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Resumen

La reciente pandemia de COVID-19 ha generado mucho interés en la investigación de la relación
entre el proceso de propagación de enfermedades en redes y los cambios de comportamiento de
los individuos de una población. En esta Tesis, investigamos un modelo de enfermedad infecciosa
junto con un juego evolutivo de formación de opinión en agentes sociales que coexisten y coevolu-
cionan en varias redes complejas, y cómo la información global y local sobre una enfermedad
afecta el surgimiento de la cooperación colectiva en las redes sociales. Además, estudiamos el
papel de las propiedades topológicas de los grafos para permitir que emerja la cooperación. Fi-
nalmente, analizamos otras dinámicas de propagación de epidemias y juegos evolutivos sobre los
comportamientos colectivos emergentes en estas redes complejas.

Palabras clave: Sistemas complejos, sociofı́sica, redes complejas, coevolución, modelos compar-
timentales en epidemiologı́a, teorı́a de juegos, comportamiento colectivo.



Abstract

The recent COVID-19 pandemic has generated much interest in the research of the relationship
between the process of disease spreading on networks and the behavioral changes of individuals
in a population. In this Thesis, we investigate an infectious disease model coupled with a evolu-
tionary game of opinion formation in social agents coexisting and coevolving on several complex
networks, and how global and local information about a disease affect the emergence of collective
cooperation in social networks. Additionally, we study the role of the topological properties of the
graphs in allowing cooperation to occur. Finally, we look into other epidemic propagation dynam-
ics and evolutionary games on the emergent collective behaviors in these complex networks.

Keywords: Complex systems, complex networks, sociophysics, coevolution, compartmental mod-
els in epidemiology, game theory, collective behavior.
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Chapter 1

Introduction

1.1 Dialectics and complexity

Result of the political transformation of the entire world in the 15th century, the fall of the feudal
nobility, the founding of the great national kingdoms, the basis of the states that today hold eco-
nomic power, and the renaissance of the arts, inspired by Greco-Roman classical antiquity, modern
scientific research of nature was a revolution against the ancient philosophy of nature. Like any
revolution, it sought to conquer its right to life, especially with the mortal persecution of its first
martyrs, such as Giordano Bruno.

With Copernicus, less transgressive than Bruno and before him, the independence of modern
research was declared in the face of religious authority over nature, and over time, it would gain
strength by leaps and bounds, with the task of dominating all the matter. For this reason, the
greatest development of the time concerned the mechanics of bodies and the improvement of the
mathematical methods that it requires.

However, the search for this perfection in motion concludes with the conception of the abso-

lute immutability of nature. The planets, for example, in their motion with a mysterious origin,
would remain there forever, in perfect ellipses according to universal gravitation. Fauna and flora
were established at birth, since like begets like, with exceptions due to human engineering. The
continents, mountains, glaciers, and rivers have always been there, except for modifications by
man.

So, while humanity had a history, in time, the history of nature was restricted to its develop-
ment in space. In the words of Engels [3]: “Copernicus, at the beginning of the period, writes a
letter renouncing theology; Newton closes the period with the postulate of a divine first impulse.”
Thus, the science of nature, once revolutionary, became conservative, until today, where it is a
fundamental doctrine of uncritical use.

To deal a blow to the mechanistic or static conception of nature, decisive progress was needed
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in the different branches of knowledge: in chemistry, with the categorization of the processes of
transformation of inorganic matter, as alive as of organic matter; in geology, with the discovery of
remote strata and fossils of species that no longer exist; in biology, with the development of the
theory of evolution and the discovery of genetic mutations; and in physics, with thermodynamics,
phase transitions, and quantum mechanics, while physical forces are reduced to the motion of
matter or, in other words, the flow of energy. Nature has changed over time, where “everything
that exists deserves to perish.” This is the manifestation of Dialectics, as a study of motion and
interconnections. It means that the history of nature is studied as the motion, change, or process
that matter undergoes, not in the solitude of its existence, but as part of a real system of which it is
a part, dependent on it.

Complexity arises from the fundamental premise that development is not linearly continuous
and that various elements acting together produce something more than the sum of their parts.
This science arises as a result of the technological advance in computational science, which allows
working with a greater amount of information and therefore allows access to knowledge about
patterns and processes that only occur when all this new information is taken into consideration,
be it the appearance of chaos due to very small fractions of change in the parameters of a system
or due to the addition of tens, hundreds, thousands, or millions of elements that interact with each
other.

The science of complexity proposes the development of nature, according to the laws of di-
alectic, as a change from quantity to quality, unity and contradiction of opposites, and negation of
the negation: the emergence of new phenomena from old and simpler relationships or interactions;
the interconnection of phenomena; the transition to chaos; the emergence of structures and global
order from chaos or random activity; and the existence of system boundaries known as attractors
[4].

This recent science is part of the revolution in the methods of obtaining knowledge and surely
finds its place in this time of the historical development of humanity, following the premise of
replacing immutability with emergence and fixed characteristics with motion.

1.2 Complex Systems

In recent years, Physics and other sciences have have created the concept of complex system to
describe a diversity of natural and artificial systems within a unified framework [5] [6]. A complex
system comprises a set of interacting dynamical elements whose collective behavior cannot be
derived from the knowledge of the properties of the isolated elements. The collective behavior
is said to emerge from the interactions between the components. The field of complex systems
investigates how a large set of components – locally interacting with each other at small scales –
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can spontaneously self-organize to exhibit non-trivial structures, functionalities, and behaviors at
larger scales, without external intervention, specific design, central control, or leaders. The global
properties of a complex system may not be inferred or predicted from the full knowledge of its
constituents alone.

The components form a network of interactions. The main challenge of complexity science is
not only to see the parts and their connections but also to understand how these connections give
rise to the whole. In simple systems, the properties of the whole can be understood or predicted
from the addition or aggregation of its components. In other words, macroscopic properties of a
simple system can be deduced from the microscopic properties of its parts. In complex systems,
however, the properties of the whole often cannot be understood or predicted from the knowledge
of its components because of the phenomenon of emergence. This phenomenon involves diverse
mechanisms causing the interaction between components of a system to generate novel information
and exhibit non-trivial collective behaviors at larger scales. This fact is usually summarized with
the popular phrase ”the whole is more than the sum of its parts”.

A paradigmatic example of a complex system is the brain [5]. It is well known how a single
neuron functions. A single neuron cannot think nor have consciousness by itself, but a network of
billions of them forming the brain can give rise to thought, conscience, and emotions. The concept
of complex system takes on another interesting manifestation in social systems, where human
interactions can lead to the emergence of diverse social and political structures. The application of
the concepts and methods of complex systems to study social systems has been called Sociophysics

[7].

1.3 Complex Networks

There are many systems composed of components interacting and linked together in some way.
Examples include human societies, which are collections of people linked by acquaintance or
social interaction, and the Internet, a collection of computers linked by data exchanges. The pattern
of connections in a given system can be represented as a network. A network is a collection of
points or nodes joined together in pairs by lines called links or edges.

In complex systems, the interactions between components can be characterized as links form-
ing a complex network, where the topology of the connectivity is not uniform nor trivial. The
research on natural and technological complex networks has exponentially increased in recent
years thanks to the access to large databases and the availability of high speed computer power that
allows the management and analysis of these large amounts of data in a very short time. Complex
networks constitute the backbone of complex systems. Many systems of interest in the physical,
biological, and social sciences can be represented as complex networks.

3
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There can be more than one type of node in the network, and the links can be different to
represent more complex relations among the nodes. In this manner, the links can have a direction,
in the sense that a node i has a relation with node j but the node j has no relation with node i. There
can be also relations that are not equal among all nodes but are stronger or weaker depending on
the nodes involved. This can be represented by a weighted link, where the strength of the link is
quantified. The state of the nodes and their links can also change over time. Sophistication can
be added to include these and others variations observed in real systems. The study of complex
networks has evolved into a contemporary, interdisciplinary science.

1.4 Coevolutionary Networks

Many networks observed in nature and society are not static. Actually, many natural and tech-
nological complex systems can be represented as dynamical networks of interacting elements, or
nodes, where the connections between the elements and their state variables evolve simultaneously
[8]. The links describing the interactions between nodes can vary their strengths or appear and
disappear as the system evolves on diverse timescales. In multiple cases, these variations in the
topology of the network arise from a feedback effect of the dynamics of the states of the nodes:
the network changes in response to the evolution of those states which in turn determines the mod-
ification of the network. Systems that possess this coupling between the topology and states have
been denoted as coevolutionary dynamical systems or adaptive networks [8]. The collective be-
haviors emerging in coevolutionary systems depend on the competition between the time scales of
these two coexisting processes: the dynamics of states of the nodes and the dynamics of the net-
work connections. Coevolution has been investigated in the context of spatiotemporal dynamical
systems, such as neural networks, coupled map lattices, motile elements, game theory, models of
social dynamics, and epidemic propagation [8].

1.5 Research Problem

A problem of great interest and importance, where the phenomenon of coevolution often appears,
is the propagation of epidemics. The recent COVID 19 pandemic has made humanity more aware
of the importance of the research into the dynamics of disease spreading in networks.

Infectious diseases are transmitted through social contacts between individuals. The modeling
of epidemic spreading among human beings has been extensively studied in mathematical epi-
demiology and network science. The developments of transportation system have enabled people
to travel more globally. Consequently, epidemics starting from a local market can spread to the
entire network in a very short time.

4
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Human beings often react to the presence of an infectious disease by changing their behavior.
The perception of the risk associated with the infection and countermeasures are usually accompa-
nied by changes in behavior and opinions of the social agents, such as cutting the connection with
infectious contacts, accepting vaccination, wearing face-masks, reducing travel range, along with
others [9, 10, 11]. Agents acting as information carriers may pass the message of the epidemic sit-
uation to uninformed individuals, which may potentially alter their future mobility patterns, thus,
affecting the epidemic spread. For example, COVID-19 has revealed the importance of social
distancing to reduce infection risk within the population so the capacity of health systems is not
saturated [9]. As epidemics evolve, individuals obtain information provided by health institutions
concerning the status of an epidemic or are strongly influenced by beliefs of the disease in their
population.

Motivated by the relevance of these issues in today’s world, in this Thesis we investigate a
general model for epidemic propagation where both the epidemics dynamics and the opinion for-
mation coexist in a network of social agents and can coevolve with the topology of the underlying
network. We address the questions of how a cooperation behavior can arise and what properties of
the network affect the propagation of epidemics in a social network.

1.6 Objectives

1.6.1 General objective

To understand the emergence of collective cooperation by a replicator rule in several epidemic
compartmental models, through the properties of complex networks.

1.6.2 Specific objectives

1. To consider different types of networks with the same number of nodes, but with different
properties.

2. To study the origin of the emergence of cooperation in a network with an evolutionary game
dynamics linked to a epidemic dynamics.

