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Resumen
Implementamos una simulación computacional a escala completa del Modelo de Tributo y Conflicto de Axelrod
dentro de la perspectiva contemporánea e interdisciplinar de los sistemas complejos y exploramos los comportamien-
tos colectivos emergentes a través del análisis estadístico de sus resultados. Investigamos el Modelo de Tributo de
Axelrod en una situación realista de una red bidimensional. Se abordan varias cuestiones de interés: la distribución
de frecuencias y tamaños de los conflictos, la distribución de frecuencias entre eventos de grandes conflictos, la
evolución y distribución de recursos, el surgimiento y caída de coaliciones, entre otras. Generalizamos el modelo
original en dos aspectos: (i) al considerar una red global de interacciones, y (ii) al introducir un decaimiento
exponencial en el rango de interacciones. Analizamos los efectos de los distintos parámetros del modelo sobre la
aparición de comportamientos colectivos en el sistema calculando diversos diagramas de fases. Investigamos la
formación de coaliciones o alianzas utilizando conceptos de redes complejas sobre la red de compromisos adaptativa
resultante. Visualizamos las redes de compromisos entre agentes, revelando la formación de coaliciones como
estructuras modulares. Se introduce el índice de Gini para caracterizar la distribución de recursos en el sistema a
lo largo de su evolución. Descubrimos una correlación entre la disponibilidad de recursos y los conflictos sociales.
Identificamos parámetros del modelo que pueden contribuir a reducir la desigualdad resultante de los conflictos.
Nuestra exploración extiende las ideas originales de Axelrod a un contexto más amplio, ampliando nuestra compren-
sión de las complejas dinámicas sociopolíticas y sus implicaciones para la sostenibilidad global.

Palabras clave: Sistemas complejos; Sociofísica, Dinámica de conflictos; Auto-organización, Sostenibilidad.
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Abstract
We implement a full scale computational simulation of Axelrod’s Tribute and Conflict Model within the contem-
porary and interdisciplinary perspective of complex systems and explore the emerging collective behaviors through
statistical analysis of its outcomes. We investigate Axelrod’s Tribute Model in a realistic situation of a two dimen-
sional lattice. Several issues of interest are addressed: the frequency distribution and sizes of the conflicts, the
frequency distribution of inter-event of large conflicts, the evolution and distribution of resources, the rise and fall of
coalitions, among others. We generalize the original model in two aspects: (i) by considering a global network of
interactions, and (ii) by introducing an exponential decay on the range of interactions. We analyze the effects of the
various parameters of the model on the emergence of collective behaviors in the system by calculating diverse phase
diagrams. We investigate the formation of coalitions or alliances by using concepts from complex networks on the
resulting adaptive network of commitments. We visualize the networks of compromises between agents, revealing
the formation of coalitions as modular structures. The Gini index is introduced to characterize the distribution
of resources in the system along its evolution. We uncover a correlation between resource availability and social
conflicts. We identify parameters of the model that can contribute to reduce inequality resulting from conflicts.
Our exploration extends Axelrod’s original insights to a broader context, expanding our understanding of complex
sociopolitical dynamics and their implications for global sustainability.

Keywords: Complex Systems; Sociophysics, Conflict dynamics; Self-organization, Sustainability.
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Chapter 1

Introduction

The term ’complex’ originates in the Latin roots ’com’, signifying ’together’, and ’plectere’, which means ’to weave’1.
This etymology encapsulates the essence of complex systems, characterized by many interconnected elements work-
ing in unison. However, the study of these systems transcends mere observation of individual components. It delves
into the intricate relationships and interactions that give rise to emergent properties.

In recent years, Physics and other sciences have created the general concept of complex system to describe a
diversity of natural and artificial systems. A complex system2 3 is a set of interacting elements whose collective
behavior cannot be derived from the knowledge of the properties of the isolated elements. The collective behavior
is said to emerge from the interactions between the components, without any external influence or design. These
systems commonly exhibit two properties: self-organization and emergence. The first one corresponds to the display
of organization without the application of an external organizing principle or rule. The second is the manifestation
of properties that are not present in the constituents of the system nor can be described by the superposition of their
properties. A paradigmatic example of a complex system is the brain. It is well known how a single neuron functions.
A single neuron cannot think nor have consciousness by itself, but a network of billions of them forming the brain
can give rise to thought, conscience, and emotions. The concept of complex system takes on another interesting
form in social systems, where human interactions can lead to the emergence of social and political structures. The
application of the concepts and methods of complex systems to study social systems has been called Sociophysics4.

Doran and Gilbert5 assert that "computer simulation is an appropriate methodology whenever a social phe-
nomenon is not directly accessible". This approach is especially pertinent when confronting complex systems where
direct observations may prove impractical. Using computer simulations, researchers can effectively model intricate
dynamics and interactions that would otherwise be challenging to study. For instance, social interaction processes
are so complex that it is practically impossible to model all aspects of the target phenomena. This complexity arises
from a society comprising numerous heterogeneous and restricted minds, each contributing to the intricate tapestry
of social dynamics.

1
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A model conceptualized and shaped as a computer simulation has been termed an ’Artificial Society.’ Such
entities are neither better nor worse than the real world; they exist as distinct entities within the world, possessing a
notable degree of autonomy. The refined observation they provide sets artificial societies apart from the real world.
Unlike the complexities inherent in real-world phenomena, artificial societies offer a simpler way for examining
and exploring different structures and behaviors. This facilitates improving our knowledge and understanding of
potential social worlds along with exploratory simulations.

Conte and Gilbert5 perspectives on social actions extend beyond the dichotomy of cooperation and conflict.
Certain social actions exhibit clear advantages or disadvantages, and a complex hierarchy of goals governs them.
In this context, the study of Artificial Societies becomes invaluable for examining the nature of social interactions.
Social interference describes structural social relations as "self-sufficient agents in a common world hindering or
facilitating one another"5.

The emergence of organization, alliances, and coalitions in societies is a problem of great interest that has been
approached in the context of complex systems. This is a vital issue in today’s world, since we are experiencing an era
in which the standard political unit, the nation, is no longer completely stable. We see, on the one hand, how some
states have disintegrated, like the Soviet Union and Yugoslavia; while on the other hand, large entities have appeared,
such as the European Union, NATO, the UN, the OAS, Mercosur, and other regional associations, to achieve greater
stability and socioeconomic sustainability. The problem of the grouping and segregation of structures and alliances
is essential for understanding the global geopolitics.

Many models have assumed from the outset the presence of community organizations and, therefore, do not pro-
pose mechanisms to explain how these organized structures could appear. Traditionally, the fundamental paradigm
of models for the formation of social structures or coalitions has been game theory6. This theory assumes knowledge
of who the agents are in a system, and the strategies they adopt in very particular conditions; but the agents do not
spontaneously form alliances or organized structures.

In the post-Cold War era, the prominent social scientist Robert Axelrod proposed a model in an influential article
titled Building New Political Actors7 that describes the process by which independent agents might relinquish part
of their autonomy, creating a new entity at a higher level of organization.

Axelrod’s Tribute and Conflict Model7 uses techniques and concepts from complex adaptive systems2 3. Ax-
elrod’s work can be considered as an alternative approach within the field of political and social sciences in the
study of the emergence of states and alliances organized through processes based on local interactions with well-
defined rules between units or elementary agents. As a result from these interaction processes, collective properties
emerge in the system, such as as higher levels of organization, formation of structures and patterns. The purpose
of Axelrod’s model is to explain the process of formation of coalitions or alliances based on simple rules of lo-
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cal interaction. The emergency of self-organized collective states (what Axelrod calls new political actors), not
only occurs within a social or political context, but also appears in a wide variety of phenomena in nature, such
as in biological systems, where organs and tissues arise from single-celled organisms; or the way the brain’s neu-
rons are connected to produce sophisticated mental functions, such as memory, logical reasoning or consciousness2 3.

The dynamics of aggregation and fragmentation of influential agents become pivotal for comprehending the
future of global politics, encompassing international security affairs and political economy. Axelrod’s Tribute
Model7 mirrors the historical state-formation processes through a "pay or else" strategy through which states
formation can be analyzed via extortion and compromise, shedding light on how nations can become less egotistical
for collective action. This model serves as a theoretical framework to describe diverse troubled situations that involve
power relations; from the rise of empires, mafia organizations, conflicts among nations, the dynamics of warfare, to
personal relations and negotiations. Axelrod’s model allows to investigate the emergence of higher organizational
levels, to delineate their minimal conditions for existence, to comprehend survival behaviors and collapses, and helps
to unveil phenomena of significance for the broader study of international politics, Sociophysics, and Econophysics.

1.1 Problem Statement

Motivated by the relevance of the problem of the prevalence of conflicts and formation of alliances in today’s world,
in this Thesis we undertake the task of implementing a full scale computational simulation of Axelrod’s Tribute
Model within the perspective of complex systems and explore its consequences through statistical analysis of its
outcomes. We investigate Axelrod’s Tribute Model in a realistic situation of two dimensions and in other connectivity
topologies, applying the rules of interaction through extended numerical simulations. We address several issues
of interest: the frequency distribution and sizes of the conflicts, the frequency distribution of peace intervals, the
evolution and distribution of resources, the rise and fall of coalitions, among others. Our exploration aims to
extend Axelrod’s original insights into a broader context, expanding our understanding of complex sociopolitical
dynamics and their implications for global sustainability. The present Thesis is framed within the contemporary
interdisciplinary field of complex systems.

1.2 Objectives

1.2.1 General Objective

To implement Axelrod’s Tribute Model on a full scale through computational simulations and to investigate its
consequences by using concepts and techniques from Statistical Physics and Complex Systems.

1.2.2 Specific Objectives

• Apply the fundamental concepts of Axelrod’s Tribute Model on a two-dimensional lattice.
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• Generalize Axelrod’s Tribute Model to a globally coupled network and by varying the range of interaction.

• Analyze statistically the collective behaviors emerging along the evolution of the systems.

• Identify the parameters and strategies that influence the formation of alliances or aggregates of agents, the
distribution of conflicts and peace intervals, and the distribution of resources.

• Introduce novel visualization techniques of the resulting compromises between agents by using complex
network tools.

1.3 Overview

Chapter 2 contains the theoretical framework on which the present Thesis is based. We present a review of the
concepts employed in this Thesis, encompassing complex networks, adaptive networks, agent-based models, models
of social interaction, and the landscape theory of aggregation. We provide a formal definition of Axelrod’s Tribute
Model that we shall develop in this Thesis. Chapter 3 presents the implementation of the Tribute model on a two-
dimensional square lattice. The collective behaviors arising in the system are analyzed in this Chapter, uncovering
universal features such as heavy tail distributions that govern the inter-time distribution of conflicts. This Chapter
also includes the visualization of the commitment patterns among the agents. Chapter 4 extends the application of
the tribute model to a global network, analyzing the nature of conflicts, conflict sizes, and visualizing the dynamical
patterns. In Chapter 5 we propose an extension of the rules of the original Axelrod model. We simplify the target
selection process by fitting the range of interaction from empirical data. We obtain an exponentially decaying range
of interaction that we apply in order to construct various phase diagrams. Finally, Chapter 6 presents the conclusions
of our work, spotlighting significant findings and providing insights for future research. The appendix includes the
Python codes elaborated by the author of this Thesis for simulations and visualizations, facilitating the replication
of our study.



Chapter 2

Theoretical framework

2.1 Complex Networks

Social networks can be represented as intricate structures where nodes represent individuals or groups, and the edges
denote social interactions, encompassing aspects such as empathy, collaboration, or conflict8. In our interconnected
world, studying these networks is vital for understanding social interactions and structures, especially within platforms
like X, Facebook, Instagram, WhatsApp9.

The roots of social network analysis trace back to psychiatrist Jacob Moreno in the 1930s, who introduced
the earliest studies in what later evolved into "sociometry" and, eventually, complex system analysis. Figure 2.1(a)
showcases Moreno’s hand-drawn sociogram of a 4th-grade class, representing the precursor to modern social network
visualizations. Over time, the field has flourished, marked by numerous constructed and studied social networks.
Wayne Zachary’s renowned study10 offers a case in point, portraying the friendship connections among 34 members
of a North American karate club (see Figure 2.1(b).

Figure 2.1: Social Networks: a) Sociogram illustrating the class structure of a 4th-grade with 17 boys (triangles)
and 16 girls (circles)11. b) Graph depicting the friendship connections among 34 members of Zachary’s Karate
Club10. c) Small world network with N = 35, k = 4, p = 0.3.

5
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In essence, a network is a set of nodes connected by edges3. The representation of networks often involves an
adjacency matrix, where rows and columns correspond to nodes. In this context, the presence of an edge between
nodes i and j is denoted by ai j, designating node j as a neighbor of node i. Networks exhibit various classifications
based on the nature of their edges:

• Undirected Graph Symmetric connections characterize undirected edges, where nodes i and j are mutually
connected.

• Directed Graph Asymmetric connections define directed edges, connecting node i to node j without neces-
sitating a reciprocal link.

• Unweighted graph Here, the edges only represent if there is or is not a connection between nodes.

• Weighted graph In this graph, each edge possesses a weight, quantifying the intensity of the connection
between nodes.

