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Resumen

Los tratamientos convencionales contra el cáncer, como la quimioterapia o los fármacos

quimioterapéuticos, presentan limitaciones debido a su toxicidad, resistencia y baja es-

pecificidad. La investigación actual se centra en terapias alternativas, destacando la

importancia del soporte vascular en el crecimiento tumoral. El objetivo es inhibir la

angiogénesis tumoral, explorando moléculas antiangiogénicas como péptidos y protéınas,

que ofrecen ventajas sobre los fármacos convencionales. Debido a la escasez de fármacos

antiangiogénicos, la investigación propuesta pretende examinar las secuencias de péptidos

antiangiogénicos (AAP) notificadas mediante un enfoque novedoso que se basa en la cien-

cia de redes y la mineŕıa de datos. Para abordar este trabajo, se construyeron redes de

metadatos (MENTs) cuyo análisis permite profundizar en el análisis, proporcionando una

mejor comprensión de las caracteŕısticas biológicas, los patrones y las relaciones generales

entre las AAPs. Además, se examinó el espacio qúımico de los PAA mediante redes es-

paciales proximales (HSPNs) utilizando seis medidas de disimilitud bidireccionales, y el

examen del efecto del punto de corte (t). A continuación, para garantizar la diversidad

y evitar la sobrerrepresentación de las redes, se realizó una extracción de andamiajes

que dio lugar a 96 subconjuntos. Este proceso ayudó a limitar el trabajo al análisis de

tres métricas y a considerar para cada una sólo t = 0,00. Por último, se descubrieron

y enriquecieron 37 motivos antiangiogénicos potenciales, lo que proporcionó información

valiosa para el futuro desarrollo de fármacos más eficaces y selectivos, minimizando los

efectos secundarios y mejorando la eficiencia de los tratamientos contra el cáncer.

Palabras clave : peptido antiangiogénico, cancer, ciencia de redes, mineŕıa visual,

espacio Qúımico, redes de espacio proximal, redes de metadatos, descubrimiento de mo-

tivos, enriquecimiento de motivos, caja de herramientas StarPep.



Abstract

Conventional cancer treatments, such as chemotherapy or chemotherapeutic drugs, face

limitations due to their toxicity, resistance and low specificity. Current research is fo-

cused on alternative therapies, highlighting the importance of vascular support in tumor

growth. The aim is to inhibit tumor angiogenesis, exploring anti-angiogenic molecules

such as peptides and proteins, which offer advantages over conventional drugs. Due to

the scarce supply of anti-angiogenic drugs, the proposed research aims to examine re-

ported anti-angiogenic peptide sequences (AAPs) using a novel approach that relies on

network science and data mining. To address this work, metadata networks (MENTs)

were constructed whose analysis allows for deeper analysis, providing an improved under-

standing of biological characteristics, patterns, and general relationships between AAPs.

In addition, the chemical space of AAPs was examined through proximal space networks

(HSPNs) using six bidirectional dissimilarity measures and examination of the effect of

the cutoff point (t). Then, a scaffold extraction was performed to ensure diversity and

avoid overrepresenting the networks, resulting in 96 subsets. This process helped to limit

the work to the analysis of three metrics and to consider for each one only t=0.00. Finally,

37 potential anti-angiogenic motifs were discovered and enriched, providing valuable in-

formation for the future development of more effective and selective drugs, minimizing

side effects and improving the efficiency of cancer treatments.

Keywords : antiangiogenic peptide, cancer, network science, visual mining, chemical

space, proximal space networks, metadata networks, motif discovery, motif enrichment,

StarPep toolbox.
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Chapter 1

Introduction

Cancer, a formidable adversary to human health, stands as the second leading cause of

death globally [1]. Contemporary cancer treatments, including radiotherapy, chemother-

apy, and surgical procedures, have made remarkable strides. However, they often fall

short due to their indiscriminate effects on both cancer and healthy cells, leading to de-

bilitating side effects [2]. The need for innovative, less invasive alternatives is palpable in

the medical and scientific community [3].

This quest for novel approaches has spotlighted the potential of peptides in cancer

research [4]. Peptides offer enticing advantages such as precise targeting. Unlike proteins,

peptides possess a more compact structure and shorter length, facilitating easier access

to specific sites within cells or tissues. Additionally they boast low toxicity, and relatively

short half-lives in the body [5]. Harnessing these attributes could revolutionize cancer

diagnosis and treatment [6]. Notably, Anti-Angiogenic Peptides (AAPs) exhibit promise

by efficiently inhibiting tumor angiogenesis, a pivotal process fueling cancer growth [7].

Angiogenesis is regarded as a hallmark of cancer, outlining the fundamental traits of

cancer cells [8, 9].

Angiogenesis, the formation of new blood vessels from existing ones, plays a pivotal

role in tumor development by providing nourishment and oxygen to cancer cells [10]. An-

giogenesis arises from an imbalance between various endogenous factors, some promoters

and others inhibitors, that regulate this crucial process [11]. Proangiogenic factors include

vascular endothelial growth factor (VEGF) [12], basic fibroblast growth factor (bFGF)

[13], angiogenin (ANG) [14], transforming growth factor (TGF)[15], tumor necrosis factor

(TNF) [16], platelet-derived growth factor (PDGF) [17], placental growth factor (PGF)

[18], interleukin-8 (IL-8) [19], hepatocyte growth factor [20] and epidermal growth factor

(EGF) [21], among others. On the other hand, there are endogenous direct angiogenic

inhibitors, which are proteins or protein fragments naturally produced by the extracellu-

lar matrix which limit angiogenesis. In addition, exogenous indirect angiogenic inhibitors

negatively regulate the expression or action of proangiogenic agents such as VEGF or

epidermal growth factor receptor (EGFR). These intricate mechanisms illustrate the com-

1



Chapter 1. Introduction 2

plexity of angiogenesis and underscore the need to thoroughly understand these processes

to develop more effective therapeutic approaches in the fight against cancer [11]. AAPs,

by impeding angiogenesis, hold promise as a therapeutic avenue. They curtail the blood

supply to cancer cells, limiting their proliferation. This presents hope for more effective

and less invasive cancer treatments [7].

Methods of obtaining these peptides vary, involving extraction from natural sources

or synthesis from mimotopes. Both approaches necessitate extensive in vitro and in

vivo evaluation, consuming considerable time and resources[22]. To expedite this pro-

cess, researchers frequently employ preliminary in silico studies for drug discovery [23].

Databases, web-available tools, and computational software are indispensable bioinfor-

matics resources for uncovering novel drugs. Despite abundant peptide data in public

databases, the identification of AAPs has progressed slowly due to labor-intensive experi-

mental efforts[24] [24]. Noteworthy databases include the Benchmark Dataset (also called

as AntiangioPred DB), and StarPep DB, housing vital data for angiogenesis research [25,

26].

Machine learning (ML) emerges as a cost-effective screening tool for peptide-based

drugs, given its ability to handle vast datasets [27]. However, the application of net-

work science to comprehensively explore AAPs’ feature space remains uncharted. This

study aims to address this gap, unraveling the defining features that confer antiangio-

genic properties to therapeutic peptides. Chemical space is the fundamental foundation

of cheminformatics, being an essential concept for drug discovery and beyond [28]. In

addition, chemical space is closely related to computational chemogenomics, a discipline

that pursues the prediction (followed by experimental validation) of the intersection be-

tween chemical space and those biologically significant molecules [29].

To understand chemical space fully, explore related concepts like similarity, diversity,

and graphical representation via similarity networks. Chemical space is an abstract rep-

resentation where each point signifies a molecule or chemical compound [18, 20], in our

case, focusing on peptides. These points are distributed according to the similarities and

differences between the molecules. This opens the door to comparing and analyzing chem-

ical compounds based on aspects such as their structure, reactivity, properties, and much

more [30].

Chemical similarity, on the other hand, refers to the degree to which two molecules
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are similar in terms of structure and physico-chemical properties. Various metrics and

approaches can be used to quantify this similarity [31]. In the same context of chemical

space, chemical diversity is of fundamental importance. It involves representing a wide

variety of compounds within the chemical space. This aspect plays a crucial role in drug

discovery and molecule optimization, as it seeks to ensure that the molecules selected for

experimental testing are as diverse as possible [32]. Chemical diversity plays an important

role in minimizing the risk of bias and allowing a more thorough exploration of the chemi-

cal space in search of new substances with the desired properties [33]. On the other hand,

similarity networks are presented as graphical representations of similarity relationships

between chemical compounds within chemical space [34]. In these networks, compounds

are represented as nodes, and connections between nodes indicate significant similarities.

These connections are based on similarity calculations and can be used to identify

groups of similar molecules or to visualize patterns in chemical data sets [35]. Graph-

ical representations of chemical space and similarity networks are essential for visually

understanding the relationships between chemical compounds. In these representations,

molecules can be shown as points in a multidimensional space, and connections between

similar molecules are represented by lines or arcs in similarity networks [32]. These visual

representations make it easier for scientists to explore chemical space’s structure and di-

versity and identify possible directions for research and compound design.

Our study delves into AAPs chemical space using StarPep DB and StarPep tool-

box [26, 36]. These tools enable visual analysis of chemical space networks (CSNs) and

half-space proximate networks (HSPNs). CSNs have been proposed as coordinate-free

representations to analyze and visualize chemical space without reducing its dimension-

ality [34]. The similarity between peptides is using alignment-free metrics derived from

their sequence descriptors [37]. Nonetheless, we acknowledge the significance of three-

dimensional structure. Integrating structural data could enhance our understanding of

biological activities. In contrast, HSPNs offer an advantage over CSNs with fewer con-

nections, significantly reducing processing time and computational load. This is because

this specific network considers only a subset of the relationships between nodes instead of

all possible connections [38]. Another relevant distinction between the two networks lies

in the use of a similarity threshold or cut-off point (t). In the case of CSN, this threshold

is a mandatory requirement, while it is an option in HSPN. HSPNs were selected for
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use in this work due to their demonstrated superiority over CSNs in previous research,

specifically in studies addressing peptides with other activities, such as antiparasitic and

hemolytic properties [38, 39]. Accordingly, our research delineated the chemical space of

AAPs by employing HSPNs and examined the effect of t on these networks. To achieve

this, we compared networks constructed with an optimal value of t and those constructed

without a value of t (t = 0.00), keeping the other parameters involved in this construction

process constant.

