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Resumen
El grafeno es conocido por sus excepcionales atributos electrónicos y estructurales. Sin embargo, su aplicabilidad
en nanoelectrónica y aplicaciones magnéticas está limitada por la ausencia de una banda prohibida y características
magnéticas. Dado que los estudios experimentales pueden ser costosos y llevar mucho tiempo, es esencial explorar el
impacto de los defectos en las propiedades del grafeno a través de simulaciones. Esta tesis presenta una exploración
computacional de superredes de grafeno con defectos topológicos, enfocándose específicamente en los efectos
de los adatomos de hidrógeno (H) y las vacantes de carbono (C) en presencia de un defecto en forma de flor
(FLD). Empleando cálculos de primeros principios, este estudio investiga las propiedades electrónicas, magnéticas
y estructurales de estas superredes modificadas. La metodología de investigación se basa en la Teoría Funcional
de la Densidad (DFT) y simulaciones DFT polarizadas por espín, utilizando la función meta-GGA r2SCAN con
correcciones de van der Waals, implementada en el paquete de simulación ab initio de Viena (VASP). Se examinan
varias configuraciones de adatomos de H y vacantes de C en superredes de grafeno para evaluar su influencia en
propiedades clave como la modulación del bandgap y el comportamiento magnético. Los hallazgos significativos
resaltan el papel crucial de la posición de los adatomos de H en la alteración de la estructura electrónica y la inducción
de magnetismo debido a las vacantes de C.

Palabras clave: DFT, superredes de grafeno, defecto en forma de flor, adatomos de hidrógeno, vacantes de
carbono, propiedades electrónicas, propiedades magnéticas.
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Abstract
Graphene is known for its exceptional electronic and structural attributes. However, its applicability in nanoelectronics
and magnetic applications is constrained by its absence of a bandgap and magnetic characteristics. Given that
experimental studies can be costly and time-consuming, it is essential to explore the impact of defects on graphene’s
properties through ab initio simulations. This thesis presents a computational exploration of topologically defective
graphene-based superlattices, specifically focusing on the effects of hydrogen (H) adatoms and carbon (C) vacancies
in the presence of a Flower-like defect (FLD). Employing first-principles calculations, this study investigates these
modified superlattices’ electronic, magnetic, and structural properties. The research methodology is grounded in
Density Functional Theory (DFT) and spin-polarized DFT simulations, utilizing the meta-GGA r2SCAN functional
with van der Waals corrections, as implemented in the Vienna Ab initio Simulation Package (VASP). Various
configurations of H adatoms and C vacancies are examined in graphene superlattices to assess their influence on key
properties such as bandgap modulation and magnetic behavior. Significant findings highlight the crucial role of H
adatom positioning in altering the electronic structure and the induction of magnetism due to C vacancies.

Keywords: DFT, graphene superlattices, flower-like defect, hydrogen adatoms, carbon vacancies, electronic
properties, magnetic properties.
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Chapter 1

Introduction

Graphene, a two-dimensional (2D) material composed of a single layer of carbon atoms arranged in a hexagonal
lattice, has attracted tremendous attention in the scientific community since its discovery in 20041,2. Graphene was
first theorized by physicists and chemists in the 1940s and 1950s, who speculated about the stability and electronic
properties of a monolayer of carbon atoms3. However, this theoretical abstraction only transformed into a tangible
reality at the turn of the 21st century. In 2004, Andre Geim and Konstantin Novoselov successfully isolated and
characterized graphene through the micromechanical cleavage technique, one of the five most commonly used
exfoliation methods4. They used adhesive tape to peel off thin flakes of graphite, a layered material consisting of
many graphene sheets stacked together. By repeatedly cleaving the graphite flakes, they could obtain graphene layers
that were only one atom thick.

This discovery ignited a revolution in material science, catapulting graphene into the scientific limelight. Its
extraordinary properties, such as exceptional electrical conductivity (200,000 cm2/Vs), mechanical strength (1 TPa
Young’s modulus), and thermal conductivity (3000–5000 Wm/K), captured the imagination of researchers across
many disciplines3,5. Graphene’s emergence has also initiated the investigation of other emerging 2D materials, often
referred to as “2D materials’ science”5. These materials include hexagonal boron nitride (h-BN), transition metal
dichalcogenides (TMDs), black phosphorus (BP), and many others. These materials have different structures and
properties from graphene and can be combined with graphene to form heterostructures with novel functionalities5.

As graphene’s potential became increasingly evident, researchers and industries recognized its game-changing
capabilities. Its lightweight yet robust nature makes it an ideal candidate for many applications, from flexible
electronics to ultra-strong materials for construction and aerospace3,5. Some of the current and emerging applications
of graphene include:

• Transparent electrodes for touch screens, solar cells, and light-emitting diodes (LEDs)5.

• Sensors for detecting gases, biomolecules, and mechanical strain5.

• Supercapacitors and batteries for energy storage5.
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2 1.1. PROBLEM STATEMENT

• Nanocomposites for enhancing polymers, metals, and ceramics’ mechanical, electrical, and thermal proper-
ties5.

• Membranes for water purification, gas separation, and ion transport5.

• Biomedical devices for drug delivery, tissue engineering, and biosensing5.

1.1 Problem Statement
Despite its remarkable properties, pristine graphene has certain limitations that restrict its use in some applications,
particularly in the realm of nano-electronics. One such limitation is the absence of a band gap in graphene6.
This band gap is essential for controlling the flow of electrons, making the creation of graphene-based transistors
impractical using pristine graphene.

Similarly, pristine graphene lacks inherent magnetic properties, which hinders its integration into the field of
spintronics. Spintronics exploits the intrinsic spin of electrons to create devices that store and process information
more efficiently than conventional electronics.

Despite these challenges, researchers have explored various strategies to engineer solutions. For instance,
functionalizing graphene with various elements can introduce band gaps or induce magnetic properties7. Creating
heterostructures by combining graphene with other materials is another approach8. Additionally, the utilization of
topological defects in graphene structures has been considered9.

1.2 General and Specific Objectives
We propose to study Graphene superlattices in which we integrate the Flower-like Defect (FLD) since it has
been demonstrated to be a novel way of solving the bandgap opening in graphene without compromising inherent
characteristics of graphene, such as its mechanical strength.

Our objective involves strategically introducing Hydrogen (H) adatoms and Carbon (C) vacancies into these
superlattices. These modifications are selected based on their potential to achieve our key goals: manipulating the
bandgap and introducing magnetic properties into these innovative materials.

We will employ Ab initio Density-Functional Theory (DFT) calculations on these structures to accomplish these
objectives. This approach is expected to comprehensively understand their properties, including atomic, electronic,
and potential magnetic characteristics.

1.3 Overview
This overview takes a brief look at the chapters that compose this thesis. Chapter 2 delves into the theoretical
principles for comprehending DFT and its computational implementation, alongside exploring the Scanning Tun-
neling Microscope (STM) technique. In Chapter 3, comprehensive steps undertaken in our simulation process are
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presented. Chapter 4 centers on the results derived from the simulations above. Concluding this work, Chapter 5
encapsulates an overview and conclusions, and a forward-looking perspective on potential future directions related
to this project.





Chapter 2

Theoretical Background

This chapter provides comprehensive discussions not only into resolving the challenges of solving the Schrödinger
equation for condensed matter systems but also into embracing the limitations involved. Within these pages,
numerous concepts and ideas will be introduced, serving to progressively weave a comprehensive understanding of
DFT. It is highly recommended curious readers explore the references10–15 for an immersive exploration of this topic.

2.1 Many-body Schrödinger Equation

2.1.1 Time-Independent Schrödinger Equation

In the realm of quantum mechanics, the wavefunction Ψ(r) emerges as one of the most crucial functions for
comprehending the behavior of quantum systems11. To elucidate, it provides insights into the probability of locating
a particle (such as an electron) within a specific position, thereby enabling predictions concerning diverse properties
of macroscopic materials. The process of determining this function requires solving the Schrödinger equation, and in
the context of condensed-matter systems, the most commonly employed form of this equation is its time-independent
version∗:

ĤΨ(r) = EΨ(r). (2.1)

Here, Ĥ represents the Hamiltonian operator, andΨ(r) constitutes a set of solutions (eigenstates) of the Hamiltonian,
each associated with eigenvalues En.

The Hamiltonian can be represented as Ĥ = T̂ + V̂ , where T̂ is the kinetic energy operator and V̂ is the potential
energy operator. Moreover, the kinetic energy operator can be generally formulated as:

T̂ =
p̂2

2me
. (2.2)

∗This version does not incorporate relativistic effects, magnetic fields, or quantum electrodynamics effects.
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6 2.1. MANY-BODY SCHRÖDINGER EQUATION

In this equation, me signifies the mass of an electron, and p̂ represents the quantum-mechanical momentum operator†.

2.1.2 General Hamiltonian for a Condensed-Matter System

The systems of interest to us involve multiple electrons interacting with multiple nuclei. Therefore, the Hamiltonian
for N electrons with coordinates r1, r2, . . . , rN , and M nuclei with coordinates R1,R2, . . . ,RM , can be constructed
as follows:

Ĥ = T̂e + T̂N + V̂e−e + V̂e−N + V̂N−N , (2.3)

with:

T̂e = −ℏ
N∑
i

∇2
i

2me
. (2.4)

T̂N = −ℏ
M∑
I

∇2
I

2MI
. (2.5)

V̂e−e =
1
2

N∑
i, j

1
4πϵ0

e2∣∣∣ri − r j

∣∣∣ . (2.6)

V̂e−N = −

N,M∑
i,I

e2

4πϵ0

ZI

|ri − RI |
. (2.7)

V̂N−N =
1
2

M∑
I,J

e2

4πϵ0

ZIZJ

|RI − RI |
, (2.8)

where T̂e represents the kinetic energy of electrons, T̂N stands for the kinetic energy of the nuclei, V̂e−e accounts
for the electron-electron Coulomb repulsion interaction, V̂e−N describes the Coulomb attraction between electrons
and nuclei, and V̂N−N denotes the nucleus-nucleus Coulomb repulsion interaction.

With this Hamiltonian in mind, the time-independent Schrödinger equation (2.1) for a condensed matter system
becomes:− N∑

i

ℏ2

2me
∇2

i −

M∑
I

ℏ2

2MI
∇2

I +
1
2

N∑
i, j

1
4πϵ0

e2∣∣∣ri − r j

∣∣∣ −
N,M∑
i,I

e2

4πϵ0

ZI

|ri − RI |
+

1
2

M∑
I,J

e2

4πϵ0

ZIZJ

|RI − RI |

Ψ = EΨ, (2.9)

where the many body wavefunction Ψ depends on the positions of the electrons and nuclei of the system

Ψ = Ψ(r1, r2, · · · , rN ; R1,R2, · · · ,RM) (2.10)

Atomic Units

Before continuing the track for understanding quantum systems, it is crucial to consider using atomic units, which
proves to be highly practical when working with the Schrödinger equation, as we will demonstrate in this subsection.