• Multiple Edges Edges with the same origin and destination

Another important aspect of complex networks is the concept of community and modularity. A community is
defined as a subset of nodes more densely connected within the network than others, and these communities may
overlap with one another. An exemplary illustration of community detection is presented in Figure 2.2, showcasing
the division of Zachary’s Karate Club into distinct communities. This concept finds practical application in network
businesses, for example, where elements operate within similar economic sectors.

In contrast, modularity refers to organizing the network into multiple communities. The modularity (Q) is
mathematically defined as:

Q =
|Ein|� < |Ein| >

|E|
Here, |E| represents the total number of edges, |Ein| is the number of edges within communities that do not cross
boundaries, and < |Ein| > is the expected number of edges within the community in random topology.

A renowned algorithm for identifying communities is the Louvain method 12 , designed to maximize modularity.
This approach has proven effective in discerning intricate community structures within complex networks.

Beyond the intrinsic nature of individual components and their connections, understanding the patterns of
interaction is pivotal for grasping system behavior. In social networks, these interaction patterns wield significant
influence, shaping phenomena such as spreading diseases or disseminating opinions within populations.

Acknowledging a network’s role as a simplified representation with essential pattern connections underscores
its abstraction, a strategic simplification that brings notable advantages despite omitting intricate details. Hubs,
characterized by nodes boasting a high degree, assume a pivotal role in shaping network performance, especially
within social contexts where a select few individuals command extensive connections. A nuanced exploration and
comprehension of these hubs prove fundamental for understanding the network’s intricate dynamics.

Concluding this exploration of network phenomena, the "small world effect," vividly captured in Figure 2.1(c),
commonly referred to as the "six degrees of separation," asserts that a network with no more than five intermediaries
facilitates global communication, establishing links between any two individuals.
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Figure 2.2: Zachary’s Karate Club Network: Community Detection

Continuing on networks, adaptive networks emerge as a significant class among different dynamical network
models. These models, described as those illustrating the co-evolutionary dynamics of systems, capture the subtle
interplay where node states and typologies mutually adapt and change in response to each other’s dynamics over
time3.

An illustrative example of an adaptive network is portrayed in Figure 2.3, featuring a Susceptible-Infected-
Susceptible (SIS) model—a representative epidemiological model consisting of two groups, susceptible and infected.
In this model, susceptible nodes can contract infection from their infected neighbors with a probability pi. Moreover,
a chance exists for a susceptible node to sever its existing edge and rewire with a new node, a decision governed by
the severance probability ps. Infected nodes may also recover to a susceptible state, determined by the probability
pr.

Figure 2.3: SIS Adaptive Network Evolution: The simulation features 35 nodes, with infection probability (pi) set
at 0.5, recovery probability (pr) at 0.2, and severance probability (ps) at 0.5. The temporal progression is depicted
from left to right

Extending the scope to the evolution of social communities, nodes within adaptive networks represent individuals
with specific social-cultural states or properties. Edges, denoting social interactions, dynamically shift through the
entry or withdrawal of individuals within the community. This subtle interplay captures the evolving fabric of social
networks, where adaptive mechanisms shape the ever-changing landscape of connections and interactions.
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2.2 Agent Based Models

Agent-based models (ABMs) are versatile tools for modeling complex systems across various disciplines, including
economics, social science, ecology, and biology. While the specific constraints defining the structure of an ABM
are not rigidly defined, Sayama outlines fundamental general properties3:

• Discrete: The model operates in a discrete space, representing individual entities as distinct agents.

• Internal States: Agents possess internal states that dictate their behavior and interactions.

• Spatially Localized: Agents are situated within a spatial context, allowing for localized interactions.

• Interaction and Perception: Agents interact with and perceive their surroundings, influencing their decision-
making.

• Guided Actions: Agents exhibit actions by predetermined behavioral guidelines.

• Interaction with Others: Agents interact with other agents, contributing to the emergent system dynamics.

• Collective Behavior: The model may produce nontrivial "collective behavior" arising from the interactions
of individual agents.

The distinctive feature of ABMs lies in describing agent behavioral rules algorithmically rather than through
explicit mathematical formulations. While this approach provides a good representation of complex systems, it does
pose challenges to analytical tractability. Due to the inherent complexity of ABMs, conducting elegant mathematical
analyses becomes challenging. Consequently, analyzing ABMs and their simulation results involves testing to
identify significant differences under various experimental conditions.

As highlighted by Axelrod13, the primary goal of ABMs is not predictive accuracy but rather a means to com-
prehend complex social processes. ABMs offer a framework for exploring and understanding emergent phenomena
within social systems, acknowledging the inherent complexity that defies straightforward mathematical analysis.

2.3 Social-Interaction models

Schelling’s segregation model14 is a pioneering and paradigmatic ABM model and constitutes a valuable tool for
examining social segregation. This model adopts an Ising-like structure, initially implementing a lattice of size N
with a Moore neighborhood. The automaton, a term denoting a theoretical machine that evolves its internal states
based on preceding states3, operates with states S = {A, B,O}. Here, A and B signify two distinct types of agents
within a cell, while O designates empty spaces.

Initially, the unoccupied cells represent a fraction ⇢ = N0/N2 and agents of different types randomly occupy the
remaining sites. At each step, an agent evaluates its surroundings, computing the fraction of agents of its type. If this
fraction falls below a predefined threshold, the agent relocates to an empty site. Figure 2.4 illustrates the emergence
of clusters comprised of agents of the same type.
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Figure 2.4: Schelling’s Segregation Model: Replication in a 50x50 lattice: Initial and Final Configurations. ⇢ = 0.3

Examining different scenarios of social dynamics, we can further explore the subtleties of strategic decision-
making through the lens of classic game theory, as exemplified by the renowned Prisoner’s Dilemma. Introduced
by the American mathematician Merrill Flood, the Prisoner’s Dilemma is a clear example of cooperation dynamics
among rational players. Numerous studies, including the notable work by Axelrod15, have delved into strategies for
effective gameplay within this paradigm. The scenario of the Prisoner’s Dilemma unfolds with two individuals com-
mitting a crime together, subsequently placed in separate cells with no means of communication. As a prosecutorial
tactic, authorities reward either prisoner for providing evidence against the other. The three possible outcomes are
as follows:

• One criminal defects and the other cooperates (remains silent), leading to the former’s release and the latter’s
sentencing to 3 years in prison.

• If both prisoners defect, each receives a 2-year prison sentence.

• If both prisoners cooperate, insufficient evidence exists for conviction, resulting in a shared 1-year prison term.

2.4 The Landscape Theory of Aggregation

Axelrod’s assertion that “politics minimizes the strangeness of bedfellows”13 suggests that alliances can form
between seemingly disparate entities when politically advantageous. The Landscape theory of aggregation further
explores this concept, examining how elements within a system align themselves based on compatibility and distance,
adding a layer of complexity to system configurations and interactions. This theory has far-reaching implications,
influencing international power dynamics and setting quality benchmarks in competitive industries. It offers insights
into potential international alignments and underscores the volatility of domestic political coalitions, leading to
system changes.
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The Landscape theory initiates with n nations or agents, each characterized by a size si > 0, reflecting demograph-
ics, economics, armament status, or a significant combination thereof. Propensity pi j denotes the inclination of two
nations, i and j, to collaborate, with larger values indicating a higher likelihood of collaboration and lower/negative
values representing potential conflicts. To ensure symmetry in considering conflicts, pi j = p ji. The theory has two
main assumptions: a“myopic” nature of national leadership in performance evaluations and the gradual realignment
of nations due to ambiguous benefits. These assumptions present negotiation challenges as potential outcomes
remain uncertain, providing a deeper understanding of international relations and power balance dynamics.

Configuration is defined as X, representing the grouping of nations and the associated distance di j between pairs.
In hierarchical organizations, the distance signifies the number of layers. A binary representation is commonly used,
with 0 denoting group membership and 1 indicating disjointedness.

As proposed by Axelrod13, the notion of "frustration" emerges, capturing how well or poorly a configuration
satisfies a nation or agent. Nations seek configurations with lower frustration, aiming to move closer to others. This
frustration, determined by propensity and distance, is crucial in shaping the system’s dynamics. Given a nation i,
with a configuration X, its frustration is:

Fi(X) =
X

j,i

si pi jdi j(X) (2.1)

The weighted frustration formula accounts for agent size s j, emphasizing collaboration with significant agents
and maintaining the myopic assumption through pairwise evaluations. A configuration’s energy (E) is the sum of
individual frustrations.

E(X) =
X

i

siFi(X) (2.2)

E(X) =
X

i, j

si s j pi jdi j(X) (2.3)

In the context of agent collaboration, the energy and configuration are optimized, resulting in lower values than
when agents operate in opposition. This relationship gives rise to an energy landscape representing configurations
and their corresponding energies. A decrease in a single nation’s frustration signifies a reduction in the system’s
overall energy. The energy transitions from a higher state to a lower one, stabilizing at a local minimum. According
to the landscape theory13, the system’s configuration changes like a downhill movement, with stable configurations
located at local minima. The theory also posits that symmetric propensities prevent the system from entering cyclic
configurations.

It is important to note that achieving equilibrium does not necessarily mean reaching a global minimum. The
system’s evolution is influenced by its initial conditions and history, causing it to settle in a corresponding basin
rather than the lowest energy or frustration state. In essence, the landscape theory leverages propensity and size to
calculate configuration energy, providing predictive insights into the system’s behavior.
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2.5 Axelrod’s Tribute and Conflict Model

In this we present the fundamental theory that constitutes the basis for the present Thesis. The prominent social
scientist Robert Axelrod proposed an ABM model to explore the intricate processes where agents sacrifice some
autonomy for more efficient collective organization. In an famous article, entitled "Building new political agents"7,
Axelrod investigates how larger political entities arise from interactions among smaller ones. He establishes criteria
to identify emerging political agents: effective control over subordinates, collective action, and recognition by
others. This model can be applied to diverse situations that involve power relations, from the rise of empires, mafia
organizations, conflicts among nations, the dynamics of warfare, to personal relations and negotiations.

At the heart of the model lies a "pay or else" dynamics inspired by the concept of extortion, a process Axelrod
identifies as crucial in the formation of states or power organizations. The tribute model involves agents extracting
resources through forced transfers known as tribute payments. This process empowers the extracting agent’s status
and weakens the payer’s influence. Unlike territorial conquest, which is excluded from this model, the tribute model
allows for future coordinated actions, sustaining the involvement of independent agents in the dynamics over time.

It is essential to understand clearly the symbols and notations that we shall use throughout this work. Table 2.1
below provides a comprehensive guide to the various symbols employed in mathematical expressions, models, and
conceptual frameworks.

Table 2.1: Symbol Definitions

Symbol Definition

N Number of agents
Wi resources of agent/coalition i

r Harvest
q Tribute amount
k Constant of damage [0, 1]
� Activations per cycle year
⌧ Target Coalition
↵ Attacking Coalition
Vi, j Vulnerability of agent j to agent i

Ci j Commitment level between agents i and j

In the original formulation by Axelrod, the model employed a a set of N=10 independent agents distributed
linearly with periodic boundary conditions to avoid introducing distinctions for agents at the border (see Figure
2.5(a). At that time, Axelrod lacked the computational resources for studying his theoretical ideas on a larger scale
nor in other lattices.

In this Thesis, we implement Axelrod’s model in a general form and on any network of connectivity. Our interest
in exploring different topologies led to adopting a more realistic 2-dimensional lattice with periodic boundary
conditions and a von Neumann neighborhood, as depicted in Figure 2.5(b). This transition impacts the scalability of
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simulations, time, and complexity but introduces more realism to the systems under exploration. We also investigate
Axelrod’s model on a fully connected network to reflect our current globalized world.

Figure 2.5: Spatial Interaction: a) 1D line with periodic boundary conditions. b) 2D square lattice with periodic
boundary conditions and von Neumann neighborhood.

In the model, agents are represented as nodes on a lattice or network. Each agent i on the lattice is assigned an
amount of wealth or resources, Wi, selected from a random distribution Wi 2 [Wmin,Wmax].

In each simulated year, ambitious leaders emerge randomly, targeting 30% of the total agents to demand tribute
from one of their neighbors. This condition is initially imposed, but contiguity requirements are relaxed as alliances
form, allowing for more flexible dynamics. However, the contiguity of commitments remains crucial to preserve the
dynamics of land combat.

When presented with the opportunity to make a demand, agent A can initiate a demand to an agent I if it is
currently favorable. If the demand is made, agent T will "fight if and only if it would cause less damage than paying
would."7 The ensuing dynamics lead to the following outcomes:

• T pays tribute: The transfer of resources occurs from T to A. If the total resources of T, denoted as WT exceed
the tribute amount q, then the transferred quantity is q, otherwise, T transfers its entire resources to A

• T fights rather than pay: In this scenario, each side incurs losses proportional to the resources of its opponent,
and the losses are defined by:

LA = kWT (2.4)

LT = kWA (2.5)

where k is a constant of damage.

It is important to note that both sides incur in losses, but the stronger side is affected more significantly than the
weaker side.