3. To investigate the occurrence of the cooperation for different evolutionary game dynamics
and sundry epidemic models.

4. To interpret the results according to the properties of the networks and the dynamical pro-
cesses.

5
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1.7 Overview

Chapter 2 describes the theoretical framework on which this Thesis is founded. We present a
review of the main concepts employed in this Thesis, comprising complex networks, compartmen-
tal epidemic models, and evolutionary game theory. Chapter 3 contains our implementation of a
model with coexisting and coevolving dynamics of epidemic propagation and cooperation game
on different networks of social agents. We delineate the mechanism of coupling between the evo-
lutionary game and the epidemic susceptible-infected-susceptible (SIS) compartmental model and
show the algorithms that we have elaborated for the computer simulations of the model. We in-
vestigate the role of the topology of connectivity on the emergence of collective cooperation by
exploring several different complex networks. In Chapter 4, we propose a generalization of the
model by considering other epidemic compartmental models and game dynamics for social behav-
ior. The algorithms for these new models are shown. Chapter 5 presents the conclusions of our
work, exposing significant findings and providing ideas for future research. The Appendix includes
the computer code for the simulations in Python 3.9 elaborated by the author of this Thesis.
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Chapter 2

Theoretical Framework

2.1 Graphs and complex networks

Networks are structures that combine a set of elements and the relationships between them. In
mathematics they are called graphs, where the elements are named nodes, points or vertices, while
the relationships, weighted or not, between a pair of vertices are named edges, links or lines [12].
They are the object of study of graph theory as part of discrete mathematics that formally defines
networks like this [13]:

Given a finite set V = {v1,v2, . . . ,vn} of non-specific elements, and the set V ⌦V , of all ordered
pairs

⇥
vi,v j

⇤
of the elements of V , a network is the triplet G = (V,W, f ), where V is the finite set of

nodes, W =
�

w1,w2, . . . ,wn
��wi 2 R

 
the set of the weights of each connection and f , a mapping

that associates some elements of W to an element of V ⌦V , f : wp !
⇥
vi,v j

⇤
.

These structures are abstractions of a variety of natural and artificial systems. For example, the
World Wide Web (WWW) (Figure 2.1), ecological or social relationships [14], economic equilib-
rium models of commodity flows in hierarchical societies [15], or artificial neural networks that
control the content that is shown to users on social networks such as YouTube [16].

Complex networks, like any complex system, are a set of elements that when interacting with
each other, behaviors emerge that are not necessarily explained by the properties of the individual
elements. For the physical study of networks, the nodes can represent any biological, socioeco-
nomic, technological entity, among others, and we can classify the network according to their
nature. In the same way, we can classify the network according to what its links represent, which
can be: physical or tangible links, such as a road; physical interactions, such as forces or en-
ergy transferred; intangible connections, such as data or information; social interactions, such as
friendships or family ties, or conceptual, such as references or dictionaries [13].

We can distinguish some important types of networks according to their topological character-
istics, such as regular grids, small-world networks and scale-free networks.
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Figure 2.1: Wikipedia as part of the World Wide Web [1]. The labeled nodes represent several
Internet web pages, and in the center, the main page of Wikipedia. The links correspond to hyper-
links between these pages.

2.1.1 Grid graph or Lattice

A grid graph is a regular homogeneous network. Mathematically, it is an n-dimensional graph,
which forms a mosaic of regular geometric figures. The most common grid network is the square
lattice, as the one in Figure 2.2, where the coordinates of the first dimension are in the range
1, . . . ,n, those of the second dimension are 1, . . . ,m, and so on. Any two vertices are connected by
a link if its corresponding distance is 1 [17].

2.1.2 Small-world network

In a small-world network, although each node has a small number of neighbors relative to the size
of the network, most nodes can reach any other node in a short number of “hops” or links. They
were devised as a conceptualization of Stanley Milgram’s six degrees of separation experiment
[18]. The number of links between nodes, which is called degree, follows a Poisson distribution, as
in Figure 2.3b. These networks are commonly constructed as random networks. A random network
consists of nodes with random connections between them, and most nodes have approximately the
same number of links [19]. Specifically, small-world networks that follow the Watts-Strogatz
model have highly clustered nodes, or high clustering coefficient, as in regular networks, but have
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Figure 2.2: 4⇥ 4-grid network. Colors represents the three types of nodes that this graph has
according to their degree.

small characteristic path lengths, such as random graphs [20].
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Figure 2.3: (a) 8-nodes small-world network representation. (b) Typical degree distribution of a
small-world network compared with its Poisson distribution.

2.1.3 Scale-free network

Scale-free networks were an improvement over what was understood as a complex network (which
was almost always related to the random and chaotic ones). They are defined as networks that have
a few highly connected nodes, while others have few links, as seen in representation of Figure
2.4. The most connected nodes, called hubs, have a number of links several orders of magnitude
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different from the rest. In this sense, the degree distribution follows a power law, PD ⇠ kg , where
k is the degree and g is the power-law parameter, whose value is in range 2 < g < 3.

Figure 2.4: Scale-free network representation. Purple points represent the hubs.

In order to build a scale-free network, we use two basic mechanisms: one is growth, that is,
you start with few connected nodes, and new vertices are added; the other is preferential coupling,
meaning that new nodes have a preference or greater probability of connecting to nodes that already
have more numbers of edges [19]. Examples of scale-free networks are Internet networks, the
WWW, interpersonal relationships, or cellular metabolism [21].

2.2 Compartmental epidemic models

Mathematically studying the spread of contagious diseases can be very useful for its control. From
knowing the speed of reproduction of the disease or the probabilities of contagion, to defining the
time in which a population reaches the maximum or minimum numbers of infected or recovered,
they help epidemiologists to be able to define strategies to face a possible epidemic or pandemic,
such as identifying trends and formulating general forecasts [2], and avoiding the greatest number
of serious cases that could collapse health systems, or fatalities that the disease could cause, beyond
the work that biologists, chemists, pharmacists, among others do with the same purpose.

The best known and most used epidemiological models are compartmental models, which di-
vide the population into compartments or classes, as seen in Figure 2.5, for each of the phases of
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Figure 2.5: The transfer scheme for the general MSEIR model with the passively immune class M,
the susceptible class S, the exposed class E, the infected class I, and the recovered class R [2].

the spread of the disease, and establish mechanisms for transfer between different groups, either
through differential equations or probabilities.

The compartments that each model has will depend on the characteristics of the disease and the
population, as well as the objectives or purposes of the model. In any case, they are still models
that idealize the real dynamics of the disease. Thus, the best known models for fixed networks,
without births or deaths, are:

1. Susceptible - Infected - Recovered (SIR), for long-term or permanent active immunity after
illness.

2. Susceptible - Infected - Susceptible (SIS), for very short or no immunity after illness.

3. Susceptible - Exposed - Infected - Recovered (SEIR), when contagion leads to a stage before
infection, but later immunity is permanent.

4. Susceptible - Exposed - Infected - Susceptible (SEIS), when contagion leads to a stage before
infection, but later immunity is short or non-existent.

The factor on which epidemiological models depend is the basic reproduction number, R0,
which is defined as the average number of secondary infections produced by a single infected
individual that is introduced into a population completely made up of susceptible individuals. For
many of these models, infection can only begin when R0 > 1 [2]. To calculate its value, we must
focus on new infections that appear in the population. The transmission of the disease consists of
a system of differential equations, with non-negative initial conditions x0:

ẋi = fi(x) = Fi(x)�Vi(x), i = 1, . . . ,n, (2.1)

where x = (x1,x2, . . . ,xn) is the number or fraction of individuals in each compartment, F is the
rate of appearance of new individuals in compartment i, and V is the rate of transition to other
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compartments. We define the matrices

F =


∂Fi(x0)

∂x j

�
and V =


∂Vi(x0)

∂x j

�
for 1  i, j  m < n, (2.2)

where F is a non-negative matrix, while V is non-singular, so its inverse V�1 is non-negative. m is
the total number of infection compartments (no susceptible or recovered). Let I0 be the number of
initially infected individuals.

Then FV�1I0 is a vector of the expected number of new infections. Thus, the multiplication
FV�1 is the matrix of the next generation of the disease, and has input (i, j) equal to the expected
value of secondary infections. Therefore, we can define the basic reproduction number as the
spectral radius of the matrix FV�1 [22]:

R0 = r
�
FV�1� (2.3)

2.3 Evolutionary game theory

The population dynamics of competition or cooperation between individuals is studied in the evo-
lutionary game theory, as a framework of strategies and decisions that members of the population
can make rationally or irrationally, depending on maximizing individual or collective benefit ac-
cording to certain reward and penalty parameters for the entire population. These models represent
biological dynamics, such as competition between bacterial strains [23] or cooperation between
viruses [24], or social dynamics, such as cultural evolution, moral dilemmas or economic behav-
iors. In finite populations, evolutionary games function as stochastic processes, specifying the
reward mechanism that governs the transmission of strategy between one individual and another
[25].

2.3.1 Prisoner’s dilemma

The best-known evolutionary game model arises from a traditional dilemma in which cooperation
is analyzed as a social problem, where the reward for cooperating or not cooperating benefits or
harms, respectively, the other individual, in such a way that between two individuals particularly
the strategy of defecting is more beneficial than that of cooperating [26]. However, if both indi-
viduals do not cooperate, the reward is zero, bringing the problem to a paradox. This system is
defined by a reward matrix between cooperators (C) and defectors (D),

C D" #
C b�h �h

D b 0
, (2.4)

such that b > b�h and 0 >�h, therefore strategy D is dominant over strategy C.
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2.3.2 Voluntary public goods games

The generalization of the prisoner’s dilemma allows individuals to take other strategies that mean
new rewards or penalties, depending on the strategy taken by the other [27]. The most common
thing is that each strategy is dominant over another, meaning that there is no balanced or favorable
state, as in the Rock, Paper, Scissors game, which follows the rules of the reward matrix

R P S
2

64

3

75
R 0 �s 1
P 1 0 �s

S �s 1 0

, (2.5)

In social models, these strategies can be cooperation (C), defection (D), or loneliness (L) or
equidistance, and in general, there can be strategies that are totally dominant or dominant de-
pending on certain conditions being met. Other models include many other strategies, such as
punishment [28].

2.3.3 Strategy change probability

The probability of changing from one strategy to another is usually a function of the total reward
received by the individual and by the rest of the individuals who have a connection or link with
him. An example is a linear function of rewards, such as

p =
1
1
+w

✓
pf �pr

Dp

◆
. (2.6)

Here, 0  w  1 and determines the intensity of strategy selection; pf and pr are the payoffs of the
focal and the model individuals, respectively, while Dp is the maximum payoff difference. The
focal is the node that compares its total payoff with the model’s payoff to know if its strategy is
better and has to be kept, or is worse and has to be changed.

Another commonly used probability function is the Fermi function from statistical mechanics,

p =
1

1+ ew(pf�pr)
, (2.7)

where if we replace w by k�1, this new factor k can represent the irrationality of the focal individual
or the population in general. w ⌧ 1 means a weak selection, and w ! • leads to an imitation
system [25].