As a starting point, let us consider the ground state energy of a Hydrogen atom:

EHa =
1

4πϵ0

e2

a0
. (2.11)

†The quantum-mechanical momentum operator is given by p̂ = −iℏ∇, where ℏ = h
2π stands for the reduced Planck constant, and ∇ =(

∂
∂x ,

∂
∂y ,

∂
∂z

)
is the Nabla vector differential operator.
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where ϵ0 is the permittivity of vacuum, e is the electron charge, and a0 stands for the Bohr radius‡.
Then, based on Bohr’s ideas§ and the quantization of angular momentum, we know that:

ℏ = mev a0 ⇒ v =
ℏ

mea0
. (2.12)

where v is the electron velocity.
Consequently, it becomes natural to equate the nuclear attraction¶ to the centrifugal force‖. In mathematical

terms:
1

4πϵ0

e2
0

a2
0

= me
v2

a0
. (2.13)

By replacing (2.12) into (2.13):

1
4πϵ0

e2
0

a0
=
ℏ2

mea2
0

. (2.14)

Notably, the left-hand side of the equation corresponds precisely to EHa, hence:

1
2

EHa =
1
2
ℏ2

mea2
0

⇒
1
2

EHa =
1
2

mev2. (2.15)

This last equation remarks that the kinetic energy is on the order of EHa, making it convenient to normalize every
term in equation (2.9) by EHa, leading us to:−1

2

N∑
i

a2
0∇

2
i −

M∑
I

1
2(MI/me)

a2
0∇

2
I +

1
2

N∑
i, j

a0∣∣∣ri − r j

∣∣∣ −
N,M∑
i,I

ZI
a0

|ri − RI |
+

1
2

M∑
I,J

ZIZJ
a0

|RI − RI |

Ψ = E
EHa
Ψ. (2.16)

The subsequent simplification involves setting E
EHa
= Etot and adopting the units a0 = me = 1. With these

simplifications, the many-body Schrödinger equation (2.9) takes the form:−1
2

N∑
i

∇2
i −

M∑
I

∇2
I

2(MI)
+

1
2

N∑
i, j

1∣∣∣ri − r j

∣∣∣ −
N,M∑
i,I

ZI

|ri − RI |
+

1
2

M∑
I,J

ZIZJ

|RI − RI |

Ψ = EtotΨ. (2.17)

From this point onward, all theoretical expressions within the Theoretical Background section will be presented in
atomic units. This means that energy will be quantified in Hartrees (Ha), length will be measured in terms of Bohr
radius (a0), and masses will be scaled by the electron mass (me). To offer a sense of scale, below is included the
conversion factors for atomic units (a.u.):

1 Ha = 27.2114 eV = 4.3597 × 1018 J,

1 a0 = 0.529177 Å = 0.529177 × 1010 m,

1 a. u. of mass = 9.10938291 × 1031 kg.
‡The Bohr radius denotes the average radius of the electron orbital in a hydrogen atom.
§Although Bohr’s atomic model (1913) has several shortcomings, the expression for the H electron energies remains remarkably accurate.
¶The nuclear attraction should follow the form of Coulomb’s Law, given by F = 1

4πϵ0
q1q2

r2 .
‖The centrifugal force acting on any particle circular orbit is F = m v2

r .
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The Born-Oppenheimer Approximation

This approach, also called clamped-nuclei approximation or adiabatic approximation13, takes advantage of the
substantial differences in mass between electrons and nuclei. For instance, the lightest existing nucleus in the
universe (H nucleus) weighs roughly 1800 times more than an electron16.

Adopting this approach, the kinetic energy of nuclei can be neglected in comparison to the kinetic energy of
electrons∗∗ and the Coulombic interaction between nuclei becomes a constant††. This leads to the representation of
equation (2.17) as: −1

2

N∑
i

∇2
i +

1
2

N∑
i, j

1∣∣∣ri − r j

∣∣∣ −
N,M∑
i,I

ZI

|ri − RI |

Ψ = EΨ. (2.18)

Defining Vn(ri) = −
∑M

I
ZI
|ri−RI |

, the many-body time-independent Schrödinger equation could be written as:−1
2

N∑
i

∇2
i +

1
2

N∑
i, j

1∣∣∣ri − r j

∣∣∣ +
N∑
i

Vn(ri)

Ψ(r) = EΨ, (2.19)

whereΨ = Ψ(r1, r2, · · · , rN) only depends on the electron coordinates and the nuclear RI coordinates are considered
as external parameters. Moreover, from (2.19), it becomes logical to define the single-electron Hamiltonian:

Ĥ0(r) = −
1
2
∇2 + Vn(r). (2.20)

Hence, the many-electron Hamiltonian could be defined as:

Ĥ(r1, r2, ..., rN) =
N∑
i

Ĥ0(ri) +
N∑

i, j

1∣∣∣ri − r j

∣∣∣ . (2.21)

Accordingly to the definition (2.21), the many-body time-independent Schrödinger equation could be written as: N∑
i

Ĥ0(ri) +
1
2

N∑
i, j

1∣∣∣ri − r j

∣∣∣
Ψ(r) = EΨ(r). (2.22)

2.1.3 Informational Challenge

Despite simplifying the many-body time-independent Schrödinger equation elegantly and straightforwardly, the
difficulty of solving this equation lies in the sheer amount of information contained within the wavefunction10.

To illustrate this challenge, let us consider a simple silicon atom. A single Si atom consists of 14 electrons, and
its fully specified wave function is represented as:

Ψ(r1, r2, r3, .., r14), (2.23)
∗∗In practice, we can think the electrons of our system moving within a field of fixed nuclei.
††The Coulombic constant can be absorbed into E = Etot −

1
2
∑M

I,J
ZI ZJ
|RI−RI |

.
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where ri = (xi, yi, zi), becoming Ψ(ri) a function of 14 × 3 = 42 variables.
However, computing its wave function requires discretizing the atom. For instance, we can create a 10× 10× 10

grid in (x, y, z) space. This approach involves describing ten complex values in each direction for every electron,
resulting in 103 combinations for a single electron in the system. Consequently, the wave function for a single Si
atom becomes a function of 1 × 1042 independent variables.

To provide an idea of the magnitude of this number, according to IDC & Statista, global data storage in 2021
amounted to approximately 5.92 × 1023 bits††, which is not enough storage for saving the information required to
describe the Si wavefunction. This comparison highlights the extreme inefficiency of the mentioned methodology
and exhibits the formidable challenge that scientists have faced in creating a reliable and optimal process to compute
materials.

2.2 Hartree-Fock Theory
To derive the Hartree-Fock (HF) equations, we must select an appropriate trial wavefunction and use the variational
principle to minimize the energy17. We will begin with the simplest possible ansatz for the many-body wavefunction, a
product of single-electron states as denoted in (2.24). This is referred to as the Hartree approximation. Subsequently,
we will integrate the Pauli exclusion principle for electrons into our framework, eventually culminating in the
complete set of HF equations15.

2.2.1 Single-electron states

This approximation allows us to express the wavefunction of the system as the product of single-particle states:

Ψ(r1, r2, ..., rN) = ϕ1(r1)ϕ2(r2)...ϕN(rN). (2.24)

The total energy in a given state, E, can be obtained as:

E =
∫

dr1...dr2Ψ
∗Ĥ Ψ. (2.25)

Sometimes it is convenient to employ the Dirac notation. In this notation, equation (2.25) can be written as:

E =
〈
Ψ

∣∣∣Ĥ∣∣∣Ψ〉
. (2.26)

For a two-electron system described by the many-electron Hamiltonian (2.21) and the product of single-particle
states (2.24) in (2.26), the total energy for a given state is given by:

EH[ϕ∗i , ϕi] =
1
2

〈
ϕ1(r1)ϕ2(r2)

∣∣∣∣∣Ĥ0(r1) + Ĥ0(r2) +
1
∆r12

∣∣∣∣∣ ϕ1(r1)ϕ2(r2)
〉
, (2.27)

where ∆r12 = |r1 − r2|, is the electron-electron distance.
††Remember that a bit is the smallest unit of data that a computer can process and store.
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How can we minimize the energy of this system? In other words, what are ϕ1 and ϕ2 that minimize EH? We
can apply the variational principle using the Lagrange multipliers method. Since the energy EH is a functional‡‡ of
the wavefunctions ϕi, we need to solve:

δ

δϕ∗i

EH[ϕ∗i , ϕi] −
N∑
i, j

λi j

[
⟨ϕi|ϕ j⟩ − δi j

] (2.28)

Considering the orthonormality properties of the wavefunctions ⟨ϕi|ϕ j⟩ = δi j, this simplifies to:

δ

δϕ∗i

EH[ϕ∗i , ϕi] −
N∑
i

εi

[
⟨ϕi|ϕ j⟩ − 1

] (2.29)

where each εi acts as a Lagrange multiplier.
Using (2.29) for a two-electron system (2.27) to minimize the energy EH with respect to variations of the functions

ϕ1 and ϕ2, we can derive two equations for a two-electron system:[
−

1
2
∇2 + Vn(r) + VH(r)

]
ϕ1(r) = ε1ϕ1(r). (2.30)

[
−

1
2
∇2 + Vn(r) + VH(r)

]
ϕ2(r) = ε2ϕ2(r), (2.31)

In general, for a system of N electrons, we get:[
−

1
2
∇2 + Vn(r) + VH(r)

]
ϕi(r) = εiϕi(r), (2.32)

where Vn(r) is the Coulomb potential representing the electrostatic interaction between electrons and nuclei, and
VH(r) is the Hartree potential given by:

VH(r) =
∑

j

∫
|ϕi(r)|2∣∣∣∣r − r′j

∣∣∣∣ , (2.33)

Note that even though we use single-electron states, we get a potential experienced by the electrons§§, which
is called the Hartree potential. This new term could also be obtained throughout the mean-field approximation, a
classical electrostatics approach.

2.2.2 The Exclusion Principle

Up to this point, we have ignored one of the most fundamental principles of quantum mechanics: the Pauli
exclusion principle. This principle dictates that no two fermions, such as electrons, can occupy the same quantum

‡‡A functional is a function that takes another function as an argument. To distinguish a functional from a regular function, I will use square
brackets for the argument, as in F[f(x)].

§§Essentially, we should remember that the distribution of an electronic charge will generate an electronic potential that could be added to the
Hamiltonian.
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state simultaneously. To incorporate this principle, it is necessary to seek a wavefunction solution using Slater
determinants:

Ψ(r1, r2, ..., rN) =
1
√

N!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ϕ1(r1) ϕ1(r2) ... ϕ1(rN)
ϕ2(r1) ϕ2(r2) ... ϕ2(rN)
...

...
...

ϕN(r1) ϕN(r2) ... ϕN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.34)

As a consequence, the wavefunction describing a system of electrons must be antisymmetric with respect to
the exchange of any two electron coordinates. For example, if we exchange electrons ri with electron r j, we get
Ψ(r1, r2, ..., ri, ..., r j, ...rN) = −Ψ(r1, r2, ..., r j, ...ri, ..., rN); this is a direct consequence of exchanging column i and j
in the determinant of equation 2.34.

