions are magnified. The joint angle doesn’t change while static contractions are
occurring. On the other hand, when a dynamic contraction occurs, the joint angle shifts,
moving the underlying muscle fibers away from the recording electrodes. The sEMG signal
characteristics vary faster during a dynamic contraction compared to static contraction,
as a result of additional effects during a dynamic contraction, such as quick changes in the
recruitment and de-recruitment of motor units and variations in muscle force. Therefore,

1



School of Biological Sciences and Engineering Yachay Tech University

the classic frequency techniques may not be suitable for extracting information and more
sophisticated techniques may be required [6].

1.2 Problem statement
In recent years, electromyography (EMG) research has experienced remarkable growth.
Advances in the biotechnology of sensor systems and data acquisition cards, as well as a
solid understanding of the physiological behaviors of the human body, have contributed
to the development of this type of research [7]. The detection of sEMG signals is fre-
quently used in disciplines such as medicine, clinical diagnostics, and sports science, as
they directly describe neuromuscular activity. The bioelectrical activity of the neuromus-
cular system during skeletal muscle contraction results in the production of the sEMG
signal. Thus, this is an effective technique for determining muscle exhaustion since the
variations of this signal coincide with the level of muscle activity and its functional state
[8]. Knowing these signals can help in various fields such as rehabilitation medicine, sports
medicine, physiotherapy [9], prosthetic devices, etc [10]. It is crucial to create supportive
techniques to prevent loss of strength caused by muscle fatigue, as well as to identify it
early and manage the situation more effectively [10]. This will help both clinical reha-
bilitation and injury prevention as muscle exhaustion increases the risk of sports injuries
[11]. Commonly, sEMG signals are used to provide valid and reliable measurements during
voluntary muscle contraction because it is a non-invasive technique. However, standard-
ization of this detection method is required [7]. Some investigations use the Fast Fourier
Transform (FFT) to analyze EMG signals, but this technique does not provide temporal
data of the signal. On the other hand, high-frequency components have high temporal
resolution due to the Wavelet Transform (WT), and low-frequency signals (such as tran-
sients) have high-frequency resolution. Despite the computational burden, the sensitivity
to noise level and the dependence of its accuracy on the chosen wavelet are some of the
disadvantages of the WT, according to some studies [12]. However, transformations are
used to obtain additional information from a raw signal (i.e., in the time domain), and the
WT of a signal is an effective method to represent the frequency and time information of a
particular signal. In fact, the WT of a signal provides a two-dimensional representation of
time and frequency. In addition, WT has been shown to outperform conventional methods
for representing the time-frequency of a signal. These methods include the Wigner-Ville
distribution and short-time Fourier transforms. The WT transforms signals with flexible
resolution in the time and frequency domain [13]. Furthermore, since sEMG signals are
non-stationary in nature, wavelet decomposition is the most suitable method to study these
signals [8]. In general terms, WT was found to be a useful tool for processing time-varying
and non-stationary signals, especially biomedical signals [13]. In this context, the present
work proposes to address this problem by applying the wavelet transform to sEMG sig-
nals acquired before and after exercise in the gym, using the NI USB-6212 card and the
MATLAB platform. This research aims to provide a significant contribution to the devel-
opment of standardized methods for the detection of muscle fatigue, thus improving the
understanding and practical application of sEMG signals in the sports environment.

Information Biomedical Engineer 2 Graduation Project
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1.3 Justification
The present work acquires outstanding relevance by contributing to the field of EMG
signal analysis, specifically sEMG, which is applied to detect muscle fatigue in the vastus
lateralis muscle. It is necessary to identify patterns and changes present in the signals in
order to effectively evaluate the physiological and functional state of individuals subjected
to physical effort, both within the medical and sports fields. For this purpose, an updated,
safe, and scientifically proven technique will be assertive not only for injury prevention
but also as a rehabilitation strategy. Therefore, the importance of this research lies in
the understanding of sEMG signals and their application for the detection of fatigue,
especially in the sports field, to optimize the performance of the individual and prevent
injuries resulting from overexertion in exercise. In addition, the choice of approaching
the analysis of sEMG signals in the vastus lateralis muscle using the wavelet transform
responds to the need to find a method that can be standardized to evaluate these signals
in a sports environment. This research justifies its relevance by providing a non-invasive,
simple, and specific methodology that integrates the technology of the NI USB 6212 card
and the MATLAB platform, allowing more accurate and detailed analysis of sEMG signals.
The aim is, therefore, to fill this research gap and contribute to the consolidation of more
effective practices in the evaluation of muscle fatigue, with direct implications for the
improvement of clinical diagnosis and the optimization of sports performance. In addition,
the vastus lateralis muscle was chosen because of its importance in the normal function
of the knee joint. Furthermore, the prevention of lower body injuries is indispensable for
most athletes in different sports disciplines, such as soccer, basketball, cycling, running,
and gym training. Finally, most studies have been conducted on the upper body (biceps),
so the focus of this study on the vastus lateralis may contribute to the literature of sEMG
analysis for fatigue detection on the lower body and serve as a basis for future research.

1.4 Objectives

1.4.1 General Objective
The main objective of this research is to design a sEMG signal analysis system for fatigue
detection in the vastus lateralis muscle by means of wavelet transform.

1.4.2 Specific Objectives
• To perform measurements of sEMG signals in the vastus lateralis muscle before and

after the execution of gymnasium exercises in a group of people.

• Preprocess sEMG signals by applying the wavelet transform.

• Perform feature extraction of the sEMG signals before and after exercise and compare
the results of both to identify patterns associated with muscle fatigue.

• Validate the proposed approach by comparing the results with other existing muscle
fatigue detection methods.

Information Biomedical Engineer 3 Graduation Project
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Chapter 2

State of the Art

2.1 sEMG Signals
The electromyogram (EMG) has been extensively examined in medical and engineering
fields, standing out as one of the most researched biosignals [14]. EMG represents muscle
contraction in the human body. Fundamentally, this recording can be obtained through
the use of sEMG or by using needle electrodes [12]. Skeletal muscles produce active forces
for the static and dynamic motor processes of the human body by acting on the bone
and joint system [15]. The electrical signals generated by skeletal muscles contain infor-
mation about muscle activation and properties of the neuromuscular system since, before
producing muscle force, muscle fibers produce electrical currents as a part of the signaling
process of muscle contraction [16]. These signals are known as sEMG signals since they
can be detected on the surface of the skin with the help of an EMG sensor and surface
electrodes. These electrodes detect variations in voltage amplitude caused by motor activ-
ity, thus allowing the corresponding muscle activity to be captured [12]. The amplitude of
a non-processed sEMG signal ranges between +/- 5000 uV [1]. It is influenced by several
variables, such as the strength and timing of the muscle contraction, the distance between
the electrode and the active muscle area, the characteristics of the overlying tissue, the
design of the electrode and amplifier, and the effectiveness of the electrode contact with
the skin [16].

In general, EMG signals are formed from the action potentials of sets of muscle fibers
organized into motor units (MUs). It is important to know the number of active MUs
because when there are 2 or 3 of them, they can be visually identified, but if there are 4 or
more, they become indistinguishable. Decomposition of the EMG signal allows studying
the temporal information of the MUs, which is useful in motor control research and the
diagnosis of neuromuscular diseases [17]. On the other hand, sEMG signals do not only
contain the signal originating from the muscles but also the endemic noise from various
unavoidable components, which contaminates the sEMG signal and, if this noise is not
eliminated or reduced, can lead to an error in the interpretation of the signal. Therefore,
a bandpass filter is usually applied to preserve only the frequency spectrum of the desired
signal as much as possible and obtain a more accurate sEMG signal [18]. It is essential

5
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to determine the specific range that needs to be analyzed in order to obtain the relevant
information and to reduce the noise. The best frequency range of the sEMG commonly
fluctuates from 10 to 500 Hz [19] [20]. Thus, it is recommended to use an amplifier with
a passband filter on that specific range. Moreover, the strongest sEMG signal is usually
found between 10 and 250 Hz [1]. Therefore, the selection of the frequency range will de-
pend on the target signal that needs to be measured, as well as the objectives of the study
and its application. For instance, a study conducted by Correa et al. [21] focused on the
development of a system of sEMG signal acquisition and processing for controlling robotics
upper limbs and the EMG signal was filtered from 20 to 300 Hz by employing an integrator
low-pass filter and a first-order high-pass differentiator (bypass filter). Thereby, commonly
used EMG sensors come with a filter and can obtain a frequency spectrum ranging from 0
to 400 Hz, and for noise reduction in higher parts of the spectrum, a low pass filter with a
cutoff frequency of 400-450 Hz is normally used [18]. Based on the literature, EMG signals
need to be filtered between 10 and 20 Hz at the low-end and between 400 and 500 Hz at
the high end. This allows to filter the noise while maintaining the intensity of the EMG
signal [22].

The shape of the action potentials and the decay of the signal can be affected by the
selected filtering method. A narrower bandwidth minimizes noise while improving the
similarity between action potentials. To avoid fluctuating delays and keep the energy con-
centrated in short time lapses, zero-phase filters should be used. It is advisable to avoid
using nonlinear filtering methods, as they can alter the EMG signals [22]. Low pass fil-
tering helps to avoid signal aliasing and to remove high frequency components, while high
pass filtering is necessary to remove low frequency motion artifacts. Historically, power
line noise (50 or 60 Hz) was often removed by notch filtering, but this method can result in
the loss of crucial EMG signal information and should generally be avoided [16]. Generally,
low-frequency noise is produced by DC biases of an amplifier. In contrast to low-pass filter,
high pass filters can usually be utilized to reduce this noise, which is produced by nerve
conduction and is therefore more difficult to eliminate. In addition, both radio signals
and computers produce high-frequency interference, which can be eliminated by using a
low-pass filter. [10].

sEMG signals are collected from the skin surface and can be affected by various sources
of electrical interference, such as electrical activity of the heart or motion artifacts. A
cut-off frequency of approximately 30 Hz helps to reduce cardiac artifacts [23] [24]. For
instance, in a feasibility study of neural networks for sEMG-based muscle force estimation,
the raw sEMG data was filtered at a bandwidth of 20-500 Hz to remove low-frequency
noise and motion artifacts [25]. On the other hand, an investigation runned out by Khan
et al. [26] used Myo thalamic armband to acquire the respective signals from the muscles
located under the elbow in order to present a sEMG dataset of routine activities, which
can be useful for posterior researches on computing assistance for people with physical or
mental disabilities. They employed a passband filter with a 5-100 Hz range frequency to
reduce the noise and the influence of muscular movements. Some of the reasons for filtering
electromyographic signals are to reduce interference from biological signals, to minimize
electrical noise contamination, and to minimize baseline drift [24]. For example, Chang et
al. [27] developed a wireless system of sEMG measurements with a sampling frequency of
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2KHz. They applied Butterworth filters and high-pass filter (30 Hz cut-off frequency) to
remove the displacement of the direct current, and the deviation of the baseline. Also, they
implemented a low-pass filter (1kHz cut-off frequency) to reduce the high-frequency noise
and avoid aliasing [27]. There are other cases in which the researchers have used a 20-450
Hz passband [28]. The most common biological signal that can interfere with the sEMG
signal recording is the cardiac signal, especially when the measurements are conducted
on the upper body muscles, which affects the amplitude of the signal and its strength
[23]. Moreover, the deviation of the baseline can be caused by abrupt movements of the
participant. Therefore, a passband filter with a cutt-off frequency of 5 and 15 Hz needs to
be used to reduce the influence of these movements and the influence of the electric line of 50
Hz and the T-wave [24]. Several factors need to be considered for the acquisition of sEMG
signals such as previous skin preparation and the appropriate placement of electrodes to
avoid altering the registered signal [24]. Finally, it is important to remark that the sEMG
signal can also be affected if wrong and unnecessary filters are implemented, and the signal-
noise relation should contain as much data as possible and the minimum noise pollution
[29].