The current model is out of equilibrium, where each conflict depletes the system’s resources, behaving as a
dissipative system. To counteract this, after each yearly cycle, resources are reinjected into the system by augmenting
the resources of each agent by an amount r.
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Within the extortion framework, agent A must strategically select a target that strikes a delicate balance—being
weak enough to choose payment over resistance yet strong enough to offer a substantial contribution. For this reason,
a quantifiable measure, referred to as the vulnerability of agent j with respect to agent A is defined as:

VA, j =
WA �Wj

WA

(2.6)

We introduce susceptibility S as a metric for optimal target selection. This metric incorporates both the
vulnerability of the target agent and its ability to pay tribute. The susceptibility S j of agent j is calculated as follows:

S j = VA, j ⇥min(Wj, q) (2.7)

The function min(Wj, q) ensures that the ability to pay does not exceed the tribute value q. After calculating the
susceptibility S j for each agent j, we select the agent that has the highest susceptibility among all possible agents.
This means we select the agent that is most vulnerable and has the highest ability to pay.

If there is no potential target weaker than the demander (i.e., there is no agent j for which S j > 0), no demand is
made. Conversely, agent j engages in a fight only if Lj < min(Wj, q).

Transitioning from metrics for target selection, let us delve into how agents coordinate actions in the model.
The primary mechanism for this coordination is establishing commitments among agents, influencing their future
decisions within the conflict dynamics. Subject to incremental adjustments, these commitments play a pivotal role
in shaping agent behavior in response to conflicts, whether paying tribute or engaging in a fight. The commitment
dynamics are represented by a symmetric matrix of dimensions N ⇥ N. To initiate this process, the commitment
matrix is initially defined as follows:

C =

2
66666666666666666664

1 0 . . . 0
0 1 . . . 0
...
...
. . .

...

0 0 . . . 1

3
77777777777777777775

(2.8)

Each agent is inherently committed to itself (Cii = 1), while no commitments exist between distinct agents i and j
initially (Ci j = 0). The visual representation of the initialized commitment matrix and the corresponding network is
depicted in Figure 2.6. As time progresses, new connections are established, and the network undergoes dynamic
changes reflecting the evolving commitments among agents.

The commitment level undergoes changes based on certain interactions. It increases in scenarios involving the
transfer of resources from i to j (subservience) or from j to i (protection), as well as when both i and j engage in
fights on both sides. Conversely, a decrease in commitment occurs when i exhibits hostility by fighting against j.

In explaining the coalition formation process within this model, we consider an adjacent agent, denoted as ,
which will align itself with the attacking coalition ↵ under the condition CA > CT. Conversely, it will affiliate with
the target coalition ⌧ if CA < CT. In the event that CA = CT, agent  maintains neutrality. As indicated earlier,
the contiguity to demand rule is relaxed through coalition formation.

Figure 2.7 illustrates two coalitions formed along a 1D line for simplicity. For instance, if agent 1 aims to demand
resources from agent 4, agents 2 and 3 must exhibit a higher level of commitment to agent 1 than agent 4. In a
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Figure 2.6: Commitments Representations: a) Initial commitment matrix for 10 agents, and b) corresponding
network representation.

Figure 2.7: Spatial Contiguity Restriction: coalition formation

2D lattice, this alliance structure becomes more intricate, as each potential target must have multiple paths, thereby
intensifying the maximization process of susceptibility. Agents pool their resources by aligning with a coalition
and contributing proportionately to their commitment levels with the demanded or targeted agent. Consequently,
coalition resources are defined as:

W↵ =

N↵X

i=1

CAiWi (2.9)

W⌧ =

N⌧X

i=1

CTiWi (2.10)

Where N↵ and N⌧ are the number of attacking and target coalitions elements. When assessing vulnerability within
existing coalitions, commitments and resources are treated as common knowledge. Subsequently, the model considers
potential coalition formations for each target agent.

VAi =
W↵ �W⌧

W↵
(2.11)

In determining conflict losses, the model distributes these losses proportionally among the contributors within
the coalition. This allocation method ensures fair consequences sharing, emphasizing the collaborative nature of
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coalition responses to conflicts. As before, the losses are defined as:

Li2↵ = kW⌧
CiA ⇥Wi

W↵
(2.12)

Li2⌧ = kW↵
CiT ⇥Wi

W⌧
(2.13)

The model constitutes a spatio-temporal dynamic system characterized by continuous states, discrete space, and
time. It operates out of equilibrium, featuring coevolution where connections depend on local states and vice versa.
In this dynamic environment, agents continually develop and establish commitments with one another based on their
past interactions.

Importantly, the model is not grounded in rational decision-making, as Axelrod recognizes the inherent complexity
that renders such calculations virtually impossible in this setting. However, despite its departure from strict rationality,
the model, built on a few foundational assumptions, reveals intriguing phenomena. It holds significant value for
studying self-organization, emergence, and other compelling dynamics with applications in political, economic, and
population studies.





Chapter 3

Implementation of Axelrod’s model on a
2-Dimensional Square Lattice

Axelrod’s Tribute Model is relevant in the context of theories of conflicts and the formation of coalitions. However,
to our knowledge, Axelrod’s Tribute Model has not been computationally implemented on a full scale. In this
Chapter, we implement the Tribute Model in a system of N agents on a 2-dimensional lattice with periodic boundary
conditions, adopting a von Neumann neighborhood. Initially, each agent i in the lattice is assigned resources
Wi selected from a uniform random distribution. The dynamics is driven by a fixed number of activations per
cycle year �, a yearly constant harvest r reinjected consistently for each agent, modifications to commitments c, a
“destructiveness” constant k quantifying damage inflicted by opponents, and a demanded tribute q. The specific
values for these parameters are outlined in Table 3.

Parameter Value

N 100
Wi [300, 500]
� 33
r 20
c 10%
k 0.25
q 250

Table 3.1: Standard Tribute Model Parameters

Given the inherently stochastic nature of societal behavior, examining individual data to clarify the dynamics
over the years is essential. The tribute model was run 50 times, each spanning 1000 cycle years (with 33 iterations
corresponding to one cycle year), generating diverse populations under these conditions. Diversity arises from

17
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the random selection of ambitious leaders and initial resource allocation, contributing to distinct trajectories in the
simulated populations.

3.1 Non-Trivial Collective Behaviours

Selected for a focused case study, Figures 3.1, 3.2, and 3.3 represent distinct aspects over time for three random
populations. In Plot (a), black lines indicate conflict events, and gaps represent periods of low conflict among
agents. Plot (b) illustrates the total resources within each population, displaying dynamic fluctuations. Plot (c)
utilizes a raster plot to depict individual agent resources, with varying intensities denoting levels relative to the global
resources.

Figure 3.1: Dynamics of Conflict and Resource Distribution for population 1: Temporal patterns of conflicts
occurrences (a), global resource availability (b), and individual agent’s resource levels in a 2D square lattice. Peaks
in conflict frequency links between resource scarcity/abundance and societal tensions. Parameters are as described
in Table 3.

Analyzing the first population (Figure 3.1), Plot (a) showcases elevated conflict frequencies during initial itera-
tions, around time 15000, and towards the final years. The former may be attributed to emergent system structuring
and limited commitments, leading to targets finding attackers not as strong as they would be in a coalition. Plot (b)
reveals that during the first 20000 iterations, global resources experienced slow growth, restricting the population to a
maximum value of approximately 150000 (a.u.). This period aligns with the conflict occurrences. After this period,
resources significantly increased despite localized conflict occurrences, reaching around 300000 (a.u.) towards the
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simulation’s end, followed by a substantial decrease.
In Plot (c), the raster plot shows a dynamic reshuffling of powerful agents accumulating resources, corresponding

to high-frequency conflict periods outlined in Figure3.1(a). Initially, resource distribution is relatively equitable, but
frequent conflict intervals deplete the system of resources. Consequently, the number of powerful agents diminishes,
giving rise to a restructuring of relative power dynamics. This restructuring becomes evident at time 10000 and
31000 in Figure3.1(c). The abrupt shifts in global resources and restructuring of power agents suggest the occurrence
of conflicts akin to "world wars."

Moving to the following example, we examine the historical dynamics of our second population (Figure 3.2). Plot
a) suggests that conflicts occur more frequently and are more evenly distributed across time than the first population.
Plot b) shows a significant increase in resources towards the end of the timeline, reaching a peak of approximately
400000 (a.u.). However, the resources remained at very low levels during the first 10000 time units (around 300
years). This could suggest a period of economic stagnation or resource scarcity, which might have contributed to the
high frequency of conflicts observed in Figure3.2(a) during this period.

Figure 3.2: Dynamics of Conflict and Resource Distribution for population 2: Temporal patterns of conflicts
occurrences (a), global resource availability (b), and individual agent’s resource levels in a 2D square lattice. Resource
scarcity triggers conflicts and concentration, while abundance facilitates equitable distribution and emergence of
new powerful agents. Parameters are as described in Table 3.

In Plot c), initially, resources were more evenly distributed among the agents. However, during the period of
economic stagnation, a few agents began accumulating more resources, resulting in a more unequal distribution.
This distribution could have fueled tensions and conflicts within the population. The transition to an upward trend in
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global resources might be due to the accumulation of conflicts among powerful agents, diminishing their strengths
and allowing other agents to emerge. This phenomenon is evident around time 10000 in Figure3.2(c), where a new
order of powerful agents appears. Periods of resource scarcity align with high-frequency occurrences of conflicts
and a concentration of resources among a select few agents. Conversely, during periods of resource abundance, a
more equitable distribution of resources is observed, facilitating the emergence of new powerful agents.

Our final analysis focuses on the third population (Figure 3.3). In plot a), we observe increased conflicts during
the early years and approximately from 20000 onwards. Notably, the most drastic reductions in global resources do
not coincide with the highest accumulation of conflicts. In plot b), this population’s resources began to surge quickly
without significant losses due to conflicts, peaking at approximately 300000 (a.u.) around iteration 12000. However,
the global economy experienced a considerable decline in the subsequent years and maintained lower values. This
period of stagnant resource growth aligns with the increased frequency of conflicts. In plot c), we note how decreases
reduce the number of powerful agents, as evident in 3.3(c) at times 12500, 20000, 26000, and 30000.

Figure 3.3: Dynamics of Conflict and Resource Distribution for population 3: Temporal patterns of conflicts
occurrences (a), global resource availability (b), and individual agent’s resource levels in a 2D square lattice. The
accumulation of conflict frequency does not guarantee an immediate slump in the global economy. Parameters are
as described in Table 3.

To summarize, each population has its unique trajectory, but there are common dynamics that can be identified.
Initially, all populations experience a high degree of conflict. This could be attributed to the initial resources
distribution wi, the value of the tribute q, the absence of robust coalition formations, or a combination. In other
words, it is more profitable for target agents to fight than to pay, leading to conflicts. However, as time progresses, the
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formation of complex coalitions can prevent severe collapses, although exceptions may occur in the form of global
wars causing significant economic slumps.

In other scenarios, the general trend is toward economic growth, mirroring the dynamics of a conflict-free
environment where resources are transferred and agents harvested annually, leading to an increase in the global
economy. The plots reveal that resource inequality fluctuates over time, with some agents possessing more resources
than others.

It is important to note that a high frequency of conflicts does not necessarily guarantee a sharp decline in the
global economy. Instead, these conflicts may serve as a mechanism for restructuring commitments within and
between coalitions. This mechanism can draw powerful agents into future conflicts, allowing new powerful agents
to emerge gradually.

Motivated by this mechanism, we explore the nature of conflicts. We examine a 500-cycle years after a transitional
period of 500 years, showing significant findings on conflict patterns. Table 3.1 provides a statistical overview of
conflict distributions, indicating the types of conflicts (civil wars and non-civil) that amount to 825000 cases. Civil
wars are defined as conflicts where the attacker and the target are at least 50% committed.

Total Mean Median Mode Standard Deviation Skewness Kurtosis

Conflicts 196529 7.9 8.0 8 3.4 0.35 0.02
Civil wars 168249 6.7 6.0 5 3.2 0.50 0.20
Non-Civil 28280 1.1 1.0 0 1.2 1.42 2.87

Table 3.2: Summary Statistics of Conflicts Nature (Civil and Non-Civil Wars) for a cycle year in a 2D square lattice.

We recorded a total of 196529 conflicts. These conflicts exhibit moderate variability with a standard deviation
of 3.4. The distribution is slightly right-skewed, as indicated by the skewness value of 0.35, and is relatively normal
due to the low kurtosis value of 0.02.

Civil wars constituted a significant portion of these conflicts, with 168249 occurrences. This conflict accounts
for approximately 86% of all recorded disputes. The distribution for civil wars is also slightly right-skewed with
a skewness value of 0.50 and has relatively light tails, as suggested by the kurtosis value (0.20). This skewness is
confirmed by having a higher mean (6.7) than both median (6) and mode (5).

On the other hand, non-civil wars accounted for 28280 instances during this time frame, which translates to an
average occurrence rate of about 1.1 per year; however, there was moderate variability in their annual occurrence
as indicated by the standard deviation (1.21). The distribution for non-civil wars was strongly right-skewed with
a skewness value (1.42), indicating that some years experienced significantly higher numbers than others; this
observation is further supported by high kurtosis (2.87), suggesting heavy tails in the distribution.