As before, let us consider the case of two electrons:

ΨHF(r1, r2) =
1
2

[
ϕ1(r1)ϕ2(r2) − ϕ1(r2)ϕ2(r1)

]
. (2.35)

With:
EHF =

〈
ΨHF

∣∣∣Ĥ∣∣∣ΨHF

〉
. (2.36)

Applying the variational principle to (2.36) in the same manner as before, but with the new ansatz wavefunction
(2.35), we can derive: [

−
1
2
∇2 + Vn(r) + VH(r)

]
ϕ1(r) +

∫
Vx(r, r′)ϕ1(r′)dr′ = ε1ϕ1(r). (2.37)

[
−

1
2
∇2 + Vn(r) + VH(r)

]
ϕ2(r) +

∫
Vx(r, r′)ϕ2(r′)dr′ = ε2ϕ2(r), (2.38)

where Vn(r) is the Coulomb potential, VH(r) is the Hartree potential, and Vx(r) is the exchange potential.
In a more general setting, for a system of N electrons, the Hartree-Fock equations can be written as:[

−
1
2
∇2 + Vn(r) + VH(r)

]
ϕi(r) +

∫
Vx(r, r′)ϕi(r′)dr′ = εiϕi(r), (2.39)

where:
VH(r) =

∑
j

∫
|ϕi(r)|2∣∣∣∣r − r′j

∣∣∣∣ , (2.40)

and:

Vx(r, r′) = −
∑

j

ϕ∗j(r′)ϕ j(r)

|r − r′|
. (2.41)

This new non-local potential called the "exchange potential" is a direct consequence of adding the Pauli exclusion
principle. This shift signifies a transition from “classical” electrons in the mean field approximation to quantum
electrons. Vx(r, r’) is non-local in the sense that we have to integrate over an additional variable r’, which gives an
extra degree of difficulty to Hartree-Fock equations.



12 2.3. DENSITY FUNCTIONAL THEORY

2.3 Density Functional Theory
Density Functional Theory (DFT) is grounded in a variational principle, utilizing electron density as the primary
physical parameter for system depiction15. DFT builds upon the proposition of Hohenberg and Kohn in 1964,
asserting that the ground state energy of a system can be expressed as a functional dependent only on the electronic
density. This innovation effectively circumvents the informational challenge by “substituting” the wavefunction—a
function of 3N variables—with the electronic density n(r), a function of only three variables.

This section will describe the two fundamental mathematical theorems for DFT stated by Kohn and Hohenberg
in 196418, followed by the derivation of the famous Kohn-Sham equations.

2.3.1 First Hohenberg-Kohn Theorem

In the ground state, a system’s total energy is a unique function of the electron density.

Proof: Let us consider the total energy for a system:

E =
〈
Ψ

∣∣∣Ĥ∣∣∣Ψ〉
=

〈
Ψ

∣∣∣T̂ + Ŵ
∣∣∣Ψ〉
+

∫
Vn(r)n(r)dr. (2.42)

where T̂ and Ŵ represents the kinetic and Coulombic potential energies respectively. The symbol for the Coulombic
potential energy was changed for the convenience of the proof. The Vn term represents the external potential produced
by the nuclei.

To illustrate the uniqueness of the total energy with respect to the electron density, let us consider two quantum
systems, A and A’. What we want to demonstrate is whether it is possible to have both systems with the same
wavefunctions (Ψ), kinetic energies (T̂ ), Coulombic potential energies (Ŵ), and densities (n(r)), but different
external potentials (Vn).

A A’
Ψ = Ψ′

T̂ = T̂ ′

Ŵ = Ŵ ′

n = n′

Vn , V ′n

The total ground state energy for system A is given by equation (2.42); similarly, for system A’:

E′ =
〈
Ψ′

∣∣∣Ĥ′∣∣∣Ψ′〉 = 〈
Ψ

∣∣∣T̂ + Ŵ
∣∣∣Ψ〉
+

∫
V ′n(r)n(r)dr. (2.43)

Note that T̂ , Ŵ, and n(r) are the same for both systems. Since Ψ is not the ground state of V ′n, then:〈
Ψ

∣∣∣Ĥ′∣∣∣Ψ〉
> E′,〈

Ψ
∣∣∣T̂ + Ŵ

∣∣∣Ψ〉
+

∫
V ′n(r)n(r)dr > E′.

(2.44)
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By summing (2.42) + (2.44), we can get:

E − E′ >
∫ [

Vn(r) − V ′n(r)
]
n(r)dr. (2.45)

Now, similarly as before, since Ψ′ is not the ground state of Vn, then:〈
Ψ′

∣∣∣T̂ + Ŵ
∣∣∣Ψ′〉 + ∫

Vn(r)n(r)dr > E. (2.46)

By summing (2.43) + (2.46) , we can get:

E − E′ >
∫ [

V ′n(r) − Vn(r)
]
n(r)dr. (2.47)

Finally, by doing (2.45) + (2.48):
0 > 0 (2.48)

Reductio ad absurdum! This contradiction proves that two different external potentials cannot lead to the same
ground-state density. This point was crucial for this theorem; now to complete it, let us analyze two other premises
that DFT has11:

• The total energy is a functional of the many-body wavefunction - this signifies that the system’s energy depends
on its wavefunction, which is used to derive electron density and energy.

• The external potential uniquely determines the wavefunction - it has been established that the electron density
in the ground state definitively dictates the external potential.

Consequently, we reach a pivotal conclusion: the total ground state energy must be a unique functional of the density,
a function of three variables: E = F[n(r)].

2.3.2 Second Hohenberg-Kohn Theorem

The electron density that minimizes E = F[n], is the actual electron density of the system.

Imagine we have two different densities n(r) , n′(r), where Ψ corresponds to the ground state of the system. Then,
the ground state energy for the system should satisfy:

E[n(r)] =
〈
Ψ

∣∣∣Ĥ∣∣∣Ψ〉
<

〈
Ψ′

∣∣∣Ĥ∣∣∣Ψ′〉 = E[n′(r)] (2.49)

Consequently,
E[n(r)] < E[n′(r)] (2.50)

Hence, we can ensure that true electron density minimizes the functional to the lowest possible energy. Further-
more, we can find the real electron density n(r) of the system by applying the variational principle:

δF[n]
δn

= 0 (2.51)

where
F[n] =

∫
Vn(r)n(r)dr +

〈
Ψ[n]

∣∣∣T̂ ∣∣∣Ψ[n]
〉
+

〈
Ψ[n]

∣∣∣Ŵ ∣∣∣Ψ[n]
〉

(2.52)
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2.3.3 Kohn-Sham Equations

Although the Hohenberg-Kohn theorems provide the foundational insights for DFT, they need to address the functional
construction directly. Additionally, the representation of Equation (2.52) presents a significant challenge due to the
implicit dependence on density within the terms T̂ and Ŵ 19. Kohn and Sham introduced innovative concepts to
solve this limitation in 196520.

The clever idea proposed by Kohn and Sham in 196520 was to split the implicit terms into kinetic and Coulombic
energies of non-interacting electrons plus an extra term that accounts for the difference. This leads to a functional
with the form:

F[n] =
∫

Vn(r)n(r)dr −
∫ ∑

i

ϕ∗i (r)
∇2

2
ϕi(r)dr + 1

2

∫ ∫
n(r)n′(r)
|r′ − r| drdr′ + Exc[n], (2.53)

where the first term corresponds to the potential energy emanating from external nuclei, the second term signifies
the kinetic energy of independent electrons, the third term represents the Hartree energy, and the fourth, “unknown”
term is known as the exchange and correlation energy. The exchange energy accounts for the antisymmetry of
the wavefunction due to the Pauli exclusion principle, while the correlation energy encompasses the effects of
electron-electron interactions beyond the mean-field approximation.

By utilizing expression (2.53), we can apply the variational principle (2.51) to achieve the famous Kohn-Sham
equations: [

−
∇2

2
+ Vn(r) + VH(r) + Vxc(r)

]
ϕi(r) = εiϕi(r) (2.54)

where Vn is the external nuclear potential, VH(r) =
∫

n(r′)
|r′−r|dr′ is the Hartree potential, and Vxc(r) = δExc[n]

δn is the
exchange and correlation potential.

Notice that KS equations split the terms into known terms and an extra unknown term, which can either lead
to DFT’s success or failure. All quantum many-body effects are inclusively accounted for with a precise Exc term.
Therefore, the key challenge lies in devising accurate approximations for the exchange and correlation functional11.

2.3.4 DFT Functionals

DFT functionals have evolved through various generations, often visualized as rungs on Jacob’s ladder21. Each rung
represents a level of approximation and complexity, with higher rungs providing more accurate results. The five
generations of DFT functionals are depicted in Table 2.1. The first rung is the Local Spin Density Approximation
(LSDA), which depends solely on the local electron density. The second rung, Generalized Gradient Approximation
(GGA), includes the gradient of the electron density for improved accuracy. The third rung, Meta-GGA, incorporates
higher-order derivatives of the electron density. Until this rung, all the “ingredients” only required the information at
local point r or infinitesimally around r, i.e., all the first three rungs are local. The fourth rung, Hybrid Functionals,
mixes exact exchange from Hartree-Fock theory with GGA or meta-GGA22. The fifth rung, Double-Hybrids and
Beyond, combines Hartree-Fock exchange, GGA, and perturbation theory for even better accuracy. Each successive
rung adds complexity and computational cost but enhances the accuracy of the results.
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Table 2.1: Generations of DFT Functionals on Jacob’s Ladder.

Rung Functional Type Ingredients
Chemical accuracy

5 Double-Hybrid Functionals n, ∇n, ∇2n, τ, ψocc, ψunocc

4 Hybrid Functionals n, ∇n, ∇2n, τ, ψocc

3 Meta-GGA n, ∇n, ∇2n, τ
2 Generalized Gradient Approximation (GGA) n, ∇n
1 Local Density Approximation (LDA) n

The r2SCAN Functional

The r2SCAN functional, a meta-GGA functional type, developed by Furness et al.23 presents a significant advance-
ment in the field of computational chemistry and materials science. It is exposed as an evolution of the rSCAN24 and
SCAN25 methodologies, designed to strike an optimal balance between computational efficiency and the accuracy
of material property predictions.

The r2SCAN functional aims to maintain the high accuracy levels of the SCAN functional while addressing its
numerical performance issues, making it a valuable tool for large-scale chemical and materials computational studies.
This development showcases the potential for improved efficiency in computational methods without sacrificing the
quality of results, emphasizing its significance for future research in materials design and analysis. For instance, a
study by Kingsbury et al.26 evaluates the performance of the r2SCAN and SCAN meta-GGA density functionals
across approximately 6000 solid materials. This comparison, conducted through an automated high-throughput
computational workflow, demonstrates that r2SCAN achieves comparable accuracy to SCAN in predicting band gaps
and degrees of electron localization but predicts systematically larger lattice constants. It achieves superior accuracy
in formation energies while also offering significantly improved numerical stability (more reliable convergence) and
computational efficiency. These findings underscore r2SCAN’s potential as a general-purpose, numerically robust
meta-GGA functional for extensive material property predictions.