2.2 Muscle Fatigue
Muscle fatigue is the phenomenon produced by changes in the efficiency of the nervous sys-
tem, as well as metabolic, structural, and energetic changes in the muscles caused by the
lack of oxygen and nutrients [30]. It also involves the reduction of maximal muscle strength
during contraction. Thus, it directly influences the capacity to move or lift weights. There
are a wide variety of factors that can have an impact on fatigue levels, such as body energy
supply, neurological issues, blood ion regulation, and muscle fiber composition, to name a
few. In sports training and competition, a correlation has been found between the preva-
lence of musculoskeletal injuries and muscle fatigue. Muscle and bone injuries are more
likely when fatigue is present because fatigue may change kinematics and muscle activation
patterns [10].

During muscle contractions, fatigue is defined as a prolonged decrease in the ability to
generate or maintain force at required levels. It can be caused by physical activity [31]
following relatively heavy muscular activity [32], and produce a decrease in the maximal
force of an isometric contraction during a maximal voluntary contraction [33]. The fatigue
condition can also be described as a decrease in the ability of the neuromuscular system
to generate force [10]. The two general types of fatigue are peripheral fatigue and central
fatigue [34], both of which can contribute to neuromuscular fatigue [35]. The duration
of a person’s ability to perform a given amount of work can be used to gauge the onset
of muscle exhaustion. Muscle capacity and power are reduced as a result of metabolite
accumulation in the circulation during exercise, which causes exercise-induced muscle fa-
tigue [11]. Besides, blood lactate concentration can also be measured during exercise, but
this method does not allow real-time monitoring and only provides an estimate of the
whole-body muscle fatigue [30]. In addition, when there is a lack of qualified neurologists,
deep learning technologies can be utilized to identify and categorize neuromuscular fatigue
[11]. sEMG analysis is the primary method to identify muscle fatigue because it allows
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recording the signal of the target muscles and, therefore, obtaining the relevant data to do
the analysis [10].

2.3 Instrumentation of EMG
The standardization of instrumentation and technical issues is vital in EMG, as this guar-
antees the high quality of the recordings. Its importance in the healthcare system have
increased during the last years due to the rapid improvement of new technologies. Nowa-
days, most of the EMG equipment is digital and computerized, thus enabling greater
instrumentation standardization. Technological advances in EMG equipment have helped
EMG to remain as the most widely used method in routine clinical practice, even in de-
veloped countries. Diagnostic imaging methods, such as ultrasonography, have also come
to be considered as a complement to electrophysiological studies and are utilized in EMG
laboratories [36]. Additionally, Tankisi et al. [36] commented on the following details to
be considered regarding the computer hardware to be used with the EMG instrumentation:

• Multiple displays allow to view the data from EMG signals together with other
relevant information, such as data derived from additional tests or radiology.

• CPU speed and RAM capacity are determined by the EMG equipment manufacturer,
who sets the minimum limits. The requirements vary according to the complexity of
the software used.

• The size of the hard disk is defined by the EMG equipment manufacturer, who sets
the minimum required limits. If you plan to store the data locally, the minimum hard
disk size must be adequate for the approximate amount of data to be stored. Usually,
more storage space might be needed at some point, so it is advisable to anticipate
this situation.

• A loudspeaker is required to reproduce EMG signals when an EMG hardware unit is
unavailable. Optimal sound quality is crucial to ensure accurate signal reproduction.

2.3.1 EMG Hardware and Software
The main function of the electrodiagnostic system is to record and analyze biological signals
accurately. It is essential to maintain an optimal ”signal-to-noise” ratio, which involves in-
creasing the neurophysiological signal strength while simultaneously reducing background
noise. To achieve this goal, analog hardware is used in conjunction with digital signal
processing techniques. Signals and noise are captured by surface or needle electrodes and
sent to the amplifier via electrode leads. These components have a similar functionality
to that of an antenna, which can generate additional noise. A differential amplifier boosts
the signal while attenuating unwanted noise with the help of analog filters. Subsequently,
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the amplified signal is converted into a digital signal by an analog-to-digital (A/D) con-
verter and the resulting voltage values are stored in the form of a matrix of numbers. This
digitized signal facilitates subsequent analysis by performing computer methods [36].

In addition, some algorithms are capable of reducing noise, such as digital filters, av-
eraging techniques, and smoothing, to name a few. There are also algorithms designed to
perform specific measurements such as latency, amplitude, and area in nerve conduction
studies. Some more advanced algorithms have the ability to identify motor unit potentials
in needle EMG recordings. In addition, signal characteristics can be evaluated through
their sonic representation generated by analog hardware or digital technology. An EMG
machine also has stimulation devices designed to activate nerves and muscles. These de-
vices can generate electrical, visual, or auditory stimuli. In addition, external devices can
be connected to provide other types of stimulation, such as magnetic fields, contact heat,
reflex hammers, etc. These external devices may be interconnected to provide synchroniza-
tion signals through what are known as “triggers”. Sometimes, the equipment passes the
digitized signals through a digital-to-analog converter to convert the digital signals, with
a lower noise level, into analog signals. This can be useful in research in which is needed
to resample the signals and develop algorithms for their own analysis [36].

The EMG machine displays the signals, measurements and settings of the amplifier
and stimulator. The latter can be modified by means of a dedicated control panel or by
software commands via the computer mouse or keyboard. On the other hand, the software
takes care of signal processing and report generation. Furthermore, it can create databases
and allow remote reviews for second opinions or interpretation assistance. Additionally,
EMG analysis software can offer available tests and functions that optimize workflow and
are compatible with local practices and reference limits. It may also include a help function
covering strategies and signal quality control. [36].

2.3.2 Amplifiers
The amplifier plays a fundamental role in the quality of electrodiagnostic systems. Webster
[37] stated that in order to achieve selective amplification of a neurophysiological potential
while attenuating background noise, a differential amplifier (DA) must be used. This type
of amplifier requires three-electrode inputs or connections, commonly labeled ‘E1’, ‘E2’,
and ‘E0’ [38] [39]. Generally, the standard colors of these inputs are black (E1), red (E2),
and green (E0) [36], also known as ‘active’, ‘reference’ and ‘ground’ respectively [36] [39].
It is named DA because the amplifier does not directly amplify the voltage at inputs E1 or
E2, but amplifies their difference instead [36]. A DA must have high differential gain and
low common mode gain for accurate measurement of biopotential signals [37]. This can
be summarized in a characteristic called common mode rejection ratio (CMRR). Modern
electrodiagnostic systems have amplifiers with a CMRR greater than 100 dB, although it
is important to note that the CMRR decreases at higher frequencies usually specified at
50 or 60 Hz (the power line frequency) [36].

Another characteristic of the amplifier is the input voltage range, which defines the
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range of signal amplitudes that the amplifier can handle without distortion. It is essential
to set the amplifier range above the expected amplitudes of the signals recorded during the
test to avoid saturation and ensure accurate measurements. A high amplifier range and
a narrow bandwidth contribute to reduce noise. Furthermore, the amplifier is also char-
acterized by its input impedance, which must be significantly higher than the impedance
of voltage generators, such as muscles, nerves or body fluids, to minimize noise sensitivity
and avoid underestimating the signal amplitude. Fortunately, modern systems generally
report impedances in excess of 100 to 1000 mega Ω, but like CMRR, impedance decreases
at higher frequencies. Additionaly, it is critical to reduce ambient noise and ensure that
there are no significant differences in noise between the E1 and E2 electrodes to obtain
high-quality recordings [36].

2.3.3 Digital instrumentation
EMG systems use digital computers to perform data sampling, storage and signal process-
ing. Once the analog signal has been amplified, the A/D converter discretizes the signal
in both time and amplitude, assigning a digital value to the amplitude at specific time
points. This assignment of the amplitude to a digital value is carried out by using a fi-
nite number of digital amplitude values. During this conversion process, two important
conditions need to be satisfied. First, the sampling frequency must be high enough to
accurately represent the original analog signal. And secondly, the amplitude digitization
must be fine enough to represent the amplitude of the original signal accurately in the
digital domain. Moreover, by using appropriate algorithms, it is feasible to reconstruct the
waveform in detail if the sampling rate is greater than twice the highest frequency present
in the waveform, as stated by Nyquist’s theorem. Furthermore, the sampling frequency
that is usually used in practice ranges from 2 to 5 times the highest frequency of the signal
of interest. In addition, to ensure that the maximum frequency of the signal is known,
an analog “anti-aliasing” filter is applied before digitizing the signal. The number of bits
required for the A/D converter is determined by the target amplitude resolution and the
maximum amplitude of the signal [36]. Currently, A/D converters are available up to 24
bits or more, enough for most biomedical applications [40].

2.3.4 Electrodes
Standard electrophysiological recordings involve the use of at least two electrodes, because
they are differential recordings. In unipolar or referential recordings, the active electrode
(E1) is placed close to the active fibers or any fibers of interest, and the reference electrode
(E2) is located at some distance in a region with minimal activity. However, although
these types of recordings imply that the recording area is electrically silent, sometimes,
especially when recording certain surface motor responses, the reference electrode may de-
tect volume-conduced electrical activity. In bipolar recordings, both electrodes are placed
close to the active fibers. There are also recordings which use a common reference, in
which three electrodes (E1, E2, E0) are used. In the latter case, the third electrode is
connected to ground to establish a constant voltage reference point. In addition, the most
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common electrode materials used are platinum, stainless steel and silver-silver chloride.
Most surface electrodes need a conductive medium to guarantee adequate electrical con-
tact with the skin; it can be electrode gelatine/paste, saline solution or an adhesive gel.
In addition, identical electrode materials have to be used to minimize electrode contact
impedance mismatch, in order to reduce the signal-to-noise ratio [36].