Indeed, these statistical insights provide an intricate understanding of the nature of conflicts on this lattice model;
civil wars were more prevalent, but non-civil wars showed more substantial variability and extreme values than civil
wars. Nevertheless, it is also worth investigating any recurrent and discernible patterns in size distribution or the
number of agents involved, particularly in dynamics that propel societies toward internal strife.

We analyzed the empirical data from 50 population realizations over a 500-year transient period and found that
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the distribution of the number of agents involved in conflicts has heavy tails. Therefore, we used the Python package
powerlaw16 to examine the heavy tail distributions. Figure 3.4 shows the Complementary Cumulative distribution
with two candidate models: a power-law fit and a truncated power-law fit. Power-laws are heavy-tailed probability
distributions defined as:

P(x) / x
�↵

where ↵ is the power-law exponent. On the other hand, a truncated power-law consists of a power-law truncated by
an exponential part defined as:

P(x) / ↵x
�(↵+1)

e
��x

where ↵ is the power-law exponent and � the exponential part.

Figure 3.4: Complementary cumulative distribution functions of the number of participants in conflicts and fitted
distributions, with an upper limit (xmax = 92)

Some distributions have an upper limit due to finite-size scaling or theoretical limits, preventing data from going
beyond16. We set an upper limit of xmin = 92 based on visual data inspection. We noticed that the CCDF of data in
Figure 3.4 bends down because of the nature of cumulative functions reaching this upper limit.

We performed a goodness-of-fit test under these two different distributions. The loglikelihood ratio returned a
value of �13.62. This negative value suggests that the data is more likely under the second distribution (Truncated
power-law). The p-value of the likelihood ratio test of 0.0 suggests that the likelihood difference is statistically
significant. This result suggests that the data is better fitted with a power law (↵ = 1.57 ) exponentially truncated(
� = 0.01).

In essence, the participation of few agents in conflict is more probable. It could be due to the high and dense
commitments within coalitions that make the strongest agents act indifferently, resulting in more civil wars. In
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contrast, global wars are rare (involving most of the lattice participants) because conflicts between coalitions might
not be economically optimal or beneficial.

In the context of economic dynamics, understanding the distribution of global resources over time is crucial
for assessing the fairness of goods. We use the Gini index, a widely used indicator of resource distribution in a
population. The Gini index ranges from 0 to 1, where 0 means perfect equality and 1 means perfect inequality, where
one agent has all the resources. We apply the formula given by Herrera et al. 17 to calculate the Gini index:

G(t) =
P

N

i, j=1

���wi(t) � wj(t)
���

(2N)
P

N

i=1 wi(t)
(3.1)

Figure 3.5(c) shows the index fluctuations over time in population 1. We can see how conflicts lead to inequality.
Despite the volatility periods, the index tends to stabilize near 0.85, which is a high value, indicating that this model
generates high inequality.

Figure 3.5: Global Resource Dynamics and Conflicts in Population 1: The figure shows four plots representing
data on global resources and conflicts over 900 years. Plot a) shows the frequency of conflicts with a significant
impact on global resources, b) the Ratio of consecutive global resources, c) the Gini index, and d) the Dynamics of
global resources.

As we stated before, conflicts cause a redistribution of resources, but we observe that not all high-frequency
conflict periods have immediate effects. We focus on those severely affecting global resources to identify extreme
violent conflicts. We start by computing the ratios of consecutive global resources and then calculate the interquartile
range (IQR) excluding the first 100 years. The threshold is set as 1.5 times the IQR. Values below this threshold
from the lower quartile are considered outliers, as we are only interested in resource losses. Figure 3.5(a) illustrates
the frequency of outlier conflicts, and Figure 3.5(b) shows the ratio of consecutive global resources. We notice the
correlation between the variations of the Gini index and the occurrence of violent conflicts.
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As depicted in Figure 3.5(a), certain activities demonstrate a temporal process that is not uniform. These
activities are characterized by periods of high activity interspersed with periods of low activity18. This pattern
results in a fat-tailed distribution of inter-event times, a phenomenon observed in both non-violent19 and violent
human activities20,21. This pattern is referred to as bursty behavior.

Barabasi22 proposed that this bursty behavior is a consequence of a decision-based queuing process. The timing
exhibits a heavy tail when tasks are executed based on priority. This allows for extended periods of inactivity,
punctuated by bursts of intense activity. Similar patterns have been observed in the distribution of inter-event times
in natural phenomena such as earthquakes23 and fracture experiments24.

However, it is essential to note that different generative mechanisms can yield different distributions. The focus
should be on something other than whether the data adheres to a specific distribution; instead, it should focus on
identifying the most suitable model for the situation. For instance, it has been argued that a log-normal distribution
provides a more accurate and appropriate description of human communication, contrary to Barabasi’s analysis25.

While a power-law distribution may arise from preferential attachment or optimization mechanisms, a log-normal
distribution results from a multiplicative process; a random variable x is said to be lognormally distributed if the
random variable Y = lnX follows a normal distribution with mean µ and standard deviation �. The density function
is given by:

f (x) =
1p

2⇡�x

e
�(ln x�µ)2/2�2 (3.2)

Despite the log-normal distribution having finite moments and the Pareto distribution having infinite moments,
their plot shapes are remarkably similar, with a large portion of the body of the density function and the complementary
cumulative distribution function appearing linear.

The tribute model, while not intended to be a detailed representation of reality, serves to identify common
characteristics of social dynamics. Figure 3.6 presents the probability density function of the inter-event time
distribution between violent conflicts, comparing a log-normal distribution and a power law distribution.

Figure 3.6: PDF of the inter-event times between violent conflict and fitted distributions, for a) all regime , and b)
for the tail (xmin = 27).
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Table 3.1 presents the results of a goodness-of-fit for all the data and the tail. The test compares distributions
returning the loglikelihood ratio and the p-value for the pair of distributions.

Regime Distributions loglikelihood ratio p-value

xmin = 1 Log-normal/Power law 62.11 0.00
xmax = None

xmin = 27 Log-normal/Power law 0.79 0.43

Table 3.3: Goodness-of-Fit test for inter-event time distribution considering a Log-normal and a power law fit.

From Table 3.1, it is observed that for xmin = 1, the log-likelihood ratio is 62.11 with a p-value of 0.00, indicating
a significant difference in fit quality favoring the log-normal distribution over the power law. For xmin = 27, however,
this ratio drops to 0.79 with a p-value of 0.43, suggesting no significant difference between the two fits. The fitted
parameters for the log-normal distribution are µ = �3.43 and � = 1.73 for all data and µ = 1.46 and � = 1.13 for
data with xmin = 27. In terms of which distribution fits better, the log-likelihood ratio and p-value suggest that the
log-normal distribution better fits the data when considering all regimes (xmin = 1). However, when focusing on
the tail of the distribution (xmin = 27), there is no significant difference between the log-normal and power law fits.

In our analysis of the upper limit (tail), we estimate a power-law exponent of 3.47, which leads us to consider
bursty patterns in financial interactions. These interactions, which include trades in futures markets, stocks, and
foreign exchange, are primarily defined by transactions, so the inter-event time measures the interval between two
consecutive transactions. These inter-event time distributions have been demonstrated to be heavy-tailed26 and range
from 1.319 to 3.4727. Our obtained value is at the end of this range. While we do not claim that the exact mechanisms
governing financial trades also govern our empirical data, this observation might suggest potential mechanisms to
clarify the generative model.

Meanwhile, Poissonian bursts offer an alternative description for individual bursty activity patterns, such as those
studied in the inter-event time and waiting time distributions in email activity logs28 showing a better approximation
to log-normal distributions. The mechanism under consideration is based not on rational analysis but on the
routine performance of activities. In the context of our model’s generative mechanism, this could provide a better
understanding of political tension when considering all the data.

Another possible alternative for fitting the data is a double Pareto distribution.It has been stated that an appro-
priate double Pareto distribution can closely match the body of a log-normal distribution and the tail of a Pareto
distribution29. Double Pareto log-normal distributions have proven helpful in modeling distributions of various
complex networks and natural phenomena, including computer networks, social networks, and economics30,31. This
suggests that most inter-event times between violent conflicts are relatively small due to the log-normal part, but
there are also some rare instances where the inter-event times are extremely large due to the power-law tail.

In summary, the optimal waiting time of agents might be driven by objectives such as maximizing profit or utility.
This may lead to different burst patterns. The times are distributed so that most are relatively close together, but
there are occasional “bursts” of significant times. This is indicative of bursty behavior. This could imply that violent
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conflicts tend to occur in clusters, with periods of relative calm in between. Despite the variety of possible fits and
generative models, we get valuable insights to understand the underlying processes better. However, it is essential to
note that these models simplify reality, and we might find better fittings with more parameters.

3.2 Spatial Resource Distribution and Coalition Formation

Another perspective to explore the tribute’s dynamics involves analyzing the evolution of commitment patterns, which
significantly influence global resources. Initially, each member is committed to himself. However, as rules and
interactions occur over time, the structure of commitments evolves, as illustrated in Figure 3.7 for population 1. As
time progresses, identifying aggregations of agents becomes more challenging due to the increasing complexity of the
commitment structure. To better visualize these dynamics, we generate a graph using snapshots of the commitment
matrix. We construct an adjacency matrix by establishing weighted edges between nodes if their commitment reaches
at least 50% of the total commitment. Once the graph is constructed, we employ the Louvain community detection
algorithm via the community.best_partition module of Python to identify clusters. The resulting graphs provide a
clearer view of the inter and intra-cluster connection dynamics and reveal an essential visualization of aggregated
agent dynamics.

In the system’s early years, commitments start to grow, but they do so locally. By year 10, the population presents
few connections established and minimal neighboring relations. However, by year 50, we begin to see the aggregations
of agents emerge. By year 100, the network has evolved into two distinct clusters with no interconnections. These
clusters persist in the following years, exhibiting variations in their internal connections. They either become more
densely connected among themselves or show fewer intra-cluster connections.

Using commitment network visualization significantly simplifies identifying emergent aggregate agents compared
to relying solely on matrix visualization. However, the matrix approach should be considered as it can offer valuable
insights, particularly regarding the effects of the utilized topology.

We observe a tendency for commitments to grow locally within this topology. This pattern can be attributed to
the inherent constraints of the system, which encourage agents to interact predominantly with their nearest neighbors.
The reasoning behind this behavior might be rooted in optimization: more considerable distances and coalition sizes
would entail a remarkable economic sacrifice, thereby rendering such interactions less profitable.

Our final interest is understanding how resources are distributed within coalitions, as this can provide insights
into the observed behaviors. Figure 3.8 provides a visual representation of this distribution, showcasing the spatial
allocation of resources (depicted as a heatmap) and the formation of coalitions (indicated by colored backgrounds)
within a 2-D square lattice.

In the initial period, Figure 3.8 (a) corresponding to the first year, we observe an almost uniform distribution of
resources among all agents, with no discernible cluster formation. However, as time progresses to years 300, 600,
and 1000, represented by Figure 3.8 (b), (c), and (d), respectively, we begin to identify powerful agents who are
more committed to each other, leading to the formation of a dominant aggregate agent or coalition over time. It is
important to note that not all agents remain in the same cluster over time. The belonging of agents is dynamic, and
a coalition can change in size and power.
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Figure 3.7: Commitment Patterns in a 2d Square Lattice: The first row (a, b, c) illustrates commitment matrices
at years 10, 50, and 100 with its corresponding graph below of the dynamics of population 1. In the second row (d,
e, f) illustrates commitment matrices at years 200, 500, and 1000 with their corresponding network. We exclude
commitment of agents falling below a 50% threshold. Parameters are as in Table 3.
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Figure 3.8: Spatial Resources Allocation and Coalition Formation: Population 1, N = 100, 2D square lattice with
periodic boundary conditions. a) Resources distribution (heat map) at year 0. b) Resources distribution at year 300,
where green and purple represent different clusters with members committed more than 50%, and more powerful
agents form a single coalition. c) Resources distribution at year 600. d) Resources distribution at year 1000.

This behavior can be explained by considering extortion as a mechanism of resource accumulation. This
mechanism allows powerful agents to maintain their status at the expense of weaker ones, limiting their attack
opportunities. Therefore, more vulnerable agents must wait for the powerful agents to be weak enough to attack.
One mechanism that might allow this is the disruption in internal coalitions and civil wars. Civil wars are necessary
to weaken the power of the dominant aggregate agents by facilitating the restructuring of commitments and resources
and providing an opportunity for others to emerge.

The Landscape Theory of Aggregation offers a plausible method to calculate the energy configuration of this
system by considering the size of an agent as their resource and their propensity as commitments. To capture the
essence of frustration within the system, we need to adjust the range of commitments. In this case, we can re-arrange
the commitments from -1 to 1 to denote friendship or hostility, so frustration decreases within more committed
agents. The final equation becomes:

E(X) =
X

i, j

wiw jci jdi j(X) (3.3)
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Here, we use a binary representation of di j to denote group membership. As per the Landscape Theory, a system
reduces its frustration and, consequently, its overall energy by transitioning to lower energy levels, resulting in
more stable configurations. One way to reduce frustration is by increasing the resources of coalition members, as
depicted in Figure 3.8. Presumably, the system’s dynamics allow for exploratory configurations, aiming to reach
local minimums. This analysis enhances the understanding of the system’s behavior. Through this process, we can
gain valuable insights into how agents interact and influence the system. Such insights can provide a foundation for
informed decision-making and optimizing the overall energy state of system operations.