The r2SCAN meta-GGA functional can be effectively combined with the Revised non-local van der Waals density
functional (rVV10)27 to extend its applicability in computational studies.

A benchmark study28 has demonstrated that the combination of r2SCAN and rVV10 (r2SCAN+rVV10) is
suitable for general-purpose solid-state materials discovery. This combination improves the treatment of dispersion
interactions without compromising the accuracy of formation enthalpy predictions and even modestly enhances cell
volume predictions. However, it is important to note that both r2SCAN and r2SCAN+rVV10 tend to underestimate
the fundamental band gaps of insulators, with r2SCAN occasionally overestimating the band gaps of narrow-gap
insulators. Despite this, r2SCAN+rVV10 does not introduce significant errors and is particularly recommended for
layered materials.

The integration of r2SCAN with rVV10 enables the precise treatment of dispersion interactions, which are
particularly important in our systems where van der Waals forces, such as those arising from the 2pz states of
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graphene, can play a significant role, especially in the context of interactions with hydrogen adatoms.

2.3.5 Spin in Density Functional Theory

As described in Giustino’s book11, the adaptation of the Hohenberg–Kohn theorem to spin-dependent DFT (spin-
DFT) is characterized by the following key aspect: the total energy becomes now a functional dependent on both the
electron density and the spin density. So, it can be represented as:

E = G[n(r), s(r)] (2.55)

This approach is an extension of the principles found in non-magnetic DFT. In the context of spin-polarized DFT, the
electron density is conceptualized as an aggregation of the charge and spin densities of independent two-component
spinors. By simplifying these ideas, we can encapsulate them in a density matrix, expressed as:

nαβ(r) =
∑

ϕ∗i (r;α)ϕi(r; β), (2.56)

Here, α and β are integers, usually 1 or 2, denoting the spinor components.
Furthermore, the ground-state energy functional is represented by:

E = G[nαβ(r)] (2.57)

In the same manner as conventional DFT, spin-DFT employs the Kohn-Sham formalism. This formalism states
that the ground-state density matrix, n0

αβ, minimizes the functional G, as shown in:

δG[nαβ(r)]
δnαβ(r)

∣∣∣∣∣∣
n0
αβ

= 0 (2.58)

By ensuring the orthonormality of the spinors, we derive a relationship similar to the Kohn-Sham equations for
spin-DFT: [

−
∇2

2
+ Vn(r) + VH(r) + Vxc(r) + µβσ · Bxc(r)

]
ϕi(r) = εiϕi(r) (2.59)

This equation is crucial in the Kohn-Sham framework for spin-DFT, highlighting the role of the exchange and
correlation magnetic field Bxc(r), which emerges due to the collective magnetic interactions among electrons. This
additional field is instrumental in aligning electron spins, that might induce magnetic order in the system.

2.4 DFT Computational Implementation
This section describes the foundational concepts behind the practical implementation of DFT calculations, focusing
on the Vienna Ab initio Simulation Package (VASP)29,30. By delving into these concepts, we can understand how
DFT is practically realized within the framework of computational simulations.
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2.4.1 Basis set: Plane Waves

Vasp is a plane-wave code that efficiently perform simulations in periodic systems but it can be applied to molecules
or clusters. In this context, solutions to the Schrödinger equation in a periodic potential can be expressed as a product
of a plane wave and a function that exhibits the periodicity of a Bravais lattice∗∗∗ – a concept introduced by Felix
Bloch in 192831. These functions are known as Bloch functions and are characterized by the following form:

ϕnk(r) = eik·runk(r) (2.60)

where n is the band index, k represents a vector in the Brillouin Zone (BZ), and unk(r) is a periodic function on
the Bravais lattice. This periodic function can also be expanded in terms of plane waves, labeled according to the
reciprocal lattice vectors:

unk(r) =
∑
G

CG
nkeiG·r (2.61)

where G is a reciprocal vector defined by G=m1b1+m2 b2+m3 b3 with integres values for mi.
Although several other basis sets are available, such as Gaussian basis sets, real-space representations, and linear

combination of atomic orbitals (LCAO), the plane-wave basis set can highlight some advantages. For instance, it
allows for systematic resolution improvement by adding more plane waves, enables easy evaluation of gradients and
laplacians, and maintains basis set independence from atomic positions.

Kinetic Cutoff and k-points

The challenge in constructing a plane wave basis set lies in selecting an appropriate maximum cutoff kinetic energy
for the electrons and discretizing the k-space. These parameters play a fundamental role in balancing precision and
computational efficiency.

Mathematically, the maximum cutoff kinetic energy (Ecut) is related to the highest allowed G-vector, denoted as
Gmax, by the equation:

Ecut =
1
2

G2
max =

〈
eiGmax·r

∣∣∣∣∣12∇2
∣∣∣∣∣ eiGmax·r

〉
(2.62)

A higher cutoff energy includes a larger number of G-vectors, leading to improved precision in representing
high-frequency wavefunctions and electron density features. However, this also increases the computational effort
required for calculations. Therefore, selecting an appropriate Ecut involves a delicate trade-off, which is precisely
why a convergence criterion is required.

For the determination of the appropriate k-point mesh, several methods are available, among which the Monkhorst-
Pack method (MP) stands out32,33. The MP method generates sets of k-points within the Brillouin Zone (BZ), offering
an effective approach for integrating periodic functions involving the wave vector. Nevertheless, achieving an optimal
k-point mesh also entails adhering to a convergence criterion; this involves iteratively calculating the total energy
per atom and gradually adding k-points until the convergence criterion is met.

∗∗∗Bravias lattice can be thought as an infinite array of points where the environment of any given point is equivalent to the environment of
any other given point.
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2.4.2 Pseudopotentials

The idea of the pseudopotential is to replace the full nuclear potential with a practical and accurate approximation.
Given that the valence electrons are the primary contributors to bonding†††, a pseudopotential can be formulated
by considering a specific core radius; this is also called the frozen core approximation. This radius allows us to
approximate the shielding effect of the core electrons on the valence electrons from the nuclear potential.

Current DFT codes offer a library of pseudopotentials that includes an entry for each element on the periodic
table. Pseudopotentials requiring lower cutoff energies are more computationally efficient than those necessitating
higher energies. Among the various methods available for defining pseudopotentials, the ultra-soft pseudopotentials
(USPPs) are the most widely employed because they require significantly lower cutoff energies than other alternatives.

One disadvantage of using USPPs is that constructing the pseudopotential for each atom requires the specification
of several empirical parameters. An approach that avoids some of the disadvantages of USPPs is the projector
augmented-wave (PAW) method34.

2.4.3 The Projector Augmented-Wave (PAW) Method

The PAW method aims to address some limitations associated with constructing pseudopotentials. In the PAW
method, all-electron wave functions are constructed with the help of auxiliary functions called projectors, providing
a more accurate description of both core and valence electrons.

This method, available in VASP, balances accuracy and computational efficiency, making it well-suited for
studying a wide range of materials and properties. It has become a popular choice in electronic structure calculations,
particularly in cases where a high level of accuracy is required, such as in complex chemical reactions or materials
with challenging electronic structures35.

2.4.4 Two-dimensional equation of state

The two-dimensional equation of state (2D EOS) proposed by R. C. Andrew et al.36 provides a means to relate the
energy to the change in surface area of a two-dimensional lattice. The 2D EOS is given by:

E(A) = E0 + 4A0γ0

(
1
2
ϵ2 +

1
3

(5 − γ′0)ϵ3 +
1
6

[
(1 − γ′0)(8 − γ′0) + γ0γ

′′
0 + 18

]
ϵ4

)
, (2.63)

where A0, γ0, γ′0 , γ′′0 , and ϵ are the equilibrium values for the unit-cell area, layer modulus, the force per unit length
derivative, the second derivative of the layer modulus at F = 0, and the equibiaxial Eulerian strain is given by:

ϵ =
1
2

[
1 −

A0

A

]
(2.64)

This process involves calculating the energy for various lattice constants, plotting the energy against the corresponding
area, and then fitting the 2D EOS to find the ground-state energy, which gives the optimal lattice constant. The EOS
also provides the layer modulus, indicating the 2D material’s resistance to uniform stretching. This is analogous to
the bulk modulus in bulk materials, which measures resistance to compression.

†††There are some elements as Bismuth where we should be careful how we define the valence electrons.
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2.5 Scanneling Tunneling Microscopy

2.5.1 Working Principle

Scanning Tunneling Microscopy (STM) operates by regulating the tunneling current that traverses the potential
barrier between the sample surface and the probing metal tip. This technique capitalizes on the principles of
quantum tunneling. A tunneling current emerges by applying a bias voltage between the tip and the surface as the
gap between them is reduced to a few atomic diameters.

The STM can operate in either constant-current mode or constant-height mode37. The tip-to-sample distance is
adjusted to maintain a consistent current while the tip scans the sample surface in the constant-current mode. This
process yields a topographic image of the sample by recording and processing the tip’s height variations.

In contrast, the height-constant mode involves scanning the tip over the surface while maintaining nearly constant
height and voltage, monitoring the tunneling current. The fluctuations in tunneling current resulting from the tip
encountering surface features are detected and graphed as a function of the scanning position. This mode provides
valuable insights into the sample’s local electronic properties and surface structures.

2.5.2 Tersoff-Hamann approximation

The Tersoff-Hamann approximation38, a method integral to surface science, simplifies the calculation of electronic
properties at solid surfaces. This approach is particularly relevant in scanning tunneling microscopy (STM), which
helps understand the tunneling current between a metallic tip and the sample surface. The approximation makes a
simplified assumption about the tip’s electronic structure, thereby providing insights into the electronic behavior of
surfaces.

The approximation treats the tip’s electronic states as localized and represented by a single energy level. This
level corresponds to the energy required for an electron to move from the tip into the vacuum and is determined by
the work function of the tip material. In this context, the tunneling process is conceptualized as an electron transfer
between this localized level and the surface states of the sample. The mathematical expression that captures the
variation of the tunneling current with the tip-surface distance is given by:

I ∝
∑

k

∣∣∣∣⟨Ψtip
k |Ψ

sur f
n ⟩

∣∣∣∣2 δ(Etip
k − E sur f

n − eV). (2.65)

In this equation, I denotes the tunneling current, Ψtip
k signifies the wave function of the tip electron with energy Etip

k ,
and Ψsur f

n represents the wave function of the surface state with energy E sur f
n . The term eV stands for the applied

bias voltage. The overlap integral
∣∣∣∣⟨Ψtip

k |Ψ
sur f
n ⟩

∣∣∣∣2 indicates the probability of electron tunneling, and the summation
extends over all possible tip electron states, denoted as k.

While the Tersoff-Hamann approximation simplifies the mathematical description of tunneling, it mainly offers
a qualitative understanding of how the tunneling current changes with distance. Its simplicity, however, may only
capture some intricacies of the electronic interactions, especially in cases where the tip’s electronic structure is
complex or when chemical interactions are significant. For example, more sophisticated models would yield more
accurate results in scenarios involving strong covalent bonding or significant spin-polarization effects.