In some cases of EMG, a concentric needle is commonly used, consisting of an outer
cannula that serves as the reference electrode and an inner core that functions as the active
electrode. The concentric needle is composed of two electrodes: a wire electrode, usually
made of platinum, that is insulated, housed within a steel cannula that acts as a second
electrode. Differential recording is achieved by measuring the potential difference between
the wire electrode (active electrode, E1) and the entire cannula shaft (reference electrode,
E2). Alternatively, monopolar needles can be used, where the conical tip of the needle acts
as a single electrode. Monopolar needles for EMG recordings are usually made of a Teflon-
coated stainless steel core, except for a 1-5 mm exposed conical tip that acts as the active
electrode. The recording area ranges from 0.03-0.34 mm2. Potential difference is measured
from the exposed tip of the needle to a second reference electrode. This reference electrode
can be a subcutaneously placed needle or a surface electrode at some distance from the
active electrode. The reference electrode should be positioned over an electrically silent
area, such as a tendon or bone. Impedance mismatch between the active monopolar needle
and a surface electrode can cause a reduction in the common mode signal and increase
artifacts, including power line interference. Monopolar needles record higher amplitudes
and durations than concentric needles, but the number of phases is comparable. Surface
electrodes have various uses for both stimulation and recording in nerve conduction stud-
ies, and allow the capture of sEMG data. They are usually silver-silver chloride electrodes,
with a conductive adhesive gel on the electrode surface. They can be reused on a few
occasions in the same patient until the effectiveness of the adhesive decreases and needs
to be replaced. To record finger sensory potentials, reusable electrodes made of a Velcro
band impregnated with saline solution can be also used [36].

Most of the important muscles of the limbs and trunk can be measured with surface
electrodes. Still, deeper, smaller, or overlapping muscles need the application of fine wire
to be selectively detected. Considering the muscles normally investigated in kinesiologi-
cal studies, Konrad et al. [1] show the muscle maps with reference to the recommended
position for fine wire and surface electrodes. Figure 2.1 shows the anatomical position of
selected electrode sites in the frontal view, while Figure 2.2 shows the anatomical position
of selected electrode sites in the dorsal view. In both, the left side indicates the position
for fine wire electrodes and the right side displays the adequate location for surface elec-
trodes. The two yellow dots placed on the superficial muscles represent the orientation of
the electrode pair relative to the direction of the muscle fiber. Additionally, one neutral
reference electrode must be placed per subject. For this purpose, a nearby area should be
selected that is not electrically affected, e.g., joints, bony area, spinous process, tibia bone,
iliac crista, frontal head, etc [1].
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Figure 2.1: Anatomical positions of selected electrode sites, frontal view. [1]
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Figure 2.2: Anatomical positions of selected electrode sites, dorsal view. [1]
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2.4 Feature extraction
Feature extraction is a technique for extracting meaningful information from EMG signals
during fatigue. Whenever there is a mutual decrease of the investigated parameter in the
frequency domain and in the time-frequency domain, as well as an increase of the evalu-
ated parameter in the time domain, the EMG signal usually detects muscle fatigue [10].
The characteristics of EMG feature space, such as maximum class separation, resilience,
and computational complexity, should be taken into account to achieve the best classifica-
tion. Time-domain, frequency-domain and time-frequency domain features are the three
different forms of EMG features [41]. In particular, it is considered that the two reliable
indicators of muscle fatigue are the time-domain and frequency-domain characteristics.
Additionally, it is important to adopt a suitable signal processing method to deal with
non-stationary signals for fatigue detection, this will allow to extend the studies within the
field of sports, rehabilitation, and assistive devices [42].

2.4.1 Time Domain
The EMG signal is filtered in the time domain to reduce noise and crosstalk. While an
increase in EMG amplitude is associated with muscle fatigue, Mean Absolute Value (MAV)
and Root Mean Square (RMS) characteristics can also be used. In addition, it is advisable
to combine amplitude-based detection with spectrum analysis or other techniques since
amplitude detection alone is not accurate. The relationship between signal amplitude and
muscle force is influenced by various depletion regimes. To improve detection, the use of
multiple time windows (MTW) with various functions is suggested [10]. Different temporal
domain methods have been investigated for the study of sEMG signals, with a particular
focus on sEMG amplitude estimations, zero-crossing rate (ZCR), and spike analysis. Due
to muscle tension and exhaustion, amplitude modulation is the most significant shift in
the temporal domain of the sEMG signal. The MAV and RMS are two often used metrics.
Five successive processing steps—noise rejection/filtering, whitening, amplitude demod-
ulation, smoothing, and relinearization—have been utilized in a cascade to estimate the
sEMG amplitude. Half of the signal’s zero crossings per second is considered the ZCR.
Due to ZCR’s, sensitivity to amplitude distribution and signal-to-noise ratio are no longer
used. In order to provide information similar to that of spectral analysis without requiring
stationarity, peak analysis emerges as a rarely utilized technique in sEMG signal analy-
sis which involves the identification of peaks and variations within peaks. However, the
utilization of sEMG peak parameters has been constrained by contradictory results about
their dependability [30].

2.4.2 Frequency Domain
Analysis of the EMG signal reveals a shift in the frequency spectrum toward lower frequen-
cies as a result of muscle fatigue. The initial non-fatigued state has been used to relate
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these changes using metrics such as mean and median power frequencies [10]. One of the
most commonly used frequency characteristics is the mean frequency (MNF) [30]. The
phenomenon of MNF and median frequency (MDF) shift of the sEMG toward lower fre-
quencies during the isometric condition has been used as an indicator to record the altered
fatigability of the vastus lateralis (VL) and vastus medialis (VM) muscles [43]. In addition,
it has been observed that decreased muscle work during recurrent exercise is associated
with reduced peak frequencies of certain muscles. However, combining frequency analy-
sis with time domain characteristics is advisable to obtain more complete data on muscle
function for more accurate identification of fatigue [10]. In order to analyze sEMG signals
in the frequency domain, it is necessary to look at how the signal’s spectrum evolves during
prolonged contractions. The power spectral density of the sEMG signal can be calculated
using Fourier-based spectral estimators, such as the periodogram. Autoregressive moving
average (ARMA) models are used by parametric-based spectral estimators to explain the
stochastic process underlying the sEMG signal. In real life, these techniques are employed
to assess muscular fatigue. In EMG investigations, the autoregressive (AR) model is fre-
quently used, and the right model order can be established utilizing a variety of factors.
In general, these frequency domain techniques offer insightful information about muscle
fatigue during prolonged voluntary or electrically evoked contractions. Depending on the
particular application and signal parameters, other model orders might be appropriate. For
example, among elite rowers, lower back pain has been detected via frequency analysis of
myoelectric signals, showing the real applicability of performing sEMG on the biomedical
field [30].

2.4.3 Time-frequency Domain
The combined analysis of EMG spectrum and amplitude occur because of the relationship
between muscle fatigue and certain properties of the EMG signal. Various time-frequency
approaches, such as Short-Time Fourier Transform (STFT) and CWT, are used to investi-
gate muscle fatigue. These methods can simulate spectrum compression during exhaustion.
The use of various traditional and contemporary techniques, including time-frequency scale
approaches, RMS, wavelet analysis, and MNF, allows for a comprehensive assessment of
muscle fatigue [10]. Analyzing sEMG data during static and dynamic muscle contrac-
tions involves using time-frequency and time-scale approaches. Fourier-based spectrum
estimators, like spectrograms, are used for static contractions [30]. Methods like the Choi-
Williams transform, which circumvents some spectrogram restrictions and offers improved
time and frequency resolution for non-stationary signals, are being investigated for dy-
namic contractions [44]. These methods have been used to examine how muscles become
fatigued throughout different actions and activities. They make it possible to assess the
electrical signs of exhaustion and offer insightful data on how muscles behave under various
conditions [30].

2.5 Fatigue Detection Methods
Different methods of sEMG signal analysis have been developed in order to assess fatigue
in diverse muscles under a wide variety of contraction conditions [42]. Power spectrum
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parameters can be obtained by using techniques such as FFT and other traditional signal
processing methods, but these methods may not be appropriate for sEMG analysis of the
force-varying muscle contractions due to the dynamic nature of these contractions [42].
Numerous methods have been developed to overcome the difficulties associated with the
analysis of nonstationary muscle contraction and fatigue assessment, focusing on time-
frequency or time scale. For example, one such approach is Cohen’s Class, a widely used
representation in time-frequency analysis, which was first proposed by Cohen [45] through
the use of bilinear transformations. Despite its usefulness, Cohen’s Class can be susceptible
to cross-term contamination, which can affect the accuracy of the results [42].

The variability of sEMG signals poses challenges in their analysis. Applying the Fourier
Transform to extract frequency characteristics results in a loss of temporal information. In
addition, sEMG signals do not meet the stationarity requirement of the Fourier Transform,
which makes their direct analysis difficult. To solve this problem, it is used the STFT, a
variant of the Fourier transform that is computed using a sliding time window. This ap-
proach allows to analysis of temporal variations in the sEMG signal spectrum, thus meeting
both frequency and time requirements in its analysis [30]. In an investigation examining
the comparison between STFT and continuous wavelet transforms (CWT) in the analysis
of sEMG signals from back and hip muscles during fatiguing isometric contractions, it was
found that both methods provided similar information about the spectral characteristics
of EMG signals and, consequently, STFT can still be used [46].

Wigner-Ville Distribution (WVD) is an effective technique for analyzing non-stationary
signals, offering higher time and frequency resolution than the spectrogram, overcoming
some of its limitations [42]. In another investigation where they used the WVD method to
examine the electrical activities of the uterine muscle and track its instantaneous frequency,
it was found that this method of time-frequency analysis has limitations due to consider-
able cross-terms or interferences between elements present in different time and frequency
areas [47]. Another study used the Choi-Williams transform for the processing of surface
myoelectrical signals recorded during dynamic contraction to evaluate the electrical man-
ifestations of muscle fatigue, extracted the instantaneous spectral parameters suitable for
tracking changes caused by muscle fatigue, and found that this method provided useful
information on the evolution of the frequency content of these signals[44].