The study focused on the pioneering construction and visualization of HSPNs designed

specifically for AAPs. This novel approach incorporated six distinct (dis)similarity met-

rics: angular separation (As), Bhattacharyya (Bh), Chebyshev (Ch), Euclidean (Eu),

Manhattan (Ma), and Soergel (So). These metrics allowed us to capture unique and

complementary information, in contrast to previous studies in network science that were

limited to using only Eu distance as the default similarity metric. In addition, metadata

networks (MENTs) were established to explore and discover general patterns associated

with AAPs, thus revealing biological characteristics and diverse relationships between

peptides. Subsequently, a scaffold extraction process was carried out to generate simpli-

fied representations of the chemical space, thus allowing the optimal selection of HPSNs.

Through this simplification, an alignment-free motif identification method discovered pos-

sible potential motifs of AAPs. SEA subsequently validated these motifs [40], using an

external database as a reference.

1.1 Scope of Research

The present research constitutes a fundamental step towards a more precise analysis and

interpretation of the information linked to the reported peptide sequences, with the pur-

pose of providing researchers with a solid starting point for the future development of

anti-angiogenic drugs as a therapeutic option against cancer. In the context of the search

for alternative approaches to cancer treatment, antiangiogenic drugs based on antian-

giogenic peptides and proteins have attracted increasing interest. Although databases

exist that compile these sequences, conventional data analysis requires a considerable in-

vestment of resources and time. Moreover, it does not guarantee that researchers have

specific and relevant information for antiangiogenic activity. Therefore, this study aims

to simplify the initial stage of the process, bypassing manual scrutiny and experimental
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validation. To this end, we propose approaching the analysis computationally, employing

network science and visual mining. This was achieved through network analysis, scaffold

extraction, and similarity search to represent the chemical space of antiangiogenic pep-

tides through HSPNs and subsequent motif search and enrichment.

1.2 Objectives

1.2.1 Overall Objective

To deepen the understanding of the chemical space of antiangiogenic peptides (AAPs)

through an innovative approach integrating computational methods such as interactive

visual mining and network science to gain a more comprehensive and detailed perspective

on the characteristics of AAPs.

1.2.2 Specific Objectives

• To use Metadata Networks (METNs) to analyze and describe general properties of

antiangiogenic peptides.

• To create HSPNs, or Half-Space Proximal Networks, which depict the chemical

space of antiangiogenic peptides.

• To analyze the impact of threshold values (t) and compare the use of various metrics

to determine the optimal representation of the chemical space of AAPs.

• To offer scaffolds of hemolytic peptides that can accurately represent the entire

chemical space without overrepresenting.

• Examine the physicochemical parameters characterizing HSPNs of the most optimal

selected metrics.

• Identify and enrich new motifs that possess potential antiangiogenic activity.



Chapter 2

Background Information

2.1 Peptides in Cancer Treatments

Cancer is a well-known disease around the world, which is considered to be the second

leading cause of death according to the World Health Organization, counting up to 9.6

million deaths in the year 2018 [1]. Cancer is when cells acquire some characteristics

due to abnormal growth, which can be caused either by an inherited genetic mutation

or by various environmental factors [2]. Among these characteristics, we can find the

generation of own and response to weak signals not identified by non-cancer cells, non-

response towards antiproliferative signals, resistance towards apoptotic signals, limitless

replication capabilities, angiogenesis, metastasis, and tissue invasion.

The difference between cancer and normal cells can easily be observed, as shown in

Figure 2.1, where cancer cells present a higher negative charge, a fluid outer membrane,

and a greater surface area when compared to non-cancer cells [41]. It is inferred that when

cancer progresses, the membrane fluidity of cells increases, which increases the micro-villi,

conceiving a higher surface area in those cells.

Figure 2.1: Differentiation between a) a healthy cell, and b) a cancer cell. Reprinted
from [41].

The most commonly used cancer treatments are localized radiotherapy, surgery, or

even both in some cases. However, in the scenario where metastasis has occurred or can-

6
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cer is in an advanced stage, the preferred treatment is chemotherapy [42]. This approach

is also used in non-local treatments to reduce tumor size. There are certain disadvantages

to using chemotherapy as a main treatment. The main ones are that clinically used drugs

do not have the capability of differentiating between cancer and healthy cells and that

cancer cells can generate multi-drug resistance (MDR). This causes the known adverse

side effects in cancer patients [43–45]. Concerning this matter, there is a need in the

pharmaceutical industry to develop a new alternative to anticancer agents that may have

a different mode of action in going against the high resistance of cancer cells without

the added toxicity that it represents to healthy ones [6]. In this context, peptides could

offer a promising alternative to conventional anticancer agents due to their advantageous

characteristics, such as low toxicity and specificity against cancer cells. Also, these pep-

tides could rapidly penetrate tumor tissues due to their small size. This allows the use

of peptides in diagnosis, prognosis, and cancer treatment [46]. Recent evidence indicates

that peptides with anticancer and anti-angiogenic properties are playing a significant role

in cancer therapy. As a result, they are increasingly recognized as promising therapeutics

for the future [7].

2.1.1 Antiangiogenic Peptides

Angiogenesis, the formation of new blood vessels from existing ones, is frequently observed

in pathological conditions such as cancer. It provides essential oxygen and nutrients

necessary for cancer growth and progression. The dysregulation between antiangiogenic

and proangiogenic factors contributes to this phenomenon. This results in the progression

of the disease. Some of the factors that are involved in this process are vascular endothelial

growth factor (VEGF), platelet-derived growth factor (PDGF), fibroblast growth factor

(FGF), and angiopoietins that interact with the cell-extracellular matrix. This is observed

in Figure 2.2 [47].

Many anti-angiogenic drugs are widely available; however, due to their high long-term

toxicity and drug resistance, they can have some hazardous health effects [48]. Peptides

stand out among anti-angiogenic proteins due to their unique benefits in cancer treat-

ment. They are considered potential candidates for inhibiting angiogenesis, offering a

less toxic therapeutic and effective option for diseases characterized by abnormal blood

vessel formation, such as cancer [49]. Therefore, there has been an increased interest
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Figure 2.2: Enzymes and factors involved in the angiogenesis process. Reprinted from
[41].

among scientists in the cancer treatment field to study and develop peptides that possess

antiangiogenic properties to overcome the issues of their parent proteins. To do so, it is

necessary to perform a pre-analysis on potential antiangiogenic peptide-based drugs, typ-

ically carried out in silico to avoid wasting resources, most of them using computational

software [7, 23]. However, there are studies in the computational detection of antian-

giogenic peptides [50]. This research will use computational tools and machine learning

potentiated programs such as Startpep Toolbox to detect potential AAPs [50].

2.2 Computational Methods for Detection of AAPs

Computational methods have become a reliable alternative to experimental methods to

save time and resources. Through this, studying and analyzing possible AAPs and AAPs-

based drugs before their introduction in the global market is possible [25, 51]. Before

getting into the computational methods used in this research, it is necessary to understand

some concepts like machine learning and chemical similarity networks.

2.2.1 Machine Learning

Machine learning, also called ML, lies as a subgroup of artificial intelligence, and it is the

main course of action applied for drug detection and discovery. It relies on algorithms and

the creation of mathematical models to generate training data sets, enabling automated

predictions of test sets [52, 53].



2.2. Computational Methods for Detection of AAPs 9

In this context, it’s important to draw a comparison. Training data sets consist of

both labeled and unlabeled data utilized as samples, whereas test sets comprise unknown

data sets that require analysis. It is possible to determine the type of ML model by the

training data’s nature. Among these, supervised, semi-supervised, unsupervised, transfer,

and reinforcement learning can be found [52, 53]. Supervised models correspond to labeled

training data, as unsupervised models belong to unlabeled training models. Hence, finding

patterns to predict the possible outcomes is necessary when using unsupervised machine

learning models. Semi-supervised machine learning combines parts of both supervised

and unsupervised models instead, and it contains labeled and unlabeled data sets, with

the amount of unlabeled data being the bigger one [51]. In either case, the training data is

used as feedback for reinforcement learning, considering that data is constantly changing

and transferred to other domains. Supervised learning is the model commonly used in

therapeutic peptide prediction as AAPs. [51, 54]

Another common characteristic of machine learning models is that they can classify

or even regress the training data over the test sets; hence, the model performance will

depend on the quantity and quality of the training data [51, 53]. to predict Therapeutic

peptides models there is a common usage of classifiers of supervised learning like Random

Forest, and Support Vector Machine techniques [55].

Random Forest uses classification or regression algorithms and is based on decision

trees. Otherwise, Support Vector Machine classifies unlabeled data and performs a binary

classification using a linear hyperplane, maximizing the separation between classes [56, 57].

Support Vector Machine utilizes a core function to create a feature space that facilitates

linear separation, incorporating radial, polynomial, or Gaussian functions, particularly in

cases where the space is non-linear. [57].

2.2.2 Chemical Similarity Networks

Chemical space is the term used to represent all synthetically and natural molecules.

Nonetheless, considering the vastness of molecules within the chemical realm, selective

portions of this domain focus on specific activities of interest. This targeted approach

involves delving into the biologically significant chemical sphere, which predominantly

encompasses compounds pivotal to biological systems [58, 59].

This chemical space is conceptualized as a multi-dimensional framework. Within this
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framework, numerical features or computational vectors define molecules and encapsulate

their physicochemical attributes, known as molecular physicochemical descriptors [59].

Here, each molecular descriptor is used to represent one dimension. Coordinate-based

maps require a dimension reduction technique for visualizing 2D and 3D maps [34, 60]. To

do so, there are coordinate-free chemical spaces, which is the case for Half Space Proximal

Networks (HSPN). These types of chemical spaces are commonly used to visualize the

chemical space with lower complexity [31, 61].

2.2.3 Half Space Proximal Network (HSPN)

A known disadvantage of typical chemical networks is the requirement of high RAM

capacity in the device being used [34]. Then, a Half-Space Proximal Network (HSPN)

is an alternative type of network that requires low RAM since it builds a lower-density

network [62]. It works using the Half-Space Proximal test, which is explained starting

from an initial point u. First, the initial point u and its nearest neighbor v are connected

by an edge, followed by the addition of an imaginary orthogonal line in the middle of the

edge which divides the space into two half-planes. The half-plane farthest to u is called

the forbidden area. Then, the initial point u is connected to the nearest point of the non-

forbidden area, and the process is repeated until the set of points of the non-forbidden

area is empty. All points are somehow connected to the core node in the same region as

shown in Figure 2.3 [62].

Figure 2.3: Example of connection using HSPN, where all nodes within the range
would be connected to the central node. Reprinted from [62].
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2.2.4 Network characterization parameters.

The parameters needed to characterize these networks are similarity threshold, density,

node degree, centrality, clustering, and metrics [62].