2.4 Emergence of Cooperation

Cooperation in human beings, the Aristotle’s zoon politikon, is a phenomenon that has served the
species not only for survival, but also for developing and transmitting to future generations more
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complex structures, such as religion, law, language, that have transformed nature and our own
nature. Being a way to contribute to the well-being of other individuals, even for personal benefit,
results solely from moral values and collective social norms. In the evolutionary game theory, the
origin of these norms is set aside, leaving this study to sociology and anthropology, and it focuses
on the emergence of this phenomenon in populations, despite being a strategy that is not the more
favorable for the individual. The study of the emergence of cooperation despite the assumption
of rational egoism, although human beings do not necessarily follow this logic, allows us to focus
attention on why cooperation is a problem of interest. Likewise, it facilitates analysis between
interdependent entities. On the other hand, with the more advanced development of model theory,
it is possible to relax this assumption in favor of more realistic ones. Establishing social dilemmas
as dynamic reward games where individual and collective rationalities come into conflict leads us
to define cooperation as the rational strategy only when the other individuals in the community
also cooperate [29].
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Chapter 3

Network properties for the emergence of
cooperation

3.1 Coupled evolutionary game-epidemic mechanism

In this Chapter, we present our implementation of a model with coexisting and interdependent dy-
namics of epidemic propagation and cooperation game. Compartmental models allow the biology
of a contagious disease to be parameterized. However, many factors, such as the population’s own
actions, influence transmission and could be included in the model. In the same way, the behav-
ior of a population is susceptible to changes due to the existence of a global concern, such as an
epidemic. This creates a scenario of coexisting dynamics that evolve interdependently. The epi-
demiological model that we use in this work is the susceptible-infected-susceptible compartmental
model (SIS), as a modification of the Kermack and McKendrick system [30] where the disease has
no immunity or has one of very short duration. The population is divided into two classes, where
the susceptible (S) can be affected by infected individuals (I) according to the contagion strength,
b . The latter, upon overcoming the disease depending on the recovery rate, become susceptible
again. This model is expressed in the form of differential equations:

dS
dt

=�b SI
N

+ gI, (3.1)

dI
dt

= b SI
N

� gI. (3.2)

If we divide both equations by N, the size of the population, and substitute s = S/N and i = I/N

for the fractions of susceptible and infected, respectively, the system of equations is equal to

ds
dt

=�b s i+ g i, (3.3)

di
dt

= b s i� g i. (3.4)
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From this ODEs, we can define the basic reproduction factor, R0 = b/g .
To apply the system in the network, the agents have one of the two possible states, and we use

a stochastic model, where the probability of infection of a susceptible individual in the presence of
one or more infected neighbors is a specific contagion strength b̂ , while recovery depends on its
rate g and the units of time elapsed since the beginning of the infection Dt [31]. Then,

p(S ! I) = b̂ , (3.5)

p(I ! S) = Dt g. (3.6)

To couple social behavior with the epidemic, the contagion strength will be an exponential
function of the fraction of cooperators, with the original b as the constant factor. Here we distin-
guish between a contagion with global influence, where we take into account the infected coop-
erators throughout the network, CI , or with local influence, with just the cooperating neighbors,
Ci:

with global influence: b̂ (c) = b exp
✓

CI

N

◆
= b exp(�cI) ; (3.7)

with local influence: b̂ (c) = b exp
✓

Ci

Ni

◆
= b exp(�ci) . (3.8)

Meanwhile, dynamics between cooperators (C) and defectors (D) are determined by the tra-
ditional prisoner’s dilemma (2.4), but modified to make it dependent on the development of the
disease. Therefore, the reward matrix is:

A =

C D" #
C b�h �h

D b�g(s , I) �g(s , I)
, (3.9)

where, for simulations, the benefit b = 1.5, and the harm h = 0.5. Here we introduce g(s , I),
defined as the individual’s awareness function about the disease according to the current state of the
epidemic and directly proportional to the fraction of infected nodes. Here we can distinguish two
types of awareness, local or global. Knowledge about the disease and the individual’s reaction may
correspond to the number of infected neighbors around them, that is, they have local information
about the disease. On the other hand, if the individual has knowledge about the total number of
infected individuals in the population, we speak of global information about the disease. Thus,

with global information: gg = s I
N

= s i; (3.10)

with local information: gl = s Ii

Ni
, (3.11)

where Ii is the number of infected among the neighbors Ni of node i, and s 2 (0,1] is the infection
awareness factor.
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The probability of changing strategy is defined by the Fermi function. Each node in the network
is taken, and their respective payoffs, pi are calculated, according to the equation

pi = Â
j2Ni

si As j, (3.12)

where si is the unit vectors of the strategy of node i, and s j the one of the j neighbor. For each
focal player, a model neighbor is chosen, and their rewards are compared following the function

pi! j =
1

1+ e(pi�p j)/k
, (3.13)

where k is the player’s irrationality, set for this case at 0.5. For simplicity, in our simulations, the
change to infected state will occur when the probability pi! j is grater than a threshold, which is
set to 0.5.

3.1.1 Algorithms

Figure 3.1 shows our iterative algorithm of a replicator that defines the coexisting and co-evolving
dynamics between the evolutionary game and the disease, depending on the parameters b and s ,
and occurring during T units of time (days). This replicator has three subprocesses.

The first subprocess, in Figure 3.2, is the recovery of infected nodes depending on the days
that have passed since the onset of the illness. The recovery is reached when the infection time
elapsed is equal to 1/g = 7. The second subprocess, in Figure 3.3, defines the evolutionary game,
in this case the Prisoner’s dilemma iterative for each node, with local or global information about
the disease. Finally, the algorithm in Figure 3.4 shows the disease propagation with local or global
influence of cooperation.

We run the model one hundred times for each pair of parameters s and R0 and each network
studied. The code that we used for the simulations of this algorithms can be reviewed in the
Appendix A.
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Figure 3.1: Flowchart of the replicator dynamics.
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Figure 3.2: Flowchart of the recovery process.
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Figure 3.4: Flowchart of the disease propagation.

21



Coexisting processes in complex networks FINAL GRADE PROJECT

3.2 Cooperation in scale-free, small-world and grid networks:
Characterization and comparison

3.2.1 Creation of the networks

The first network for our simulations is a scale-free, as in Figure 3.5a, built with the mechanisms of
growth and preferential coupling. For each iteration, the probability of adding a node is 41%; the
probability of adding an edge between two existing nodes is 54%; meanwhile, the cost of adding
a new node connected to a random existing node is 5%. This scale-free network has a degree
distribution that follows a power law, as seen in Figure 3.5b.

(a)

1 5 10 50 100

1

5

10

50

100

500

Degree

N
um
be
ro
fN
od
es

(b)

Figure 3.5: Illustration (a) and degree distribution (b) of the scale-free network.

The second type of graph that we employed is a random small world network, as in Figure
3.6a, following the parameters of the Watts-Strogatz model, from a ring where each node is joined
with the 4 nearest neighbors, and 50% chance of randomly rewire each edge. Figure 3.6b shows
the degree distribution of the small-world network.

The third network that we consider is a two-dimensional grid network of 32⇥32 nodes, shown
in Figure 3.7, with the degree distribution, which is not complex as we can divide the nodes if their
are inside (the mayority), in a border or in a corner (only four).

22



School of Physical Sciences and Nanotechnology YACHAY TECH UNIVERSITY

(a)

2 3 4 5 6 7 8 9
0

50

100

150

200

250

300

350

Degree
N
um
be
ro
fN
od
es

(b)

Figure 3.6: Illustration (a) and degree distribution (b) of the random small-world network.
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Figure 3.7: Illustration (a) and degree distribution (b) of the regular 32⇥32-grid network.

3.2.2 Infected and cooperators fractions with local and global information

As initial conditions of the network, both for the state of the disease and the strategies of the game,
we establish that 50% of the population is cooperator. These initial conditions do not represent any
distortion of the model, because the non-cooperative strategy is dominant. On the other hand, a
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single recently infected individual is included, which represents 0.1% of the population. Everyone
else is susceptible.

After the examination period, T = 150 days, we can say with complete certainty that the disease
has reached the steady state, and we can count the number of infected and cooperators out of the
total population. Depending on whether the information the nodes have is global or local, and for
s between 0 and 1 and R0 between 0.7 an 7.0, we survey the fractions of cooperators and infected
nodes for each type of network, as shown in Figure 3.8.

The cooperators fraction is almost the same for any value of s and R0 in small-world and grid
networks, with around 1 in 10 and 1 in 5, respectively. Meanwhile, the cooperation fraction in
scale-free networks is high for a region where s > 0.5 and R0 > 2.1.

On the other hand, the infected fraction in small-world and grid networks changes as expected
without the evolutionary game dynamics, with high transmission for high reproduction R0 and
vice versa. On the contrary, the infection fraction in scale-free networks is slightly affected by
the cooperators, and in the cooperation region, the infected fraction is lower than awaited, i< 0.8,
when the mean cooperation fraction is over 0.2.

3.2.3 Disease and behavioral dynamics by time units

Although in the steady state we can examine the result of the coevolution of the two coupled dy-
namics, if we analyze the temporal progress of the cooperators and infected we also find important
results.

The infection in the grid network, as seen in Figure 3.9c, reaches its stable state very quickly,
in about a third of the time studied. Cooperation also reaches its final value a moment after the
illness begins.

The disease in the small-world random network evolves very slowly, as shown in Figure 3.9b,
and although it approaches the stable state, even at the end of the period, the peaks and valleys
of the epidemic are noticeable. Cooperation, as in the grid network, also reaches its final value a
moment after the disease begins.

In the scale-free network, the evolution of the fraction of infected, in the figure, is similar to that
found in the small world network, but when there is a considerable percentage of cooperators in the
network, proportionally and progressively, reduces the steady state value. Even more interesting
is that the larger the cooperators fraction, the faster the stable point is reached, and the peaks and
valleys of the infected fraction are not as prominent, as seen in Figure 3.9a (left).

In all cases, the cooperation decays to a minimum around 0.1 on the first days, because the
infected fraction is too low and the payoff of cooperation is always unfavourable.

From these results, we can ensure that the topological properties of the scale-free network
are producing the emergence of cooperation between subject-nodes for certain parameters. These
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Figure 3.8: State at T = 150 days of infected fraction, and cooperators fraction in population of
the three networks, by the basic reproduction number R0 (y-axis), and awareness s (x-axis), for

global (left) and local (right) information and influence.
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properties should not be present in small-world random networks or grid networks.

3.2.4 Analysis of the dynamical evolution in communities of scale-free net-
works

We investigate the behavior of communities in the scale-free network to find how the coupled
dynamics evolve between nodes that are more connected to each other than to the rest of the
network.

To do this, we use the Louvain method to detect communities [32]. This community partition-
ing method seeks to optimize modularity, Q 2 [�0.5,1], which is a value that compares the density
of edges inside a community and outside it. To do this, two steps are followed:

On the first step, each node starts in its own community, and then moves each node, i towards
the community C, of each of the neighbors, and we calculate the modularity gain,

DQ =
ki,in

2N
�f S · ki

2N2 (3.14)

where N is the number of nodes; ki,in is the number of links from i to the nodes in C; ki is the
degree of node i; S is the total number of edges incident on nodes of C and f is the resolution. In
the case of weighted networks, instead of the number of edges, it is treated with the sum of their
respective weights.

The largest positive DQ is chosen, and node i joins the community that corresponds to this
value. If, on the other hand, it is negative, the node remains in the community where it was before.

This process is iterative and ends when no individual move improves modularity (or is less than
a defined threshold), i.e., it converges.

On the second phase, a weighted network is built where each node corresponds to a community
of the original network according to the results of the first phase. The edges between two nodes
have the weight of the total sum of links between the two communities they represent. Then the
phase one procedure is applied again and thus find larger communities, increasing modularity.

In one scale-free network, we use this method and take the three biggest communities to inves-
tigate the temporal evolution of social behavior and disease, as seen in Figure 3.10.
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(a) Scale-free network

(b) Small-world network

(c) Grid network

Figure 3.9: Temporal evolution for different awareness s 2 {0.6,0.7,0.8}, and a basic
reproduction number R0 = 5.6 of each network. The lines represents the mean of 100 simulations

with 95% confidence interval. Left column shows the evolution of the infected fraction, while
right corresponds to cooperators fraction. The interactions between nodes respond to the global

influence and information of cooperation and disease respectively.
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(a) Global information.

(b) Local information.

Figure 3.10: Temporal evolution for awareness s = 0.8 and basic reproduction R0 = 5.6 of the
three biggest communities in a scale-free network, for global (a) and local (b)

influence/information. Left column shows the evolution of the infected fraction, while right
corresponds to cooperators fraction. The lines represents the mean of 80 simulations with

different initial conditions, with 95% confidence interval.

In these three communities studied, the spread of the disease is essentially equivalent. However,
in scale-free networks, there are cases of communities where the fraction of cooperators is espe-
cially low relative to average, which means that, at least in part, the cooperation strategy emerges
in its own way depending on the state conditions of the respective network region, in relation to
the heterogeneous distribution of nodes.