The wavelet transform (WT) is an alternative method for the analysis of time-varying
signals, such as the STFT, by replacing the frequency shift operation with a time-scaling
operation. The wavelet transform is often used for signal decomposition and reconstruc-
tion [48]. It can also be used in non-stationary conditions since it varies the time-frequency
relationship and can provide good frequency localization at low frequencies and good time
localization at high frequencies. In addition, WT guarantees good time resolution at high
frequencies and good frequency resolution at low frequencies, unlike STFT which has fixed
time and frequency resolution and cannot inherently provide good time resolution along
with good frequency resolution [49]. Furthermore, Karlsson et al. ([50]) described that the
WT functions as a mathematical microscope that allows observing different aspects of the
signal by adjusting the focus. They compared the STFT, WVD, the Choi-Williams distri-
bution, and CWT to determine their precision and accuracy and found that the estimates
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provided by the CWT were more precise and accurate than those of the other methods
on the simulated data sets. Furthermore, in their previous fatigue study involving maxi-
mal knee repetitions in isokinetic extensions, CWT showed that the frequency components
were shifted toward lower frequencies. This methodology also makes it possible to analyze
changes in frequency components throughout the range of motion during dynamic contrac-
tions. [51]. The CWT has a variable time-frequency resolution, which guarantees good
time resolution at high frequencies and good frequency resolution at low frequencies [30].
Furthermore, in a study based on the use of CWT to examine motions at various angular
velocities with surface myoelectric signals, it was concluded that this method is reliable in
the analysis of non-stationary biological signals and without the need to apply smoothing
functions [51].

Another statistical method known as the AR model is used as a signal processing tool
to estimate natural behaviors using a random process [42]. An investigation to analyze the
performance of the first autoregressive model coefficient (ARC) in assessing trunk muscle
fatigue found that ARC could become a potential parameter to describe trunk fatigue
during static and dynamic contractions [52]. On the other hand, feature extraction from
sEMG signals with the use of the wavelet package and neural networks has also been shown
to be useful in the identification and classification of muscle fatigue by using wavelet co-
efficients as features for fatigue identification, and self-organizing map neural network as
a visualization and detection tool [53]. WT decomposes a signal into a series of wavelets.
In addition, it has been considered that signals processed by the WT can be stored more
efficiently compared to those signals that have been processed using the Fourier trans-
form [53]. Another important fact to consider is that the biorthogonal mother wavelet is
suitable for performing electromyography (EMG) as a basis function [54]. Moreover, the
preprocessing of sEMG signals by Discrete Wavelet Transform (DWT) has been shown to
be consistent and stable for identifying low-level fatigue [55]. The DWT method has been
demonstrated to be effective in the analysis of non-stationary signals [41]. It is known that
the DWT is an efficient technique for representing and analyzing biomedical signals, and
it is commonly used to attenuate the noise in these signals [56].

2.6 Fatigue Classification Methods
Artificial Intelligence (AI) is the capability of a digital computer or computer-controlled
robot to carry out tasks typically attributed to intelligent beings [57]. AI involves areas
such as Machine Learning (ML), natural language processing, robotics, vision, etc [2]. ML
represents a set of techniques within the field of AI that enable computer systems to acquire
knowledge from past experience, i.e., by observing data, and improve their performance
in executing a specific task. Besides, ML approaches include support vector methods, de-
cision trees, Bayesian learning, k-means clustering, association rule learning, regression,
and neural networks, etc [58]. In addition, ML methods can solve problems of regression,
classification, clustering, and dimensionality reduction of data [2]. The most appropriate
classification algorithm to use will depend on the amount of data available. In Figure 2.3,
a scheme made by Mukhamediev et al. [2] is shown, which indicates that traditional algo-
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rithms are more efficient when dealing with small databases, and neural networks for large
databases. Traditional classification methods include k-Nearest-Neighbor (k-NN), Logistic
Regression (LR), and Decision Tree (DT), to name a few. Moveover, Table 2.1 presents
some works in which they have tested the use of different machine learning models for the
classification of fatigue and non-fatigue conditions in sEMG signals.

Figure 2.3: Changes in the quality of problem-solving depending on the amount of available
data for machine learning algorithms of varying complexity [2]
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Table 2.1: An overview of some machine learning models used in the classification of fatigue
and non-fatigue conditions.

Ref. Classification Method Finding

[59]

CNN-SVM, Support
Vector Machine (SVM),

CNN, and Particle Swarm
Optimization Support

Vector Machine

The CNN-SVM algorithm achieved accurate
muscle fatigue classification and 80.33% -86.69%

classification accuracy.

[11]
Long short-term memory
(LSTM) network, CNN,

and SVM

The best performance of the LSTM network
was achieved with 70% training, 10%

validation, and 20% testing rates.

[60]
DEWOA-SVM, WOA-SVM,
GWO-SVM, DEGWO-SVM,

PSO-SVM, and FA-SVM

Results demonstrate the effectiveness and
feasibility of the DEWOA-SVM method in
dynamic muscle fatigue prediction with an

average accuracy of 85.50% in ankle
dorsiflexion and 84.75% in ankle plantarflexion.

[61]
Naive Bayes (NB), SVM,

k-NN,and Linear
discriminant

k-NN algorithm is found to be the most
accurate in classifying the features with a

maximum accuracy of 93%.

[62]

3 types of LR classifiers:
Linear logistic, Polykernel

logistic regression and
Multinomial regression
with ridge estimator

All classifiers are found to be useful in
discriminating the output labels. However,

based on the values of the classifier performance
indices, the Kernel Logistic Regression algorithm

is comparatively superior.

[63] k-NN, NB, and LR
The LR and kNN classifier performance gave

an accuracy of 84% and 82%, respectively.

[64]

NB, SVM of polynomial
and radial basis kernel,

Random Forest (RF) and
rotation forests

The combination of EMBD- polynomial kernel
based SVM is found to be most accurate (91%
accuracy) in classifying the conditions with the
features selected using genetic algorithm (GA).

[65] k-NN, and LR
The classification accuracy with conventional

features in dynamic contraction is 75%
(improved to 80% with k-NN GA combination).

[66] k-NN, NB, Decision tree, and
Multilayer perceptron (MLP)

Maximum accuracy of 86% is achieved with
MLP based detection model.
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Chapter 3

Methodology

In this chapter, the methodology used for the proposed method for detecting fatigue in the
VL based on the analysis of sEMG signals is presented, which is represented in Figure 3.1.
First, Section 3.1 details participants information, materials used as well as their cost, and
instructions prior to signal acquisition. Section 3.2 explain the mechanism of the signal
acquisition system and the data processing system. In Section 3.3, the feature extraction
system used for signal analysis is shown. Finally, Seccion 3.4 mentions the traditional ML
models used for classifying fatigue and non-fatigue conditions.

Figure 3.1: Representation of the proposed method
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3.1 Experimental procedure
To select the participants, factors such as age, weight, and health status were taken into
account. First, Ayramo [67] suggested on his research that kids (age: 11-14 years old;
weight: 47.9 ± 7.1 kg) need less time to recover from exercises, and they are less prone to
present fatigue in comparison to youngsters (age: 14-16 years old; weight: 63.9 ± 4.2 kg)
and adults (age: 18-24 years old; weight: 73.2 ± 7 kg). In addition, Tibana et al. [68] con-
firmed that youngsters (age:14-16 years old; weight: 61.1 ± 6.8 kg) depict more resistance
to fatigue than the adults (age: 19-25 years old; weight: 71.2 ± 7.5 kg). Furthermore, sev-
eral studies agree in the conduction of a research about fatigue in healthy patients without
any cardiovascular and neuromuscular diseases or any other pathology [59] [69] [8] [70]
[64]. Considering these factors, participants were selected who met the average character-
istics of the adults in the aforementioned studies [67] [68]. During the performance of the
present experiment, ten healthy people, without cardiovascular or neuromuscular diseases
and any pathology, participated (7 males and 3 females, age: 18-23 years old, mean age:
20.8, mean height: 1.65 m; mean weight: 65.2 kg). All participants participated volun-
tarily, knew the purpose of the study and all the research details, and signed an informed
consent form shown in Appendix.1. The study was conducted in Urcuqúı-Ecuador. Two
measurements were taken per participant, with the second measurement being carried out
three days after the first measurement. In addition, the materials and cost of the prototype
used in this work in order to acquire the signals are detailed in Table 3.1. Three Ag-AgCl
surface electrodes were used per person. The data acquisition board has a 16-bit analog
input resolution, maximum sampling rate of 400kS/s, USB 2.0 bus connector, and mul-
tifunction (I/O). All the equipment used was properly calibrated. Signal acquisition was
performed on an AMD Ryzen 5 5600G computer and a 12 GB memory card, and experi-
mental data analysis was performed on an Intel Core i5-1135G7 and an 8 GB memory card.
Data were recorded using the laptop computer through the USB A/D converter interface,
NIDAQ USB-6212 (https://www.ni.com/es-cr/shop/model/usb-6212.html). The sys-
tems used for signal acquisition, processing, and analysis were designed and implemented
in MATLAB and Simulink.

For the present study, it was decided to work with a quadriceps femoris muscle, which
is composed of the VL, VM, and rectus femoris, because this muscle group plays an im-
portant role in the normal function of the knee joint [71] and the patellofemoral joint [72].
In addition, knee injuries are common in various competitive sports and can limit an ath-
lete’s ability to continue practicing their discipline or, in the worst-case scenario, abruptly
end their sports career [73]. The mechanomiographic signals of the VL and VM tend to
compress toward lower frequencies with increasing isometric force, suggesting that these
muscles may be more sensitive to fatigue compared to the rectus femoris [74]. Moreover,
based on the EMG measurements, it can be noticed that the changes in the neuromuscu-
lar function of the VL and VM are related to the patellofemoral pain [75]. The muscle
chosen to carry out this study was the VL, because it has a larger cross-sectional area com-
pared to the VM [76], which facilitates accessibility for electrode placement and accurate
measurements. Before the test, the participants were asked to shave the skin hair in the
leg area since this is necessary for the electrodes to adhere better and reduce impedance
[11]. Subsequently, the area was first cleaned with medical alcohol, and then the sEMG
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Table 3.1: Signal acquisition materials and their cost.