Chapter 3

Methodology

3.1 VASP Workflow
This section will explain the methodology underpinning our investigations for performing practical DFT calculations
using VASP. Additionally, I will delve into the diverse outputs and results that can be obtained from these calculations.

3.1.1 Graphene Supercells Creation – POSCAR

Within VASP, the file containing a material’s lattice geometry and ionic positions is named POSCAR39. Therefore,
constructing this file is the first step for conducting DFT simulations. In the case of pristine graphene, an extensively
studied material, various databases host this file detailing its structure. Pristine graphene is characterized by a
honeycomb arrangement made of hexagons, and its primitive unit cell comprises two atoms connected by a bond
length of 1.42 Å. The Fig. A.1 showcases the POSCAR representation of pristine graphene.

To create the FLD, graphene supercells were formed by replicating the pristine graphene’s unit cell by N×N
times, with N representing the original unit cell. The FLD is essentially the result of rotating a 24-carbon section
to the lattice, which reconfigures covalent bonds to form pentagon and heptagon structures within the flower-like
arrangement. The method used for bond recalculation is based on distance criteria, where atoms within a predefined
cutoff distance specific to their element types are considered bonded. This process can be done using software
tools that manipulate atoms, such as ASE or Material Studio, as shown in Figure 3.1. Moreover, within the same
manipulation tool, we can introduce H adatoms or create C vacancies within the structure, saving the structure as a
POSCAR file, ready for use in our DFT calculations. However, the atomic structure of the systems is computed to
generate the equation of states described in section 2.4.4 that considered the relaxation of the internal coordinates
and the lattice parameters.

21
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(a) (b) (c)

Figure 3.1: Construction of the FLD defect. (a) The initial selection of 24 C atoms (blue ones), followed by (b) an
in-plane rotation of 30◦, and (c) subsequent bond recalculation.

3.1.2 Selecting the Potentials – POTCAR

The POTCAR file is a repository of pseudopotentials for each atomic species incorporated in the calculation40.
These pseudopotentials, including the projector augmented wave (PAW) potentials, can be accessed through the
VASP Portal for all elements in the periodic table. For this thesis, PAW potentials for both C and H were employed.
When studying a structure with different types of atoms, it’s essential to concatenate the potentials within a unique
POTCAR file, preserving the order specified in the POSCAR file.

3.1.3 VASP Directives – INCAR

The instructions for implementing the different routines in the VASP software should be specified in the INCAR
file41. Among the essential simulation parameters, we have:

• Cutoff Energy: Through a convergence process employing a criterion of 1 meV per atom, we determined the
optimal cutoff energy to be ENCUT = 950 eV as illustrated in Figure 3.2.

• Exchange-Correlation Energy Functional: In our case, we utilized the r2SCAN functional well-suited for
our specific simulation needs.

• Corrections: In order to enhance the precision of the simulation results, various correction factors were
applied. For instance, in this work, van der Waals interactions were considered.

• Relaxation Calculation: All structures underwent full relaxation. The optimal structure was achieved by
setting EDIFFG=0.01, ensuring that the relaxation continues until each atom’s forces are less than 0.01 eV/Å.

• Electronic Properties Calculation: Different tags exist for calculating a range of electronic properties of the
simulated system. For instance, LORBIT=11 enables the calculation of the projected density of states.

• Magnetic Parameters: A critical aspect of simulating magnetic properties is the specification of the spin
polarization. For example, setting ISPIN=2 enables spin-polarized calculations. This flag allows for the
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differentiation between spin-up and spin-down electrons, thereby enabling the study of magnetic moments and
spin-dependent electronic structures. More documentation about INCAR tags can be found here41.
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Figure 3.2: Total energy convergence as a function of the kinetic cutoff energy. The grey color indicates an energy
range of 1 meV. Therefore, the cutoff energy used for graphene was 950 eV. The shape that follows the date does not
have any physical meaning but only help us to find out the convergency cutoff energy.

3.1.4 Convergency process for KPOINTS

The KPOINTS file specifies the Bloch vectors (k-points) used for sampling the Brillouin zone42. In this context,
we check the convergence of the total energy per atom to set the k-points. The results, presented in Figure 3.3,
indicate that the optimal converged number of k-points is 19×19×1¶¶¶. The total energy can fluctuate as the number
of k-points increases, but the important feature is the convergence of the total energy with respect to the number of
k-points as depicted in Figure 3.3. In this study, it is essential to account for the Dirac Point to prevent false band
gaps in the density of states, considering the abrupt change in dispersion at the Dirac point.

After analyzing the inclusion of the Dirac point, we opted for a grid of 21×21×1 k-points. Furthermore, since our
study focuses on graphene superlattices, it is optimal not to repeat the convergence process every time we construct
a new superlattice. Instead, we conserve the same k-point distance obtained from pristine graphene, which turns out
to be 2π×0.022 Å−1.

3.1.5 VASP Outputs

VASP offers a variety of outputs. However, the most used ones are the CONTCAR, OUTCAR, OSZICAR, DOSCAR,
PROCAR, and WAVECAR files.

¶¶¶The z-axis contains a single k-point since we are working with a 2D material.
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Figure 3.3: Energy convergence as a function of number of k-points. The grey color indicates an energy range of 1
meV. Therefore, the k-point mesh used for graphene was 21×21×1, since it includes the Dirac Point.

CONTCAR

In the cases where the structure relaxation is performed, the CONTCAR file contains the positions attained during
the final ionic relaxation step43. We select various lattices close to the expected optimal lattice and allow VASP
to calculate the corresponding CONTCARs for each lattice. Using these calculated CONTCARs, we apply the 2D
EOS described in subsection 2.4.4 to determine the optimal lattice. For instance, the 2D EOS for pristine graphene
is illustrated in Fig. 3.4.

OUTCAR

The OUTCAR file provides an elaborate output from a VASP computation, including a summary of the input
parameters utilized, details concerning the electronic iterations, KS-eigenvalues, stress tensors, and more44.

OSZICAR

This file details the results, including factors such as the convergence status of total energy, free energies, etc45.

DOSCAR

The DOSCAR file provides a comprehensive density of states (DOS) analysis, supplying information about the
distribution of energy states within the electronic structure of the system46. It includes data on individual atoms’
total and partial DOS (PDOS) contributions.
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Figure 3.4: r2SCAN+rVV10 computed 2D EOS fitted to the energy versus the unit-cell area. The curve illustrates
the relationship between the total energy and the unit-cell area enabling the determination of the optimal lattice
constant at the ground-state.

PROCAR

The PROCAR file contains the spd- and site-projected wave function character of each orbital, along with information
about the number of k-points, bands, and the number of ions considered47. This file enables us to plot the band
structure and conduct analysis.

3.2 STM Simulations
In this section, we explore the STM simulations using the bSKAN software. We explore both the inputs required for
the simulation and the outputs obtained from the bSKAN simulation.

3.2.1 bSKAN Inputs

When setting up a bSKAN simulation for STM, several inputs are essential to model tunneling behavior accurately
and generate meaningful results. These inputs include the tip-sample distance, bias voltage, and atomic and electronic
structure information. A significant advantage of using the bSKAN code is its ability to utilize a variety of input and
output files from VASP. We employ the CONTCAR file obtained from DFT calculations for the atomic structure.
The OUTCAR and INCAR files from VASP are also essential. Specifically, the INCAR file requires an additional
line to enable STM simulation integration. The output wavefunctions, stored in the WAVECAR file, are critical
inputs for the Tersoff-Hamann approximation framework. Additionally, an INSCAN file is used to specify technical
details for the STM calculation, such as the bias voltage, number of grid points, and other relevant parameters48.
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Proper configuration of these inputs ensures that the simulation accurately represents the interaction between the
STM tip and the sample surface. This accurate representation is key to gaining insights into the nanoscale’s surface
morphology and electronic properties.

3.2.2 bSKAN Outputs

Upon completing a bSKAN simulation, it generates various outputs, each offering insights into the simulated STM
process. However, in this research, the primary focus is on the OUTSCAN and CURRENT files. The OUTSCAN
file compiles all the output information from the simulation, providing an overview of the simulated STM interaction.
On the other hand, the CURRENT file contains the current matrix in OpenDX format. This file is essentially a grid
that maps the distribution and intensity of the tunneling current across the simulated surface, offering a detailed
visualization of the electronic behavior at the surface.

In this study, we have utilized Wolfram Mathematica to interpolate functions based on the simulation data and
visualize the surfaces obtained. This approach allows the identification of surface features, enhancing the ability
to interpret and compare with future experimental STM data. For example, the visualizations generated can be
instrumental in analyzing specific features on the surface, such as defects, adsorbates, or variations in electronic
density.



Chapter 4

Results & Discussion

4.1 Pristine Graphene
The initial phase of this study involved replicating the results for pristine graphene, as reported in numerous prior
studies, using the methodologies described in the preceding section. Pristine graphene is characterized by a unit cell
comprising two atoms. The results obtained were highly consistent with computational and experimental studies49,50,
as illustrated in Fig. 4.1. The computed band structure of pristine graphene shown in Fig. 4.1(b) was in excellent
agreement with established data49, showcasing the robustness of our simulation techniques. The Dirac cone at
the Dirac point (K) is a critical feature of pristine graphene, indicative of its unique electronic properties, which
were accurately reproduced in our results. Moreover, the Density of States (DOS) analysis also demonstrates the
semimetallic behavior of pristine graphene. The DOS profile aligns with the expected theoretical models49, further
validating our simulation processes’ accuracy.

Additionally, the STM images successfully captured the distinctive honeycomb lattice of pristine graphene,
clearly showing the positions of the carbon atoms, as depicted in Fig. 4.1(a, c). An interesting aspect to highlight is
that at a bias voltage of 0.9V, the STM images show enhanced quality, with significant brightness on the carbon atom
sides, further elucidating the lattice structure. These simulated STM images are also in agreement with experimental
images50, confirming the precision of the simulation methods used.

27
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-0.9 V -0.3 V +0.3 V +0.9 V(a)

(b)

Figure 4.1: (a) Simulated STM images for pristine graphene for a bias voltage range from -0.9 V to +0.9V, highlighting
the bright sites that indicate the location of the carbon atoms. (b) r2SCAN+rvv10 computed band structure of pristine
graphene along the high symmetry points, accompanied by the computed density of states (DOS). (c) STM image at
a bias voltage of +0.9V (empty states), with the blue rhombus denoting the primitive cell of the structure.

4.2 Bandgap Manipulation in Graphene based Superlattices
After verifying the accuracy of our methods with pristine graphene, we shifted our focus to graphene superlattices.
The motivation for exploring H adatoms in the Flower-Like Defects (FLD) came to light from the work of Garzón
et al.51. This study highlighted a significant contribution of the 2pz orbitals from the edge carbon (C) atoms in the
FLD to the electronic structure. Consequently, we expected that H adatoms positioned at the FLD borders would
considerably influence the electronic structure of the superlattices.