Chapter 4

Implementation of Axelrod’s Model on a
Global Network

The following compelling question concerns the effects of modifying the structure and connections of the distributed
agents within the system. We propose an extreme case—a globally interconnected network to investigate this. Using
identical parameters as those in the 2D square lattice scenario (see Table 3 for reference), we execute the model 50
times, resulting in 50 distinct populations. Interestingly, this new configuration tends to show a higher frequency of
conflicts and a decrease in overall resources compared to the 2D square lattice configuration.

As an illustration case, Figure 4.1 shows a population characterized by frequent conflicts, low resource levels,
and dynamic power structures. Figure 4.1(a) shows that the frequency of disputes appears to be evenly distributed,
with many occurrences. Despite fluctuations, figure 4.1 (b) highlights that global resources remain within a narrow
range. Despite disturbances, the resources tend to return to low values. Figure 4.1(c) shows that the distribution of
powerful agents over time behaves similarly to a turbulent fluid. This distribution could be due to the low level of
global resources, which prevents relative high accumulation of resources. Consequently, each agent frequently finds
a profitable target, leading to a dynamic and unstable power structure.

Table 4 provides a comparative analysis of the conflict simulations performed on the two modeled network
typologies: a 2D square network and a global network. The primary metrics analyzed are the Gini index and average
global resources. We disregard an initial transient period of 500 years for each topology and calculate averages over
the subsequent 500 years. This process is replicated across 50 populations, and the resulting values were averaged
to yield the final values.

The Gini index for the 2D Square Lattice is 0.86, indicating a high level of inequality in resource distribution,
and the standard deviation of the Gini index of 0.02 points to a moderate level of inequality variability among the
different populations in this topology. On the other hand, the Gini for a global network is 0.72, implying a more
equitable distribution of resources. The standard deviation for this case is lower at 0.01, showing a much lower
variability across populations. This could be attributed to the interconnected nature of the global network facilitating
resource flow across agents.
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Figure 4.1: Dynamics of Conflict and Resource Distribution in a Global Network for Population 1: Temporal
patterns of conflicts occurrences (a), global resource availability (b), and individual agent’s resource levels in a
global network. Population characterized by frequent conflicts, low resource levels, and dynamic power structures.
Parameters are as described in Table 3.

Indeed, the high values of the Gini index observed in both structures can be explained by the inherent nature of
the model, extortion. However, exploring how different strategies or policies could mitigate this effect and promote
a more equitable distribution of resources would be interesting. While the 2D square grid shows greater inequality
and variability, the global grid shows a more impartial and consistent distribution of resources.

As in the previous chapter, we also analyze the nature and distribution of conflicts in a global network over a
cycle year. Table 4 summarizes the statistics of conflicts, both civil and non-civil wars, over a cycle year in a global
network.

A total of 491,220 conflicts were recorded, with civil wars constituting a significant majority at 90% (444,188
occurrences). The standard deviation of 4, skewness (-0.05), and kurtosis(-0.23) values close to zero suggest
moderate variability in the total number of conflicts and a relatively normal distribution.

Civil wars exhibit a slightly left-skewed distribution, as evidenced by their skewness value of -0.11, indicating
that the data points concentrate on the right side of the distribution graph. This distribution is corroborated by mean,
median, and mode values of 17.8, 18, and 17, respectively. A kurtosis value of -0.28 implies that the tails are less
heavy than a normal distribution; thus, there are fewer extreme values.

In contrast, non-civil wars accounted for only 47,032 cases but exhibited strong right-skewness with a value of
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Gini index � (Gini) Mean Global Resources

2D Square lattice 0.86 0.02 2.7 ⇥ 105

Global network 0.72 0.01 1.9 ⇥ 103

Table 4.1: Comparative Analysis. The data provide clarity on the differences observed between the two network
models in terms of their impact on conflict dynamics.

Total Mean Median Mode Standard Deviation Skewness Kurtosis

Conflicts 491220 19.6 20 20 4.0 -0.05 -0.23
Civil wars 444188 17.8 18 17 4.2 -0.11 -0.28
Non civil 47032 1.9 2 1 1.4 1.16 1.87

Table 4.2: Conflicts Nature in a global network: Summary Statistics of Conflicts Nature (Civil and Non-Civil
Wars) for a cycle year.

1.16; this indicates an asymmetrical distribution where several years experienced significantly higher numbers than
others, a scenario of sporadic intense conflicts. The kurtosis value stands at an elevated level (1.87), pointing towards
heavier tails and, thus, more frequent extreme values in comparison to civil wars, while civil wars are more frequent
but relatively consistent in occurrence across years; non-civil conflicts, though less frequent can be unpredictable
and vary greatly in intensity from one year to another.

Following the same procedure as in Chapter 1, Figure 4.2 shows the CCDF of participants in conflict in a
global network. It provides a statistical analysis comparing different probability distributions: the exponential
law distribution, the truncated power law distribution, and the log-normal distribution. The upper limit has been
established as xmax = 92.

Table 4 shows that for all comparisons, the p-values are 0.0, indicating that the differences between the dis-
tributions are highly significant. The loglikelihood ratios are also substantial, providing strong evidence for one
distribution over another.

Regime Distributions loglikelihood ratio p-value

xmin = 1 exponential/truncated power law 424.44 0.0
xmax = 92 log-normal/truncated power law 468.98 0.0

log-normal/exponential 174.22 0.0

Table 4.3: Goodness-of-Fit of the number of participants in a Global Network

The exponential law distribution is more likely than the truncated power law distribution, as indicated by a
loglikelihood ratio 424.44. Meanwhile, the log-normal distribution is more likely than the truncated power law
distribution, with a loglikelihood ratio 468.98. Furthermore, the log-normal distribution is more likely than the
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Figure 4.2: Complementary cumulative distribution functions of the number of participants in conflicts in a global
network and fitted distributions, with an upper limit (xmax = 92)

exponential distribution, with a loglikelihood ratio 174.22.
The analysis indicates that the log-normal distribution is the most probable model, followed by the exponential

distribution. The parameters for the fitted log-normal distribution are µ = 3.04 and � = 1.14. We see that the
change in the topology and hence spatial interactions produces that this distribution be better fitted with a log-normal
than a power-law. In fact, Mitzenmacher32 proposes that log-normal and power-law distributions are closely related,
with log-normal distributions often emerging as viable alternatives to power-law distributions across various fields.
This implies that minor variations in dynamics could influence the distribution. However, it remains a heavy-tailed
distribution, albeit without the extreme cases often associated with power-law distributions.

As we did in case 2d, the next point of interest corresponds to violent conflicts. However, the high frequency of
conflicts and low resources (refer to Figure 4.1) mean that the system does not present events of interest. Therefore,
we move on to visualizing patterns and formations of commitments.

Figure 4.3 illustrates the evolution of the commitment network over time within a global network. Each panel (a),
(b), and (c) represents different stages (years 5, 500, and 1000, respectively), showcasing an increase in complexity
and globalization in the distribution of agents within the network.

In Figure 4.3(a), the commitment matrix at year 5 shows a sparse distribution of agent commitments, indicating
a low level of connectivity among agents. This is corroborated by the corresponding graph below, which shows a
low connection structure, suggesting that agents are less committed to each other in the early stages of the network
formation, leading to fewer conflicts.

By year 500, as shown in Figure 4.3(b), the commitment matrix displays a complex pattern of connections
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Figure 4.3: Commitment Patterns in a Global Network: Panels (a, b, c) illustrates commitment matrices at years
5, 500, and 1000 with its corresponding graph below of the dynamics of population 1. We exclude commitment of
agents falling below a 50% threshold. Parameters are as in Table 3.

between the agents. The corresponding graph demonstrates increased complexity and connectivity in the network,
indicating that over time, as agents form more commitments with each other, the network structure becomes more
complex, potentially leading to more conflicts.

By the year 1000, shown in Figure 4.3(c), the complex pattern of connections continues, but the network’s
representation shows denser connections within clusters, with fewer connections to other clusters. Indeed, it suggests
that, over time, agents form stronger commitments within their clusters, leading to a more stable network structure
with fewer connections between clusters.

The transition from a 2D lattice to a global network moves from localized to more global interactions, where
each agent has the potential to interact with any other agent in the network, regardless of its spatial proximity. This
change has implications for the system’s dynamics, including the rate and pattern of information propagation, as
seen in the flow of resources.

While visual inspection provides limited success in discerning aggregate agent patterns in the commitment matrix,
this task becomes increasingly challenging within the global network, emphasizing the importance of employing
alternative visual methodologies, such as constructing an adaptive network of commitments, to understand better
and interpret the complex interactions within the network.





Chapter 5

Simplified Target Selection in the Tribute
Model: A Gateway to Phase Diagrams

This chapter arises from the need to explore strategies for mitigating the effects of conflicts and promoting equitable
resource distribution. For this reason, we highlight the importance of constructing phase diagrams to understand the
dynamics of the tribute model under different parameter variations. In identifying relevant parameters, we consider
wi and c to have a low influence on the system or be impractical. An advantageous initial resources allocation wi does
not guarantee success7. We also do not consider variations in commitment dynamics as we aim to keep it simple.
For example, introducing a negative commitment could define enemies, but it would exceed our intentions.

On the other hand, we can merge the parameters � and r into a single concept, which is the flux of resources
periodically entering the system (r/�). This new parameter is of interest since, without a periodic injection of
resources, the dynamics of conflicts stop, leading to a single robust leader. Other important parameters are the
destructiveness constant k and the tribute amount q, considered in the balance of participants’ actions. Nwas not
changed since the value used has already generated appreciable phenomena, and the scalability of the simulations
would increase its running time. Even with this system size, we face the computational challenge of constructing
phase diagrams on the 2D square lattice, as their simulation times are not feasible.

The most time-consuming aspect arises from target selection, which is more complex than it might initially
appear. Based on the contiguity restriction, it requires an analysis and calculations of every possible coalition
formation, which will define our final selection metrics. At early iteration times, the commitment matrix has not
been significantly modified, and coalition analysis and target selection are faster, mostly just analyzing their neighbors
or, less frequently, their second neighbors. However, as agents become more committed, the structure becomes more
complicated. For a system of N agents, the attacker has to analyze N � 1 targets with their respective coalitions and
then select the most beneficial one.

Our 2D square lattice model uses the Manhattan distance to calculate the minimum distance. This distance
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Figure 5.1: Manhattan Distance. Each subplot in the figure corresponds to a different Manhattan distance. The
entire lattice is depicted using grey points. The central site is highlighted in red. Sites at specific distances from
the central site are marked in blue. Dashed lines connect the central site to other sites, emphasizing the Manhattan
distance between them.

defined for this grid-like space, between points p1(x1, y1) and p2(x2, y2) is:

Manhattan distance = |x1 � x2| + |y1 � y2| (5.1)

In our 2D square lattice model, we employ the Manhattan distance to capture spatial interactions surrounding a
specific lattice site (referred to as the “attacker”). The Manhattan distance measures the minimum number of lattice
steps required to move from one site to another, considering only horizontal and vertical movements. Refer to Figure
5.1 for a visual representation of these distances within the lattice. The grey points represent the entire lattice. The
central site is marked in red, while the sites at a certain distance are marked in blue. Each subplot in the figure
represents a different Manhattan distance. In essence, we quantify the proximity of interacting agents by calculating
the Manhattan distance. Chapter 1 (2D square lattice) provides empirical data to compute these distances.

The Probability Mass Function of these distances, shown in Figure 5.2(a), exhibits an intriguing exponential
decay behavior. This pattern is fitted alongside the empirical data in the exact figure using a simple exponential
decay model defined as:

p(x) = e
��x

The fitted parameter (�) characterizes the decay rate of spatial interactions and was found to be 0.71. Refer to Figure
5.2(b) for the residual plot. This plot illustrates the differences between the observed order values and the values
predicted by the exponential decay model, suggesting a good fit and reinforcing the reliability of the decay rate
estimation.

Regarding modifications of the tribute model algorithm, for each ambitious leader (A), we select a single target
based on an exponential decay probability (0.71) of distances covering all space in the lattice, thereby replicating the
interactions of our 2D lattice. Once the target (T) is selected, we calculate its susceptibility S = [VA,T ⇥min(W⌧, q)]
to determine if it is an optimal target (S > 0) to make the demand. It’s important to note that this method eliminates
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Figure 5.2: Exponential Decay in Spatial Interactions. The figure illustrates the empirical data from a 2D square
lattice model (Chapter 1), showing the number of lattice steps away between attacker and target when conflicts occur.
The Probability Mass Function (PMF) reveals an exponential decay pattern, fitted with a simple exponential decay
model. The subplot (a) presents the PMF and the fitted model, while subplot (b) displays the residual plot, suggesting
a good fit of the model to the actual data.

the contiguity restriction; hence, the coalition formation should not be restricted to spatial contiguity. From this
point forward, the algorithm remains the same.

This approach allows for a flexible modeling of spatial interactions, emphasizing either local interactions (smaller
distances) or global interactions (larger distances). Moreover, we reach a balance between capturing meaningful
interactions and maintaining computational efficiency. The model remains computationally manageable while
preserving the essential characteristics of the system.