Similarity Threshold

The similarity threshold is important in network science and defines its topology and

appearance. Also, it establishes the lower limit value of similarity between node pairs

connected by an edge [37, 63]. It can be understood that they are connected if two or

more nodes have an equal or greater similarity value than the previously established one.

Node Degree

Node degree, also called vertex degree, is the number of edges bonded to a node, and it

is used to represent the number of nodes to which each edge is attached [64].

Density

Network density refers to the proportion of edges within the network compared to the total

potential edges. It typically relies on the similarity threshold value and plays a crucial

role in shaping the network’s properties. It provides insights into the level of connectivity

and intensity of interactions among the elements within the network [62]. Furthermore,

network density is defined by the following equation

ρ =
2mt

n(n− 1)
(2.2.1)

Here, mt is the number of edges, t is the threshold value, and n is the number of nodes

in the network[34].

Clustering

Clustering has great importance in unsupervised learning models. It bases its function

on dividing the graph data into different communities in accordance with the similarity

between each node [34, 37]. Accordingly, similar nodes residing in the same community
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and nodes from distinct communities differ. In a network, the modularity typically mea-

sures how well the nodes are classified into communities [65]. This value can be positive

or negative with a maximum value of one and is defined by the following [66].

Q =
1

2mt

∑
uv

(auv −
kukv
2mt

)δ(cu, cv) (2.2.2)

Here, auv represents the weight of the edge which is similarity value between a node u

and a node v, the sum of the weight of edges joined to node u is represented by ku, cu

shows the community of u, and finally, δ(cu, cv) is defined as the following.

δ(cu, cv) =

 1 if cu = cv

0 if cu ̸= cv
(2.2.3)

Modularity describes the number of edges connecting nodes intra-community minus the

expected number of edges randomly determined in an identical network [66]. It increases

as density decreases; hence, community structures are better resolved, which is why mod-

ularity is a parameter that must be optimized as much as possible to acquire the best

partition of the network.

Louvain Clustering is an algorithm that has been demonstrated to have the best

accuracy and computing time, and it is widely applied for modularity optimization. This

algorithm starts assigning all the available nodes in different communities and typically

consists of two phases [67]. In the first phase (I), one node is moved to the community of

its nearest neighbor, and its new modularity parameter is computed. When modularity

increases due to movement, the node relocates to the respective community; otherwise, it

stays within its initial community. This iterative process continues for all nodes until no

further enhancement in modularity is achieved. In the second phase (II), a new network

is built based on the previously obtained communities in the (I) phase. Ultimately, the

process is repeated until there are no changes in the modularity parameter [67].

Additionally, it is possible to measure the network’s ability to cluster together using

the ”average clustering coefficient (ACC).” This coefficient represents the network’s ca-

pability to connect to nodes sharing the same neighbor, and it is a measurement of the

neighborhood connectivity [37].
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Centrality

Centrality is one of the essential measurements in network science, and its nodes rank

according to how representative they are in their network. There are different methods to

calculate centrality, and the most used are the harmonic centrality, community hub-bridge

centrality, weighted degree centrality, and betweenness [62, 68].

Harmonic centrality is considered as a global centrality measurement, and it is

based on the distance between two nodes. The harmonic centrality for node u is defined

as

CH(u) =
∑
v ̸=u

1

d(u, v)
(2.2.4)

here d(u, v) represents the distance from node u to node v [69].

This centrality is considered in network analysis because of its sensitivity to network

structure, its ability to capture the relative importance of nodes and its effectiveness in

identifying important nodes in biological networks.

Community hub-bridge centrality is a local centrality measurement based on

where the node is located in the community. Also, nodes can be considered hubs or

bridges in this type of centrality. Local hub nodes connect various internal nodes, while

bridge nodes are located at the boundary of a community and act as the attachment

between two neighboring communities [34, 70]. The hub-bridge centrality for node u is

defined as

CHB(u) = kin
u ∗ CS(u) + kex

u ∗NC(u) (2.2.5)

where kin
u , and kex

u are internal and external strength, respectively, defined as in Weighted

degree. CS(u) is the community size of u, and NC(u) is the number of neighboring

communities directly attached to u by other nodes from its community.

Weighted degree centrality establishes the similarity between a node pair, and it

is known as the weight of the edge. The internal and external strength gives it by.

kin
u =

∑
v∈cu

auvk
ex
u =

∑
v/∈cu

auv (2.2.6)

Here kin
u denotes the internal strength, kex

u represents the external strength, and auv

corresponds the similarity value between u and v [34].
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Betweenness centrality This centrality primarily involves assessing the prevalence

of short path lengths. Specifically, the betweenness centrality of node u quantifies the

quantity of shortest paths between pairs of nodes, excluding node u itself, that traverse

through it. This centrality provides insight into the extent to which a node serves as a

bridge or intermediary within the network, facilitating efficient communication between

disparate nodes.

CB(u) =
1

(N − 1)(N − 2)

∑
x ̸=u,x̸=v,v ̸=u

SPxv(u)

SPxv

(2.2.7)

Here, N is the number of total nodes, (N−1)(N−2) is the number of node pairs excluding

node u,SPxv(u) represents the number of shortest paths between the nodes x and v that

cross node u, finally SPxv denotes the total number of shortest paths between nodes x

and v [71].

2.2.5 Metrics

The model used to analyze similarity networks employs eight distinct metrics using an

optimal cut-off point selected for each metric [62]. The metrics are Manhattan, Euclidean,

Soergel, Chebyshev, Bhattacharyya, and Angular Separation:

Manhattan (Ma) or taxicab is a geometry where the Euclidean geometry is replaced

by a new one where the distance between two points is the sum of the absolute difference

of the corresponding Cartesian coordinates [72].

Euclidean metric (Eu) represents the length between two points in a line segment;

this happens in the Euclidean space. It is calculated using Cartesian coordinates of the

points and mainly uses the Pythagorean theorem. In this metric, the distance between

two objects not considered points is the smallest distance among a pair of points from

two objects [72].

Soergel metric (So) is a distance metric used to measure the similarity between two

binary points (vectors). It is defined as the number of positions in which the two vectors

differ. Is considered to be simple and efficient to compute and has proved to be effective

in various applications, including bio-computation [73]

Chebyshev metric (Ch) is defined on a vector space where the distance between

two vectors is the greatest of their differences along any coordinate dimension. It goes as

d(x, y) = max|xi− yi| where x and y are in the vector space, while xi and yi are elements
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of x and y, respectively [74].

Bhattacharyya metric (Bh) is considered a similarity measure between two prob-

ability distributions. It is defined as Bh(P,Q) =
√∑

x P (x)Q(x), where all the possible

values of a random variable X are taken over, and P and Q are the two probability dis-

tributions [75].

Angular Separation metric (As) is a measure of the distance between two points

in angular space, and it is often used in computational approaches to measure the distance

between objects in an image or network. It is the angle between two sight-lines, or between

two point objects viewed from a node (observer), measured in degrees or radians [76].

2.3 Physicochemical descriptors

The molecular configuration of a compound is intrinsically linked to its chemical behavior,

the prediction of which is achieved through the abstraction of its structure in terms of

chemical similarity parameters, known as ”descriptors”[77]. These descriptors are valuable

for anticipating the pharmacological properties of drug candidates and for predicting

reactivity, toxicity, and other essential chemical aspects. Molecular descriptor research

seeks to establish quantitative relationships between structure and activity to categorize

similar peptides in diverse contexts, avoiding synthesizing and evaluating overly similar

compounds that would waste resources [78].

Maximizing or minimizing the structural diversity of peptides is essential for searching

or refining essential compounds. The utility of a molecular descriptor in peptide library

design is that subtle variations in this descriptor between two molecules should reflect

equally subtle biological differences. Molecular descriptors are numerical representations

derived from molecular features that allow a mathematical approach to molecules, which

is an essential step in converting molecular features into quantifiable data [79]. These

descriptors, defined by specific algorithms or experimental protocols, encapsulate various

aspects of a molecule’s chemical information.

It is important to clarify that none of these descriptors are directly based on the three-

dimensional structure; instead, they are exclusively based on the sequence of the peptides.

• Peptide Sequence Length: This descriptor indicates the number of amino acids that

comprise a peptide. The sequence length can vary significantly among different
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peptides and influence their three-dimensional structure, biological function and

stability [80].

• Net Charge : The net charge of a peptide refers to the difference between the total

number of positive and negative charges in its structure. This property is crucial

for understanding the interaction of the peptide with other molecules, such as cell

membranes, and can influence its ability to bind to specific receptors[81].

• Isoelectric Point: The pH at which a peptide has a net charge equal to zero. At this

point, the peptide exists in its most neutral form and can have a higher solubility.

The isoelectric point is important in determining the optimal conditions for peptide

separation and purification by techniques such as electrophoresis [81].

• Molecular Weight: The total mass of a peptide, measured in atomic mass units.

Molecular weight is a fundamental property that affects many peptide characteris-

tics, such as its behavior in solution, its ability to cross biological membranes and

its interaction with other molecules [80].

• Boman Index: The Boman index shows the degree of discrimination between membrane-

interacting peptides and protein-interacting peptides. The Boman index is defined

as the sum of the free energies of the side chains for transfer from cyclohexane to

water and divided by the total number of residues in the peptide. A more hydropho-

bic peptide tends to have a negative ratio, while a more hydrophilic peptide tends

to have a more positive ratio [82].

• Hydrophobicity : This descriptor indicates its affinity for hydrophobic or hydrophilic

environments. Higher hydrophobicity may influence the ability of the peptide to

interact with biological membranes and other proteins. This parameter is important

for peptide stabilization, but the solvent and solubility in which the sequence is found

must be considered [83] .

• Aliphatic Index: The aliphatic index provides information on the proportion of

aliphatic amino acids in the peptide sequence. Aliphatic amino acids contribute to

the thermal and structural stability of the peptide and can influence its ability to

fold correctly. The aliphatic index is the relative volume occupied by a protein’s

aliphatic amino acid side chains. Amino acids belonging to this group are alanine

(A), valine (V), isoleucine (I), and leucine (L) [77].

• Instability Index: This index indicates the structural stability of a peptide. Peptides
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with a high instability index may be prone to denaturation or degradation under

specific conditions, which may affect their functionality and half-life in the body

[84].

• AvgGRAVY: This descriptor quantifies the relative hydrophobicity of a peptide by

calculating the average value of the hydrophobicity of its amino acids. A negative

AvgGRAVY value indicates that the peptide is more hydrophilic, while a positive

value indicates higher hydrophobicity. This property may influence the solubility

and interaction of the peptide with other molecules in aqueous environments [85].