Qty Name Unit Price ($) Total Price ($)
1 NI USB-6212 Data Acquisition Card 1902.6 1902.6
1 EMG sensor 52.65 52.65
2 18650 Battery Holder 7.25 14.50
1 Cable for EMG sensor 14.99 14.99
1 ECG electrodes package (50 pcs.) 20.00 20.00
4 18650 batteries 7.85 31.40
1 18650 battery charger (2 channels) 30.00 30.00
1 Electronic parts 45.00 45.00
1 Laptop 800.00 800.00

Total 2911.14

electrodes were placed in the VL muscle. For the proper positioning of the electrodes, the
SENIAM guidelines [77] were taken into account, as well as information from the literature
concerning the placement of the electrodes in the VL [78] [79]. The schematic of the sEMG
signal acquisition process and the location of the electrodes is shown in Figure 3.2.

It is known that in EMG, almost all the signal power is between 10 and 250 Hz and
scientific recommendations (SENIAM, ISEK) demand an amplification band setting of 10
to 500 Hz [80] [81]. A sampling frequency of 1500 Hz would be recommended to avoid
signal loss [1], but it should be 2 KHz if the mean frequency is going to be used to evaluate
muscle fatigue [27]. Based on this, the sampling frequency in this study was 2000 Hz.
Pre-exercise and post-exercise measurements were taken while the subject was generating
maximal voluntary contraction during isometric standing contraction for 20 seconds. The
participants performed the exercises in the Yachay Tech University gymnasium under the
supervision of a couch. This study focuses on gym activities since it is common for an
imbalance between metabolic energy production and consumption to occur due to physical
intensity. This imbalance leads to the accumulation of metabolic waste at the cellular
level, causing the body to go out of its normal balance (homeostasis). Previous research
on overtraining in athletes suggests that fatigue often develops before muscle injury oc-
curs because muscles in this state are more susceptible to damage [82]. In addition, it is
important to consider that for strength exercises to be really effective, the muscles need
to be activated at least 40-60 % of their maximum capacity. This is essential to achieve a
positive increase in strength due to super compensation, which is basically muscle growth
in healthy people [1]. So, to activate the VL muscle, the exercises performed focused on
strengthening the quadriceps since the VL is one of the main muscles of this group. The
exercises performed by the participants were squats, leg presses (lying), leg extensions,
lunges, and step-ups.
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(a)

(b)

Figure 3.2: sEMG signals acquisition in vastus lateralis (VL). (a) Schematic of the data
acquisition process (b) Positioning of surface electrodes.

3.2 Data Acquisition and Processing System
Data Acquisition toolbox is required, and it is necessary to register our hardware. There-
fore, we log in as administrator in Matlab and run DAQSUPPORT to register all the
adapters that have hardware installed. We then log in as a standard Windows user and can
make use of the installed hardware with the Data Acquisition toolbox. Finally, Simulink
was used to create the signal acquisition system, which is shown in Figure 3.3. The “Ana-
log Input” block allows the analog data connected to the DAQ input ports to be read, the
“Scope” element is used to display the acquired signal, and the “To Workspace” element
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creates a variable that stores the acquired data so that it can be saved [83]. Figure 3.4 it is
detailed how to save the signal, in this case, the first signal taken before the exercise was
named “p1ae1” and was assigned the values previously recorded in the “To Workspace”
element. Press Enter, and the signal will be saved in the computer with file type “.mat”.
We repeat the process for each signal but with the corresponding name.

Figure 3.3: Data acquisition system

Figure 3.4: Command to save a signal

The unfiltered and unprocessed signal is called the raw sEMG signal and contains in-
terfering components that make it difficult to analyze [1]. Although bandpass and lattice
filters are commonly used to remove noise from raw sEMG signals, this can distort the
signal and remove useful information from the sEMG signal. Therefore, the recommended
method for removing artifacts from biomedical signals is the WT, which consists of de-
composing and reconstructing the signal by removing undesired artifacts [56]. WT has
proven to be a useful tool for sEMG signal processing and has been shown to be better
than other traditional methods because of its flexible resolution in the time domain and
frequency domain [13]. There are two types of WT: CWT and DWT [84]. DWT has less
computational complexity and is faster compared to CWT [13]. In addition, one of the
main advantages of DWT is its ability to generate a useful subset of frequency components
or scales from the signal of interest [84]. Consequently, the DWT was used in the present
work for processing the raw signals, whose general equation, according to Chowdhury et
al. [41], is given by Equation 3.1. The wavelet mother used to attenuate the noise of
the sEMG signal was the biorthogonal 3.5, whose graphical representation is displayed in
Figure 3.5 and shows its similarity to a biosignal. Although it has not been commonly used
for sEMG signal processing and analysis for fatigue detection to date, its use is proposed
because of its good performance, feature extraction capability, and contribution to accu-
rate classification [85]. In addition, the biorthogonal 3.5 has been noted for its efficiency in
removing electrocardiographic interference in signals with a signal-noise relation of 30 to
75 dB, making it a good choice for implementation in filtering systems [86]. Moreover, a
biorthogonal mother wavelet is considered useful for representing and decomposing EMG
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signals [54].

x(t) =
∞∑

k=−∞

∞∑
l=−∞

d(k, l)2 k
2ψ

(
2−kt− 1

)
(3.1)

Figure 3.5: Biorthogonal 3.5 wavelet [3].

The Wavelet Toolbox was required for the system development in Matlab. The system
was developed in Simulink and is shown in Figure 3.6. First, it is necessary to enter the
sEMG signal in the “Signal input” component from workspace. The “Buffer” component
converts the signal data sequence into a frame sequence at a lower frame rate, i.e. it pro-
vides a temporary storage of the signal, adjusts the sampling rate and facilitates signal
preprocessing. Inputs are always interpreted as frames. The frame size must be a multiple
of 2n; in this case, the output buffer size (per channel) is 256. The “DWT” component
represents the Dyadic Analysis Filter Bank block and calculates the discrete wavelet trans-
form; that is, it decomposes a signal into subbands with smaller bandwidths and slower
sampling rates. The parameters used are biorthogonal filter, filter order [3/5], 4-level,
and asymmetric tree structure. The Output parameter is set to multiple ports, so the
block outputs each subband from a different port as a vector or matrix, and the top port
outputs the subband with the highest frequency band. The “Delay” component was also
implemented, which delays the input signal by a specified number of samples. The delay
values were calculated following the source [87]. The “IDWT” component represents the
Dyadic Synthesis Filter Bank block. It calculates the inverse discrete wavelet transform,
which means it reconstructs the signal from subbands with smaller bandwidths and slower
sampling frequencies. The IDWT parameters are the same as those used in the DWT.
The “Unbuffer” component converts a frame into scalar output samples at a higher rate.
The “Scope” was used to visualize both the initial signal and the processed signal with the
mathematical model of the wavelet transform.
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Figure 3.6: sEMG signal processing through the wavelet transform system.

Before signal processing and analysis, data organization was performed, considering the
relationship between data and time. First, it is required to open the .mat files to load all
the signals in Matlab. Then, run the Matlab script shown in Appendix .2, in which the
variables of each signal to be introduced in the “Signal Input” component of the system are
set. Finally, in Figure 3.7, it is observed that the initial signal and the signal reconstructed
by the wavelet transform are very similar, guaranteeing that the model is functional. It
demonstrates that both the choice of the biorthogonal filter 3.5 and the calculation of the
delay values were adequate because, with this, it was achieved that the difference between
the model and the raw signal was small.
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Figure 3.7: Example of a sEMG signal processed using the wavelet transform system.

3.3 sEMG Signal Analysis System
An EMG control system based on pattern recognition includes three components: data
segmentation, feature extraction, and classification [88]. Following a literature review,
3 features were selected to analyze the sEMG signals for muscle fatigue detection. The
features extracted in the time domain and frequency domain are described below.

• Mean absolute value: MAV calculates the absolute values of all signal points and
averages them. It represents the average rectified value (ARV) and it is defined by
the following equation:

MAV = 1
N

N∑
i=1

|xi| (3.2)

Where Xi is the ith EMG signal and N is the number of samples in each segment [89].

• Root mean square: RMS is the square root of the average signal power at a given
time. This characteristic quantifies muscle effort. RMS is defined as follows:

RMS =

√√√√ 1
N

N∑
i=1

x2
i (3.3)

Where N is the length of the window size, and i is the ith sample point [90].
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• Mean Frequency: MNF is an average frequency value that is computed as a sum
of product of the EMG power spectrum and frequency, divided by a total sum of
spectrum intensity. It can be expressed as:

MNF =
∑N

j=1 fj · Pj∑N
j=1 Pj

(3.4)

Where N is the total number of spectral components, fj is the frequency corresponding
to the jth spectral component, and Pj is the amplitude of the jth spectral component
[91].

The MAV, RMS, and MNF are indicators used for fatigue detection in VL [92]. There-
fore, a feature extraction subsystem was added to the wavelet system shown above in Sec-
tion 3.2. Figure 3.8 illustrates the system for feature extraction. Functions were applied
to calculate each feature at each DWT decomposition level of the signal before (Figure
3.8a) and after the exercise (Figure 3.8b), the results of which were stored and can be
visualized in the final scope of the whole system shown in Figure 3.8c. Moreover, Figure
3.8a and Figure 3.8b show that “Goto” components were also added to send signals to
“From” blocks that have the specified tag, and each label was assigned a different color
to understand better how these signals are read thanks to the block “Mux” which serves
to combine scalar or vector signals of the same type of data and complexity in a virtual
vector. In this way, the results of the MAV can be visualized in the system’s final Scope.
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(a)

(b)

(c)

Figure 3.8: Feature extraction system. (a) Before Activity, (b) After Activity, (c) Scope
to display.
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Additionally, in Figure 3.9, it can be noted that the “Feature Extraction” block/sub-
system contains internally an “Input port” component to provide a signal input port,
connected to the “MATLAB Function” component in which the function of the feature to
be calculated is to be implemented, and an “Output port” component that provides an
output port for this subsystem. In addition, in Figure 3.10 are the MAV (Figure 3.10a),
RMS (Figure 3.10b), and MNF (Figure 3.10c) functions, implemented in the “MATLAB
Function” of the system for each feature, corresponding to the functions 3.2, 3.3, and 3.4,
respectively. Alternatively, the “RMS” component provided by the Simulink library could
be considered instead of the “MATLAB Function” to calculate this feature. Finally, Fig-
ure 3.11 displays an example of the MAV results of each level processed with the DWT
of the signal both before (Figure 3.11a), and after (Figure 3.11b) the exercise of one of
the participants. These plots can be visualized in the final scope of the feature extraction
that we observed in Figure 3.8c, and the same was done for the other two features. As a
result, it was confirmed that the last level of DWT decomposition allows the analysis of
the different features since it is the one where the signal changes can be best appreciated.