Another intriguing subject was the Moiré-like H pattern reported by Balog et al.52. Their findings demonstrated
a notable alteration in the electronic structure, prompting us to investigate these H configurations and these two
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distinct regions within this pattern separately. Ultimately, we chose to analyze three specific areas to assess the
impact of H adatoms on the electronic structure: the border, the inner region, and the outer region of the flower-like
pattern, as illustrated in Fig. 4.2.

Figure 4.2: (a) Border (green), (b) inner (magenta), and (c) outer (blue) atoms of the FLD.

Within the regions illustrated in Fig. 4.2, different patterned H configurations were tested for this specific
superlattice, changing the sites, directions, and numbers of the H adatoms. It is worth mentioning that after some
calculations, we concluded that the inclusion of H adatoms just within the inner region of the FLD had a negligible
impact on the electronic structure of the system. Thus, we have omitted such cases from our report. Nevertheless,
when H adatoms are positioned at the edges and exterior of the FLD, the bandgap experiences an increase and
diminishes, respectively.

4.2.1 H Adatoms on the FLD’s Edge

The 6×6 Graphene Superlattices

Three different hydrogen (H) configurations were explored within the region depicted in Fig.4.2(a). The first, denoted
as 6×6-FLD-12h, represents a configuration where all the H adatoms have the same orientation (Fig.4.3(a)). The
second, labeled as 6×6-FLD-12hud, corresponds to a configuration in which two H adatoms are oriented upward,
followed by the next two oriented downward (Fig.4.3(b)). Finally, the third configuration, called 6×6-FLD-12hudu,
involves the alternation of H adatoms between upward and downward orientations (Fig.4.3(c)). It is important to
note that this variation in the orientation of H adatoms has the potential to impact not only the electronic structure
but also the stability of the material.

Fig.4.7(b) and Fig. 4.8(b) show the r2SCAN+rVV10 computed electronic structure and band structure for system
6×6-FLD-12h (Fig. 4.3(a)), respectively. Considering the DOS displayed in Fig. 4.7 violet line, the predicted
bandgap is ∼1.16 eV (cf. Table 4.1). Analysis of the PDOS presented in Figs. A.4 and A.5 reveals that the peak
at approximately ∼-0.3 eV predominantly consists of 2pz states from carbon atoms at and near the boundary of the
FLD, with an additional small contribution from the 1s states of H adatoms. Similarly, the peak at approximately
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∼+1.6 eV is characterized by a similar composition formed mainly of pz states. This observation is corroborated by
simulated STM images, as shown in Fig. 4.4(b) where the bright regions are due to the protrusion of the pz states
into the vacuum.

(a)

-0.23

+1.66

(b)

Figure 4.4: Computed scanning tunneling microscopy (STM) images for the 6×6-FLD-12h structure, highlighting
the electronic states at bias voltages of (a) ∼-0.23 V (occupied states) and (b) ∼+1.66 V (unoccupied states). The
images on the right further demonstrate STM’s capability to produce three-dimensional visualizations, enabling
detailed analysis of the material’s topography.

Similarly, the electronic and band structures for the 6×6-FLD-12hud and 6×6-FLD-12hudu systems, as computed
with the r2SCAN+rVV10 functional, are depicted in Figs. 4.7(c-d) and Figs. 4.8(c-d), respectively. The analyses
focus on the distinct predicted bandgaps—approximately 1.09 eV for the 6×6-FLD-12hud (highlighted by the yellow
line in Fig. 4.7) and 1.12 eV for the 6×6-FLD-12hudu (indicated by the green line), as corroborated by Table 4.1.

The PDOS analyses for both systems are illustrated in Figs. A.6 - A.9, reveal a consistent peak around ∼-0.2
eV, predominantly composed of 2pz states from carbon atoms at and adjacent to the FLD boundary, complemented
by small contributions from the 1s states of H adatoms. Furthermore, peaks observed at approximately ∼+1.2 eV
for both configurations underscore a similar compositional pattern. These findings gain further validation from
simulated scanning tunneling microscopy (STM) images (Fig. 4.5 and 4.6), which offer additional insights into the
localized electronic states and the material’s topography.
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-1.62 V -0.83 V +1.64 V+1.22 V-0.25 V

10 Å

Figure 4.5: Computed scanning tunneling microscopy (STM) images for the 6×6-FLD-12hud structure at different
bias voltages.

-1.13 V -0.65 V +1.84 V+1.44 V-0.14 V

10 Å

Figure 4.6: Computed scanning tunneling microscopy (STM) images for the 6×6-FLD-12hudu structure at different
bias voltages.

Further analysis of all band structures depicted in Fig. 4.8 reveals that the bands around the Fermi level exhibit
minimal dispersion, indicating that the corresponding electronic states are localized. This observation suggests a
strong localization of charge carriers near the Fermi level in these systems.

Additionally, the EOS computations for these 2D systems enable the estimation of the layer modulus, γ0, a
parameter that quantifies the mechanical strength of these superlattices. As indicated in Table 4.1, the presence of
topological defects, both with and without H adatoms, generally reduces mechanical strength compared to pristine
graphene. Notably, the 6×6 FLD superlattice demonstrates superior mechanical strength compared to variants with
H adatoms. This outcome can be attributed to the fact that H adatoms likely reduce the electron density around
carbon-carbon (C-C) covalent bonds, thereby diminishing the overall strength of the 2D lattice.
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Figure 4.7: r2SCAN+rVV10 computed DOS for the different 6×6 FLD superlattices with H adatoms configurations
on the FLD’s Edge. The (a) blue line represents the DOS of 6×6-FLD, (b) violet line corresponds to 6×6-FLD-12h,
(c) yellow line to 6×6-FLD-12hud, and (d) green line to 6×6-FLD-12hudu.

Table 4.1: Structural and electronic r2SCAN+rvv10 computed properties of 6×6 FLD superlattices with H adatoms
on the edge. a0 represents the optimal lattice parameter, Eg is the bandgap, NC is the number of carbon atoms, NH is
the number of hydrogen adatoms, ∆Ec is the cohesive energy, γ0 is the layer modulus, and Symmetry indicates the
crystal symmetry.

System a0 (Å) Eg (eV) NC NH ∆Ec(eV/atom) γ0 (N m−1) Symmetry

Pristine 2.4535 0 2 0 -7.493 216.96 P6/mmm (191)
6×6-FLD 14.817 0.63 72 0 -7.386 195.72 P6mm (183)

6×6-FLD-12h 14.749 1.16 72 12 -6.232 109.55 P6mm (183)
6×6-FLD-12hud 14.696 1.09 72 12 -6.255 97.66 P3m1 (156)
6×6-FLD-12hudu 14.915 1.12 72 12 -6.241 185.10 P6 (168)

The 5×5 and 7×7 graphene superlattices

To further explore the viability for opening the bandgap of the H configurations illustrated in Fig. 4.3, simulations
were also conducted on the 5×5 and 7×7 superlattices with identical H configurations (Fig. 4.9(a-f)). Contrary to
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(a) (c) (d)(b)

Figure 4.8: r2SCAN+rvv10 computed bands for the different 6×6 FLD superlattices: (a) 6×6-FLD, (b) 6×6-FLD-
12h, (c) 6×6-FLD-12hud, and (d) 6×6-FLD-12hudu. Note the aperture on the bandgap on the structures with H
adatoms.

expectations, no bandgap was observed in these alternative structures as reported in Table 4.2, diverging from the
results obtained for the 6×6 H configurations.

Table 4.2: Structural and electronic r2SCAN+rvv10 computed properties of 5×5 and 7×7 FLD superlattices with H
adatoms on the edge. a0 represents the optimal lattice parameter, Eg is the bandgap, NC is the number of carbon
atoms, NH is the number of hydrogen adatoms, ∆Ec is the cohesive energy, γ0 is the layer modulus, and Symmetry
indicates the crystal symmetry.

System a0 (Å) Eg (eV) NC NH ∆Ec(eV/atom) γ0 (N m−1) Symmetry

Pristine 2.4535 0 2 0 -7.493 216.96 P6/mmm (191)
5×5-FLD-12h 12.357 0 50 12 -4.262 116.49 P6mm (183)

5×5-FLD-12hud 12.287 0 50 12 -4.283 105.01 P3m1 (156)
5×5-FLD-12hudu 12.484 0 50 12 -4.272 128.37 P6 (168)

7×7-FLD-12h 17.169 0 98 12 -6.523 111.04 C1m1 (8)
7×7-FLD-12hud 17.169 0 98 12 -6.536 108.16 P1 (1)
7×7-FLD-12hudu 17.349 0 98 12 -6.527 157.49 P121 (3)

An interesting observation was found from Table 4.2, the results of the layer modulus, γ0 for the 12hudu
configurations in the 5×5 and 7×7 superlattices present the higher values indicating superior mechanical strength
compared with the other configurations, similar trend is observed for the 6×6 cases (cf. Table 4.1)

Regarding the band structure of the 5×5 FLD superlattices, the band structures shown in Fig. 4.11 exhibit a
similar features around the Fermi level where is observed two bands with small dispersion. According to their
respective PDOS illustrated in Figs. A.10-A.15, these states near the Fermi level are predominantly contributed by
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the 2pz orbitals of the C atoms outside of the FLD, with a minor contribution from the 1s states of the H adatoms.
The 5×5 FLD superlattices with H adatoms are a special case since the structure consists of 50 carbon atoms,

with 24 C atoms forming the FLD and 26 non-deformed C atoms accompanied by 12 H adatoms. This configuration
appears to be more likely an allotrope of graphene, which could be the reason why its electronic structure (Fig. 4.11)
and layer modulus values significantly differ from the other superlattices and pristine graphene.

5×5-FLD-12hudu

5×5-FLD-12hud
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Figure 4.10: r2SCAN+rVV10 computed DOS for the different 5×5 superlattices with H adatoms configurations on
the FLD’s Edge.

For the 7×7 FLD superlattices with H adatoms, Fig. 4.13 reveals two distinct states near the Fermi level
exhibiting linear dispersion, particularly around the K point. This observation is particularly important as it suggests
the presence of Dirac cones in these structures. Further analysis, as depicted in Figs. A.16-A.21, indicates that near
the Fermi level, the 2pz states of primarily the C atoms at the outer edges of the FLD contribute to the formation of
these cones. The advantage of these superlattices lies in their relatively higher cohesion energies compared to both
the 5×5 and 6×6 FLD superlattices with H adatoms. The increased cohesion energy as illustrated in Table. 4.2 was
expected due to the presence of more carbon atoms outside of the FLD, which means more C-C covalent bonds, i.e.,
stronger interatomic interactions within the superlattice structure.
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(a) (c)(b)

Figure 4.11: r2SCAN+rVV10 computed bands for the different 5×5 FLD superlattices: (a) 5×5-FLD-12h, (b) 5×5-
FLD-12hud, and (c) 5×5-FLD-12hudu.
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Figure 4.12: r2SCAN+rVV10 computed DOS for the different 7×7 superlattices with H adatoms configurations on
the FLD’s Edge.