Chapter 3

Experimental Procedure

The following steps are constituents of the whole workflow: (i) visual mining: metadata

network generation (METNs), (ii) HSPNs production and analysis: Chemical space rep-

resentation of AAPs obtained from StarPepDB, (iii) scaffold extraction and exploration:

construction of representative subsets using the best HSPN candidates, (iv) motif finding

and enrichment: making a comparison with data reported in the literature. Figure 3.1

provides a comprehensive summary of the entire methodology, offering an overview of the

research.

Figure 3.1: Overview of the experimental section: (i) Visual mining: generating Meta-
data Networks (METNs) comprising Database, Function, Origin, and Target, (ii) produc-
tion and analysis of HSPNs: depicting the chemical space of AAPs derived from StarPep
DB, (iii) scaffold extraction and exploration: creating representative subsets using top
HSPN candidates, (iv) motif search and enrichment: conducting a comparison with data
reported in the literature.

18
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3.1 Databases, Analysis Tools

3.1.1 StarPep DB and StarPep Toolbox

The StarPep DB graph database, implemented in Java, stores information on 45,120

bioactive peptides, including their functions and metadata, from multiple databases and

other resources [26]. For our research, we selected a subset of data consisting of 209 AAPs.

These data were used for the construction of HSPNs and METNs and the discovery of

new anti-angiogenic motifs. On the other hand, we employed the StarPep toolbox [36],

a software tool that facilitates a better understanding of the integrated data. This tool

played a pivotal role in facilitating the construction and visualization of networks, enabling

interactive exploration, and supporting the exportation of AAPs.

3.1.2 AntiAngioPred DB

The AntiAngioPred database [25] played a key role in motif enrichment. The authors

organized this dataset as follows: (i) positive data set, initially composed of 257 AAPs

obtained from various research articles and patents, reduced to 135 AAPs after excluding

those sharing more than 70% sequence identity; (ii) negative data set, consisting of 135

Non-Antiangiogenic Peptides (NAAPs), consisting of random protein sequences extracted

from the Swiss-Prot database [86]; (iii) independent dataset, consisting of 28 AAPs and

28 NAAPs, obtained by extracting 20% of the positive and negative datasets respectively;

and finally, (iv) random dataset, comprising a total of 675 NAAPs distributed in subsets

named ’Random1’, ’Random2’, ’Random3’, ’Random4’, and ’Random5’. These subsets

were created using the same procedure to develop the negative data set.

3.1.3 BIG ANTIAN DB

To facilitate the management of these sets, we created a schema (Figure 3.2) to better

organize the collected AAPs and NAAPs. On the left side of the schematic, there is exclu-

sively positive data. Of the 257 AAPs reported, we identified 202 unique sequences that we

named MAIN DB POSITIVE. Subsequently, we divided this set into two groups accord-

ing to the criterion proposed by the dataset authors (70% sequence identity): sequences

showing higher redundancy were grouped into the subset MAIN30% DB POSITIVE (67
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AAPs), whereas those showing higher diversity were grouped into MAIN70% DB POSITIVE

(135 AAPs). From the latter subset, we created two additional subsets. The first subset,

called IND DB, is an independent set containing 28 AAPs, and the second subset, called

TR DB, is a training set comprising 107 AAPs, both representing 20% and 80%, respec-

tively, of the MAIN70% DB POSITIVE set.

Figure 3.2: Databases generated from the AntiAngioPred database [25].
AAPs=Antiangiogenic Peptides, NAAPs = Non Antiangiogenic Peptides.

The negative data is on the right side of the schematic, with subsets analogous

to those of the positive data. The difference lies in the addition of all NAAPs from

the five random subsets, forming the set RANDOM DB ALL (675 NAAPs). Combin-

ing RANDOM DB ALL with MAIN70% DB NEGATIVE (135 NAAPs) created the set

MAIN DB NEGATIVE (810 NAAPs). In addition, subgroups that share AAPs and

NAAPs were created. The first, called IND DB ALL, contains 56 AAPs and NAAPs and

comprises the peptides from the independent data of the positive and negative data. The

second, TR DB ALL, contains 214 AAPs and NAAPs and represents the training data

from the positive and negative sets. Combining all the data fromMAIN70% DB POSITIVE
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and MAIN70% DB NEGATIVE yielded MAIN70% ALL, which comprises 270 AAPs

and NAAPs. Next, we pooled the data from MAIN30% DB POSITIVE with RAN-

DOM DB ALL to form an external dataset named EXTERNAL DB (742 AAPs and

NAAPs). Finally, the set encompassing all positive and negative data was assigned the

name BIG ANTIAN DB (1012 AAPs and NAAPs).

3.1.4 Gephi 0.10.1

For generating different types of networks, Gephi 0.10.1 was considered one of the most

efficient alternatives in terms of visualization and exploration [87]. This software, charac-

terized by its free and open-source nature, has been used for the retrospective calculation

of significant measures from the networks. These metrics encompass a range of quantita-

tive measures, including average degree, diameter, radius, density, modularity, clustering

coefficient, average clustering coefficient (ACC), average path length, and counts for edges

and nodes. This tool is used for calculating measurements and visualizing networks that

have been previously generated using the StartPep Tool Box [36].

3.1.5 The MEME Suite

The MEME Suite, a comprehensive set of software tools for motif-based sequence anal-

ysis, offers versatile applications across peptides, proteins, DNA, and RNA [88]. With

access to extensive proteomic and genomic databases, this suite includes 13 tools, such

as Sensitive, Thorough, Rapid, Enriched Motif Elicitation (STREME) [89] for motif dis-

covery and Simple Enrichment Analysis (SEA) for enrichment [40]. The web version

(https://meme-suite.org/meme/doc/streme.html) facilitates de novo motif identification,

improving the accuracy and versatility of discovery, even in large datasets. STREME fa-

cilitated both motif discovery and the generation of statistical estimates of the relevance of

each anti-angiogenic motif identified. On the other hand, SEA identifies known motifs in

input sequence sets and performs differential enrichment analysis when additional control

sequences are present [40]. Motif enrichment analysis evaluates the significant presence

of known motifs in DNA, RNA and protein sequences [88]. Both tools provide accurate

statistical estimates in discovering and enriching motifs linked to antiangiogenic activity.

They also can handle different alphabets, such as DNA, RNA and proteins, allowing a

customized definition according to specific needs. The sequences of each cluster obtained
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from the best-selected HSPNs were used for the discovery process. Both newly discov-

ered and previously identified motifs were used for enrichment, together with sequences

from the AntiAngioPred and BIG ANTIAN DB datasets. This was done to satisfy SEA

requirements, including control and input sequences.

3.2 Network Generation and Analysis

3.2.1 Metadata Network (METNs)

MENTs provide a clear and detailed view of the interactions within complex systems by

identifying meaningful groups within data sets, thus providing a simplified understanding

of how the components of that system interact [90]. This parameter could be derived

from database source, function, origin, or target attributes. Consequently, four distinct

METNs were established, each grounded in various metadata attributes. This analy-

sis reveals hierarchical structures in the data, especially the connection between nodes

representing ”peptides” and their corresponding ”metadata” nodes. These connections

illustrate specific relationships, such as the association of a peptide with its data base

source. In addition, different peptides may be linked to the same metadata. These

networks are depicted as unweighted pseudo-bipartite graphs, denoted as F = (V,E),

wherein V (F ) represents the set of nodes or vertices, encompassing two distinct classes:

AAPs and metadata information. On the other hand, the set of edges, denoted as E(F ),

defines the connections within the graph [91]. In this instance, the peptide classification

within the set V(F) encompassed a compilation of 209 AAPs procured from the StarPep

toolbox [36].

It is imperative to acknowledge that METNs do not conform to the classification

of fully bipartite graphs. This deviation arises from the fundamental constraint within

bipartite graphs, wherein nodes originating from the same category are precluded from

establishing adjacencies [30, 32]. METNs, however, can establish connections within the

metadata class, provided that a hierarchical relationship between nodes is established.

Through the construction of METNs, valuable insights were garnered to formulate a

comprehensive overview of databases that exhibit pronounced concentrations of AAPs.

This methodology facilitated an examination of the redundancy prevalent among these

peptides across various databases. Furthermore, it enabled the identification of peptides
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exclusively documented within distinct databases. The function of interest within the

database, namely the category of AAPs, was pre-selected. Subsequently, one of the four

specific parameters we intend to work with is chosen to set up the network. The graph-

ical representation clearly distinguishes two components: the peptides in question and

the focus parameter. These elements are differentiated by assigning distinctive colors to

each one. The METNs were built using StarPep toolbox [36] and further improve the

visualization of the network, the Gephi 0.10.1 platform was used [87]. In this context,

an exhaustive customization is applied to the network to highlight those parameters of

primary interest.

METNs Visualization

To customize our network, we utilized the StarPep DB, StarPep toolbox along with the

Gephi 0.10.1 software [26, 36, 87]. In the context of the four generated metadata networks,

we maintained a consistent color scheme for the peptides while assigning distinct colors

to each metadata category. Specifically, orange was designated for peptides, while shades

of green, blue, red, and purple were employed for the Database, Function, Origin, and

Target metadata categories, respectively.

Within the StarPep framework, we computed the Betweenness centrality, a metric

that aided us in adjusting the sizes of nodes to reflect the significance of the metadata

[92]. Concurrently, we employed the modularity optimization technique to compute clus-

ters, contributing to identifying densely interconnected groups within the network. For

improved visual representation, we employed two different layout methodologies: the first

being Force Atlas 1, which optimized the arrangement of nodes based on attractive and

repulsive forces, leading to a clear spatial organization[93]; the second was Noverlap, a

technique used to address the issue of node overlap, particularly for peptides [94]. This

approach to network visualization ensured a comprehensive and aesthetically refined de-

piction of the intricate relationships encompassed within the data.

3.2.2 Half Space Proximal Networks (HSPNs)

HSPNs, or Half-Space Proximal Networks, serve as networks indicating similarity or cor-

relation, connecting nodes if their similarity coefficient meets or exceeds a predetermined

t. In a manner akin to metadata networks, HSPN construction follows a structured for-
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mat denoted as G = (V,E). Here, V (G) represents the assembly of individual AAPs, each

functioning as a distinct node. These nodes are defined by vectors comprising sequence-

based molecular descriptors (MODs) values. Edges, on the other hand, establish connec-

tions between these nodes. E(G) signifies the compilation of these edges, serving as links

between nodes based on two explicit criteria.