Figure 3.9: Internal content of the ”Feature Extraction” block
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(a)

(b)

(c)

Figure 3.10: Functions for feature extraction (a) MAV, (b) RMS (c) MNF
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(a)

(b)

Figure 3.11: Scope of MAV in each level processed with the DWT of participant 2 (first
measurement). (a) Before activity, (b) After activity

3.4 Classification Models
Three classification techniques, namely, RF, SVM, and k-NN, were employed to classify
fatigue and non-fatigue conditions. For this purpose, Google Colaboratory, also known
as “Google Colab” or “Colab”, was used. Google Colab allows to write and execute any
Python command or code in the browser, and it is ideal for the creation of ML models
[93]. RF is a technique used in several studies, which is based on the construction of
multiple decision trees, where each tree grows independently and casts its preference for
a class, winning the class with the highest number of votes as a whole [94]. SVM is a
supervised ML method, which seeks to find the best classification function to separate
classes in training data. It uses a hyperplane in linearly separable cases. SVM ensures
finding the optimal solution among an infinite number of possible hyperplanes [61]. k-NN
is a classifier algorithm, which determines a set of ‘k’ objects in the training data that is
closest to the test object and, using these neighbors, assigns a class to the test object. k-NN
consists of three stages: initialization of the dataset and ‘k’ nearest neighbors, calculation
of the distance between the neighbors, and classification of the test data according to the
most neighboring classes [95]. The script for each classifier model is provided in Appendix
.3, Appendix .4, and Appendix .5, and the classification flowchart is illustrated in Figure
3.12. A randomization command was used to split the training set (70%) and the test
set (30%) in order to train the three models with the same data. Additionally, for the
evaluation of the classification models, sensitivity, specificity, and accuracy were used as
performance measures. The mathematical expressions for each of these metrics are given
by the equation 3.5, 3.6, and 3.7. Where: TP is true positive, FP is false positive, TN is
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true negative, and FN is false negative [96].

Figure 3.12: Flow chart of the classification models

Sensitivity = TP

TP + FN
(3.5)

Specificity = TN

TN + FP
(3.6)

Accuracy = TP + TN

TP + TN + FP + FN
(3.7)

Information Biomedical Engineer 34 Graduation Project



Chapter 4

Results

In this chapter, it is present the graphical results of the MAV, RMS and MNF extraction
of the VL muscle sEMG signals processed with the DWT of one of the participants to show
the fatigue patterns present in the signals, as well as a summary table of the analysis of
the signals of the 10 participants in the two measurements. The results of the performance
parameters of the three trained classification models are also shown. In addition, the raw
data can be found at https://github.com/Marilyn18/sEMG-VL-Data.git.

4.1 Feature Extraction Analysis
First, in Figure 4.1, the MAV results before (Figure 4.1a) and after (Figure 4.1b) the pre-
set exercises of one of the study participants are shown. Overall, in Figure in Figure 4.1a,
it was observed to range from 0-0.37 mV, whereas in Figure 4.1b, it increased by about
0-0.81 mV. In addition, higher MAV values were evident in the first 2 seconds of Figure
4.1b compared to Figure 4.1a. In Figure 4.1b, it was also visualized that in the second
6.7, the highest MAV peak was pronounced, being 0.81 mV, while in Figure 4.1a its value
was 0.27 mV. Furthermore, between 8-10 seconds, high peaks were also noted in Figure
4.1b of 0.78 and 0.75 mV, and another large increase in the MAV peak was pronounced in
the range of 14.6 to 15.8 seconds when the values ranged from 0.58 to 0.74 mV. Finally,
from second 16 to 20, a drop in the intensity of the MAV values was noted (Figure 4.1b);
however, they are still higher values when compared to those calculated in Figure 4.1a.
Therefore, it was determined that the person is fatigued from the increase in MAV.
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(a)

(b)

Figure 4.1: Mean Absolute Value of the participant 4 (first measurement). (a) Before
activity, (b) After activity.

Secondly, Figure 4.2 shows the RMS results before (Figure 4.2a) and after (Figure 4.2b)
the participant’s activity. In Figure 4.2a, the RMS ranges from 0 to 0.37 mV, and in Fig-
ure 4.2b, it increases to 0.81 mV. Furthermore, in Figure 4.2b, the highest peaks occurred
around 0.7-4 s, 5.5-10 s, and 14-16 s, with RMS values similar to those of the MAV shown
in the previous figure (Figure 4.1b). In Figure 4.2b, it was noted that the highest point was
0.81 mV at 6.7 s, and although the RMS from second 16 to 20 decreased a little, its values
hovered around 0.16-0.47 mV, while in Figure 4.2a it hovered between 0.05-0.33 mV. That
is, RMS also presented an increasing trend in the presence of fatigue. Thirdly, Figure 4.3
shows the MNF results before (Figure 4.3a) and after (Figure 4.3b) the activity. In Figure
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4.3a, the MNF reached approx 114 Hz, while in Figure 4.3b, the maximum value of the
MNF was 23 Hz, that is its highest peak at second 0.1, which coincides with the same value
of MNF at second 0.1 in Figure 4.3a. In other words, there was no increase in MNF after
exercise at any time, and there was a significant decrease in MNF as an indicator of muscle
fatigue. Finally, the analysis results of the characteristics extraction of all participants are
summarized in Table 4.1, where NSC (no significant change) means that the results before
and after exercise were in the same range or with non-significant increases and decreases.

(a)

(b)

Figure 4.2: Root Mean Square of the participant 4 (first measurement). (a) Before activity,
(b) After activity.
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(a)

(b)

Figure 4.3: Mean Frequency of the participant 4 (first measurement). (a) Before activity,
(b) After activity.

Information Biomedical Engineer 38 Graduation Project



School of Biological Sciences and Engineering Yachay Tech University

Table 4.1: Summary of feature extraction analysis.

P Measure MAV RMS MNF Classification
1 NSC NSC NSC Non-Fatigue

1
2 Increase Increase Decrease Fatigue
1 Increase Increase Decrease Fatigue

2
2 Increase Increase Decrease Fatigue
1 NSC NSC NSC Non-Fatigue

3
2 Increase Increase Decrease Fatigue
1 Increase Increase Decrease Fatigue

4
2 Increase Increase Decrease Fatigue
1 Increase Increase Decrease Fatigue

5
2 Increase Increase Decrease Fatigue
1 NSC NSC Decrease Non-Fatigue

6
2 Increase Increase Decrease Fatigue
1 Increase Increase Decrease Fatigue

7
2 Increase Increase Decrease Fatigue
1 NSC NSC NSC Non-Fatigue

8
2 Increase Increase Decrease Fatigue
1 Increase Increase Decrease Fatigue

9
2 Increase Increase Decrease Fatigue
1 NSC Increase NSC Non-Fatigue

10
2 NSC NSC NSC Non-Fatigue

4.2 Classifier Models Performance
It was found that the RF model exhibited remarkable efficiency in classifying fatigue and
non-fatigue conditions based on features extracted from VL sEMG signals, such as MAV,
RMS and MNF. Specifically, RF achieved a sensitivity, specificity and accuracy of 100%.
On the other hand, the SVM and k-NN models showed comparable results in terms of
sensitivity, specificity and accuracy, with values of 50%, 75% and 83.33%, respectively.
Both these models proved to be equally competent in classifying fatigue and non-fatigue
conditions, using the characteristics of VL sEMG signals during isometric contractions
after gym exercise sessions.
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Table 4.2: Classification performance of the extracted features for muscle fatigue detection.

Classifier Sensitivity (%) Specificity (%) Accuracy (%)
SVM 50 75 83.33
k-NN 50 75 83.33
RF 100 100 100
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Chapter 5

Discussion

The MAV; RMS, and MNF results of a specific participant were shown as a general example
because the same pattern was observed in the signal analysis of most of the participants. In
addition, feature extraction plays an essential role in increasing the accuracy of classifica-
tion since the effectiveness of the classifiers depends on the adequate information provided
to them [97]. Participants 1, 3, 6, and 8 did not show fatigue in the first measurement
performed, which shows that they did not exceed their resistance limit [98]. However, these
participants increased the weight in the exercises performed on the second day of measure-
ments, and this time, they did show fatigue. On the other hand, participant 10 did not
present fatigue in either the first or the second measurement. It is important to mention
that participants 6, 8, and 10 are women. In the literature, it is mentioned that women
are less prone to suffer muscle fatigue because they have a greater endurance [99] and have
a higher content of type I muscle fibers (slow twitch fibers) compared to men [100]. More-
over, fatigue is likely to be linked to muscle mass, which theoretically influences oxygen
demand and perfusion during muscle contractions at the same relative strength level [101].

The most commonly used method for the analysis of sEMG signals is DWT due to the
ability of the wavelets to adjust the temporal resolution individually for each frequency.
This means that it provides a higher time result for high bands and a lower resolution time
for low-frequency bands. In contrast, the Fourier Transform maintains the same resolution
for each band, resulting in a less accurate approximation in both time and frequency of
physiological signals [102]. In addition, DWT is known to provide sufficient information
about the signal, with a great improvement in computation time compared to STFT [103].
Based on the results of the present work, it is evident that the use of the DWT for the raw
signal processing and the extraction of time domain and frequency domain characteristics
allowed to obtain the expected results for fatigue detection based on the literature. In
fact, it is known that two common indicators used to measure and analyze the amplitude
of the sEMG in modern digital systems are the MAV and RMS [30] [104]. The results
obtained in this study evidenced an increasing trend in the MAV and RMS after exercise
in most of the participants. Another study in which they analyzed the sEMG of the rectus
femoris muscle in static contractions showed an increase in MAV, frequency shift in the
power spectrum towards lower frequencies, and increase in the amplitude and duration of
an averaged action potential of the motor unit as part of the changes in the signal as a
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result of fatigue [105]. This suggests a general increase in the signal amplitude measured
over time. In a different study, they performed simultaneous measurements of myoelectric
signals both within the muscles and at the muscle surface, and the results showed that
fatigue increased the RMS of the surface myoelectric signal [106]. This is due to the fre-
quency shift of the power spectrum towards lower frequencies. The tissue has the property
of attenuating or reducing the higher frequencies of the electrical signals, like a low-pass
filter, allowing more energy to reach the surface electrodes [107]. In addition, the results
obtained in the present study of MAV and RMS were very similar. The same happened in
another study [108], where they also mentioned that the MAV feature, from the point of
view of class separability, is better than the RMS, so they only discussed the MAV results.
Furthermore, the decreasing trend in the MNF after exercise was also observed in most of
the participants. MNF has proven to be useful in identifying alterations in the frequency
and patterns of MUs recruitment that are produced by metabolic changes during muscle
fatigue [109]. Some researches mentioned using sEMG to assess VL muscle fatiguability
under isometric conditions, the shift of MNF towards lower frequencies was considered
[43]. MNF is commonly used in sEMG analysis to assess muscle fatigue. When a muscle is
fatigued, the frequency of action potentials generated by the motor units decreases, which
is reflected in a shift towards lower frequencies in the sEMG frequency spectrum. Besides,
sEMG power spectrum analysis is a valuable tool for detecting muscle fatigue, and it is
enhanced by combining this analysis with time domain features to consider more informa-
tion about the muscles and avoid missing information [10]. In general terms, the literature
has confirmed that an increase in MAV and RMS in the time domain, as well as a decrease
in MNF in the frequency domain, are indicators of muscle fatigue [92] [102]. According to
Abdelouahad et al., [7], the increase in MAV and RMS during muscle contraction is also
related to the increase in force level contraction. Moreover, Belkacem et al. [110] added
that MNF, in addition to MAV and RMS, is also influenced by both the level of produced
maximum voluntary contraction and fatigue. However, when comparing the signal mea-
surements before and after exercise in the present study, it was noted that the alterations
presented in the analysis of the extracted characteristics occurred after physical activity,
so it is associated with fatigue.