The absence of a bandgap in both 5×5 and 7×7 superlattices, despite incorporating hydrogen adatoms, underscores
the critical role of lattice size and symmetry in dictating electronic properties. This observation suggests that the
influence of hydrogenation on bandgap engineering is not merely a function of adatom incorporation but also heavily
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(a) (c)(b)

Figure 4.13: r2SCAN+rVV10 computed bands for the different 7×7 FLD superlattices: (a) 7×7-FLD-12h, (b) 7×7-
FLD-12hud, and (c) 7×7-FLD-12hudu.

depends on the geometric and electronic congruity of the underlying graphene lattice. Therefore, the variation in
electronic properties with changing superlattice dimensions underscores the complex relationship between structural
modifications and the electronic band structure, adding layers of complexity to the design of graphene-based
electronic devices.

4.2.2 H Adatoms on the FLD’s Inner & Outer Edge

In the region highlighted by the blue atoms in Figure 4.2, we examined three distinct configurations involving H
placement. The first configuration, denoted as 6×6-FLD-m24h (4.14(a)), is based on Balog’s concept52, where H
adatoms are arranged to create a moiré pattern, placing adatoms at the inner region and outer edge of the FLD. The
second configuration, labeled as 6×6-FLD-h12h (4.14(b)), features H adatoms situated at the outer atoms of the
heptagons, with a uniform orientation. The third configuration, called 6×6-FLD-p6h (4.14(c)), involves positioning
H adatoms at the corner atoms of pentagons, all oriented in the same direction.
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Figure 4.15: r2SCAN+rVV10 computed DOS for the different 6×6 FLD superlattices with H adatoms configurations
on the FLD’s Inner & Outer Edge.

Table 4.3: r2SCAN+rVV10 computed lattice parameters and energies of pristine graphene, 6×6 pristine graphene,
6×6-FLD superlattice, and 6×6-FLD superlattices with H adatoms at different configurations. a0 is the optimum
separation, NC and NH represent the number of C and H atoms, respectively. Ec is the cohesive energy per atom,
and Eg represents the bandgap.

System a0 (Å) Eg (eV) NC NH ∆Ec(eV/atom) γ0 (N m−1) Symmetry

6×6-FLD 14.817 0.63 72 0 -7.386 195.72 P6mm (183)
6×6-FLD-m24h 14.974 0.10 72 24 -6.051 135.94 P6mm (183)
6×6-FLD-p6h 14.830 0 72 6 -6.700 159.11 Cmm2 (35)
6×6-FLD-h12h 14.940 0 72 12 -6.146 182.26 P1 (1)

The exploration of H adatom configurations on the inner and outer edges of the FLD superlattices gives us an idea
of the interplay between atomic modifications and electronic properties in graphene. The distinct configurations,
namely 6×6-FLD-m24h, 6×6-FLD-h12h, and 6×6-FLD-p6h, not only serve as a testament to the versatility of
graphene’s electronic structure but also shed light on the sensitivity of graphene’s electronic properties to precise
atomic arrangements.
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(a) (c) (d)(b)

Figure 4.16: r2SCAN+rVV10 computed bands for the different 6×6 FLD superlattices: (a) 6×6-FLD, (b) 6×6-FLD-
m24h, (c) 6×6-FLD-p6h, and (d) 6×6-FLD-h12h.

4.3 Magnetic properties
The study of graphene’s magnetic properties was inspired by Lehtinen et al.’s work53, specifically the vacancy-
induced magnetism in the graphene part. Considering that work, we aim to replicate their results and extend the
exploration to graphene-based superlattices incorporating the FLD.

Table 4.4: Computed r2SCAN+rvv10 properties of 6×6 superlattices with one C vacancy.

System a0 (Å) Eg (eV) NC NH ∆Ec(eV/atom) γ0 (N m−1) µm (µβ) Symmetry

Pristine 2.453 0 2 0 -7.493 216.96 0 P6/mmm (191)
6×6-pristine-1CV 14.721 0.20 71 0 -7.375 - 2.00 P-6m2 (187)
6×6-FLD-1CV 14.781 0 71 0 -7.280 162.832 1.14 C1m1 (8)

4.3.1 Vacancy-Induced Magnetism in Pristine Graphene

The process for studying this structure involved first constructing a 6×6 pristine supercell and subsequently removing
one carbon atom from the superlattice, which we refer to as 6×6-pristine-1CV in Table 4.4. It is important to note
that, in this particular case, we only allowed relaxation of the internal coordinates of the structure, while keeping the
lattice parameter fixed. This approach was chosen because the vacancy is not anticipated to interact with its periodic
image. Consequently, we were unable to calculate the layer modulus γ0 in Table 4.4.

Additionally, to capture the magnetic properties, we used spin-polarized calculations in VASP. As a result, all
the output files contain information related to the spin states. For instance, the DOSCAR file includes the density of
states for different spins, while the OSZICAR and OUTCAR files provide details about the total magnetization and
also the magnetization contributed by individual atoms.
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Further analysis of Table 4.4 reveals some effects: the bandgap exhibits a tendency to open, and the formation
energy is lower than pristine graphene as expected; our findings also indicate that the resultant ground state structure
is magnetic, in agreement with the work of Lehtinen et al.53. However, while their report cites a magnetic moment
of 1.04 µB, our results show 2.00 µB, as documented in Table 4.4.

Moreover, Figs. 4.17 and 4.18(a) illustrate the spin polarization effects induced by the vacancy. In particular,
Fig. 4.17 shows the spin-resolved partial density of states (PDOS), where the spin-up states are represented by
positive values in states/eV, and spin-down states are represented by negative values in states/eV. Additionally, Fig.
4.18(a) displays the distribution of spin-resolved magnetization density, further highlighting the vacancy’s effect on
the system’s magnetic properties.

The work of Lehtinen et al.53 explains that when a carbon ion is removed from a graphene lattice, it creates three
unsaturated sp2 orbitals in the neighboring carbon ions. The formation of a pentagon structure in the lattice saturates
two of these orbitals, leaving one sp2 orbital free. This remaining dangling bond contributes to the calculated
localized magnetic moment, as illustrated in the Fig. 4.18(a).
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Figure 4.17: r2SCAN+rvv10 spin-resolved PDOS of 6×6 graphene supercell with a carbon vacancy. The diagram
delineates the PDOS with distinct curves for spin-up and spin-down states, illustrating the vacancy-induced spin
polarization.

4.3.2 6×6-FLD with 1 C Vacancy

The investigation of this structure followed a similar procedure, with the addition of the FLD. Specifically, we
constructed a 6×6 supercell, introduced a defect, and removed one carbon atom from the superlattice. This structure
is called 6×6-FLD-1CV , as shown in Table 4.4. After lattice and structural relaxation, we were able to apply the 2D
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(a) (b)

Figure 4.18: r2SCAN+rvv10 spin-resolved magnetization density for (a) 6×6-pristine-1CV and (b) 6×6-FLD-1CV .
Note that yellow (cyan) represents positive (negative) magnetization density.

equation of state (EOS) and obtain the layer modulus γ0 of the optimal structure, which resulted in 162.832 Nm−1,
as presented in Table 4.4.

Further examination of Table 4.4 reveals several effects: the bandgap observed in the 6×6-FLD structure vanishes,
and the formation energy is lower than that of 6×6-FLD, consistent with expectations. Furthermore, our analysis
confirms the magnetic nature of the resulting ground state structure. The magnetic moment is quantified at 1.14 µB,
as detailed in Table 4.4. Fig. 4.19 highlights the spin polarization effects induced by the vacancy. Specifically, Fig.
4.19 presents the spin-resolved PDOS, distinguishing the contributions from carbon atoms inside and outside the
FLD. Furthermore, the lack of enhanced magnetic properties in this structure, compared to pristine graphene with a
single vacancy, could be due to the suboptimal positioning of the vacancy within the flower-like region, which may
not be conducive to achieving the desired magnetic enhancement.

Aditionally, it is crucial to approach these results with caution. Kothakonda et al.28 compared SCAN, r2SCAN
and GGA-PBE. They found that PBE provides more accurate results than the more sophisticated meta-GGAs
for determining the magnetic moments of metals; nonetheless, in the same study, it is recommended the use of
r2SCAN+rvv10 for layered materials, which applies to graphene.
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Figure 4.19: r2SCAN+rvv10 spin-resolved PDOS of 6×6-FLD-1CV structure, illustrating the differentiated electronic
contributions from C atoms located within and outside the FLD.



Chapter 5

Conclusions & Outlook

The first part of this work focused on exploring the FLD and adding H adatoms within graphene superlattices.
Specifically, we studied the 5×5, 6×6, and 7×7 configurations to uncover potential alterations in their electronic
structures. Various H configurations were examined across these superlattices using DFT calculations performed
through the VASP and employing the r2SCAN+rVV10 functional. After each structure’s lattice and structural
relaxation, an equation of state tailored for two-dimensional systems was applied to obtain the ground-state energy
configurations along with their distinctive electronic structures.

The density of states and band structures for all optimal superlattices were computed for a comprehensive analysis.
Moreover, STM simulations were calculated for structures with a band gap opening, enhancing our understanding
of their electronic properties.

Our results showed that placing three H adatoms at the edges of the FLD in the 6×6 superlattice increased
the bandgap beyond that of the superlattice without H adatoms. This phenomenon led us to examine the same H
configurations within 5×5 and 7×7 superlattices, investigating the effects of altering superlattice dimensions, which
inherently modifies the spatial intervals between FLDs. We were aware of previous research by Garzón et al.51, which
proposed a "band gap opening rule" suggesting that superlattices with dimensions that are multiples of 3 exhibit
a bandgap (e.g., 3×3, 6×6, 9×9, etc). We aimed to open a bandgap in those superlattices that did not exhibit one
without H adatoms, such as the 5×5 and 7×7. However, our investigations revealed that these modifications failed to
induce a bandgap in both 5×5 and 7×7 configurations, indicating that the impact of H adatoms on the bandgap is not
only dependent on adatom incorporation but also significantly influenced by the geometric and electronic properties
of the underlying graphene lattice.

Then, further investigations into the 6×6 superlattice, with H adatoms strategically placed both external and
internal to the FLD, were performed. These alternative configurations did not facilitate bandgap expansion; instead,
they closed the bandgap that the superlattice without H adatoms had. This observation elucidates that the external
placement of H adatoms around the FLD tends to narrow the bandgap.

The second part of this work investigated the magnetic properties of pristine graphene and graphene with an
FLD by introducing a single carbon vacancy in a 6×6 supercell. For pristine graphene, the magnetic moment of the
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resulting ground state structure was 2.00 µB, higher than the 1.04 µB reported by Lehtinen et al. On the other hand,
the 6×6-FLD ground state structure was found to be magnetic with a magnetic moment of 1.14 µB, showing that the
vacancy does not enhance the magnetic properties compared to pristine graphene with a single vacancy.