Firstly, a similarity matrix M of size nn is crafted, where Mi,j signifies the similarity

score between nodes Vi (G) and Vj (G). Similarity scores range from 1 denoting utmost

similarity to 0 indicating the lowest. These values originate from peptide feature vec-

tors utilized to calculate dissimilarity measures for node pairs, which are subsequently

normalized through min-max normalization. Following this, by applying the Half-Space

Proximal (HSP) test [95], an intricately connected yet sparse network HSPN emerges.

Despite keeping the number of nodes constant, the network has fewer links, which signif-

icantly improves the system’s efficiency, thus considering it an advantage over CSN [34].

The resulting HSPN displays robust interconnections while maintaining a sparse struc-

ture.

Secondly, another criterion comes into play: further reduction in graph density can be

achieved by selectively removing edges with similarity values falling below a predetermined

t value. As a result, an enhanced depiction of the chemical space occupied by AAPs is

obtained by assessing the structural features of the graph. It’s imperative to note that

including a t value during HSPN creation remains an optional choice, emphasizing the

adaptability of this approach.

The construction of HSPN commenced with extracting pertinent data from the StarPep

DB [26]. Specifically, we acquired a set of 209 peptides demonstrating antiangiogenic ac-

tivity from this database. Subsequently, measures were employed to mitigate the redun-

dancy within the peptide sequences. This was achieved by employing the Smith-Waterman

local alignment algorithm in combination with the Blossum 62 substitution matrix devel-

oped by Henikoff & Henikoff [96]. Moreover, a rigorous standard of 98% sequence identity

was enforced to guarantee a successful reduction in sequence redundancy.

For feature selection, an unsupervised technique was employed to calculate the peptide

sequence’s Mutual Dependence. To further eliminate extraneous attributes associated

with angiogenic peptides, the Shannon Entropy was employed as a relevance criterion

[97], with a predetermined threshold set at 10%. Conversely, in the pursuit of excluding
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duplicative features, the Spearman correlation coefficient was adopted as a metric [98].

In this instance, a threshold of 0.8% was established. Subsequently, all retained peptide

features were chosen to facilitate the generation of networks. To provide a more in-

depth understanding of the selection criteria for constructing HSPN, one can refer to the

comprehensive analysis conducted by Aguilera and colleagues [34]. This work thoroughly

elucidates the detailed characteristics considered in the construction of HSPN.

Selecting an appropriate (dis)similarity metric became imperative to enhance the mod-

eling and visualization of the chemical space mapping. In this study, six distinct metrics

were employed: As, Bh, Ch, Eu, Ma, and So (Table 3.1). This array of metrics is in-

cluded from prior research, underscoring the significance of using diverse measures. This

approach was founded on the idea that various metrics can effectively capture unique in-

formation, recognizing that distance metric does not necessarily coincide uniformly with

the commonly used Euclidean metric. [53].

A systematic variation of the t value was conduct to assess the performance char-

acteristics of the HSPNs. Specifically, 16 discrete threshold points were investigated for

each metric. This range spanned from the initial point of 0.00, followed by increments

of 0.05, progressing through the values of 0.20 to 0.90. This selection of thresholds was

deliberate, driven by extracting comprehensive insights into the overarching parameters

governing the behavior of the HSPNs. Notably, the chosen threshold values were moti-

vated by previous investigations, wherein it was observed that the parameter fluctuations

remained relatively subdued within the spectrum spanning from 0.00 to 0.45 [38, 39].

This discernment informed the upper limit of the chosen threshold range. This rigorous

threshold variation scheme yielded a collection of 128 distinct HSPNs, fostering a com-

prehensive evaluation of the network’s behavior.
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Table 3.1: (Dis)Similarity Metrics used to Build HSPNs.

Measure Formula Range1 Average Range

Angular Separation (As) dxy = 1− Cosxy
where,

Cosxy =
XY

||X||||Y || =
∑h

j=1 xiyj√∑h
j=1 x

2
j

∑h
j=1 y

2
j

[0,2]

Bhattacharyya (Bh) dxy =
√∑h

j=1(
√
xj −

√
yj)2 [0,∞) d = dxy√

n
[0,∞)

Chebyshev (Ch) dxy = max
{
|xj − yj|

}
[0,∞) d = dxy

n1/p [0,∞)

Euclidean (Eu) dxy =
(∑h

j=1 |xj − yj|2
) 1

2 [0,∞) d = dxy
n1/p [0,∞)

Manhattan (Ma) dxy =
1
n

∑h
j=1 |xj − yj| [0,∞)

Soergel (So) dxy =
1
n

∑h
j=1

|xj−yj |
max{xj ,yj} [0,1] d = dxy

n
[0, 1

n
]

(a) The variables xi and yj represent the values of peptide descriptors j for peptides m and n
respectively. Peptides m and n are denoted by feature vectors X and Y. The value h

represents the number of peptide features. ”Range” refers to the span and not the order,
defined as Range = (maxxi–min yj)

HSPNs Visualization

The procedural framework involved the application of the Louvain method [67] in con-

junction with the utilization of a specific centrality measure, namely the Community

Hub-Bridge (HB) centrality [99]. This centrality measure was systematically applied to

each node encompassed within the StarPep DB[26]. Subsequently, these nodes were des-

ignated distinct colors corresponding to the specific clusters they were affiliated with.

Furthermore, in pursuit of enhanced visualization, a proportional scaling approach was

employed to configure the node sizes in direct correlation with their respective HB cen-

tralities. Incorporating a Bezier interpolator further refined this scaling process [100]. As

a culminating step, a Fruchterman Reingold Layout was executed, resulting in an opti-

mized spatial arrangement of the nodes [101].

The resultant visual representation was then extracted in a GraphML file format, fa-

cilitating seamless integration into the Gephi 0.10.1 software environment for advanced

analysis and visualization [87]. Within this software, the visualization of the comprehen-

sive network involved retrieving specific parameters in the past tense. Included within

these global network parameters are various elements, including the number of edges,

modularity, density, average clustering coefficient (ACC), number and size of clusters

or communities, singletons GC (nodes disconnected from the giant component), single-
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tons D0 (nodes of degree zero), diameter, average path length, mean degree, and the

probability distribution of degrees (expressed as the probability of k). This procedu-

ral methodology was executed across eight distinct metrics, incorporating diverse cut-off

points. Subsequently, the optimal cut-off point was meticulously selected for each metric,

thereby enabling the subsequent execution of scaffold extraction based on these carefully

determined cut-off values.

3.3 HSPNs Scaffold Extraction

For this processing, we took advantage of a data mining tool available through the StarPep

toolbox [36], which facilitates the mining of sub-networks by extracting scaffolds. The

scaffold extraction process was implemented with the objective of achieving a minimum

representation within the chemical space of the AAPs. In this context, optimal cutoff

points (t) and without cutoff points (t = 0.00) were evaluated for each of the six metrics

analyzed. The two variations of t for each metric were considered, totaling 12 configura-

tions, which served as the main basis for scaffold construction.

Other parameters involved in this process included the centrality measure, which varied

between the calculation of Harmonic Centrality (HC) [102] and Community Hub-Bridge

Centrality (HB) [99] for each node. Since the underlying objective at this stage was to

identify the most fundamental and distinctive AAPs, redundancy elimination was carried

out. This was guided by a criterion in which peptide sequences that showed a percentage

of identity exceeding a particular cut-off value (r) were excluded. In this study, the

particular r values ranged between 70% and 80%. It is important to note that the cutoff

values, referred to as ”t” and ”r”, are different; ”t” was used in the construction of

HSPNs, while ”r” was used in the construction of scaffolds.

Furthermore, the alignment approach underwent variation, encompassing global align-

ment using the Needleman-Wunsch method (G)[103] and local alignment via the Smith-

Waterman technique (L)[104]. In summary, four fundamental parameters were modified

with two variations each for each of the six metrics: the t-value, the centrality metric,

the percent identity (r) threshold, and the sequence alignment mode. All computational

iterations were performed using the Blosum 62 substitution matrix of Henikoff & Henikoff

[96]. Overall, a total of 96 scaffold extraction experiments were meticulously carried out.

A specific notation was used to store this information. This notation goes as follows:
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the type of network being constructed is placed, followed by the cut point t, the notation

of the metric used, the type of alignment, G for global and L for local, followed by the

cut point r and finally the number of nodes left after performing the whole procedure.

For example, a name was: HSPN 00 As HB G 0.7 149.

Subsequently, the Dover Analyzer [105] was employed, an application specifically de-

signed to facilitate the analysis of peptide sequences’ overlap, diversity, and redundancy.

A thorough examination was conducted of all the scaffolds that were obtained. An input

set was introduced, which in this case represented a set of scaffolds to be analyzed to

carry out the analysis with this tool. This grouping brings together scaffolds that share

the same centrality measure, the same alignment type and the same r value. The varia-

tion among the scaffolds in this grouping lay in the different metrics (As, Bh, Ch and Eu),

with their respective optimal values of t and without cut-off (t = 0.00). The examination

was based on three parameters: identical overleap, similarity overleap with a threshold

of 80%, and diversity ratio. Analyzing the most representative data sets for each metric

makes it feasible to determine the optimal metrics with their respective t-value for the

subsequent studies proposed in this work.

3.4 Physicochemical Descriptors

Molecular physicochemical descriptor calculations were performed for each cluster using

the StarPep toolbox [36]. For this purpose, the previously generated fasta documents for

each cluster were loaded and the StarPep molecular feature tool was used. Properties

relative to each cluster were calculated, including peptide sequence length, net charge,

isoelectric point, molecular weight, Boman index, average hydrophobicity, aliphatic index,

instability index, and AvgGRAVY. The procedure involved calculating each property for

each AAP and then determining the property’s average for each group. This process was

carried out for the As metric with 6 groups, the Eu metric with six groups and the Ch

metric with eight groups, using the cut-off point chosen from previous analyses.

Subsequently, the analysis of each descriptor was carried out in general for the metrics

studied. The average of the values of the descriptors of each cluster belonging to each

metric was recalculated in order to evaluate the trend of the descriptor values with respect

to the metrics.
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3.5 Motif Discovery and Enrichment

Motif Discovery

STREME [89], a tool from the MEME 5.5.2 suite [88], was used to discover motifs using

the alignment-free method. This algorithm is notable for its versatility in facilitating

pattern discovery in large datasets containing hundreds of thousands of sequences. It has

the unique ability to recognize both short and long motifs, whose length can vary from 3

to 30 positions. In addition, it can perform differential analysis by comparing patterns in

different sequence data sets. In this case, the generated patterns had a minimum length

of 3 positions and a maximum length of 6.