Among the traditional ML algorithms used, the RF model showed better performance
than the SVM, and the k-NN for fatigue classification. Zhang et al. [69] also used these
three techniques in their study to evaluate the performance, and similarly found that RF
obtained better accuracy than SVM and k-NN. Although traditional ML methods can
present some problems in certain cases [64] and be challenging for complex EMG signals
[111], they are the most recommended when dealing with small datasets [2]. In this work,
the RF achieved ”perfect” performance, which is due to the overtraining factor. The over-
fitting or overtraining effect of a model can happen when the training dataset is small, and
when the training data (features) are too optimistic/good [112]. Sensitivity is the ability
(of the classifier) to produce a positive result for a person with the condition of interest
(fatigue), while specificity reflects the ability to produce a negative result for a person
without the condition (non-fatigue) [113]. Although all three models were trained with the
same data set, RF provided perfect sensitivity, specificity, and accuracy, whereas in the
SVM and k-NN models these decreased. This indicates that RF could be an effective tech-
nique for muscle fatigue classification. However, these findings serve as a basis for future
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research to further investigate its effectiveness and performance, expanding the data and
perhaps increasing the number of characteristics analyzed.

The effectiveness of the method proposed in this work for the analysis of sEMG signals
in the VL for the detection of muscle fatigue is a useful tool for monitoring neuromuscular
performance and creating training strategies for young athletes to prevent overtraining and
injuries. On one hand, overtraining syndrome is a condition that occurs due to intense
and excessive training [114] and it is characterized by persistent fatigue, low athletic per-
formance, changes in mood, among other factors. Having an early indicator to prevent
overtraining before serious symptoms occur is a necessity for an athlete’s career, as well
as having a training program that includes regular monitoring to assess short and long-
term adaptation to training [115]. On the other hand, neuromuscular performance plays a
significant role in patellar dislocations, suggesting implications for knee injury prevention.
Patellar dislocation is a common injury in the patellofemoral joint, especially in young
athletes. Its treatment can vary from conservative approaches, such as physiotherapy and
rest, to more invasive surgical interventions, such as patellofemoral ligament reconstruction,
patellar realignment, repair of damaged cartilage, etc. Additionally, postoperative reha-
bilitation is required to ensure optimal recovery [116]. Therefore, this work contributes to
the field of sports performance and injury prevention because it has been reported that the
use of a muscle fatigue detection system could help prevent injuries caused by overexertion
[102]. Finally, this work presented some limitations such as having a small database, which
produced a performance of 100% of the RF, and a low sensitivity of 50% and specificity
of 75% of the SVM and k-NN. Another limitation, as also mentioned by Zhang et al. [69],
was the lack of a uniform measure of muscle fatigue. To overcome this problem, standard-
ization of muscle fatigue measurements is required to improve the accuracy and reliability
of fatigue detection methods based on sEMG signals. The literature, however, has not yet
reached a consensus on these values because they are directly related to each individual
and task [117].
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Chapter 6

Conclusions

• Measurements of sEMG signals on the VL muscle were performed before and after
the conduction of exercises in the gym in a group of 10 participants, by following the
specific skin preparation guidelines and adequate placement of the surface electrodes.
This procedure allowed to obtain the database to carry out an analysis of the signal
for the muscle fatigue detection.

• A system for the signal processing was designed in Simulink by implementing the
DWT, a bior 3.5 filter, level 4, and asymmetric structure. The signals were recon-
structed by attenuating the noise, and keeping the relevant information of the signal.
This was verified since the difference between the model result values and the initial
signal values was small. Moreover, the signal decomposition using the DWT made
it possible to analyze the variations in muscle activity by extracting characteristics
from the time domain and the frequency domain.

• The obtention of MAV, RMS, and MNF of the sEMG signal was achieved before and
after the exercises, and the results of both were compared to identify any pattern
associated to the muscle fatigue. Results prove that MAV and RMS increases, whilst
the MNF decreases, when there is muscle fatigue. These results also confirm the
importance of features extraction for the muscle condition evaluation.

• The results of the model proposed in the present work were validated by comparing
them with those in the literature. The results clearly showed that the parameters in
the time domain increase and the parameters in the frequency domain decrease in the
fatigue state. Additionally,the analysis allowed the application of the traditional ML
models of classification RF, SVM, and k-NN, which reached an accuracy of 100%,
83.33%, and 83.33%, respectly.

• The present work presented a non-invasive and efficient method for the analysis of
sEMG signals for the detection of muscle fatigue and the optimization of physical
performance. These findings have important implications for clinical and sports
practice, as they provide an effective methodology for assessing muscle condition,
which allows the creation of training strategies to prevent injuries.
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6.1 Recommendations
• It is essential to consider the external elements that can trigger interferences in the

signal, such as interferences caused by the movement of the participant, or the move-
ment of the cables, so we can avoid them. This will help to minimize the noise added
to the signals, thus improving the quality of the data obtained.

• Provide the participants with an explanation of the procedure to be followed during
the data collection, in order to avoid possible delays and allow a more efficient and
accurate execution of the required activities.

• The use of personal and unique electrodes for each individual during sEMG signal
measurements is highly recommended.

• It is critical to ensure the correct handling and use of the materials utilized in signal
acquisition, in order to prevent damage that could compromise the integrity of the
equipment and the accuracy of the measurements.

• Keep the batteries of the equipment properly charged before each measurement ses-
sion, in order to ensure optimal performance, avoid interruptions during the data
acquisition process, and guarantee the reliability of the measurements.

• Keep the computer used in the signal acquisition process always with battery charge,
in order to avoid possible interruptions in the data recording due to sudden power
outages. This will ensure data integrity and continuity of the signal acquisition
process.

• Check that the signal has been correctly recorded before saving it. This will ensure
the integrity of the stored data for further processing and analysis.

6.2 Future works
• To apply the system designed in this work for the detection of muscle fatigue in the

other muscles of the lower body, such as the rectus femoris, and vastus medialis.

• Expand the database with a larger number of participants to develop a more solid
database in order to train a neural network for the automatic detection of muscle
fatigue.

• To carry out an exhaustive study of muscle fatigue detection in athletes of various
sports disciplines, such as soccer, basketball, cycling, running and gym training. This
comparative analysis will permit to determine which type of exercise is most linked
to the onset and development of muscle fatigue.

• Conduct a complementary investigation using the same methodology for the muscle
fatigue detection, but focusing on the measurement of sEMG signals during dynamic
contractions. This approach will provide a more detailed understanding of muscle
fatigue patterns in different physical activities.
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[67] S. Äyrämö, “Neuromuscular fatigue after short-term maximal run in child, youth,
and adult athletes,” Master’s thesis, 2013.

[68] R. A. Tibana, J. Prestes, D. da Cunha Nascimento, O. V. Martins, F. S. De San-
tana, and S. Balsamo, “Higher muscle performance in adolescents compared with
adults after a resistance training session with different rest intervals,” The Journal
of Strength & Conditioning Research, vol. 26, no. 4, pp. 1027–1032, 2012.

[69] Y. Zhang, S. Chen, W. Cao, P. Guo, D. Gao, M. Wang, J. Zhou, and T. Wang,
“Mffnet: Multi-dimensional feature fusion network based on attention mechanism
for semg analysis to detect muscle fatigue,” Expert Systems with Applications, vol.
185, p. 115639, 2021.

[70] D. B. Krishnamani, K. PA, and R. Swaminathan, “Variational mode decomposition
based differentiation of fatigue conditions in muscles using surface electromyography
signals,” IET Signal Processing, vol. 14, no. 10, pp. 745–753, 2020.

[71] J. M. Hart, B. Pietrosimone, J. Hertel, and C. D. Ingersoll, “Quadriceps activation
following knee injuries: a systematic review,” Journal of athletic training, vol. 45,
no. 1, pp. 87–97, 2010.

[72] A. C. Waligora, N. A. Johanson, and B. E. Hirsch, “Clinical anatomy of the quadri-
ceps femoris and extensor apparatus of the knee,” Clinical Orthopaedics and Related
Research®, vol. 467, no. 12, pp. 3297–3306, 2009.

[73] K. Weiss and C. Whatman, “Biomechanics associated with patellofemoral pain and
acl injuries in sports,” Sports medicine, vol. 45, pp. 1325–1337, 2015.

[74] T. W. Beck, T. J. Housh, A. C. Fry, J. T. Cramer, J. P. Weir, B. K. Schilling,
M. J. Falvo, and C. A. Moore, “A wavelet-based analysis of surface mechanomyo-
graphic signals from the quadriceps femoris,” Muscle & Nerve: Official Journal of
the American Association of Electrodiagnostic Medicine, vol. 39, no. 3, pp. 355–363,
2009.

Information Biomedical Engineer 52 Graduation Project



School of Biological Sciences and Engineering Yachay Tech University

[75] K. T. Ebersole and D. M. Malek, “Fatigue and the electromechanical efficiency of
the vastus medialis and vastus lateralis muscles,” Journal of athletic training, vol. 43,
no. 2, pp. 152–156, 2008.

[76] M. Grabiner, T. Koh, and G. Miller, “Fatigue rates of vastus medialis oblique and
vastus lateralis during static and dynamic knee extension,” Journal of orthopaedic
research, vol. 9, no. 3, pp. 391–397, 1991.