This overall analysis underscores the critical impact of precise atomic-level modifications on the properties of
graphene with the FLD, emphasizing the necessity of detailed structural characterization in developing graphene-
based materials. Future research related to the band gap manipulation could extend these findings by investigating
the influence of varying H patterns and coverage and introducing different adatom species, such as transition metals.
To enhance the magnetic properties, investigating different arrangements of vacancies within the FLD structure and
adding adatoms could offer valuable insights into optimizing these properties.
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C : graphene 1x1v15
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Figure A.1: Pristine Graphene POSCAR File
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Figure A.2: 6×6-FLD Partial Density of States (PDOS), highlighting the distinct electronic states contributed by
different types of atoms. Here, CF denotes the carbon atoms constituting the FLD structure within the lattice and C
represents the carbon atoms outside of the FLD. The Fermi level is centered at zero.
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Figure A.3: 6×6-FLD detailed atomic orbital PDOS, showcasing the distinct contributions of each atomic orbital to
the overall electronic states.
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Figure A.4: 6×6-FLD-12h Partial Density of States (PDOS), highlighting the distinct electronic states contributed
by different types of atoms. Here, CF denotes the carbon atoms constituting the FLD structure within the lattice and
C represents the carbon atoms outside of the FLD, and H refers to all the hydrogen (H) adatoms.

-4 -2 0 2 4
0

1

2

3

4

5

CF-all

-4 -2 0 2 4
0

1

2

3

4

5

CF-s

-4 -2 0 2 4
0

1

2

3

4

5

CF-p

-4 -2 0 2 4
0

1

2

3

4

5

CF-py

-4 -2 0 2 4
0

1

2

3

4

5

CF-pz

-4 -2 0 2 4
0

1

2

3

4

5

CF-px

-4 -2 0 2 4
0

1

2

3

4

5

C-all

-4 -2 0 2 4
0

1

2

3

4

5

C-s

-4 -2 0 2 4
0

1

2

3

4

5

C-p

-4 -2 0 2 4
0

1

2

3

4

5

C-py

-4 -2 0 2 4
0

1

2

3

4

5

C-pz

-4 -2 0 2 4
0

1

2

3

4

5

C-px

-4 -2 0 2 4
0

1

2

3

4

5

H-all

-4 -2 0 2 4
0

1

2

3

4

5

H-s

-4 -2 0 2 4
0

1

2

3

4

5

H-p

-4 -2 0 2 4
0

1

2

3

4

5

H-py

-4 -2 0 2 4
0

1

2

3

4

5

H-pz

-4 -2 0 2 4
0

1

2

3

4

5

H-px

Figure A.5: 6×6-FLD-12h detailed atomic orbital PDOS, highlighting the distinct electronic states contributed by
different types of atoms. Here, CF denotes the carbon atoms constituting the FLD structure within the lattice and C
represents the carbon atoms outside of the FLD, and H refers to all the hydrogen (H) adatoms.
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Figure A.6: 6×6-FLD-12hud Partial Density of States (PDOS), highlighting the distinct electronic states contributed
by different types of atoms. Here, CF denotes the carbon atoms constituting the FLD structure within the lattice and
C represents the carbon atoms outside of the FLD, and H refers to all the hydrogen (H) adatoms.
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Figure A.7: 6×6-FLD-12hud detailed atomic orbital PDOS, highlighting the distinct electronic states contributed by
different types of atoms. Here, CF denotes the carbon atoms constituting the FLD structure within the lattice and C
represents the carbon atoms outside of the FLD, and H refers to all the hydrogen (H) adatoms.
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Figure A.8: 6×6-FLD-12hudu Partial Density of States (PDOS), highlighting the distinct electronic states contributed
by different types of atoms. Here, CF denotes the carbon atoms constituting the FLD structure within the lattice and
C represents the carbon atoms outside of the FLD, and H refers to all the hydrogen (H) adatoms.
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Figure A.9: 6×6-FLD-12hudu detailed atomic orbital PDOS, highlighting the distinct electronic states contributed
by different types of atoms. Here, CF denotes the carbon atoms constituting the FLD structure within the lattice and
C represents the carbon atoms outside of the FLD, and H refers to all the hydrogen (H) adatoms.
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Figure A.10: 5×5-FLD-12h Partial Density of States (PDOS), highlighting the distinct electronic states contributed
by different types of atoms. Here, CF denotes the carbon atoms constituting the FLD structure within the lattice and
C represents the carbon atoms outside of the FLD, and H refers to all the hydrogen (H) adatoms.
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Figure A.11: 5×5-FLD-12h detailed atomic orbital PDOS, highlighting the distinct electronic states contributed by
different types of atoms. Here, CF denotes the carbon atoms constituting the FLD structure within the lattice and C
represents the carbon atoms outside of the FLD, and H refers to all the hydrogen (H) adatoms.
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Figure A.12: 5×5-FLD-12hud Partial Density of States (PDOS), highlighting the distinct electronic states contributed
by different types of atoms. Here, CF denotes the carbon atoms constituting the FLD structure within the lattice and
C represents the carbon atoms outside of the FLD, and H refers to all the hydrogen (H) adatoms.

-4 -2 0 2 4
0

1

2

3

4

5

CF-all

-4 -2 0 2 4
0

1

2

3

4

5

CF-s

-4 -2 0 2 4
0

1

2

3

4

5

CF-p

-4 -2 0 2 4
0

1

2

3

4

5

CF-py

-4 -2 0 2 4
0

1

2

3

4

5

CF-pz

-4 -2 0 2 4
0

1

2

3

4

5

CF-px

-4 -2 0 2 4
0

1

2

3

4

5

C-all

-4 -2 0 2 4
0

1

2

3

4

5

C-s

-4 -2 0 2 4
0

1

2

3

4

5

C-p

-4 -2 0 2 4
0

1

2

3

4

5

C-py

-4 -2 0 2 4
0

1

2

3

4

5

C-pz

-4 -2 0 2 4
0

1

2

3

4

5

C-px

-4 -2 0 2 4
0

1

2

3

4

5

H-all

-4 -2 0 2 4
0

1

2

3

4

5

H-s

-4 -2 0 2 4
0

1

2

3

4

5

H-p

-4 -2 0 2 4
0

1

2

3

4

5

H-py

-4 -2 0 2 4
0

1

2

3

4

5

H-pz

-4 -2 0 2 4
0

1

2

3

4

5

H-px

Figure A.13: 5×5-FLD-12hud detailed atomic orbital PDOS, highlighting the distinct electronic states contributed
by different types of atoms. Here, CF denotes the carbon atoms constituting the FLD structure within the lattice and
C represents the carbon atoms outside of the FLD, and H refers to all the hydrogen (H) adatoms.
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Figure A.14: 5×5-FLD-12hudu Partial Density of States (PDOS), highlighting the distinct electronic states con-
tributed by different types of atoms. Here, CF denotes the carbon atoms constituting the FLD structure within the
lattice and C represents the carbon atoms outside of the FLD, and H refers to all the hydrogen (H) adatoms.
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Figure A.15: 5×5-FLD-12hudu detailed atomic orbital PDOS, highlighting the distinct electronic states contributed
by different types of atoms. Here, CF denotes the carbon atoms constituting the FLD structure within the lattice and
C represents the carbon atoms outside of the FLD, and H refers to all the hydrogen (H) adatoms.
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Figure A.16: 7×7-FLD-12h Partial Density of States (PDOS), highlighting the distinct electronic states contributed
by different types of atoms. Here, CF denotes the carbon atoms constituting the FLD structure within the lattice and
C represents the carbon atoms outside of the FLD, and H refers to all the hydrogen (H) adatoms.
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Figure A.17: 7×7-FLD-12h detailed atomic orbital PDOS, highlighting the distinct electronic states contributed by
different types of atoms. Here, CF denotes the carbon atoms constituting the FLD structure within the lattice and C
represents the carbon atoms outside of the FLD, and H refers to all the hydrogen (H) adatoms.
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Figure A.18: 7×7-FLD-12hud Partial Density of States (PDOS), highlighting the distinct electronic states contributed
by different types of atoms. Here, CF denotes the carbon atoms constituting the FLD structure within the lattice and
C represents the carbon atoms outside of the FLD, and H refers to all the hydrogen (H) adatoms.
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Figure A.19: 7×7-FLD-12hud detailed atomic orbital PDOS, highlighting the distinct electronic states contributed
by different types of atoms. Here, CF denotes the carbon atoms constituting the FLD structure within the lattice and
C represents the carbon atoms outside of the FLD, and H refers to all the hydrogen (H) adatoms.
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Figure A.20: 7×7-FLD-12hudu Partial Density of States (PDOS), highlighting the distinct electronic states con-
tributed by different types of atoms. Here, CF denotes the carbon atoms constituting the FLD structure within the
lattice and C represents the carbon atoms outside of the FLD, and H refers to all the hydrogen (H) adatoms.
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Figure A.21: 7×7-FLD-12hudu detailed atomic orbital PDOS, highlighting the distinct electronic states contributed
by different types of atoms. Here, CF denotes the carbon atoms constituting the FLD structure within the lattice and
C represents the carbon atoms outside of the FLD, and H refers to all the hydrogen (H) adatoms.
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Figure A.22: 6×6-FLD-m24h Partial Density of States (PDOS), highlighting the distinct electronic states contributed
by different types of atoms. Here, CF denotes the carbon atoms constituting the FLD structure within the lattice and
C represents the carbon atoms outside of the FLD, and H refers to all the hydrogen (H) adatoms.
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Figure A.23: 6×6-FLD-m24h detailed atomic orbital PDOS, highlighting the distinct electronic states contributed
by different types of atoms. Here, CF denotes the carbon atoms constituting the FLD structure within the lattice and
C represents the carbon atoms outside of the FLD, and H refers to all the hydrogen (H) adatoms.
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Figure A.24: 6×6-FLD-p6h Partial Density of States (PDOS), highlighting the distinct electronic states contributed
by different types of atoms. Here, CF denotes the carbon atoms constituting the FLD structure within the lattice and
C represents the carbon atoms outside of the FLD, and H refers to all the hydrogen (H) adatoms.
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Figure A.25: 6×6-FLD-p6h detailed atomic orbital PDOS, highlighting the distinct electronic states contributed by
different types of atoms. Here, CF denotes the carbon atoms constituting the FLD structure within the lattice and C
represents the carbon atoms outside of the FLD, and H refers to all the hydrogen (H) adatoms.
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Figure A.26: 6×6-FLD-h12h Partial Density of States (PDOS), highlighting the distinct electronic states contributed
by different types of atoms. Here, CF denotes the carbon atoms constituting the FLD structure within the lattice and
C represents the carbon atoms outside of the FLD, and H refers to all the hydrogen (H) adatoms.
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Figure A.27: 6×6-FLD-h12h detailed atomic orbital PDOS, highlighting the distinct electronic states contributed by
different types of atoms. Here, CF denotes the carbon atoms constituting the FLD structure within the lattice and C
represents the carbon atoms outside of the FLD, and H refers to all the hydrogen (H) adatoms.
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