Motif Enrichment

Motif enrichment was performed using MEME Suite 5.5.2 [88] as well; however, on this

occasion, we chose to use the Sequence Enrichment Analysis (SEA) tool [40]. This analysis

aimed to investigate the existence and relevance of motifs in the sequences of each metric

cluster studied. After eliminating the redundancy of the discovered anti-angiogenic motifs,

these motifs were grouped with those previously reported in the literature [25, 106–114],

thus forming a single motif dataset. This set was analyzed using the BIG ANTIAN DB

and AntiangioP+red databases [43].

Here, control sequences were provided using the full set of peptides considered as

negative in AntiangioPred, consisting of the 135 negative peptides extracted from proteins

in the Swiss-Prot database, together with those randomly generated under the same

criteria. In total, 810 control peptide sequences from BIG ANTIAN DB were provided

to SEA. The input sequences included the totality of positive peptides reported in this

database, totaling 202 positive peptides.

Several parameters were taken into account during the enrichment process, and one of

them was establishing the E-value threshold, set at less than or equal to 10. Consequently,

post-analysis, the motifs displaying statistical significance superior to the specified enrich-

ment E-value were acquired. The background model utilized was the Markov model [61],

which is the default for this particular tool. Furthermore, central alignment was employed

for the sequence alignment for site positional diagrams. Finally, motifs that showed sta-
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tistical significance in all three data sets were retained.



Chapter 4

Results and Discussion

4.1 Metadata Networks (METNs)

4.1.1 Database METN

The primary data source for the AAPs was predominantly the SATPdb database [115], fol-

lowed by the Cancer PPD database [116]. These two databases were identified as the most

central nodes, as illustrated in Figure 4.1 A. A total of 209 nodes were interconnected

with the SATPdb, signifying that SATPdb exhibited the highest betweenness centrality

and node degree values, especially when contrasted with Cancer PPD, which displayed

connections with merely 14 nodes. Within the SATPdb repository, the AAPs under

consideration were confined to a subset of 1099 anticancer peptides[25]. This repository

encompassed peptide sequences that were documented to span between 2 to 50 amino

acids in length. In contrast, Cancer PPD was curated manually, drawing data from a

compilation of published research articles, patents, and assorted data sources. Among

the 3491 anticancer peptides cataloged within Cancer PPD, those of specific interest were

of paramount focus [116].

Database MENT proves advantageous when the objective is to conduct searches en-

compassing the most significant databases pertaining to the antiangiogenic activity of

peptides. This resource effectively steers users towards the databases with the highest

frequency of peptide reporting in this context.

4.1.2 Function METN

Function MENTs accentuated the supplementary functionalities linked to the peptides un-

der scrutiny. Predominantly and conspicuously emphasizing the foremost antiangiogenic

activity, which emerged as the most salient and central node, alongside the interconnected

anticancer activity that shared an identical linkage with these 209 nodes. Subsequently,

there was the antitumor activity, displaying connections with 14 peptides. Conclusively,

the functions encompassing drug administration and tumor localization were represented,

31
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each connected to a distinct node.The distribution of these peptides, illustrating the de-

lineated pattern, is visually presented in Figure 4.1 B.

Peptides exhibiting anti-angiogenic activity hold potential applications across various

biomedical research domains, particularly in the context of cancer treatment, as previ-

ously mentioned. As observed within this METN, the correlation between antiangiogenic

peptides and the diverse activities demonstrated can be outlined as follows:

• Anticancer activity: Anticancer activity is closely related to inhibiting angiogenesis

in the context of peptides [117]. Research in anti-angiogenic peptides offers promis-

ing therapeutic approaches to combat cancer by targeting one of the key biological

processes underpinning cancer cell growth and progression. It is clear that a sig-

nificant portion of the PAAs reported in Starpep DB exhibit anticancer properties,

as reflected by the numerous interconnections observed. Within this data set is

the peptide starPep 23641, also known as scospondistatin, which consists of a 19

amino acid sequence: GPWEDCSVSCGGGGGEQLRSR. This peptide is derived

from proteins containing SCO-spondin type I thrombospondin motifs and has been

shown to have the ability to inhibit both endothelial cell proliferation and migration

[118]. Another peptide belonging to this category is TSWSQCSKTCGTGISTRV,

which is composed of 18 amino acids and is also known as Cyrostatin. This par-

ticular peptide is sourced from proteins within the CCN protein family. Through

in vitro studies, it has been observed to possess the capacity to effectively impede

both the proliferation and migration of human umbilical vein endothelial cells[119].

Although only two examples are presented, accompanied by their respective details,

it is clear that many more peptides possess this function.

• Antitumor Activity : Angiogenesis, the process of generating new blood vessels, as-

sumes a critical role in supplying nutrients and oxygen to rapidly proliferating tumor

cells [120]. As a result, the inhibitory effect of AAPs on angiogenesis can moder-

ately curtail the growth and dissemination of tumors. Among these peptides is

the peptide starPep 08183, whose sequence is AAVPIVNLKDELLFPSWEALFS-

GSE, which is composed of 25 amino acids derived from human endostatin. An-

other peptide belonging to this metadata is starPep 11149, with 28 amino acids:

LGQSAASAHHAYIVLAIENSFMTASKKK, derived from lyophilized recombinant
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human endostatin, where the antiangiogenic activity of endostatin is determined by

its N-terminal region [121]. In addition, IVRRADRAAVP is an 11 amino acid pep-

tide identified in StarPep DB as starPep 10474, derived from the amino-terminal

end of one of the most effective negative regulatory proteins in neovascularization,

endostatin. Endostatin shows great potential for the treatment of tumors and dia-

betic retinopathy. However, its short half-life and poor stability have hindered its

widespread use. However, PEG conjugation has failed to provide additional bioac-

tivity to the modified protein [122].

• Drug Delivery Activity: AAPs possess the capacity to serve as carriers for drug

delivery, courtesy of their targeted recognition of angiogenic blood vessels. This

characteristic renders them promising contenders for the advancement of precision-

targeted drug delivery systems [123]. This metadata contains a unique peptide,

the cyclic decapeptide CTTHWGFTLC (starPep 17101), which acts as an inhibitor

of the matrix metalloproteinases MMP-2 and MMP-9. This peptide not only sup-

presses tumor cell and endothelial cell migration in vitro but also inhibits tumor

growth by harboring tumor vasculature in vivo [124].

• Tumor Homing: AAPs can selectively engage with the vascular network of tumors,

thereby presenting themselves as viable contrast agents for enhancing tumor local-

ization through imaging modalities such as Magnetic Resonance Imaging (MRI) or

ultrasound [24]. According to StarPep DB, reference is made to the same peptide

mentioned in the drug delivery activity.

4.1.3 Origin METN

This Origin METN enable the discernment of the provenance of antiangiogenic peptides.

As depicted in Figure 4.2 A , the analysis distinctly highlights the category originating

from synthetic constructs, characterized by a node degree of 5, signifying its intercon-

nection with five nodes. This delineates that five antiangiogenic peptides are derived

from synthetic constructs. Furthermore, it is noteworthy that most of the antiangiogenic

peptides depicted in the figure lack an accompanying metadata node that specifies their

origin.
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Figure 4.1: Metadata networks (METNs) for (A) Database which describes the database
from which the antiangiogenic peptides of StarPep DB have been recovered. The
databases are listed according to their range of betweenness centrality: i) SATDPdb
database and ii) CancerPPDand. Metadata networks (METNs) for (B) Function which
describes the functions associated with antiangiogenic peptides: i) Antiangiogenic, ii) An-
ticancer, iii) Antitumor, iv) Drug delivery and v) Tumor homing. These networks were
visualized in Gephi using Force Atlas layout and edited with Inkscape.

4.1.4 Target METN

The METN Target, akin to its preceding network counterpart, functions as an illustrative

platform for the hierarchical taxonomic categorizations. Specifically, it elucidates the

distinct species or cellular types within which the antiangiogenic potential of peptides

has been assessed. Within Figure 4.2 B, the visualization accentuates the prominence

of three pivotal nodes: pancreatic cancer, Cancer, and skin cancer. Notably, discernible

data pertains to the utilization of these AAPs in combating pancreatic cancer, where a

specific tally of 8 peptides has been identified for this therapeutic intent. Additionally,

the network manifests a peptide intended for general cancer treatment alongside another

designed for addressing skin cancer.

Pancreatic cancer is characterized by its high vascularity, relying on neovasculariza-

tion for its proliferation and dissemination. The potential implementation of antiangio-

genic agents holds promise in addressing this malignancy. Several investigations have

concentrated their efforts in this realm [125]. These antiangiogenic interventions have

demonstrated the capability to impede the progression and dissemination of pancreatic
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cancer, thereby enhancing patient prognoses. This effect is achieved through inhibiting

neovascularization, which is pivotal for the growth of new blood vessels[124]. Among

these peptides is starPep 08183, whose sequence consists of 25 amino acids: AAVPIVN-

LKDELLFPSWEALFSGSE. Also, there is starPep 10026, with the same number of amino

acids: GSEGPLKPGARIFSFDSFDGKDVLRHPT, and starPep 13195 whose amino acid

sequence is TFRAFLSSRLQDLYSIVRRADRAAV. All of them were synthesized from hu-

man endostatin [121].

Figure 4.2: Metadata networks (METNs) for (A) Origin which describes the origin from
which the antiangiogenic peptides, particularly i) Synthetic constructs and Metadata
networks (METNs) for (B) Target which represents the specific target associated with
antiangiogenic peptides: i) Pancreatic cancer, ii) Cancer, and iii)Skin cancer. These
networks were visualized in Gephi using Force Atlas layout and edited with Inkscape.

4.2 Half-Space Proximal Networks (HSPNs)

A total of 176 entities exhibiting a less than 98% similarity were excluded from the

initial set of 209 AAPs retrieved from StarPepDB [26] using a local Smith-Waterman

alignment technique [104]. Before establishing the 176-node HSPNs, a judicious threshold

for similarity was selected. This phase bears significant importance as it delineates the

topological structure and network parameters. Subsequently, pivotal metrics such as

edge quantity, modularity, density, ACC, community count, and singleton count were

scrutinized.

Consequently, the optimal threshold for constructing the HSPN was ascertained based
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on the observed variations in the parameters as mentioned earlier. Thus, the criteria

considered in each parameter and the analysis made to choose the best cut-off point are

better explained below.

• Modularity

To ascertain the construction of a good HSPN, the objective is to maximize the

modularity function. This metric is an effective tool for assessing the quality of

the community partitioning, shedding light on both the precision of delineation

and the count of individual communities. Essentially, modularity quantifies the

proportion of edges that connect nodes within the same community, subtracted by

the anticipated value of such connections in a network possessing identical vertex

degrees and community structure, but with edges randomly distributed [34].