In small-world and the grid graph the the study of communities doesn’t have special results as
their distribution is homogeneous and the evolution is the same for all regions in the graph.
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3.2.5 Characterization of networks

As the structure of the complex network seems to be responsible for the emergence of cooperation,
we investigate some properties of each of these networks for comparison. We create one lattice
network, 50 scale-free networks and 50 small-world networks, following the parameters of section
3.2.1, as samples to compute some features that can explain the behavior dynamics: average short-
est path length, efficiency, clustering coefficient, assortativity and average degree. A summary of
the mean values of the studied properties for each network is in Table 3.1.
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Figure 3.11: Box-and-whisker plot of average shortest path lengths of scale-free networks and
small-world graphs. Gray line represents the median, the dot shows the mean.

We compute shortest path lengths between all pair of nodes in the graph. As the graphs’
edges are not weighted or directed, we just need to find the path pi!n = (i, j, . . . ,n) with fewest
elements of adjacent vertices between the nodes i and n, and consider one less than the length of
this path, din = dim(pi!n)�1, corresponding to the number of edges between them. We calculate
the average of these shortest lengths,

d̂ =
1

N(N �1) Â
i, j2V
i6= j

di j, (3.15)

where N is the total number of nodes in the graph [33]. Figure 3.11 shows quartiles and mean
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of shortest path lengths between scale-free and small-world networks, while for the lattice graph,
d̂ = 20.6.

We can notice a substantial difference between the networks. The scale-free network has a very
low characteristic length, promoted by highly connected nodes. Short paths through the network
facilitate the transfer of information at higher speeds, and this can be noted in the time it takes
to reach the peak of the disease. Then, the high fraction of infected nodes can favour the payoff
of cooperation strategy on the first stages of the disease. However, it is not enough to explain
the phenomenon of cooperation, as it is a behavior that depends on the general strategy of all
neighbors, not a contagion or simple transfer of state.

Global and local efficiency
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Figure 3.12: Box-and-whisker plot of global (a) and local (b) efficiency of scale-free and
small-world networks. Gray line represents the median, the dot shows the mean.

The efficiency of a pair of nodes in a graph is the multiplicative inverse of the shortest path
distance between the nodes [34]. The global efficiency is the average efficiency of all pairs of
nodes,

Eg =
1

N(N �1) Â
i, j2V
i6= j

1
di j

. (3.16)

The local efficiency of a node i is the average efficiency induced by the local sub-graph of

30



School of Physical Sciences and Nanotechnology YACHAY TECH UNIVERSITY

the neighbors of this node [34], Eig. The local efficiency of the graph is the average of the local
efficiency of all nodes,

El =
1
N Â

i2V
Eig. (3.17)

We calculate these for each network for quartiles and mean comparison of Figure 3.12. More-
over, the global efficiency of grid network is Eg = 0.07, while the local efficiency is null. The
efficiency is a more directed measure of the speed of transfer of information. Scale-free networks
are almost twice more efficient than small-world networks, and 4.6 times more than the grid graph.

Clustering coefficient
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Figure 3.13: Box-and-whisker plot of clustering coefficients of scale-free networks and
small-world graphs. Gray line represents the median, the dot shows the mean.

The clustering coefficient X of a node i is the number of triangles (subgraph of three connected
nodes) through this node, Ti, normalized by the total possible number of triangles,

Xi =
2Ti

deg(i) [deg(i)�1]
, (3.18)

where deg(i) is the degree of the node i [35]. The average clustering is computed over the total
number of nodes, N, so

X̂ =
1
N Â

i2V
Xi (3.19)

In real-world social networks, nodes tend to build groups with high density of ties. The clus-
tering coefficient is a measure of how clustered on average the nodes are in the network. The
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scale-free network, with X̂ ⇡ 0.14, as seen in Figure 3.13, is closer to a real social network than
random small-world networks, and thus has more groups in its structure. This is important for the
emergence of cooperation, since the strategy is taken according to the nodes with which the two
evaluated nodes, focal and model, have contact. This can also explain that in different communities
on the network the cooperation fraction may vary. Nevertheless, it cannot explain why small-world
network has a little less cooperation than grid networks.

Assortativity coefficient

Assortative mixing measures the similarity of connections in the graph with respect to the node
degree. It can be characterized by the fraction of edges connecting vertices from of different types
or communities in the network. We define the assortativity coefficient, to the level of assortative
mixing in a network, on undirected networks thus:

A =
Âq eq �Âq a2

q

1�Âq a2
q

, A 2 [�1,1]; (3.20)

where eq is the fraction of edges that connects two vertices of type q, and aq is the fraction of edges
that ends in a vertex of type q [36]. Sums go for each type. We calculate this coefficient for each
network, and the comparison is in Figure 3.14. In addition, grid networks has A = 0.64.

The negative value of the coefficient in scale-free networks is due to the preference of highly
connected nodes to link with slightly connected nodes, which are the two types of nodes that exist
in this class of network. Grid networks have a coefficient close to zero because almost all nodes
are connected to nodes of the same type, edge nodes or interior nodes. The small world network,
due to its random construction, has an assortativity close to zero.

Let us remember that the strategy is dependent on the total balance of the rewards given by the
strategy between a node and each of its neighbors. In general, in scale-free networks, loosely con-
nected nodes will only be compared to the highly connected node with which they share an edge.
This can benefit the cooperating nodes of the ”periphery”, allowing them to change the strategy
of highly connected nodes that are defectors, or to maintain their strategy over time, especially for
higher awareness. And on the other hand, they would always be at a disadvantage when awareness
is low. This would make the nodes very willing not to cooperate in these circumstances.

32



School of Physical Sciences and Nanotechnology YACHAY TECH UNIVERSITY

●

●

Scale-free
Network

Small-world
Network

-0.4

-0.3

-0.2

-0.1

A
ss
or
ta
tiv
ity

Figure 3.14: Box-and-whisker plot of assortativity of scale-free networks and small-world graphs.
Gray line represents the median, the dot shows the mean.
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Figure 3.15: Box-and-whisker plot of average degree of scale-free networks, small-world graphs
and grid. Gray line represents the median, the dot shows the mean.
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Average Degree

Finally, it was necessary to compare the average degree between the networks, taking into account,
of course, that the degree distribution is very heterogeneous in the case of scale-free networks. On
average, as shown in Figure 3.15, k̂ of small-world networks are higher, for the given rewiring
characteristics, than those of grid networks. The low average degree of scale-free networks is due
to the predominance of loosely connected nodes.

Summary

In general, scale-free networks have all the properties that allow them to develop a significant frac-
tion of cooperation between their nodes in cases of high awareness: high efficiency and information
transmission, grouping and negative assortativity.

The other two networks have some advantage in certain properties, but not in all, and at the
same time with less strength relative to scale-free networks.

Network
Av. Shortest
Path Length

Clustering
Coefficient

Assorta-
tivity

Average
Degree

Global
Efficiency

Local
Efficiency

d̂ X̂ A k̂ Eg El

Scale-free 3.119 0.144 -0.3197 3.407 0.346 0.1585
Small-world 5.597 0.071 -0.0945 4.0 0.192 0.0753

Grid 20.667 0.0 0.6399 3.871 0.074 0.0

Table 3.1: Mean values of evaluated properties of the networks.

3.3 Rewiring scale-free networks to disappear the cooperation
region

The goal now is to find the properties that cause the appearance of the cooperation region in the
scale-free network for certain b and s by converting one network in another and calculate the
evolution of the cooperation region and the properties by percentage of rewiring.

We start with a scale-free network, and then we randomly remove edges between two nodes
arbitrarily chosen. Then, we create a new edge between one of the two separated nodes to another,
again, random node in the network. Finally, in case that the network becomes disconnected, we
also create edges to join the isolated groups to the entire network. Visually, we can notice the
destruction of the network clustering as a greater number of links between nodes are modified, as
seen in the Figure 3.16.
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Scale-free network 50% of rewiring 100% of rewiring

Figure 3.16: Illustration of the change made in scale-free network structure.

Without fear of losing important information and for visualization reasons, we decided to
choose a specific awareness value, s = 0.8, for the entire range of basic reproduction numbers
of the disease, and see the resulting fraction of cooperators after 150 days for each network with a
certain percentage of random rewiring. We do the same, but for a specific value of basic reproduc-
tion, R0 = 0.8, and the entire awareness range. The resulting cooperation fraction by percentage
of rewiring for local-information simulations is presented in Figure 3.17. Global-information ones
has similar results.

It is notable that when faced with random rewiring in the scale-free network, the fraction of
cooperation declines for high values of awareness or the strength of the disease, remaining very
close to 0 for low values. However, it is only possible to observe this effect from a rewiring greater
than 50%, with a peak of no-cooperation in 95% of rewiring. Furthermore, when all edges are
removed by new ones (100% rewiring) we see a relevant increase in the total number of cooperators
and for all values. Finally, there is a peak in the cooperation fraction when random rewiring reaches
between 15% and 40% of the total links.

From the degree distribution of the scale-free network, we know that most connections between
nodes begin or end in the very loosely connected nodes. Therefore, it is expected that with a low
percentage of rewiring, the network architecture will change decisively. And that is why the region
of cooperation only decreases when more than half of the edges have been replaced by new ones.

Likewise, when the network reaches full rewiring, the expected results should be similar to
those of the random network. However, in these results the fraction of cooperation is higher,
comparing the cooperation plots of Figure 3.8b, since in this new case, the cooperation achieved is
around half.

Therefore, we compute the properties’ values of the rewired networks to compare them with
the original scale-free network and the random small-world network, in Figure 3.18.
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Cooperators fraction
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Figure 3.17: Cooperation fraction for a complete range of awareness (a) or basic reproduction (b)
values, by percentage of random rewiring. Results with local influence and information of 100

simulations with 3 networks.
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Figure 3.18: Properties of 1000-node rewired scale-free networks by rewiring percentage.
Turquoise line represents the small-world median value. Bottom right plot shows the number of

edges.
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For the average shortest path length, the value of the small world network is approximately
reached when all edges have been reconnected. The same is observed for the overall efficiency of
the network and the maximum degree of a node.

However, other properties reach the value of the random network in partial rewiring. For
example, the clustering coefficient and local efficiency reaches the median value of the small world
network with 30% rewiring. Above all, the assortativity reaches the value of that of a small world,
between 50% and 60% of rewiring. These values resemble the point at which the cooperation
fraction begins to disappear. Negative assortativity would, therefore, be a sine qua non condition
and the fraction of cooperation is high. This means that cooperation results from connections
between very popular nodes with their very little connected nodes. It is also necessary to add that
the maximum peaks of cooperation are reached when the rewiring over the total edges is between
15% and 20%. The number of total edges, as well as the average degree of the network, peaks at
these rewiring values at the same time that the clustering coefficient is greater than in small-world
networks. That is, cooperation increases the more connected the network is, as long as the other
properties for cooperation are met.

3.4 Creating the cooperation region from a ring network to a
globally coupled network

Figure 3.19: From ring-topology network to a globally coupled network.

We also investigated how to achieve high cooperation fractions for certain ranges of awareness
and strength of the disease. We assume that the more connected the network, the more likely the
emergence of cooperation, or the higher the total fraction of cooperators. For that, we start with
a ring network, where each node is connected to two neighbors. Then we add new links with the
next closest neighbors. This continues until all nodes are connected to all the others, that is, a
globally coupled network, as seen in Figure 3.19. At this limit, dynamics always develop with
the global influence of cooperation or global information about the disease. Since we want to see
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how cooperation changes, we will add links and calculate the fraction of cooperation in each case
keeping R0 = 0.8 constant.