To quantify the commitment activity between agents in the system, we use the following equation17:

A(t) =
1

(N � 1)2

X

i, j

|Ct+1
i j
�C

t

i j
| (5.2)

This equation provides a measure of how much the commitment matrix changes from time t to time t+1 by calculating
the absolute difference between the elements of the matrix and then averaging these differences. Notably, conflicts
induce more significant changes in the commitment matrix than tribute payments. This situation is primarily because
conflicts, unlike tribute payments, are not confined to pair interactions but can involve multiple agents, leading to
more substantial shifts in the commitment matrix.

In constructing accurate phase diagrams, it’s crucial first to analyze specific metrics, such as the Gini index and
the activity of the commitment matrix over time. This preliminary analysis aids in understanding how the system
behaves under different parameters. Moreover, a temporal analysis ensures that the phase diagram captures not just
static but dynamic behaviors, offering insights into system stability, transitions, and responses to parameter changes.

We begin by varying the destructiveness constant k, using values of 0, 0.25, 0.5, 0.57, and 1 over 200000-time
steps, as shown in Figure 5.3. For each k value, the program was run five times, and the results were then averaged.
For all variations of k, the Gini Index and the activity of the commitments show more significant variability and
intensity during the first 100000 time steps. From this point onwards, for k values of 0, 0.5, 0.57, and 1, the Gini
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index is relatively stable, and the activity of commitments presents low intensities over time. Except for k = 0, all
the systems are highly unequal (high Gini index). However, k = 0.25 still presents fluctuations in the Gini index
at a window of high values, indicating more dispersion but also high inequality of resources, and the activity of
commitments still presents high intensities.

Figure 5.3: Destructiveness Constant (k) Variation: Temporal evolution of Gini index and commitment’s activity.
� = 0.7, other parameters are as described in Table 3

On the other hand, we chose to vary the harvest parameter r, using values of 0, 50, 100, 150, and 200 over
200000 time steps. We obtained Figure 5.4 using the same procedure as before. We identified that for r values of 0,
100, 150, and 200, the systems asymptotically stabilize their Gini index and present lower values of the activity of
the commitments in the early time steps. However, notice that r = 0 produces the most unequal populations since
we are not providing resources to the system, so one or at least two agents accumulate the only resources available.
On the other hand, the low values of Gini indexes were found with r values of 100, 150, and 200, indicating that
the more resources are provided, the more equal the population becomes. Nonetheless, at r = 50, the Gini index
and the activity of commitments present significant variability and high inequality. Overall, we identified that low

Figure 5.4: Harvest Constant (r) Variation: Temporal evolution of Gini index and commitment’s activity. � = 0.7,
other parameters are as described in Table 3

activities of the commitment matrix stabilize the Gini index. We also determined that for values near k = 0.25 or
r = 50, during the first 200000 time steps, the systems present more remarkable dispersion in the Gini index with
high activity in the commitment matrix. Remember that conflicts influence commitments more, so under this range
of parameters, such as the ones used in Chapter 1, we are under systems that also conflict with high inequality. On
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the other hand, we identified that r plays an essential role in the distribution of resources, in which some values could
lower and stabilize the Gini indexes.

Finally, we constructed phase diagrams by initiating a transient of 104 steps to allow the system to reach a more
stable state. This was followed by averaging over the subsequent 104 steps. This process was repeated across 20
realizations, and the results were averaged to enhance statistical reliability. We observed that high activity and
dispersion of the commitment matrix stabilize the Gini index. Consequently, we calculate the mean of the Gini index
G as:

Ḡ =
1
n

nX

i=1

G(ti)

Meanwhile, the standard deviation of the activity A(t) is given by:

�A =

vt
1
n

nX

i=1

(A(ti) � Ā)2

Both having n = 104 and ti running from 104.
Figure 5.5 presents the phase diagrams of the Gini index and dispersion of the commitment matrix under the

variation of destructiveness (k) and harvest (r) parameters.

Figure 5.5: Phase diagram: Destructiveness (k)- Harvest (r) Comparative analysis of Gini index (a) and commit-
ment’s activity variability (b). Other parameters are listed in Table 3.

In Figure 5.5(a), we observe a clear transition towards a more equitable distribution of resources as the harvest
parameter r varies. Interestingly, the destructiveness constant k does not significantly impact this distribution.
However, a slight increase in the orange zone at the inter-phase could be attributed to lower values of k (k < 0.5). To
confirm this, we would need to increase the resolution of the diagram. As expected, we observe a high Gini index
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for r = 0, which leads to resource accumulation by a single agent, thereby stagnating the dynamics of conflicts.
Conversely, for k = 0, we observe the lowest Gini index. This is because the system will always opt to fight, leading
to a lack of development of commitments among agents and stagnating the emergence of influential agents.

These two extreme cases are corroborated with Figure 5.5(b), where we observe low variability in the activities
of the commitments. Furthermore, Figure 5.5(b) provides a clear overview of the influence of k and r. In general,
low values of k and values of r < 90 approximately result in more dispersion in the activity rate. The first, k, could
be explained such that high values of destructiveness would make targets find it more profitable to pay than to fight.
In the case of r, introducing resources above this limit allows every agent to recover their status.

Figure 5.6: Phase diagram: Tribute (q)- Harvest (r) Comparative analysis of Gini index (a) and commitment’s
activity variability (b). Other parameters are listed in Table 3.

On the other hand, Figure 5.6 shows the phase diagrams for the Gini index and activity for the variations of the
tribute demanded (q) and harvest (r)). Figure 5.6(a) illustrates an interplay between q and r, delimiting high and low
values transitions. The greater the tribute, the greater r should be to achieve a more evenly distributed system. As
expected, extortion produces inequality (for any q > 0), and the higher the tribute payment, the more cost-effective
it is to fight; hence, more resources should be administered to agents to defend their autonomy. Figure 5.6(b) shows
specific bands of high dispersion of commitment activity, suggesting that certain levels of resources can mitigate the
effects of high tributes, possibly reducing conflicts. In general terms, under this range of q, values of r under 30
produce more dispersion in the activity of commitments, and this activity corresponds to a relatively low Gini index
shown in Figure 5.6(a).

In short, we reveal a transition to a more equitable population by adjusting mainly the harvest parameter r.
However, the destructiveness constant k plays a pivotal role in the dispersion of commitment activity, and the effects
of the tribute demanded value q are bounded by r. We also identify patches of the heatmap indicating fluctuations,
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suggesting that other agents might influence this parameter.
We observe two distinct zones of high and low Gini indexes. In the high Gini region (orange), high dispersion

of commitment activity results in relatively "lower" values, as conflicts lead to a redistribution of power. The low
activity in this region indicates that resources are accumulated by a few agents, making it challenging for others to
compete. However, it is essential to note that this relative difference in Gini values is only about 0.1, indicating that
the system is still highly inequitable.

On the other hand, in the low Gini index region (purple), we observe a very low dispersion of activity, suggesting
that fewer conflicts are occurring and more tribute payments are being made. However, the high periodic injection
of resources prevents specific agents from standing out. This dynamic interplay between r, k, and q underscores
the system’s complexity and provides valuable insights into strategies for achieving a more equitable distribution of
resources.





Chapter 6

Conclusions

Our research on Axelrod’s Tribute Model has revealed a strong correlation between resource availability and tensions
in a system of social, where scarcity of resources triggers conflicts and concentration. On the other hand, abundance
of resources promotes equitable distribution of power through the emergence of new powerful agents. We have
employed for the first time the Gini index as a global measure of inequality in conflict models. Notably, a high
frequency of conflicts does not necessarily precipitate a sharp decline in the global economy. Instead, these conflicts
can catalyze a restructuring of commitments among agents within and between coalitions, fostering the emergence
of new powerful agents.

The analysis of conflicts in the 2-dimensional lattice model reveals that civil wars (Ci j � 50%) are more prevalent,
but non-civil (Ci j < 50%) wars exhibit greater variability and extreme values. The distribution of the number of
participants during conflicts follows a heavy-tailed distribution; i. e., a truncated power law with an exponent
↵ = 1.57 and an exponential truncation � = 0.01. This behavior suggests that the participation of a few agents in
conflicts is more probable, possibly due to dense commitments within coalitions.

We found that the inter-event time distributions of conflicts exhibits a bursty behavior, characterized by the
formation of clusters of violent conflicts separated by periods of relative calm. We determined that log-normal
distribution provides a better fit for all data regimes. In addition, no significant difference is observed between the
log-normal and power law fits for the tail of the distribution. The observed patterns indicate the possible underlying
processes driving the dynamics of conflicts.

We have shown the advantage of using complex network visualization tools to identify emergent aggregate agents
in the commitment networks, offering a more intuitive approach than showing connectivity matrices. However, the
matrix approach remains valuable, particularly for revealing the effects of the network topology, such as the tendency
of commitments to grow locally in a 2-dimensional lattice.

The formation of a dominant aggregates of agents is observed, with extortion serving as a mechanism of resource
accumulation. Civil wars play a crucial role in weakening the power of dominant aggregate agents by facilitating the
restructuring of commitments and resources, thereby providing opportunities for others to emerge.

The Landscape Theory of Aggregation provides a plausible method to calculate the energy configuration and
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explain wealth accumulation. It suggests that one way to reduce frustration and achieve system stability is by
increasing the resources of coalition members. This comprehensive analysis offers valuable insights into societal
tensions, conflicts, and the balance of power.

We have also investigated Axelrod’s Tribute Model on a global network, where any agent can interact with any
other. In contrast with the 2-dimensional square lattice configuration, the dynamics on a global network exhibits a
higher frequency of conflicts and a decrease of overall resources. This could be attributed to the scarcity of global
resources, which prevents high resource accumulation and leads to an unstable power structure. The Gini index
for the global network is 0.72, while 0.86 for the 2-dimensional square lattice. The high Gini index values in both
structures can be explained by the inherent nature of the model, particularly the “extortion” mechanism.

Civil wars are more frequent but relatively consistent across years, while non-civil conflicts, though less frequent,
can be unpredictable and vary greatly in intensity. The distribution of participants in disruptions in the global network
fits better with a log-normal distribution. The transition from a 2-dimensional lattice to a global network shifts from
localized to global interactions, and this change in the interaction range has implications for the dynamics of the
systems, including the rate and pattern of information propagation, as seen in the flow of resources. The importance
of employing alternative visual methodologies, such as constructing an adaptive network of commitments, is
emphasized to understand and to interpret complex interactions within the network.

Finally, the Probability Mass Function of the Manhattan distances of the 2-dimensional lattice exhibits an
exponential decay behavior, allowing for flexible modeling of spatial interactions, capturing meaningful interactions,
and maintaining computational efficiency. The harvest parameter r plays a crucial role in the distribution of resources,
with some values potentially lowering and stabilizing the Gini indexes. However, the destructiveness constant k

significantly influences the dispersion of commitment activity, and the effects of the tribute demanded value q are
bounded by r.

Our findings can contribute to the development of strategies for conflict management and resource allocation in
different social network structures.



Appendix A

Appendix: Tribute Model

All code used to replicate the analyses detailed in this document is included here. Furthermore, a comprehensive col-
lection of scripts and data files can be found at the following GitHub repository: https://github.com/brandonminta/conflictmodel

The repository includes scripts written in Python, along with additional resources essential for reproducing the
reported results. For questions or support related to the code or its execution, please consult the GitHub repository
or reach out to the author directly.