The data illustrated in Figure 4.3 A shows that the initial similarity cutoff values

reflect a relatively modest level. However, notable distinctions emerge: the Eu

metric exhibits the highest modularity values, while the Ch metric registers the

lowest values within this initial range. Upon a comprehensive examination of various

metrics, a general trend materializes: modularity values consistently remain low

within the span of t=0.00 to t=0.50.

Upon closer scrutiny, a pattern emerges wherein modularity demonstrates an upward

trajectory commencing at t=0.50. Remarkably, despite its initially low modularity,

the Ch metric displays the most rapid increase as t escalates. Conversely,So, Eu,

and Ma metrics exhibit akin tendencies, escalating their modularity at a brisker

pace compared to the Bh metric. Lastly, the angular separation metric manifests

the slowest modularity augmentation rate concerning similarity cutoff changes (t).

Consequently, the prudent selection of the modularity parameter is of paramount

significance. An optimal choice safeguards against the emergence of widely dispersed

networks featuring a profusion of communities, some of which might be artifacts

devoid of substantial, informative value.

• Density

This measure delineates the proportion between the count of existing edges within

the network and the theoretical count of all conceivable edges [126]. As per earlier

investigations, it has been established that an inversely proportional correlation

exists between density and the similarity threshold (t) [34]. Applying the refined set
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of optimized features results in decreased density levels. Thus, the consideration of

an optimal density would involve an intermediary value. This approach is adopted to

avoid the loss of valuable network information in the case of excessively low density

or the potential obfuscation of pertinent information in the event of an overly high

density.

The trend of density concerning changes in the similarity cutoff (t) exhibits remark-

able similarity across the various metrics. This trend maintains a near-constant

pattern until reaching t=0.45, after which a gradual reduction becomes evident.

However, As metric departs from this general pattern, displaying a decrease com-

mencing at t of around 0.60, with the reduction occurring more gradually. A dis-

tinctive behavior is notable in the Ch metric case, where density diminution initi-

ates at approximately 0.30, progressing at a notably swifter rate compared to the

other metrics. This density behavior is evidenced in Figure 4.3 B. To achieve the

construction of a precise HSPN, the pursuit of low-density values, around 0.20, is

paramount.

• Average Clustering Coefficient (ACC)

The clustering coefficient is the ability to establish a connection between two nodes

with a common neighbor. The average clustering coefficient (ACC) is a compre-

hensive measure of neighborhood interconnectivity. A specific study demonstrated

that the ACC curve’s apex corresponds to the most favorable clustering outcome.

This pinnacle serves as a dependable indicator for identifying the optimal value of

the threshold parameter (t)[63].

Within the scope of this study, a distinct dichotomy in the behavior of the ACC

parameter is discernible. Specifically, this dichotomy is evident across all metrics

except for the As metric. The ACC remains consistently low across the entire range

of t values for the former group. Conversely, the As metric maintains a similarly

low ACC value until t=0.7. However, as illustrated in Figure 4.3 C, a noteworthy

deviation emerges as the metric’s ACC attains its zenith at t=0.90.

• Communities and singletons (D0 )

The computation of the communities or clusters involved the application of the Lou-

vain method. Subsequently, the tally of singletons, denoted as D0 (nodes possessing

a degree of zero), and the count of singletons GC (nodes disengaged from the gi-
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Figure 4.3: Global network parameters of HSPNs established using various metrics and
similarity cutoff values t. ACC = Average Clustering Coefficient. This figure was created
with Origin and edited with Inkscape

ant component) were computed. This computation served as the basis for selecting

networks featuring the most reasonable values of these parameters. Concerning the

HSPN, evaluations were conducted for two distinct similarity cutoff values: t = 0.00

and the optimal similarity cutoff. The assignment of t = 0.00 implies a scenario

wherein all nodes are interconnected. In essence, the HSPNs possess the minimum

spanning tree as a subgraph; this signifies that neither D0 nor DC persists at this

particular t value. The progressive rise in modularity is concurrent with the reduc-

tion in density, signifying an enhanced resolution of community structures. A low

density network contains many singletons(i.e., unconnected nodes) and is not very

informative [126].

The dynamics of the number of communities and singletons (D0 ) related to the

similarity cutoff exhibit uniform trends across all metrics. A distinctive pattern

emerges, characterized by a substantial surge in both parameters from the thresh-
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old of t = 0.55, with the exception of As metric as observed inFigure 4.3 D, E

. Notably, the behavior of the As distance diverges from this norm, with these pa-

rameters maintaining lower values up until t = 0.8, after which an increase becomes

apparent.

A judicious equilibrium must be sought when determining the optimal value of

t concerning these parameters. This involves identifying a t value that balances

atypical peptides (singletons) and the count of communities. Such a balance is

integral, as reducing network edges leads to an escalation in isolated nodes, thereby

concentrating unique elements within the communities.

The distribution of the communities is visualized more precisely in Figure 4.4,

focusing especially on the Euclidean metric without a cut-off point. In this case,

the HSPN consists of six different clusters, each represented with a different color,

as seen in the image with each cluster isolated on the right side.

In addition, in the development of the HPSN, additional parameters related to the

overall network were determined. These parameters included the measurement of the

graph diameter, which indicates the maximum distance between any pair of nodes within

the network, as seen in Figure 4.3F. Average path length (APL) and average slope were

also evaluated.

Tt was essential to identify points of convergence between these general network pa-

rameters to determine the optimal value of t for each network metric. Initially, a selection

of the best value of t for each parameter was carried out. Several considerations were con-

sidered for this choice, such as low-density networks, ideally with less than 20 clusters,

and a balanced number of singletons, preferably between 15 and 30. In addition, the

corresponding values of ACC and modularity were kept high. The full description of the

HSPN parameters for each metric, including their optimal cut-off values t and no cut-off

point t=0.00, is comprehensively documented in Table 4.1. In total, 12 HSPNs were

meticulously constructed.

• Degree distribution

The probability distribution of k, also known as the degree distribution, has been

calculated for each metric at their respective optimal cut-off points and also without

a cut-off point, as shown in Figure 4.5 . The left side shows the representations
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Figure 4.4: A) Graphical representation of HSPN of Euclidean Metric with t = 0.00
showcasing its respective clusters: i) Cluster 1, ii) Cluster 2, iii) Cluster 3, iv) Cluster
4, v) Cluster 5, vi) Cluster 6. Node colors signify distinct peptide communities, and the
Hub-Bridge centrality value calculated the size of the node. Layout used: Fruchterman-
Reingold[56]. Networks were created with StarPep toolbox [36], visualized in Gephi [87]
and edited with Inkscape

corresponding to t=0.00, while the right side shows the representations for the best

cutoff point.

In the former ( t=0.00), a right-skewed bell-shaped distribution is observed, where

the highest probability is between 5¡k¡15 for all metrics, and in addition, a proba-

bility of 0 is observed for singletons (when k=0). On the other hand, in the plots

with the optimal t-value, a discernible pattern emerges: the degree distribution is

predominantly concentrated among the lowest node degrees.

In this case, the probability of k is significantly higher for singletons compared to

the t=0.00 representations. For example, for So and Bh, the probability of k is

0.28, while for As, it is 0.23. They are followed by Ch with 0.14, Eu with a value

of 0.10 and finally Ma with 0.05. All metrics for the best value of t share that the
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Table 4.1: Global network parameters of HSPNs alongside their optimal t values
accompanied by their respective networks at t = 0.00

No. Metrics Similarity
Cutoff (t)

Edges Modularity Density ACC Clusters
(no D0)

Singletons
(D0)

1 Manhattan
(Ma)

0.00 841 0.349 0.055 0.042 5 2

2 0.60 453 0.469 0.029 0.038 18 9

3 Euclidean
(Eu)

0.00 757 0.378 0.049 0.044 7 1

4 0.60 328 0.543 0.021 0.019 29 19

5 Soergel
(So)

0.00 861 0.334 0.056 0.041 7 1

6 0.60 262 0.553 0.017 0.019 62 51

7 Chebyshev
(Ch)

0.00 1161 0.252 0.075 0.034 7 1

8 0.55 316 0.534 0.021 0.011 34 26

9 Bhattacharyya
(Bh)

0.00 816 0.352 0.053 0.044 7 4

10 0.70 254 0.548 0.016 0.032 62 50

11 Angular
Separation(As)

0.00 1048 0.328 0.068 0.116 6 4

12 0.85 320 0.585 0.021 0.291 55 42

highest concentration of degree distribution occurs at values of k less than about

12. k less than approximately 12. From 12 onwards, the degree distribution decays

completely, again reaching zero probability. Therefore, by focusing exclusively on

the probability distribution parameter of k, differences can be observed between the

HSPNs with and without a cutoff point, as well as differences between each metric.

The selected HSPNs with their best cutoff point and without cutoff point are visually

represented on the Figure 4.6 and Figure 4.7.

4.3 HSPNs Scaffold Extraction

To simplify the data analysis, 16 scaffolds were selected for each of the six metrics, with

the best t and no cutoff point (t=0.00), with two variations in centrality measure, two

types of alignment algorithm and two in r-value. This resulted in a total of 96 scaffolds.

The purpose of this experiment was to facilitate the comparison and analysis of struc-

tural diversity and redundancy between different HSPN representations by simplifying

the number of metrics to work with.

Initially, the metrics were analyzed and evaluated based on the data from the various

HSPN global network parameters and the reports in Section 3.2. It was observed that So
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Figure 4.5: Probability of k or degree distribution of the HSPNs with cutoff t = 0.00
(left) and with the best cutoff t (right). Where A) and B) represent Manhattan metric
for t=0.00 and t= 0.60 respectively, C) and D) represent Euclidean Metric for t=0.00 and
t=0.60 respectively, E) and F) represent Soergel Metric for t=0.00 and t=0.60 respectively,
G) and H) represents Chebyshev Metric for t=0.00 and t=0.55 respectively, I) and J)
represents Bhattacharyya Metric for t=0.00 and t=0.70 respectively, and finally K) and
L) represents Angular Separation Metric for t=0.00 and t=0.85 respectively. This figure
was created with Origin and edited with Inkscape

and Ma showed similarities to each other and also closely resembled Eu. Therefore, only

Eu was considered among the three metrics.