Cooperators fraction
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Figure 3.20: Cooperation fraction from a ring to a globally coupled networks with fixed (a)
s = 0.8 or (b) R0 = 5.7. Exponential adding of edges to nearest neighbors and 100 simulations

for each parameter and network.
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When there are only two neighbors, the resulting cooperation fraction is around 0.30 for any
value. Adding a few more neighbors brings cooperation to a minimum, around 0.1. Then, as more
neighbors are added, the cooperation region gradually appears. When global coupling has been
achieved between more than half of the nodes, cooperation reaches its maximum (all nodes) for
high values of awareness or strength of the disease, where all nodes cooperate. This shows that
cooperation is an emergent phenomenon when for a certain number of nodes in the network there
are many edges connected between them and the others. If these nodes are not cooperating, for high
awareness or reproduction number values, the payoff they have would be very negative, according
to the reward matrix used, and the cooperating nodes that have a higher payoff would prevail. That
is, cooperation appears when there are a large number of nodes with which to calculate the rewards
of the prisoner’s dilemma.

This also explains the emergence of cooperation in the scale-free network. When it reaches
the minimum in the first days, before the first peak of the disease, the slightly connected nodes
that cooperate, even if there are very few left, will tend to maintain that state, because the highly
connected nodes that do not cooperate would have a very high payoff for high values of the aware-
ness function, g(s , I). So, it would be a matter of time so that, when compared, the cooperators
prevail and make the strategy of a good part of the defectors change. Cooperation does not arrive
completely because slightly connected nodes that do not cooperate could also have an advantage
and maintain the defection state. On the other hand, in small-world networks the low number
of neighbors does not allow the reward of cooperators to be truly higher than that of defectors.
Therefore it is not possible for cooperation to emerge. When the network reaches the minimum
number of cooperators, the cooperators find no advantage, but no disadvantage either. That is why
the resulting small fraction of nodes is stable over time.
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Chapter 4

Emergence of cooperation with other
compartmental models and evolutionary
game dynamics

Knowing the topological characteristics that allow a high fraction of cooperation, our next objec-
tive in this Chapter is to ensure that cooperation emerges in a scale-free network, but using other
compartmental or social behavior models.

4.1 Cooperation emergence in SIR model

For this case, the population is divided into three classes, we follow the model from Kermack and
McKendrick [30], where the susceptible (S) can be affected by infected individuals (I) according
to the contagion strength, b . The latter, upon overcoming the disease depending on the recovery
rate, become recovered (R). This model is expressed in the form of differential equations:

dS
dt

=�b SI
N
, (4.1)

dI
dt

= b SI
N

� gI. (4.2)

dR
dt

= gI (4.3)

From this ODEs, we can define the basic reproduction factor, R0 = b/g , which is identical to
that of the SIS case.

To apply the system in the network, the agents have one of the three possible states, and we use
a stochastic model, where the probability of infection of a susceptible individual in the presence
of one or more infected neighbors is a specific contagion strength b̂ , while recovery depends on
its rate g and the units of time elapsed since the beginning of the infection Dt . Susceptible and
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recovered states are disconnected, and there is no possibility to change between this two. Then,

p(S ! I) = b̂ , (4.4)

p(I ! R) = Dt g. (4.5)

The prisoner’s dilemma continues to act in the same way, just as the values of the reward matrix
are maintained between each pair of strategies,

A =

C D" #
C 1.0 �0.5
D 1.5�g(s , I) �g(s , I)

. (4.6)

In the same way, the awareness function, g(s , I) of (3.10) and (3.11), and therefore the influ-
ence of behavior on the disease, and the information about the infected, are kept in evolutionary
game, both global and local. The change in strategy follows the Fermi function of (3.13).

4.1.1 Algorithms

The iterative replicator is the same for the disease propagation and the evolutionary game. How-
ever, there is a change in the recovery dynamics, as the infected nodes fall into the R state after the
infection time. This change is shown in flowchart of Figure 4.1, and the code used is in Appendix
A. We also run this model one hundred times for each pair of parameters s and R0.

4.1.2 Disease and behavioral dynamics by time units

As initial conditions of the network, both for the state of the disease and the strategies of the
game, we establish that 50% of the population is cooperator. On the other hand, a single recently
infected individual is included, which represents 0.1% of the population. Everyone else is initially
susceptible. For obvious reasons, no one has the status of recovered, as the disease is recently
introduced.

Firstly, we use an estimated recovery time of 7 days, the same as for the SIS model. It is
expected that the steady state will be reached very soon, where all or almost all nodes are recovered
from the disease. Just a couple of weeks after the spread of the disease began, especially when the
strength of the disease is high. In this studied range, R0 2 [0.7,7.0], as seen in the Figure 4.2,
for both global and local information about the infected nodes in the network, cooperation only
has a peak a couple of days after the number of infected reaches its maximum, for any level of
awareness. Immediately the cooperators begin to decrease until their number is very close to zero.
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Figure 4.1: Flowchart of the recovery process in SIR model.

To obtain higher cooperation, it will be necessary to increase the time expected for the recovery
of individuals, and for the infected quality to have more time to take effect in the payoff that governs
the change in strategy or behavior. If we divide the reproduction factor by two, that is, g = 1/14,
we can notice an increase in the fraction of cooperators after the peak of the disease, as well as the
persistence of a large part of these cooperators once the disease is over, as we can see in Figure
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4.3. That is to say, there is a part of the population that keeps cooperating even though there is
no longer an epidemic, and only the dynamics of the evolutionary game continue, although this
fraction is not very high, between 0.3 and 0.6 (more for local than global information) with a very
high level of awareness, s = 1.0.

(a) Global information

(b) Local information

Figure 4.2: Temporal evolution (50 days) for different awareness s 2 {0.5,0.8,1.0}, and a high
basic reproduction number R0 = 7.0, when the recovery factor g = 1/7. The lines represents the
mean of 100 simulations with 95% confidence interval. Left column shows the evolution of the

infected fraction, while right corresponds to cooperators fraction. The interactions between nodes
respond to the global (a) or local (b) influence and information of cooperation and disease

respectively.
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(a) Global information

(b) Local information

Figure 4.3: Temporal evolution (75 days) for different awareness s 2 {0.5,0.8,1.0}, and a high
basic reproduction number R0 = 14.0, when the recovery factor g = 1/14. The lines represents
the mean of 100 simulations with 95% confidence interval. Left column shows the evolution of
the infected fraction, while right corresponds to cooperators fraction. The interactions between

nodes respond to the global (a) or local (b) influence and information of cooperation and disease
respectively.

4.1.3 Infected and cooperators fraction at their peaks, with local and global
information

The peak of cooperation in the scale-free network is reached a few days after the peak of the
disease. If we compare the cooperation achieved when g = 1/7 and when g = 1/14, as shown
in Figure 4.4, we can say that cooperation also depends on the parameters of recovery from the
disease, and not only its propagation strength. Thus, in the SIS model, cooperation was achieved
for basic reproduction numbers greater than 2.1, comparable to that of diseases such as SARS
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(2-4) [37], COVID-19 (2.9-9.5) [38], or smallpox (3.5-6.0) [39]. Meanwhile, the cooperation
fractions in the SIR model require a high R0, such as mumps (10-12) [40], or measles (12-18) [41].
This comparison is made ignoring the compartmental transmission model that is more accurate to
describe each of them, but is relevant because inside those parameters, high cooperation will be
found. However, cooperation has no real effect on the development of the disease.
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(b) g = 1/14. On the fifteenth day.
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(c) g = 1/7. On the tenth day.
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(d) g = 1/14. On the eighteenth day.
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Figure 4.4: State of infected fraction, and cooperators fraction in population of scale-free
network, by the basic reproduction number R0 (y-axis), and awareness s (x-axis), for global (left)
and local (right) information and influence. Plots represents the infected or cooperators fraction at

their peak day, (a) and (c) for g = 1/7, while (c) and (d) for g = 1/14

4.2 Cooperation emergence in SEIS model

The incidence of the disease due to the correlation between susceptible individuals with infected
individuals plays an important role in the dynamics of the disease. In most models, the incidence
follows a bilinear relation, that is, as the product of susceptible elements with infected elements,
bSI. However, this incidence function is not the most appropriate to describe diseases that spread
mainly in humans.
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For this SEIS model, including the exposed state, we replace the bilinear incidence with a
nonlinear function of saturated incidence rate, following the study of Capasso and Serio on the
cholera epidemic in Bari of 1973 [42], which includes an inhibiting factor due to the crowding
caused by high numbers of cases. We will consider this epidemic model with general incidence
rates that the diseases, such as COVID-19, can be infected in the latent/exposed period and the
infected period:

dS
dt

=�( fI + fE)S+ gI, (4.7)

dE
dt

= ( fI + fE)S�lE, (4.8)

dI
dt

= lE � gI. (4.9)

Then, we define the nonlinear functions of saturated incidence respect to the number of exposed
individuals or [43],

fE =
bEE

1+a1E
, (4.10)

fI =
bII

1+a2I
, (4.11)

where bI and bE are the strengths of infection according to respective state the transmitter agent.
For the examinations, we define bI = 2bE = b , supposing a greater strength when the individual
is infected than exposed. Also, we establish a1 = 0.2 and a1 = 0.1 as the inhibitor factors for
exposed and infected population. In our simulations, E and I of fE and fI correspond to the
fraction of neighbors that have these states

From this ODEs, we can define the basic reproduction factor as

R0 =
lb + gb

2
lg

=
b
g
+

b
2l

= b
✓

2l + g
2gl

◆
. (4.12)

To apply the system in the network, the agents have one of the three possible states, and we use
a stochastic model, where the probability of infection of a susceptible individual in the presence
of one or more infected neighbors is the sum of the values given by the functions fE and fI ,
the exposition-to-infection change depends on the time of exposition DtE and the latency factor
l , while recovery depends on its rate g and the units of time elapsed since the beginning of the
infection DtI . Susceptible and recovered states are disconnected, and there is no possibility to
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change between this two. Then,

p(S ! E) =
b̂ I

1+a1I
+

b̂E
2(1+a2E)

, (4.13)

p(E ! I) = DtE l , (4.14)

p(I ! S) = DtI g. (4.15)

As in the SIS model, we consider the influence, local or global, of collective behavior on
the disease, making the strength of contagion b̂ dependent on the fraction of cooperators, in an
exponential function:

b̂ (c) = b exp(�c) (4.16)

As this SEIS model has its own natural inhibitor, we must adjust the reward matrix of the
evolutionary game, so that the difference between the reward for cooperating and that for defect
is smaller and the threshold that allows the appearance of cooperation in the network is reached.
This is achieved by changing the defector reward in the presence of a cooperator from 1.5 to, say,
1.1, equally affected by the awareness function.

B =

C D" #
C 1.0 �0.5
D 1.1�g(s , I) �g(s , I)

. (4.17)

we use the awareness function g(s , I) of (3.10) and (3.11), and therefore, the information
about the infected are kept modifying the evolutionary game, both global and local. The change in
strategy follows the Fermi function of (3.13).

4.2.1 Algorithms

The iterative replicator is almost the same for the evolutionary game except because the reward for
the defector versus a cooperator has changed, that is, we introduce (4.17) replacing (3.9). However,
there is a big change in the disease propagation dynamics, as the susceptible nodes fall into the E

state after contagion. Also, after latent period, nodes in E state begin infection. These changes are
shown in flowcharts of Figure 4.5 and 4.6. We run this model one hundred times for each pair of
parameters s and R0. The code used is in Appendix A.
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Figure 4.5: Flowchart of the contagion process in SEIS model.
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Figure 4.6: Flowchart of the latency process in SEIS model.