[77] H. J. Hermens, B. Freriks, R. Merletti, D. Stegeman, J. Blok, G. Rau, C. Disselhorst-
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.1 Appendix 1.
FORMULARIO DE CONSENTIMIENTO

Yo, [nombre completo del participante], con cédula de identidad [número de cédula],
por medio del presente, otorgo mi consentimiento voluntario para participar en el proyecto
de investigación titulado: ”Análisis de señales sEMG de alta frecuencia” dirigido por Felix
Vladimir Bonilla Venegas, docente de la Universidad de Investigación de Tecnoloǵıa Ex-
perimental Yachay.

A continuación, se detallan los términos y condiciones del consentimiento:

T́ıtulo del Proyecto: Análisis de señales sEMG de alta frecuencia
Nombre del Investigador Principal: Felix Vladimir Bonilla Venegas
Correo electrónico: fbonilla@yachaytech.edu.ec

Detalles:

Estoy participando en la construcción de una base de datos de señales electromiográficas
de superficie (sEMG). A través de este documento, doy mi consentimiento para que los
datos recopilados sean utilizados con fines académicos.

Las señales sEMG serán utilizadas con el fin de realizar un análisis de caracteŕısticas
para la detección temprana de la fatiga muscular. Además, las señales medidas servirán
para contar con una base de datos para en trabajos futuros, dentro del plan de trabajo del
presente proyecto de investigación, poder crear una red neuronal que permita la detección
automática de la fatiga.

Se garantiza que las señales sEMG no contendrán ninguna referencia que pueda iden-
tificarme personalmente. Mi información personal será tratada de forma confidencial y mi
nombre será reemplazado por un número.

El responsable de la actividad me proporcionará las indicaciones necesarias para re-
alizar las mediciones de las señales sEMG.

Por favor, marque en todos los cuadros a continuación:

1. Confirmo que he léıdo y entiendo toda la información indicada
anteriormente sobre el estudio.

2. Entiendo que mi participación es voluntaria y soy libre de
retirarme en cualquier momento sin dar ninguna razón.

3. Entiendo que cuando los resultados de la investigación sean
publicados no se usará información personal.

4. Estoy de acuerdo en participar en el estudio y seguir las
instrucciones del instructor.
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Adicionalmente, declaro que he recibido respuestas satisfactorias a todas mis preguntas
relacionadas con el proyecto y entiendo plenamente los beneficios asociados con mi partic-
ipación.

Por medio de mi firma, confirmo que he léıdo y comprendido los detalles del proyecto
mencionados anteriormente, y otorgo mi consentimiento para participar en el estudio
”Análisis de señales sEMG de alta frecuencia ”.

Nombre completo del participante:

Firma:
Fecha:
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.2 Appendix 2.

Listing 1: MATLAB Script

1 len = length (p1de1);

2 h = 20/( len -1);

3 time = (0:h:20) ’;

4 plot(time ,p1de1);

5

6 % Participant 1

7 s1a1 = [time ,p1ae1 ];

8 s1d1 = [time ,p1de1 ];

9 s1a2 = [time ,p1ae2 ];

10 s1d2 = [time ,p1de2 ];

11

12 % Participant 2

13 s2a1 = [time ,p2ae1 ];

14 s2d1 = [time ,p2de1 ];

15 s2a2 = [time ,p2ae2 ];

16 s2d2 = [time ,p2de2 ];

17

18 % Participant 3

19 s3a1 = [time ,p3ae1 ];

20 s3d1 = [time ,p3de1 ];

21 s3a2 = [time ,p3ae2 ];

22 s3d2 = [time ,p3de2 ];

23

24 % Participant 4

25 s4a1 = [time ,p4ae1 ];

26 s4d1 = [time ,p4de1 ];

27 s4a2 = [time ,p4ae2 ];

28 s4d2 = [time ,p4de2 ];

29

30 % Participant 5

31 s5a1 = [time ,p5ae1 ];

32 s5d1 = [time ,p5de1 ];

33 s5a2 = [time ,p5ae2 ];

34 s5d2 = [time ,p5de2 ];

35

36 % Participant 6

37 s6a1 = [time ,p6ae1 ];

38 s6d1 = [time ,p6de1 ];

39 s6a2 = [time ,p6ae2 ];

40 s6d2 = [time ,p6de2 ];
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41

42 % Participant 7

43 s7a1 = [time ,p7ae1 ];

44 s7d1 = [time ,p7de1 ];

45 s7a2 = [time ,p7ae2 ];

46 s7d2 = [time ,p7de2 ];

47

48 % Participant 8

49 s8a1 = [time ,p8ae1 ];

50 s8d1 = [time ,p8de1 ];

51 s8a2 = [time ,p8ae2 ];

52 s8d2 = [time ,p8de2 ];

53

54 % Participant 9

55 s9a1 = [time ,p9ae1 ];

56 s9d1 = [time ,p9de1 ];

57 s9a2 = [time ,p9ae2 ];

58 s9d2 = [time ,p9de2 ];

59

60 % Participant 10

61 s10a1 = [time , p10ae1 ];

62 s10d1 = [time , p10de1 ];

63 s10a2 = [time , p10ae2 ];

64 s10d2 = [time , p10de2 ];
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.3 Appendix 3.

Listing 2: Random Forest Script

1 import pandas as pd

2 from sklearn . model_selection import train_test_split

3 from sklearn . ensemble import RandomForestClassifier

4 from sklearn . metrics import accuracy_score

5 from sklearn . metrics import confusion_matrix

6

7 # Load training and test data

8 dataX = pd. read_excel (’/ content /data -train.xlsx ’)

9 dataY = pd. read_excel (’/ content /data -test.xlsx ’)

10

11 X_train = dataX [[’MAV ’, ’RMS ’, ’MNF ’]]

12 X_test = dataY [[’MAV ’, ’RMS ’, ’MNF ’]]

13

14 y_train = dataX [[’Classification ’]]

15 y_test = dataY [[’Classification ’]]

16

17 # Initializing the Random Forest classifier

18 rf_classifier = RandomForestClassifier ( n_estimators =100 , random_state

=41)

19

20 # Training the model

21 rf_classifier .fit(X_train , y_train )

22

23 # Predicting labels for the test set

24 y_pred = rf_classifier . predict ( X_test )

25

26 # Calculate the accuracy of the model.

27 accuracy = accuracy_score (y_test , y_pred )

28 print(" P r e c i s i n del modelo : {:.2f}%". format ( accuracy * 100))

29

30 # Calculate the confusion matrix

31 conf_matrix = confusion_matrix (y_test , y_pred )

32 print( conf_matrix )

33

34 # Extract the values of the confusion matrix

35 TN , FP , FN , TP = conf_matrix .ravel ()

36

37 # Calculate sensitivity and specificity

38 sensitivity = TP / (TP + FN)

39 specificity = TN / (TN + FP)
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40

41 print(" Sensibilidad del modelo Ramdom Forest : {:.2f}%". format (

sensitivity * 100))

42 print(" Especificidad del modelo Ramdom Forest : {:.2f}%". format (

specificity * 100))
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.4 Appendix 4.

Listing 3: Support Vector Machine Script

1 from sklearn .svm import SVC

2

3 # Load training and test data

4 dataX = pd. read_excel (’/ content /data -train.xlsx ’)

5 dataY = pd. read_excel (’/ content /data -test.xlsx ’)

6

7 X_train = dataX [[’MAV ’, ’RMS ’, ’MNF ’]]

8 X_test = dataY [[’MAV ’, ’RMS ’, ’MNF ’]]

9

10 y_train = dataX [[’Classification ’]]

11 y_test = dataY [[’Classification ’]]

12

13 # Initializing the SVM classifier

14 svm_classifier = SVC( kernel =’rbf ’, random_state =41)

15

16 # Training the SVM model

17 svm_classifier .fit(X_train , y_train )

18

19 # Predicting the labels for the test set using SVM

20 y_pred_svm = svm_classifier . predict ( X_test )

21

22 # Calculate the accuracy of the SVM model

23 accuracy_svm = accuracy_score (y_test , y_pred_svm )

24 print(" P r e c i s i n del modelo SVM: {:.2f}%". format ( accuracy_svm * 100))

25

26 # Calculate the confusion matrix

27 conf_matrix = confusion_matrix (y_test , y_pred )

28 print( conf_matrix )

29

30 # Extract the values of the confusion matrix

31 TN , FP , FN , TP = conf_matrix .ravel ()

32

33 # Calculate sensitivity and specificity

34 sensitivity = TP / (TP + FN)

35 specificity = TN / (TN + FP)

36

37 print(" Sensibilidad del modelo SVM: {:.2f}%". format ( sensitivity * 100)

)

38 print(" Especificidad del modelo SVM: {:.2f}%". format ( specificity *

100))
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.5 Appendix 5.

Listing 4: K-Nearest Neighbor Script

1 from sklearn . neighbors import KNeighborsClassifier

2

3 # Load training and test data

4 dataX = pd. read_excel (’/ content /data -train.xlsx ’)

5 dataY = pd. read_excel (’/ content /data -test.xlsx ’)

6

7 X_train = dataX [[’MAV ’, ’RMS ’, ’MNF ’]]

8 X_test = dataY [[’MAV ’, ’RMS ’, ’MNF ’]]

9

10 y_train = dataX [[’Classification ’]]

11 y_test = dataY [[’Classification ’]]

12

13 # Inicializar el clasificador KNN con un valor de k arbitrario (por

ejemplo , k=5)

14 knn_classifier = KNeighborsClassifier ( n_neighbors =2)

15

16 # Entrenar el modelo KNN

17 knn_classifier .fit(X_train , y_train )

18

19 # Predecir las etiquetas para el conjunto de prueba usando KNN

20 y_pred_knn = knn_classifier . predict ( X_test )

21

22 # Calcular la p r e c i s i n del modelo KNN

23 accuracy_knn = accuracy_score (y_test , y_pred_knn )

24 print(" P r e c i s i n del modelo KNN: {:.2f}%". format ( accuracy_knn * 100))

25

26 # Calculate the confusion matrix

27 conf_matrix = confusion_matrix (y_test , y_pred )

28 print( conf_matrix )

29

30 # Extract the values of the confusion matrix

31 TN , FP , FN , TP = conf_matrix .ravel ()

32

33 # Calculate sensitivity and specificity

34 sensitivity = TP / (TP + FN)

35 specificity = TN / (TN + FP)

36

37 print(" Sensibilidad del modelo KNN: {:.2f}%". format ( sensitivity * 100)

)

38 print(" Especificidad del modelo KNN: {:.2f}%". format ( specificity *
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