Listing A.1: Tribute model

# ! / u s r / b i n / env py thon
# @author : Brandon Minta
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#
# A s i m u l a t i o n o f a soc io −dynamica l model o f c o n f l i c t s based on
# " pay or e l s e " f o r s i m p l e i n t e r a c t i o n r u l e s among i n d i f f e r e n t
# t o p l o g i e s
#
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
import a r g p a r s e
import os

import numpy as np
import math
import h5py
from tqdm import tqdm
import m u l t i p r o c e s s i n g as mp
import ne tworkx as nx
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import random
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
def pa r s e _ a r gumen t s ( ) :

p a r s e r = a r g p a r s e . Argumen tPa r se r ( d e s c r i p t i o n = ’Run� t h e � s i m u l a t i o n � s c r i p t . ’ )
p a r s e r . add_argument ( ’−N’ , type= i n t , d e f a u l t =100 , help= ’Number� of � a c t o r s ’ )
p a r s e r . add_argument ( ’−−y e a r s ’ , type= i n t , d e f a u l t =1000 , help= ’Number� of � \

���� i t e r a t i o n s ’ )
p a r s e r . add_argument ( "−−ne two rk_ type " , c h o i c e s =[ " w a t t s _ s t r o g a t z " , " g r i d_2d " ,
" comp le t e " , " wheel " ] , d e f a u l t =" g r i d_2d " , help=" Type� of � ne twork " )
p a r s e r . add_argument ( ’−−ncpu ’ , type= i n t , d e f a u l t =1 , help= ’Number� of � \

���� p r o c e s s e s ’ )
p a r s e r . add_argument ( "−−o u t p u t _ d i r " , r e q u i r e d =True , help=" Outpu t � d i r e c t o r y " )
re turn p a r s e r . p a r s e _ a r g s ( )

# C on s t a n t s
a r g s = pa r s e _ a r gumen t s ( )
c = 1 # commitment f l u c t u a t i o n
k = 0 .25 # D e s t r u c t i v e n e s s
demands = 3 # Demands per Year Cyc le ( 1 / 3 o f N)
p e r i o d _ s t e p s = 1 # Per iod f o r da ta c o l l e c t i o n
r = 20 # h a r v e s t
q = 250 # T r i b u t e

def s a v i n g _ d a t a ( rank , o u t p u t _ d i r , l o y a l t y _ l i s t , d a t a _ m a t r i x ) :
s u bd i r e c t o r y _ n a me = f " run_ { rank } " # Crea t e t h e s u b d i r e c t o r y name
s u b d i r e c t o r y _ p a t h = os . p a t h . j o i n ( o u t p u t _ d i r , s u b d i r e c t o r y _ n a m e )
# Crea t e t h e s u b d i r e c t o r y i f i t doesn ’ t e x i s t ( w i t h e x i s t _ o k=True
# i t won ’ t r a i s e an e r r o r i f i t a l r e a d y e x i s t s )
os . maked i r s ( s u b d i r e c t o r y _ p a t h , e x i s t _ o k =True )
# Save da ta t o HDF5 f i l e s
wi th h5py . F i l e ( os . p a t h . j o i n ( s u b d i r e c t o r y _ p a t h , f " \

���� l o y a l t y _ o u t p u t _ { rank } . h5 " ) , ’w’ ) a s h f :
f o r i , a r r a y in enumerate ( l o y a l t y _ l i s t ) :

h f . c r e a t e _ d a t a s e t ( f ’ l o y a l t y _ m a t r i x _ { i } ’ , d a t a = a r r a y )

wi th h5py . F i l e ( os . p a t h . j o i n ( s u b d i r e c t o r y _ p a t h , f " \
���� s i m u l a t i o n _ o u t p u t _ { rank } . h5 " ) , ’w’ ) a s h f :

h f . c r e a t e _ d a t a s e t ( ’ s i m u l a t i o n _ d a t a ’ , d a t a = d a t a _ m a t r i x )
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def c r e a t e _ g r a p h ( num_nodes , g r aph_ t ype = ’ g r i d ’ , �� kwargs ) :
" " "
Crea t e and r e t u r n a NetworkX graph based on t h e s p e c i f i e d number
o f nodes and graph t y p e .

Parame ter s :
num_nodes ( i n t ) : Number o f nodes i n t h e graph .
g raph_ t ype ( s t r ) : Type o f graph ( ’ g r i d ’ , ’ s c a l e _ f r e e ’ ,
or ’ w a t t s _ s t r o g a t z ’ ) .
��kwargs : A d d i t i o n a l argument s s p e c i f i c t o t h e chosen graph t y p e .

Re t u rn s :
nx . Graph : NetworkX graph based on t h e s p e c i f i e d pa rame t e r s .
" " "
i f g r aph_ t ype == ’ g r i d_2d ’ :

f a c t o r s = [ ]
f o r i in range ( 1 , i n t ( math . s q r t ( num_nodes ) ) + 1 ) :

i f num_nodes % i == 0 :
f a c t o r s . append ( ( i , num_nodes / / i ) )

m, n = min ( f a c t o r s , key=lambda x : abs ( x [ 0 ] − x [ 1 ] ) )
G = nx . g r i d_2d_g r aph (m, n , p e r i o d i c =True )
mapping = { ( i , j ) : i � n + j f o r i in range (m) f o r j in range ( n ) }
G = nx . r e l a b e l _ n o d e s (G, mapping )

e l i f g r aph_ t ype == ’ w a t t s _ s t r o g a t z ’ :
k = kwargs . g e t ( ’ k ’ , 4 ) # D e f a u l t v a l u e f o r k i s s e t t o 4
p = kwargs . g e t ( ’ p ’ , 0 . 1 ) # D e f a u l t v a l u e f o r p i s s e t t o 0 . 1
G = nx . w a t t s _ s t r o g a t z _ g r a p h ( num_nodes , k , p )

e l i f g r aph_ t ype == ’ comp le t e ’ :
G = nx . comp l e t e_g r aph ( num_nodes )

e l i f g r aph_ t ype == ’ wheel ’ :
G = nx . whee l_graph ( num_nodes )

re turn G

def l o s s ( coAWealth , coBWealth , c o n t r i b u t i o n ) :
" " "
The f u n c t i o n c a l c u l a t e s l o s s o f r e s o u r c e s from an a c t o r o f c o a l i t i o n B ,
caused by c o n f l i c t w i t h c o a l i t i o n A
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" " "
re turn k�coAWealth � ( c o n t r i b u t i o n ) / coBWealth

def v u l n e r a b i l i t y ( r _ i , r _ j ) :
" " "
The f u n c t i o n computes t h e v u l n e r a b i l i t y o f agen t j w i t h r e s p e c t t o agen t i
" " "
re turn ( r _ i − r _ j ) / r _ i i f r _ i > 0 and r _ j > 0 e l s e 0

def g r o u p _ r e s o u r c e s ( agen t , c o a l i t i o n _ a r r , c a p i t a l _ a r r , l o y a l t y _ m t x ) :
" " "
The f u n c t i o n c a l c u l a t e s t h e t o t a l r e s o u r c e s o f a c o a l i t i o n

Parame ter s
−−−−−−−−−−−
agen t : i n t

The group l e a d e r
c o a l i t i o n _ a r r : a r ray

C o a l i t i o n
c a p i t a l _ a r r : a r ray

C a p i t a l o f each member
l o y a l t y _ m t x : a r ray

Commitment m a t r i x

r e t u r n
−−−−−−
money : f l o a t

The t o t a l r e s o u r c e s o f t h e c o a l i t i o n

" " "
money = 0
f o r i in c o a l i t i o n _ a r r :

money += 0 .1� l o y a l t y _ m t x [ i ] [ a g en t ] � c a p i t a l _ a r r [ i ]
re turn money

def c a n d i d a t e _ c o n n e c t i o n (G, l oya l t y_m tx , a t t a c k e r , t a r g e t ) :
" " "
Th i s f u n c t i o n check s i s t h e r e i s a pa th be tween A t t a c k e r and t a r g e t
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" " "
# Crea t e a subgraph t o remove nodes
H = G. copy ( )
n o d e s _ t o _ i s o l a t e = [ ] # node more commi t t ed w i t h t a r g e t
f o r node in range ( l en ( l o y a l t y _ m t x ) ) :

c ond i t i o nA = l o y a l t y _ m t x [ node , a t t a c k e r ]
c o n d i t i o n B = l o y a l t y _ m t x [ node , t a r g e t ]
i f ( c ond i t i o nA <= c o n d i t i o n B ) and node not in [ a t t a c k e r , t a r g e t ] :

n o d e s _ t o _ i s o l a t e . append ( node )
H. remove_nodes_from ( n o d e s _ t o _ i s o l a t e )
#Check i f t h e r e i s a pa th be tween nodes
i f nx . h a s _pa t h (H, a t t a c k e r , t a r g e t ) :

p a t h _ l e n g t h = nx . s h o r t e s t _ p a t h _ l e n g t h (H, s o u r c e = a t t a c k e r ,
t a r g e t = t a r g e t )
re turn p a t h _ l e n g t h

e l s e :
re turn None

def group (G, a , b , l o y a l t y _ m t x ) :
" " "
Th i s f u n c t i o n f i n d t h e s p a t i a l c onnec t ed c o a l i t i o n o f ’ a ’
" " "
# Crea t e an i n i t i a l g roup ing where each node i s i t s own group
group_a = { node f o r node in G. nodes ( ) i f

( l o y a l t y _ m t x [ node , a ] > l o y a l t y _ m t x [ node , b ] and
node != b ) or ( node == a )}

subg raph = G. subg raph ( group_a )
c o a l i t i o n = l i s t ( nx . d e s c e n d a n t s ( subgraph , a ) ) + [ a ]
re turn np . a r r a y ( c o a l i t i o n , d t ype = i n t )

def g r o u p _ g l o b a l ( a , b , l o y a l t y _ m t x ) :
l o y a l t y _ t o _ a = l o y a l t y _ m t x [ : , a ]
l o y a l t y _ t o _ b = l o y a l t y _ m t x [ : , b ]
g roup_a = np . where ( l o y a l t y _ t o _ a > l o y a l t y _ t o _ b ) [ 0 ]
group_b = np . where ( l o y a l t y _ t o _ b > l o y a l t y _ t o _ a ) [ 0 ]
# I n c l u d e "a " i n group_a and "b " i n group_b
group_a = np . un ion1d ( group_a , [ a ] )
group_b = np . un ion1d ( group_b , [ b ] )
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re turn group_a , group_b

def c a n d i d a t e _ e x p o s u r e (G, a t t a c k e r , t a r g e t , c a p i t a l , l o y a l t y_m tx , p a t h _ l e n g t h ) :
" " "
Th i s f u n c t i o n c a l c u l a t e s t h e s u s c e p t i b i l i t y
" " "
a t t a c k e r _ a l l e y = group (G, a t t a c k e r , t a r g e t , l o y a l t y _ m t x )
t a r g e t _ a l l e y = group (G, t a r g e t , a t t a c k e r , l o y a l t y _ m t x )
w_a t t = g r o u p _ r e s o u r c e s ( a t t a c k e r , a t t a c k e r _ a l l e y , c a p i t a l , l o y a l t y _ m t x )
w_def = g r o u p _ r e s o u r c e s ( t a r g e t , t a r g e t _ a l l e y , c a p i t a l , l o y a l t y _ m t x )
s u s c e p t i b i l i t y = v u l n e r a b i l i t y ( w_at t , w_def ) � min ( q , c a p i t a l [ t a r g e t ] )
re turn s u s c e p t i b i l i t y , a t t a c k e r _ a l l e y , t a r g e t _ a l l e y , w_at t , w_def

def c a n d i d a t e _ s e l e c t i o n (G, l oy a l t y_m tx , a t t a c k e r , c a p i t a l , n e two rk_ type ) :
" " "
Th i s f u n c t i o n s e l e c t s t h e b e s t t a r g e t p o s s i b l e i f any
" " "
i f ne two rk_ type == ’ comp le t e ’ :

def ge t _op t ima l _p a r ams ( t a r g e t ) :
a t t a c k e r _ a l l e y , t a r g e t _ a l l e y = g r o u p _ g l o b a l ( a t t a c k e r ,

t a r g e t , l o y a l t y _ m t x )
w_a t t = g r o u p _ r e s o u r c e s ( a t t a c k e r , a t t a c k e r _ a l l e y , c a p i t a l ,

l o y a l t y _ m t x )
w_def = g r o u p _ r e s o u r c e s ( t a r g e t , t a r g e t _ a l l e y , c a p i t a l ,

l o y a l t y _ m t x )
s u s c e p t i b i l i t y = v u l n e r a b i l i t y ( w_at t , w_def ) � min ( q ,

c a p i t a l [ t a r g e t ] )
re turn {

" s u s c e p t i b i l i t y " : s u s c e p t i b i l i t y ,
" a t t a c k e r _ a l l e y " : a t t a c k e r _ a l l e y ,
" t a r g e t _ a l l e y " : t a r g e t _ a l l e y ,
" w_a t t " : w_at t ,
" w_def " : w_def ,
" t a r g e t " : t a r g e t ,
" a t t a c k e r " : a t t a c k e r ,
" p a t h _ l e n " : None

}
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o p t i m a l = {
" s u s c e p t i b i l i t y " : 0 ,
" a t t a c k e r _ a l l e y " : None ,
" t a r g e t _ a l l e y " : None ,
" w_a t t " : None ,
" w_def " : None ,
" t a r g e t " : None ,
" a t t a c k e r " : None ,
" p a t h _ l e n " : None

}

f o r i in range ( l en ( l o y a l t y _ m t x ) ) :
i f i != a t t a c k e r :

params = ge t _op t ima l _p a r ams ( i )
i f params [ " s u s c e p t i b i l i t y " ] > o p t i m a l [ " s u s c e p t i b i l i t y " ] :

o p t i m a l . upda t e ( params )

re turn o p t i m a l
e l s e :

n e i g h b o r s _ a t t a c k e r = l i s t (G. n e i g h b o r s ( a t t a c k e r ) )
params
def ge t _op t ima l _p a r ams ( t a r g e t ) :

" " "
Helper f u n c t i o n t o c a l c u l a t e s u s c e p t i b i l i t y and o t h e r
pa rame t e r s f o r a t a r g e t node .
" " "
p a t h _ l e n g t h = c a n d i d a t e _ c o n n e c t i o n (G, l oy a l t y_m tx , a t t a c k e r ,
t a r g e t )
# Exc lude no t p r o f i t a b l e t a r g e t s and no t s p a t i a l l y connec t ed .
i f c a p i t a l [ t a r g e t ] < 0 . 1 or p a t h _ l e n g t h i s None :

re turn {
" s u s c e p t i b i l i t y " : 0 ,
" a t t a c k e r _ a l l e y " : None ,
" t a r g e t _ a l l e y " : None ,
" w_a t t " : None ,
" w_def " : None ,
" t a r g e t " : None ,
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" a t t a c k e r " : None ,
" p a t h _ l e n " : None