4.2.2 Infected and cooperators fractions with local and global information

As initial conditions of the network, both for the state of the disease and the strategies of the game,
we establish that 50% of the population is cooperator. These initial conditions do not represent
any distortion of the model, because the non-cooperative strategy is dominant. On the other hand,
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thirty three recently infected individual are included, which represents around 3% of the popula-
tion. Everyone else is susceptible, so there are not exposed individuals at that moment. After the
examination period, T = 150 days, the disease is close to reaching a stable state, and we can count
the number of infected and cooperators out of the total population as seen in Figure 4.7. Since b
runs from 0.1 to 1.0, the range of the basic reproduction number is R0 2 [1.55,15.5], as calculated
using (4.12). Cooperation emerges for s > 0.7 and for R0 > 3.1. It is important to highlight that
for R0 > 12.4, the fraction of cooperation begins to decrease for awareness values where, with
lower R0, cooperation was obtained. We can conclude that the SEIS model used allows coopera-
tion to be achieved for reproduction numbers similar to those allowed by the previous SIS model
and SIR model. On this occasion, the cooperation achieved is sufficient to influence the devel-
opment of the disease, causing the fraction of infected to be lower than if this strategy were not
predominant.
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Figure 4.7: State of infected fraction, and cooperators fraction in population of scale-free
network, by the basic reproduction number R0 (y-axis), and awareness s (x-axis), for global (left)

and local (right) information and influence.

4.2.3 Disease and behavioral dynamics by time units

The fraction of cooperation drops to approximately 0.1 once the disease begins. When the disease
reaches its peak (quite attenuated compared to the SIS model, at the same time less oscillating),
the cooperation fraction increases rapidly in the network, reaching values greater than 0.6 for
awareness s or basic reproduction number R0 > 3.1. These results are summarized in Figure 4.8
for global and local information about the disease and influence over the evolutionary game.
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(a) Global information

(b) Local information

Figure 4.8: Temporal evolution for different awareness s 2 {0.6,0.8,1.0}, and a basic
reproduction number R0 = 12.4. The lines represents the mean of 100 simulations with 95%

confidence interval. Left column shows the evolution of the infected fraction, while right
corresponds to cooperators fraction. The interactions between nodes respond to the global (a) or

local (b) influence and information of cooperation and disease respectively.

4.3 Cooperation emergence with a 3-strategy evolutionary game
model

Following the generalization of the prisoner’s dilemma in a voluntary public goods game, in this
case, individuals have the possibility of choosing between three different strategies: to cooperate
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(C), defect (D) or isolate (L), with the rules of the reward matrix:

G =

C D L
2

64

3

75
C 1 �0.5 0.5
D 1.5�g(s , I) �g(s , I) �0.5�g(s , I)

L 0 �g(s , I) 0.75�g(s , I)

. (4.18)

In this model, we consider that information about the disease affects the defectors (D) in any
circumstance. Meanwhile, loners (L) are only affected by the awareness function g(s , I), when the
other individual is a defector (D) or is also a loner.

The epidemic will be a SIS model, equivalent to the system of (3.1) and (3.2). Therefore, the
stochastic propagation model will be that of (3.5) and (3.6). It follows then that R0 = b/g .

The probability of changing strategy is defined by the Fermi function of (3.13). Each node in
the network is taken, and their respective payoffs, pi are calculated, according to the (3.12).

4.3.1 Algorithms

The iterative replicator is almost the same for the evolutionary game except because the reward
for the defector versus a cooperator has changed and now we use the 3⇥3-matrix G of (4.18) and
nodes can take one of three states C, D and L. We also run this model one hundred times for each
pair of parameters s and R0. The code used is in Appendix A.

4.3.2 Infected and cooperators fractions with local and global information

As initial conditions, we now have a third of cooperators, another third of defectors and the remain-
ing third as loners. The examination time is 150 days, when the disease is expected to be around
steady state. The results are compiled in Figure 4.9. Cooperation emerges in the high values of
awareness and reproduction number. However, for these parameters, the region is much broader.
In the rest of the parameter space, it is the defector’s strategy that predominates. However, for very
low values of both awareness and strength of the disease, the strategy of isolating in part disputes
the predominance of that of not cooperating.

Finally, the fraction of infected is reduced for the set of awareness and R0 values for which
cooperation emerges.
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Figure 4.9: State of infected (upper left), cooperators (upper right), defectors (lower left) and
loners (lower right) fraction in population of scale-free network, by the basic reproduction number
R0 (y-axis), and awareness s (x-axis), for global (left) and local (right) information and influence.

4.3.3 Disease and behavioral dynamics by time units

The behavior of the evolutionary game varies with respect to previous models, as shown in Figure
4.10, mainly due to the change in the reward matrix. There is no longer an initial minimum point
for cooperation, but depending on the level of awareness, the fraction of cooperators increases or
decreases progressively. Defectors, likewise, rapidly increase in number when the level of aware-
ness is low. But when s is very low, they stagnate, and instead, the number of loners increases
until it reaches its ceiling.

On the other hand, the fraction of infected actually has a notable reduction when high cooper-
ation is manifested. Also, the steady state of infection is reached quickly when cooperators are the
majority, and the quantity of infected nodes does not oscillate much around this point.
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Figure 4.10: Temporal evolution for different awareness s 2 {0.1,0.4,0.6,0.8}, and a basic
reproduction number R0 = 5.6. The lines represents the mean of 100 simulations with 95%

confidence interval. Upper left plot shows the evolution of the infected fraction, while upper right
corresponds to cooperators fraction. In addition, lower left is the defectors fraction and lower

right is the loners fraction on time. The interactions between nodes respond to the local influence
and information of cooperation and disease respectively.
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Chapter 5

Conclusions

Cooperation as an emergent phenomenon can result from more complex dynamics than copying the
most profitable strategy against individuals in contact, when it is the globally beneficial strategy.
It can also be obtained when the network or community in question faces a survival or well-being
problem, such as an illness. Then, the parameters of the disease, such as the strength of contagion
or the recovery rate, affect the strategy that individuals in a social network take.

We have found that cooperation appears for high levels of awareness (s > 0.6), in addition
to a sufficient strength of the disease (b > 0.2) or in the case of the SIS model studied, a value
R0 > 2.1; and only after the first peak of the disease has been reached, this is when the maximum
number of infected individuals in the network is reached.

Our results show that the fraction of cooperation within the communities of a scale-free network
is similar in most cases, with some exceptions due to the network structure. The emergence of
cooperation at different scales means that this collective phenomenon is practically independent
from the evolutionary game influenced by local or global knowledge about the number of infected,
represented in the awareness function g. In addition, the spread of the disease is not conditioned
differently by a global influence or by a local influence of cooperation in the network.

We have uncovered that topology is relevant in the dynamics of evolutionary games. Strong
cooperation emerge in scale-free networks as well as in globally coupled networks, while it is null
in grid networks or small-world random networks. This occurs due to the dependence of the coop-
eration strategy on a high number of participants in the total sum of the payoff of the focal nodes
that are compared for the change of strategy according to the Fermi model. Therefore, cooperation
only appears after exceeding a threshold, from which the cooperator strategy is superior to that
of being a defector in networks that are highly connected, as in a globally coupled network, or
have highly connected nodes, as in a scale-free network. Furthermore, cooperation is strengthened
in order of importance when: (i) the number of edges between nodes increases, (ii) the average
degree of the network increases, and (iii) the clustering coefficient grows.
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We showed that the appearance of cooperation in globally coupled networks allows to infer the
behavior of an equivalent system of differential equations for the two coupled dynamics, where
cooperation would also be an emergent phenomenon for high levels of awareness.

The SIR model revealed that the emergence cooperation depends on the estimated recovery
time after infection. Because the cooperation strategy is adopted node by node, it is necessary that
the infection status is maintained on a large portion of the population for at least a certain time.
Otherwise, cooperation will not be able to be dominant or exceed the fraction threshold from which
this strategy is maintained over time.

We found that the strategy of cooperating is also dominant in systems where the game dynam-
ics is coupled to epidemic propagation models that are more complex than the bilinear relationship,
or that are more realistic. This result suggests a possible application of these models to generate
collective cooperation strategies in order to mitigate the consequences of infectious diseases. Co-
operation also emerges for certain parameter values, where individuals have more strategies than
whether to cooperate or not.

A future step of research points to the study of the emergence of collective cooperation behavior
in the face of natural or social problems other than the spread of a disease. Also of interest is the
investigation of cooperation beyond evolutionary games that are guided by the principle of natural
selfishness. These generalizations may contribute to understand, through the Physics of Complex
Systems and without anthropological or even biological explanations, cooperation as an emergent
phenomenon of humanity under adverse circumstances.
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[35] Saramäki, J.; Kivelä, M.; Onnela, J.-P.; Kaski, K.; Kertész, J. Generalizations of the clustering
coefficient to weighted complex networks. Physical Review E 2007, 75, 027105.

[36] Newman, M. E. J. Mixing patterns in networks. Physical Review E 2003, 67.

[37] World Health Organization, Consensus document on the epidemiology of severe acute respi-
ratory syndrome (SARS). 2003.
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Appendix A

Computer Code

We develop the code for the simulations in Python 3.9 with the libraries to date. The iterative
processes of the coupled dynamics for contagion, recovery, and the evolutionary game of Chapter
3 and 4 are the functions presented below:

1 import numpy as np

2 import pandas as pd

3 import networkx as nx

4 import random

5

6 ### PAYOFF FUNCTION

7 ’’’

8 Input:

9 A - Payoff matrix .

10 nn - Nearest neighboor obtained from adjacency matrix.

11 node_i - Node to calculate payoff.

12 current_state - Current node states.

13 Output:

14 u - node payoff (float)

15 ’’’

16 def payoff(A, nn , node_i , current_state):

17

18 u = 0;

19 for j, j_nn in enumerate(nn):

20 u += A[int(actual_state[node_i ]), int(actual_state[j_nn])]

21 u /= NN.size

22 return u

23

24 ### FERMI DISTRIBUTION FUNCTION

25 ’’’

26 Input:

27 u_i - Payoff of focal node.
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28 u_j - Payoff of model node.

29 Output:

30 Pij - Probability of change i’s strategy to j’s one.

31 ’’’

32 def Pij(u_i , u_j):

33 k = 0.5 # Irrationality of players

34 Pij = 1/(1 + np.exp(-(u_j - u_i)/k))

35 return Pij

36

37

38 ### SIS -PD REPLICATOR FUNCTION

39 ’’’

40 Input:

41 graph - Networkx graph.

42 max_time - period of examination

43 beta - Contagion strenght.

44 sigma - Awareness level.

45 gamma - Recovery factor

46 local - Boolean for using global (False) or local (True) information.

47 ’’’

48 def sis_prisoner(graph , max_time , beta , sigma , gamma =1/7, local=True):

49

50 N = len(graph.nodes ())

51 G = graph

52

53 id_node = {node:idx for idx ,node in enumerate(G.nodes())}

54

55 T = max_time

56 maxRecTime = int(1/ gamma) # Recovery time

57

58 # Initial strategies

59

60 epid_states = np.zeros ([N, T]) # 1: infected , 0: susceptible

61 game_states = np.zeros ([N, T]) # 1: defectors , 0: coperator

62

63 recTime = np.zeros(N,) # Count of recovery time

of each node.

64 payoffs = np.zeros([N, T]) # Payoff ’s of each iteration.

65

66 ## Initial infected nodes

67

68 if initInfected is None: # If initial conditions are given

69 initInfected = random.sample(range(int(N)), 1))

70 epid_states[initInfected ,0] = 1
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71

72 else:

73 epid_states[initInfected ,0] = 1

74

75 # Start recovery of infected nodes

76 recTime[initInfected] = maxRecTime

77

78

79 ## Initial defectors nodes

80 if initDefectors is None: # If initial conditions are given

81 initDefectors = random.sample(range(int(N)), int(N/2))

82 game_states[initDefectors ,0] = 1

83 else:

84 game_states[initDefectors ,0] = 1

85

86

87 ## Simulation

88 for t in range(1, T):

89

90 curInf_nodes = np.nonzero(epid_states [:,t-1]) [0] # Get current

infected nodes

91 epid_states[curInf_nodes , t] = 1 # Update

infected nodes

92

93 if local is False:

94 FracInf = np.sum(epid_states [:,t])/N # Get fraction of

infected nodes

95 g_func = sigma*FracInf # Calculate g global

awareness function

96

97 recTime = np.maximum(recTime -1,0) # Update

infection state depending on recovery time

98 epid_states[ recTime >0, t] = 1

99 epid_states[ recTime ==0, t] = 0

100

101

102 ## Run Evolutionary Game

103 for idx , node_i in enumerate(G.nodes()):

104 node_i_nn_ = [neig for neig in G.neighbors(node_i)] #

Get neighbors

105 node_i_nn = np.array ([ id_node[nn] for nn in node_i_nn_ ])

106

107 if local is True:
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108 FracInf = np.sum(epid_states[node_i_nn , t-1])/node_i_nn.

size # Calculate fraction of infected neighbors

109 g_func = sigma*FracInf

# Calculate g local awareness function

110

111 A = np.array ([[1,-0.5], [1.5-g_func , 0-g_func ]])

# Game payoff matrix

112

113 payoffs[node_i , t-1] = payoff(A, node_i_nn , node_i ,

game_states [:,t-1]) # Calculate payoff

114

115 for idx , node_i in enumerate(G.nodes()):

116 node_i_nn_ = [neig for neig in G.neighbors(node_i)] #

get neighbors

117 node_i_nn = np.array ([ id_node[nn] for nn in node_i_nn_ ])

118

119 modelnode = random.randint(1, node_i_nn.size) # Choose a

model node.

120 P_change = Pij(payoffs[node_i ,t-1], payoffs[modelnode ,t-1])

# Calculate probability Pij with Fermi function.

121

122 th = 0.5 # Threshold to change.

123 game_states[node_i , t] = (P_change >th)*game_states[modelnode ,t

-1]+( P_change <=th)*game_states[node_i ,t-1]

124

125

126 ## Run SIS Infection

127 for idx , node_i in enumerate(G.nodes()):

128 if epid_states[node_i , t-1] == 1: # If node is already

infected

129 continue # Skip

130 cur_node_nn_ = [neig for neig in G.neighbors(node_i)]

# Get neighbors

131 cur_node_nn = np.array ([ id_node[nn] for nn in cur_node_nn_ ])

132 cur_node_inf_nn = np.nonzero(epid_states[cur_node_nn ,t-1]) [0]

# Get infected neighbors

133 cur_game_nn = game_states[cur_node_inf_nn ,t-1]

# Get game states infected neighbors

134

135 n_infected_neighbors = np.sum(epid_states[cur_node_nn ,t-1])

136 # if local is False:

137 p_inf_node_i = beta*np.exp(-np.sum(game_states[curInf_nodes ,t

]==0)/N) # Infection probability due to cooperation state of all

network infected nodes
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138

139 if local is True: # If only considering local neighbors

140 if n_infected_neighbors > 0: # If there is infection in

my neighbors

141 p_inf_node_i = beta*np.exp(-np.sum(cur_game_nn ==0)/

cur_game_nn.size) # Infection probability due to cooperation state of

infected neighbors

142 else:

143 p_inf_node_i = 0.00000001

144

145 if n_infected_neighbors == 0: # If no neighbor is infected ,

infection probability ~ 0

146 p_inf_node_i = 0.00000001

147

148 # Update new infection

149 if random.random () < p_inf_node_i:

150 epid_states[node_i , t] = 1

151 # Update recovery time

152 recTime[node_i] = maxRecTime

153

154 return game_states , epid_states , payoffs

155

156

157

158 ### SIR -PD REPLICATOR FUNCTION

159 ’’’

160 Input:

161 graph - Networkx graph.

162 max_time - period of examination

163 beta - Contagion strenght.

164 sigma - Awareness level.

165 gamma - Recovery factor

166 local - Boolean for using global (False) or local (True) information.

167 ’’’

168 def sir_prisoner(graph , max_time , beta , sigma , gamma =1/14 , local=True):

169

170 N = len(graph.nodes ())

171 G = graph

172

173 id_node = {node:idx for idx ,node in enumerate(G.nodes())}

174

175 T = max_time

176

177 maxRecTime = int(1/ gamma) # Recovery time
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178

179 # Initial strategies

180

181 epid_states = np.zeros ([N, T]) # 1: infected , 0: susceptible

182 game_states = np.zeros ([N, T]) # 1: defectors , 0: coperator

183

184 recTime = np.zeros(N,) # Count of recovery time

of each node.

185 payoffs = np.zeros([N, T]) # Payoff ’s of each iteration.

186

187 ## Initial infected nodes

188

189 if initInfected is None: # If initial conditions are given

190 initInfected = random.sample(range(int(N)), 1))

191 epid_states[initInfected ,0] = 1

192

193 else:

194 epid_states[initInfected ,0] = 1

195

196 # Start recovery of infected nodes

197 recTime[initInfected] = maxRecTime

198

199

200 ## Initial defectors nodes

201 if initDefectors is None: # If initial conditions are given

202 initDefectors = random.sample(range(int(N)), int(N/2))

203 game_states[initDefectors ,0] = 1

204 else:

205 game_states[initDefectors ,0] = 1

206

207

208 ## Simulation

209 for t in range(1, T):

210

211 curInf_nodes = np.nonzero(epid_states [:,t -1]==1) [0] # Get

current infected nodes

212 curRec_nodes = np.nonzero(epid_states [:,t -1]==2) [0] # Get

current recovered nodes

213 epid_states[curInf_nodes , t] = 1 # Update

infected nodes

214 epid_states[curRec_nodes , t] = 2 # Update

recovered nodes

215

216 if local is False:
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217 FracInf = np.count_nonzero(epid_states [:,t]==1)/N #

Get fraction of infected nodes

218 g_func = sigma*FracInf # Calculate sigma

infection

219

220 recTime = recTime -1 # Update

infection state depending on recovery time

221

222 epid_states[ recTime >0, t] = 1 # Keep the

infected state if recover time is not reached

223 epid_states[ recTime==-1, t] = 0 # Keep the

suceptible state if not been infected yet

224 epid_states[ recTime ==0, t] = 2 # Go to

recovereds state if recovery time is reached

225 epid_states[ recTime==-2, t] = 2 # Keep the

recovered stated if recovery time was reached

226

227 recTime[epid_states [:,t]==0] = 0

228 recTime[epid_states [:,t]==2] = -1

229

230

231 ## Run Evolutionary Game

232 for idx , node_i in enumerate(G.nodes()):

233 node_i_nn_ = [neig for neig in G.neighbors(node_i)] #

Get neighbors

234 node_i_nn = np.array ([ id_node[nn] for nn in node_i_nn_ ])

235

236 if local is True:

237 FracInf = np.count_nonzero(epid_states[node_i_nn , t -1]==1)

/node_i_nn.size # Calculate fraction of infected neighbors

238 g_func = sigma*FracInf

# Calculate g local awareness function

239

240 A = np.array ([[1,-0.5], [1.5-g_func , 0-g_func ]])

# Game payoff matrix

241

242 payoffs[node_i , t-1] = payoff(A, node_i_nn , node_i ,

game_states [:,t-1]) # Calculate payoff

243

244 for idx , node_i in enumerate(G.nodes()):

245 node_i_nn_ = [neig for neig in G.neighbors(node_i)] #

Get neighbors

246 node_i_nn = np.array ([ id_node[nn] for nn in node_i_nn_ ])

247
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248 modelnode = random.randint(1, node_i_nn.size) # Choose a

model node.

249 P_change = Pij(payoffs[node_i ,t-1], payoffs[modelnode ,t-1])

# Calculate probability Pij with Fermi function.

250

251 th = 0.5 # Threshold to change.

252 game_states[node_i , t] = (P_change >th)*game_states[modelnode ,t

-1]+( P_change <=th)*game_states[node_i ,t-1]

253

254

255 ## Run SIR Infection

256 for idx , node_i in enumerate(G.nodes()):

257 if epid_states[node_i , t-1] == 1 or epid_states[node_i , t-1]

== 2: # If node is already infected

258 continue # Skip

259 cur_node_nn_ = [neig for neig in G.neighbors(node_i)]

# Get neighbors

260 cur_node_nn = np.array ([ id_node[nn] for nn in cur_node_nn_ ])

261 cur_node_inf_nn = np.nonzero(epid_states[cur_node_nn ,t-1]) [0]

# Get infected neighbors

262 cur_game_nn = game_states[cur_node_inf_nn ,t-1]

# Get game states infected neighbors

263

264 n_infected_neighbors = np.sum(epid_states[cur_node_nn ,t-1])

265 # if local is False:

266 p_inf_node_i = beta*np.exp(-np.sum(game_states[curInf_nodes ,t

]==0)/N) # Infection probability due to cooperation state of all

network infected nodes

267

268 if local is True: # If only considering local neighbors

269 if n_infected_neighbors > 0: # If there is infection in

my neighbors

270 p_inf_node_i = beta*np.exp(-np.sum(cur_game_nn ==0)/

cur_game_nn.size) # Infection probability due to cooperation state of

infected neighbors

271 else:

272 p_inf_node_i = 0.00000001

273

274 if n_infected_neighbors == 0: # If no neighbor is infected ,

infection probability ~ 0

275 p_inf_node_i = 0.00000001

276

277 # Update new infection

278 if random.random () < p_inf_node_i:
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279 epid_states[node_i , t] = 1

280 # Update recovery time

281 recTime[node_i] = maxRecTime

282

283 return game_states , epid_states , payoffs

284

285

286

287 ### SEIS -PD REPLICATOR FUNCTION

288 ’’’

289 Input:

290 graph - Networkx graph.

291 T - period of examination

292 beta - Contagion strenght.

293 sigma - Awareness level.

294 gamma - Recovery factor

295 local - Boolean for using global (False) or local (True) information.