}
# C a l c u l a t e pa rame t e r s u s i ng c a n d i d a t e _ e x p o s u r e f u n c t i o n
s u s c e p t i b i l i t y , a t t a c k e r _ a l l e y , t a r g e t _ a l l e y , w_at t , w_def =
c a n d i d a t e _ e x p o s u r e (G, a t t a c k e r , t a r g e t , c a p i t a l ,
l o y a l t y_m tx , p a t h _ l e n g t h )
re turn {

" s u s c e p t i b i l i t y " : s u s c e p t i b i l i t y ,
" a t t a c k e r _ a l l e y " : a t t a c k e r _ a l l e y ,
" t a r g e t _ a l l e y " : t a r g e t _ a l l e y ,
" w_a t t " : w_at t ,
" w_def " : w_def ,
" t a r g e t " : t a r g e t ,
" a t t a c k e r " : a t t a c k e r ,
" p a t h _ l e n " : p a t h _ l e n g t h

}

# I n i t i a l i z e o p t i m a l pa rame t e r s w i t h t h e f i r s t n e i ghbo r o f t h e a t t a c k e r
o p t i m a l = ge t _op t ima l _p a r ams ( n e i g h b o r s _ a t t a c k e r [ 0 ] )
# I t e r a t e t h rough o t h e r n e i g hbo r s o f t h e a t t a c k e r and upda t e o p t i m a l
# parame t e r s i f a b e t t e r t a r g e t i s found
f o r t a r g e t in n e i g h b o r s _ a t t a c k e r [ 1 : ] :

params = ge t _op t ima l _p a r ams ( t a r g e t )
# Check i f t h e t a r g e t i s v a l i d and has h i g h e r s u s c e p t i b i l i t y
i f params and params [ " s u s c e p t i b i l i t y " ] > o p t i m a l [ " s u s c e p t i b i l i t y " ] :

o p t i m a l . upda t e ( params )

# I t e r a t e t h rough a l l nodes t h a t are no t n e i g hbo r s o f t h e a t t a c k e r
# and upda t e o p t i m a l pa rame t e r s i f a b e t t e r t a r g e t i s found
f o r t a r g e t in [ node f o r node in range ( l en ( l o y a l t y _ m t x ) ) i f

node not in n e i g h b o r s _ a t t a c k e r and node != a t t a c k e r ] :
# Check i f t a r g e t ’ s n e i g hbo r s are no t commited w i t h a t t a c k e r
# ( no p o s s i b l e pa th )
i f a l l ( l o y a l t y _ m t x [ node ] [ a t t a c k e r ] <= l o y a l t y _ m t x [ node ] [ t a r g e t ] f o r

node in l i s t (G. n e i g h b o r s ( t a r g e t ) ) ) :
cont inue

params = ge t _op t ima l _p a r ams ( t a r g e t )
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# Update o p t i m a l pa rame t e r s i f a b e t t e r t a r g e t i s found
i f params and params [ " s u s c e p t i b i l i t y " ] > o p t i m a l [ " s u s c e p t i b i l i t y " ] :

o p t i m a l . upda t e ( params )

# Re turn t h e o p t i m a l pa rame t e r s
re turn o p t i m a l

def r e s p o n s e ( op t ima l , c a p i t a l , l o y a l t y _ m t x ) :
a t t a c k e r = o p t i m a l [ " a t t a c k e r " ]
t a r g e t = o p t i m a l [ " t a r g e t " ]
w_def = o p t i m a l [ " w_def " ]
w_a t t = o p t i m a l [ " w_a t t " ]
t a r g e t _ a l l e y = o p t i m a l [ " t a r g e t _ a l l e y " ]
a t t a c k e r _ a l l e y = o p t i m a l [ " a t t a c k e r _ a l l e y " ]
d amage_by_a t t a cke r = min ( k� w_at t , w_def ) #can ’ t cause more damage
damage_by_defender = min ( k�w_def , w_a t t )
l o y a l t y = np . copy ( l o y a l t y _ m t x [ a t t a c k e r ] [ t a r g e t ] )
a c t i v i t y = 0
# Cons ide r on l y t a r g e t ’ s damage
i f min ( q , c a p i t a l [ t a r g e t ] ) > ( damage_by_a t t a cke r � c a p i t a l [ t a r g e t ] / w_def ) :

f o r i in t a r g e t _ a l l e y :
o f f e r i n g = 0 .1� l o y a l t y _ m t x [ i ] [ t a r g e t ] � c a p i t a l [ i ]
c o n t r i b u t i o n _ l o s s = damage_by_a t t a cke r � o f f e r i n g / w_def
c a p i t a l [ i ] −= c o n t r i b u t i o n _ l o s s
f o r m in t a r g e t _ a l l e y :

i f 10 − c >= l o y a l t y _ m t x [ i ] [m] >= 0 :
l o y a l t y _ m t x [ i ] [m] = l o y a l t y _ m t x [ i ] [m] + c
a c t i v i t y += 1

f o r n in a t t a c k e r _ a l l e y :
i f 10 >= l o y a l t y _ m t x [ i ] [ n ] >= c :

l o y a l t y _ m t x [ i ] [ n ] = l o y a l t y _ m t x [ i ] [ n ] − c
l o y a l t y _ m t x [ n ] [ i ] = l o y a l t y _ m t x [ n ] [ i ] − c
a c t i v i t y += 2

f o r j in a t t a c k e r _ a l l e y :
o f f e r i n g = 0 .1� l o y a l t y _ m t x [ j ] [ a t t a c k e r ] � c a p i t a l [ j ]
c o n t r i b u t i o n _ l o s s = damage_by_defender � o f f e r i n g / w_a t t
c a p i t a l [ j ] −= c o n t r i b u t i o n _ l o s s
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f o r l in a t t a c k e r _ a l l e y :
i f 10 − c >= l o y a l t y _ m t x [ j ] [ l ] >= 0 :

l o y a l t y _ m t x [ j ] [ l ] = l o y a l t y _ m t x [ j ] [ l ] + c
a c t i v i t y += 1

# C o n f l i c t : True ; L o y a l t y be tween a t t a c k e r and t a r g e t , a c t i v i t y
re turn 1 , l o y a l t y , a c t i v i t y / 2

e l s e :
money = min ( q , c a p i t a l [ t a r g e t ] )
c a p i t a l [ t a r g e t ] , c a p i t a l [ a t t a c k e r ] = c a p i t a l [ t a r g e t ] − money ,
c a p i t a l [ a t t a c k e r ] + money
i f 10 − c >= l o y a l t y _ m t x [ t a r g e t ] [ a t t a c k e r ] >= 0 :

l o y a l t y _ m t x [ t a r g e t ] [ a t t a c k e r ] += c
l o y a l t y _ m t x [ a t t a c k e r ] [ t a r g e t ] += c
a c t i v i t y += 2

# C o n f l i c t : Fa l s e ; L o y a l t y be tween a t t a c k e r and t a r g e t , a c t i v i t y
re turn 0 , l o y a l t y , a c t i v i t y / 2

# S i m u l a t i o n −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c l a s s S i m u l a t i o n :

def _ _ i n i t _ _ ( s e l f , N, yea r s , G, rank , ne two rk_ type ) :
s e l f . r ank = rank
s e l f .N = N # Number o f a c t o r s
s e l f . y e a r s = y e a r s # Years
s e l f .G = G # Network
s e l f . c a p i t a l = np . z e r o s ( s e l f .N) # Weal th
s e l f . l o y a l t y _ m t x = np . i d e n t i t y ( s e l f .N, d t ype = i n t )�10
s e l f . n e two rk_ type = ne two rk_ type

def s i m u l a t e _ a c t i v a t i o n ( s e l f ) :
a t t a c k e r = random . r a n d r a ng e ( 0 , s e l f .N)
o p t i m a l = c a n d i d a t e _ s e l e c t i o n ( s e l f .G, s e l f . l o y a l t y_m tx , a t t a c k e r ,
s e l f . c a p i t a l , s e l f . n e two rk_ type )
i f o p t i m a l [ " s u s c e p t i b i l i t y " ] > 0 : # Targe t

d e c i s i o n , l o y a l t y , a c t i v i t y = r e s p o n s e ( op t ima l , s e l f . c a p i t a l ,
s e l f . l o y a l t y _ m t x )
re turn d e c i s i o n , l o y a l t y , op t ima l , a c t i v i t y

e l s e :
re turn None , None , op t ima l , 0
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def r u n _ s i m u l a t i o n ( s e l f , pba r = None ) :
#Get t h e t o t a l number o f i t e r a t i o n s
t o t a l _ i t e r a t i o n s = s e l f . y e a r s � ( s e l f .N / / demands )
# I n i t i a l i z e t h e r e s o u r c e s f o r each a c t o r
f o r i in range ( s e l f .N ) :

s e l f . c a p i t a l [ i ] = random . r a nd r a n g e ( 300 , 500 , 1 )
l o y a l t y _ l i s t = [ ] # L i s t s f o r p e r i o d i c l o y a l t y
d a t a _ m a t r i x = np . z e r o s ( ( t o t a l _ i t e r a t i o n s +1 , s e l f .N + 10 ) ,

d t ype =np . f l o a t 3 2 )
d a t a _ m a t r i x [ 0 , 1 0 : ] = s e l f . c a p i t a l
# Crea t e t h e cha rg i ng bar i f pbar i s p r o v i d ed
i f pba r :

pba r . r e s e t ( t o t a l = t o t a l _ i t e r a t i o n s )
# Loop f o r each s i m u l a t i o n run
i t e r a t o r , p e r i o d = 1 , p e r i o d _ s t e p s
f o r yea r in range ( s e l f . y e a r s ) :

i f s e l f . r ank == 1 :
l o y a l t y _ l i s t . append ( np . copy ( s e l f . l o y a l t y _ m t x ) )

f o r k in range ( s e l f .N / / demands ) :
d e c i s i o n , l o y a l t y , op t ima l , a c t i v i t y = (

s e l f . s i m u l a t e _ a c t i v a t i o n ( ) )
i f d e c i s i o n i s not None :

# Per form e lemen t−wise compar i son and coun t
# t h e number o f d i f f e r i n g e l e m e n t s )
i n f o = np . a r r a y ( [ d e c i s i o n , o p t i m a l [ " a t t a c k e r " ] ,
o p t i m a l [ " t a r g e t " ] , l o y a l t y ,

l en ( o p t i m a l [ " t a r g e t _ a l l e y " ] ) ,
l en ( o p t i m a l [ " a t t a c k e r _ a l l e y " ] ) , o p t i m a l [ " w_def " ] ,
o p t i m a l [ " w_a t t " ] , o p t i m a l [ " p a t h _ l e n " ] , a c t i v i t y ] )

e l s e :
i n f o = np . f u l l ( 10 , None )

d a t a _ m a t r i x [ i t e r a t o r , : 1 0 ] , d a t a _ m a t r i x [ i t e r a t o r , 1 0 : ] = i n fo ,
s e l f . c a p i t a l

i t e r a t o r += 1
i f pba r :

pba r . upda t e ( 1 )
s e l f . c a p i t a l += r
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l o y a l t y _ l i s t . append ( np . copy ( s e l f . l o y a l t y _ m t x ) )
re turn l o y a l t y _ l i s t , d a t a _ m a t r i x

def run ( rank , o u t p u t _ d i r , N, yea r s , G, ne two rk_ type ) :
s i m u l a t i o n = S i m u l a t i o n (N, yea r s , G, rank , ne two rk_ type )
wi th tqdm ( t o t a l = t o t a l _ i t e r a t i o n s , de sc =" S i m u l a t i o n � P r o g r e s s " ,

u n i t =" i t e r a t i o n " ) a s pba r :
l o y a l t y _ l i s t , d a t a _ m a t r i x = s i m u l a t i o n . r u n _ s i m u l a t i o n ( pba r = pba r )
s a v i n g _ d a t a ( rank , o u t p u t _ d i r , l o y a l t y _ l i s t , d a t a _ m a t r i x )

i f __name__ == " __main__ " :
a r g s = pa r s e _ a r gumen t s ( )
N = a r g s .N
y e a r s = a r g s . y e a r s
ne two rk_ type = a r g s . n e two rk_ type
o u t p u t _ d i r = a r g s . o u t p u t _ d i r
ncpu = a r g s . ncpu

ne twork = c r e a t e _ g r a p h (N, g r aph_ t ype = ne two rk_ type )
t o t a l _ i t e r a t i o n s = y e a r s � (N / / demands )
# Crea t e o u t p u t d i r e c t o r y i f i t doesn ’ t e x i s t
os . maked i r s ( o u t p u t _ d i r , e x i s t _ o k =True )

# Get number o f l a p t o p CPUs
n_cpu = mp . cpu_coun t ( )
# Ca l l Pool
poo l = mp . Pool ( p r o c e s s e s =ncpu )
# Crea t e a l i s t o f t u p l e s c o n t a i n i n g a l l c omb i na t i o n s o f pa ramte r s
p a r a m e t e r s = [ ( rank , o u t p u t _ d i r , N, yea r s , network , ne two rk_ type ) f o r

r ank in range ( 1 , ncpu +1 ) ]
# Ca l l run f o r a l l parame te r t u p l e s u s i ng poo l . map
poo l . s t a rmap ( run , p a r a m e t e r s )
# Close t h e poo l
poo l . c l o s e ( )
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