296 ’’’

297 def seis_prisoner(graph , max_time , beta , sigma , gamma =1/14 , lambda = 1/3,

local=True):

298

299 N = len( graph.nodes () )

300 G = graph

301

302 id_node = {node:idx for idx ,node in enumerate(G.nodes())} # In case

nodes are not ints

303

304 T = max_time

305

306 maxRecTime = int(1/ gamma)

307 maxExpTime = int(1/ lambda)

308

309 # Initial strategies

310

311 epid_states = np.zeros ([N, max_time ]) # 1: exposed , 0: susceptible

, 2: infected

312 game_states = np.zeros ([N, max_time ]) # 1: defectors , 0: coperator

313

314 recTime = np.zeros(N,)

315 expTime = np.zeros(N,)

316 payoffs = np.zeros([N, T]) # Payoff ’s of each iteration

317

318 # Initial infected and exposed nodes

319 if initInfected is None: # If initial conditions are given

71



Coexisting processes in complex networks FINAL GRADE PROJECT

320 initInfected = random.sample(range(int(N)), int(N/30))

321 epid_states[initInfected ,0] = 2

322

323 else:

324 epid_states[initInfected ,0] = 2

325

326 # Start recovery of infected nodes

327 recTime[initInfected] = maxRecTime

328

329 # Initial defectors nodes

330 if initDefectors is None: # If initial conditions are given

331 initDefectors = random.sample(range(int(N)), int(N/30))

332 game_states[initDefectors ,0] = 1

333 else:

334 game_states[initDefectors ,0] = 1

335

336 ## Simulation

337 for t in range(1, T):

338

339 curExp_nodes = np.nonzero(epid_states [:,t -1]==1) [0] # Get

current exposed nodes

340 curInf_nodes = np.nonzero(epid_states [:,t -1]==2) [0] # Get

current infected nodes

341

342 epid_states[curExp_nodes , t] = 1 # Update

exposed nodes

343 epid_states[curInf_nodes , t] = 2 # Update

infected nodes

344

345 if local is False:

346 FracInf = np.count_nonzero(epid_states [:,t]==2)/N #

Get fraction of infected nodes

347 #FracExp = np.count_nonzero(epid_states [:,t]==1)/N #

Get fraction of exposed nodes

348 g_func = sigma*FracInf # Calculate g global

awareness function

349

350 expTime = expTime - 1

351 recTime = recTime - 1 # Update

infection state depending on recovery time

352

353 epid_states[ expTime==-1, t] = 0

354 epid_states[ recTime==-1, t] = 0

355
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356 epid_states[ expTime >0, t] = 1 # Keep the

exposed state if exposition time is not reached

357 epid_states[ expTime ==0, t] = 2 # Go to infected

state if exposition time is reached

358 #epid_states[ expTime==-2, t] = 0 # Keep the

recovered stated if recovery time was reached

359

360 epid_states[ recTime >0, t] = 2 # Keep the

infected state if recover time is not reached

361 epid_states[ recTime ==0, t] = 0 # Go to

susceptible state if recovery time is reached

362 #epid_states[ recTime==-2, t] = 0 # Keep the

susceptible state if recovery time was reached

363

364 recTime[expTime ==0] = maxRecTime # Give the

recovery time to new infected nodes

365 recTime[epid_states [:,t]==0] = 0 # Return the

counter to 0

366 expTime[epid_states [:,t]==0] = 0 # Return the

counter to 0

367

368

369 ## Run Evolutionary Game

370 for idx , node_i in enumerate(G.nodes()):

371 node_i_nn_ = [neig for neig in G.neighbors(node_i)] #

get neighbors

372 node_i_nn = np.array ([ id_node[nn] for nn in node_i_nn_ ])

373

374 if local is True:

375 FracInf = np.count_nonzero(epid_states[node_i_nn , t -1]==2)

/node_i_nn.size # Calculate fraction of infected neighbors

376 g_func = sigma*FracInf

# Calculate g local awareness function

377

378 A = np.array ([[1,-0.5], [1.1-g_func , 0-g_func ]])

# Game payoff matrix

379

380 payoffs[node_i , t-1] = payoff(A, node_i_nn , node_i ,

game_states [:,t-1]) # Calculate payoff

381

382 for idx , node_i in enumerate(G.nodes()):

383 node_i_nn_ = [neig for neig in G.neighbors(node_i)] #

get neighbors

384 node_i_nn = np.array ([ id_node[nn] for nn in node_i_nn_ ])
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385

386 node2change = random.randint(1, node_i_nn.size)

387 P_change = Pij(payoffs[node_i ,t-1], payoffs[node2change ,t-1])

# Calculate probability Pij

388

389 th = 0.5

390 game_states[node_i , t] = (P_change >th)*game_states[node2change

,t -1]+( P_change <=th)*game_states[node_i ,t-1]

391

392

393 ## Run SEIS Infection

394 for idx , node_i in enumerate(G.nodes()):

395 if epid_states[node_i , t-1] == 2: # If node is already

infected

396 continue # Skip

397

398 cur_node_nn_ = [neig for neig in G.neighbors(node_i)]

# Get neighbors

399 cur_node_nn = np.array ([ id_node[nn] for nn in cur_node_nn_ ])

400 cur_node_inf_nn = np.nonzero(epid_states[cur_node_nn ,t -1]==2)

[0] # Get infected neighbors

401 cur_game_nn = game_states[cur_node_inf_nn ,t-1]

# Get game states infected neighbors

402

403 n_neighbors = float(len(cur_node_nn_))

404 n_infected_neighbors = np.count_nonzero(epid_states[

cur_node_nn ,t -1]==2)

405 n_exposed_neighbors = np.count_nonzero(epid_states[cur_node_nn

,t -1]==1)

406

407 if n_infected_neighbors == 0:

408 n_infected_neighbors = 0.00000001

409

410 if n_exposed_neighbors == 0:

411 n_exposed_neighbors = 0.00000001

412

413 infFrac = n_infected_neighbors/n_neighbors

414

415 expFrac = n_exposed_neighbors/n_neighbors

416

417 beta2 = round(expFrac /(2.0 + 0.4* expFrac) ,6)

418 beta1 = round(infFrac /(1.0 + 0.1* infFrac) ,6)

419 probfact = float(beta1 + beta2)

420 #print(probfact)
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421 # if local is False:

422 p_inf_node_i = beta*np.exp(-np.sum(game_states[curInf_nodes ,t

]==0)/N)*probfact # Infection probability due to cooperation

state of all network infected nodes

423

424 if local is True: # If only considering local neighbors

425 if n_infected_neighbors > 0 or n_exposed_neighbors > 0:

# If there is infection in my neighbors

426 p_inf_node_i = beta*np.exp(-np.count_nonzero(

cur_game_nn ==0)/n_neighbors)*probfact # Infection probability due to

cooperation state of infected neighbors

427

428 if n_infected_neighbors == 0 and n_exposed_neighbors == 0: #

If no neighbor is infected , infection probability ~ 0

429 p_inf_node_i = 0.00000001

430

431 # Update new infection/exposition

432 if random.random () < p_inf_node_i:

433 epid_states[node_i , t] = 1

434 # Update exposed time

435 expTime[node_i] = maxExpTime

436

437 return game_states , epid_states , payoffs

438

439

440 ### SIS -VPG REPLICATOR FUNCTION

441 ’’’

442 Input:

443 graph - Networkx graph.

444 max_time - period of examination

445 beta - Contagion strenght.

446 sigma - Awareness level.

447 gamma - Recovery factor

448 local - Boolean for using global (False) or local (True) information.

449 ’’’

450 def sis_vpg(graph , max_time , beta , sigma , gamma =1/7, local=True):

451

452 N = len(graph.nodes ())

453 G = graph

454

455 id_node = {node:idx for idx ,node in enumerate(G.nodes())}

456

457 T = max_time

458 maxRecTime = int(1/ gamma) # Recovery time

75



Coexisting processes in complex networks FINAL GRADE PROJECT

459

460 # Initial strategies

461

462 epid_states = np.zeros ([N, T]) # 1: infected , 0: susceptible

463 game_states = np.zeros ([N, T]) # 1: defectors , 0: coperator

464

465 recTime = np.zeros(N,) # Count of recovery time

of each node.

466 payoffs = np.zeros([N, T]) # Payoff ’s of each iteration.

467

468 ## Initial infected nodes

469

470 if initInfected is None: # If initial conditions are given

471 initInfected = random.sample(range(int(N)), 1))

472 epid_states[initInfected ,0] = 1

473

474 else:

475 epid_states[initInfected ,0] = 1

476

477 # Start recovery of infected nodes

478 recTime[initInfected] = maxRecTime

479

480

481 # Initial defectors (1) and loners (2) nodes

482 if initDefectors is None: # If initial conditions are given

483 sarr = [i for i in range(0,N)]

484 random.shuffle(sarr)

485 initDefectors = sarr[:int(len(sarr)/3)]

486 initLoners = sarr[int(2*len(sarr)/3):]

487 game_states[initDefectors ,0] = 1

488 game_states[initLoners ,0] = 2

489 else:

490 game_states[initDefectors ,0] = 1

491 game_states[initLoners ,0] = 2

492

493

494 ## Simulation

495 for t in range(1, T):

496

497 curInf_nodes = np.nonzero(epid_states [:,t-1]) [0] # Get current

infected nodes

498 epid_states[curInf_nodes , t] = 1 # Update

infected nodes

499
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500 if local is False:

501 FracInf = np.sum(epid_states [:,t])/N # Get fraction of

infected nodes

502 g_func = sigma*FracInf # Calculate g global

awareness function

503

504 recTime = np.maximum(recTime -1,0) # Update

infection state depending on recovery time

505 epid_states[ recTime >0, t] = 1

506 epid_states[ recTime ==0, t] = 0

507

508

509 ## Run Evolutionary Game

510 for idx , node_i in enumerate(G.nodes()):

511 node_i_nn_ = [neig for neig in G.neighbors(node_i)] #

Get neighbors

512 node_i_nn = np.array ([ id_node[nn] for nn in node_i_nn_ ])

513

514 if local is True:

515 FracInf = np.sum(epid_states[node_i_nn , t-1])/node_i_nn.

size # Calculate fraction of infected neighbors

516 g_func = sigma*FracInf

# Calculate g local awareness function

517

518 A = np.array ([[1 , -0.5,0.5] , [1.5-g_func , 0-g_func ,-0.5- g_func

],[0,0-g_func ,0.75- g_func ]]) # Game payoff matrix

519

520 payoffs[node_i , t-1] = payoff(A, node_i_nn , node_i ,

game_states [:,t-1]) # Calculate payoff

521

522 for idx , node_i in enumerate(G.nodes()):

523 node_i_nn_ = [neig for neig in G.neighbors(node_i)] #

get neighbors

524 node_i_nn = np.array ([ id_node[nn] for nn in node_i_nn_ ])

525

526 modelnode = random.randint(1, node_i_nn.size) # Choose a

model node.

527 P_change = Pij(payoffs[node_i ,t-1], payoffs[modelnode ,t-1])

# Calculate probability Pij with Fermi function.

528

529 th = 0.5 # Threshold to change.

530 game_states[node_i , t] = (P_change >th)*game_states[modelnode ,t

-1]+( P_change <=th)*game_states[node_i ,t-1]

531
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532

533 ## Run SIS Infection

534 for idx , node_i in enumerate(G.nodes()):

535 if epid_states[node_i , t-1] == 1: # If node is already

infected

536 continue # Skip

537 cur_node_nn_ = [neig for neig in G.neighbors(node_i)]

# Get neighbors

538 cur_node_nn = np.array ([ id_node[nn] for nn in cur_node_nn_ ])

539 cur_node_inf_nn = np.nonzero(epid_states[cur_node_nn ,t-1]) [0]

# Get infected neighbors

540 cur_game_nn = game_states[cur_node_inf_nn ,t-1]

# Get game states infected neighbors

541

542 n_infected_neighbors = np.sum(epid_states[cur_node_nn ,t-1])

543 # if local is False:

544 p_inf_node_i = beta*np.exp(-np.sum(game_states[curInf_nodes ,t

]==0)/N) # Infection probability due to cooperation state of all

network infected nodes

545

546 if local is True: # If only considering local neighbors

547 if n_infected_neighbors > 0: # If there is infection in

my neighbors

548 p_inf_node_i = beta*np.exp(-np.sum(cur_game_nn ==0)/

cur_game_nn.size) # Infection probability due to cooperation state of

infected neighbors

549 else:

550 p_inf_node_i = 0.00000001

551

552 if n_infected_neighbors == 0: # If no neighbor is infected ,

infection probability ~ 0

553 p_inf_node_i = 0.00000001

554

555 # Update new infection

556 if random.random () < p_inf_node_i:

557 epid_states[node_i , t] = 1

558 # Update recovery time

559 recTime[node_i] = maxRecTime

560

561 return game_states , epid_states , payoffs
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