Then, an analysis was performed using Dover Analyzer based on the As, Bh, Ch

and Eu metrics. A total of 8 analyses were carried out using this tool. It is important to

mention that there are differences between the clusters that served as input and differences

between the scaffolds that make up each cluster. For the first, the differences lie in three
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Figure 4.6: Graphical illustration of HSPNs at t = 0.00 (on the left), alongside networks
displaying the optimal t value for each metric (on the right).) Represents Manhattan met-
ric with t=0.00 (B) Represents Manhattan metric with t=0.60,(C) Represents Euclidean
metric with t=0.00 (D)Represents Euclidean metric with t=0.60 (E) Represents Soergel
metric with t=0.00, and (F) Represents Soergel metric with t=0.60. Node colors represent
communities of peptides, and the node size represents the Hub-Bridge centrality value.
Layout used: Fruchterman-Reingold. Networks were created with StarPep toolbox, visu-
alized in Gephi and edited with Inkscape

variations: different measures of centrality, different types of alignment, and different

values of r, and each of them has two variations. The differences for the second were the
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Figure 4.7: Graphical illustration of HSPNs at t = 0.00 (on the left), alongside networks
displaying the optimal t value for each metric (on the right). (A) Represents Cheby-
shev metric with t=0.00 (B) Represents Chebyshev metric with t=0.55,(C) Represents
Bhattacharyya metric with t=0.00 (D)Represents Bhattacharyya metric with t=0.70 (E)
Represents Angular Separation metric with t=0.00, and (F) Represents Angular Separa-
tion metric with t=0.85. Node colors represent communities of peptides, and the node
size represents the Hub-Bridge centrality value. Layout used: Fruchterman-Reingold.
Networks were created with the StarPep toolbox, visualized in Gephi and edited with
Inkscape
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four different metrics with their corresponding best t and no t.

The results were visualized in heat maps for Similarity overlap, Identical Overlap, and

an additional plot comparing all metrics with their cluster numbers and identity threshold.

An example of one of the 8 analyses can be observed in Figure 4.8. A notable observation

is that the heat maps comparing scaffolds were predominantly colored in red, indicating

a high level of similarity between the representations of the scaffolds being compared.

This analysis suggests that in future research focusing on HSPN and AAP, exhaustive

exploration of network topology to determine an optimal similarity threshold (t) may not

be necessary. Rather, a t value of zero appears to suffice.

Moreover, this experiment unveiled another pertinent finding: the Eu and Bh metrics

demonstrate significant similarities between them, with Eu displaying the largest differ-

ences compared to As and Ch. Consequently, in the subsequent sections of this study,

only the metrics of As, Ch, and Eu will be considered, using a cutoff point with a t value

equal to zero.

4.4 Physicochemical Descriptors

Before approaching motif discovery, conducting a detailed analysis of each group was

crucial to considering their structural and physicochemical characteristics, commonly re-

ferred to as descriptors. By examining the disparities between groups based on these

global peptide descriptors, we can identify the key parameters associated with each met-

ric, as summarized in Table 4.2, which presents the average of each parameter for each

metric. This comparative analysis sheds light on several significant observations.

For the As metric, Cluster 2 presented peptides with the longest sequence length,

followed by Cluster 1, while Cluster 6 exhibited the shortest length. As for the net

charge, Cluster 1 was the only cluster with negative values. Cluster 3 showed the opposite

trend, with the highest positive charge, and the other clusters oscillated in similar positive

ranges between 0.5 and 1.5. This observation is consistent because antiangiogenic peptides

usually have a net positive charge, facilitating interaction with cell membranes as they

contain many anionic phospholipids [78]. In relation to the isoelectric point, relative

homogeneity is observed between each group, with Group 3 having the highest value for

this parameter, 10.4. However, the ranges for this parameter oscillate between 6.5 and

8.5 for the rest of the clusters. Regarding molecular weight, Clusters 3, 4, 5, and 6 have
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Figure 4.8: Representation of parameters considered for analyzing scaffolds extraction in
Dover Analyzer. A) Similarity overlap, B) Identical Overlap, C) Diversity Ratio. Created
with OriginPro2023[77] and edited with Inkscape.

very similar values, with Cluster 2 having the highest value.

The highest Boman index corresponds to Cluster 3, which agrees with the average

hydrophilicity since both parameters are proportionally related. As for the aliphatic index,

the lowest is for Cluster 3, and the highest is for Cluster 2. This parameter, associated with

the relative volume occupied by the aliphatic side chains, is considered a positive factor for

increasing the thermostability of the peptides. In contrast, the instability index, inversely

proportional to the aliphatic index, has the highest value in Cluster 3. This information on

physicochemical parameters provides insights into similarities and communities within the

chemical space. Apparently, certain clusters may appear similar, but a closer analysis of
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Table 4.2: Averages of the descriptors calculated for the HSPNs obtained from As, Ch
and Eu metrics using StarPep toolbox.

Metric C Length
Net

Charge
Iso.
Point

Mol.
Weight

Boman
Index

Avg.
Hydr.

Alip.
Index

Inst.
Index

Avg.
Gravy

1 22.903 -0.323 6.604 2547.484 1.459 0.892 96.071 46.885 -0.151
2 24.353 1.706 9.080 2756.601 2.233 0.935 83.838 45.539 -0.441
3 18.448 4.552 10.384 2170.194 4.718 1.051 18.3766 69.984 -1.771
4 18.922 0.882 8.174 1999.703 1.840 0.893 49.121 59.924 -0.465

As

5 16.875 0.937 8.557 1978.488 2.327 0.931 61.363 42.977 -0.796
1 16.233 0.033 7.077 1782.121 1.249 0.877 72.734 55.609 -0.095
2 17.869 2.130 9.400 2062.737 2.796 0.961 66.617 42.464 -0.689
3 18.900 6.300 11.616 2229.473 5.172 1.062 17.560 96.745 -1.901
4 24.440 0.960 8.304 2679.371 2.464 0.931 36.058 64.396 -0.798
5 20.103 0.718 7.969 2338.203 1.926 0.914 89.789 39.338 -0.389
6 15.000 1.100 8.233 1685.515 1.662 0.875 46.981 31.811 -0.362
7 21.111 -0.111 7.271 2257.266 0.716 0.839 91.368 51.170 0.084

Ch

8 18.364 -0.636 6.293 2050.198 2.498 0.945 57.889 32.591 -0.889
1 28.333 0.667 8.215 3135.529 2.011 0.908 57.955 57.012 -0.524
2 19.371 4.771 10.780 2262.840 4.370 1.032 25.642 71.150 -1.536
3 17.953 0.046 6.883 1944.575 1.077 0.861 75.151 44.635 0.018
4 14.400 -0.429 6.978 1634.433 2.465 0.943 51.787 47.538 -0.918
5 16.250 1.062 8.680 1876.940 0.812 0.839 110.096 41.951 0.338

Eu

6 22.130 1.869 9.051 2539.277 2.267 0.933 92.430 52.552 -0.499

their chemical properties reveals significant differences, thus justifying their classification

as separate clusters Figure 4.9

In the examination of descriptors for Metric Ch, notable variations emerge (Figure

4.10), particularly in the context of peptide chain lengths across clusters. Cluster 4 stands

out with the most extended peptide chains, while Cluster 6 exhibits the shortest ones.

Regarding net charge, three distinct cases warrant attention: Cluster 1’s charge hovers

close to the null boundary but is not exactly 0, whereas Clusters 7 and 8 present negative

values. Cluster 3 boasts the highest isoelectric point, a value directly proportional to

the net charge. The isoelectric point represents the pH at which the net charge of a

protein becomes zero. Moreover, Cluster 4 claims the highest molecular weight among

the clusters.

Assessing thermostability through the aliphatic index reveals that Cluster 7 exhibits

superior stability. The Grand Average of the Hydropathicity Index (Gravy), along with

the Average Hydrophilicity, predicts the hydrophobicity and hydrophilicity of the pep-

tides. Notably, all clusters, except Cluster 7, demonstrate a negative GRAVY value,



4.4. Physicochemical Descriptors 48

Figure 4.9: Representation of the average values of various molecular descriptors com-
puted for peptides within the clusters of the Angular Separation Metric in the HSPN,
where no cutoff is applied using StarPep toolbox. Each color represents a different clus-
ter. This figure was created with OriginPro2023 and edited with Inkscape

signifying a hydrophilic nature. This aligns with the hydrophilicity assessment, where

Cluster 7 emerges as the most hydrophobic and the least hydrophilic.

Examining the Boman index, Cluster 7 boasts the lowest value, while Cluster 3 has the

highest, establishing an inverse relationship with both the Aliphatic Index and Average

Hydrophilicity. Finally, the dataset with the lowest Instability Index is Cluster 6, con-

trasting with Cluster 3, which presents the highest instability index among the clusters.

Similar trends are observed in line with the analogous analysis of the Eu metric,

mirroring the approaches taken for As and Ch (Figure 4.11). Cluster 1 stands out
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Figure 4.10: Representation of the average values of various molecular descriptors com-
puted for peptides within the clusters of the Chebyshev Metric in the HSPN, where no
cutoff is applied using StarPep toolbox. Each color represents a different cluster. This
figure was created with OriginPro2023[77] and edited with Inkscape[72]

for having peptides with the lengthiest amino acid chains. Turning to net charge, an

interesting observation is the prevalence of negative charges in Cluster 3. Notably, the

isoelectric point follows a similar pattern among specific clusters, specifically Cluster 3

and others, drawing attention due to their uniformly low values.

Examining molecular weight, Cluster 1 peptides exhibit the highest values, indicat-

ing a distinctive characteristic within this cluster. The Boman Index reaches its lowest

values in Clusters 3 and 5, which interestingly are the only sets featuring positive val-

ues for GRAVY. Furthermore, Clusters 3 and 5 also boast the lowest values for Average
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Figure 4.11: Representation of the average values of various molecular descriptors com-
puted for peptides within the clusters of the Euclidean Metric in the HSPN, where no
cutoff is applied using StarPep toolbox. Each color represents a different cluster. This
figure was created with OriginPro2023 and edited with Inkscape

Hydrophilicity, suggesting their designation as the most hydrophobic, while Cluster 2

emerges as the most hydrophilic.

The Aliphatic Index, with its highest value in Cluster 5, implies superior thermal sta-

bility for this cluster, a finding consistent with the comparison to the instability index,

which highlights Cluster 2 as the most unstable among the groups. These considerations

provide insights into the distinct biochemical characteristics and potential functional im-

plications of the peptide clusters within the context of the Eu metric

Significant variations were identified in each metric and cluster analyzed. For example,
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it was observed that peptide length tends to be longer in Eu compared to Ch and As.

The length of peptides may influence their ability to interact with proteins and their

structural stability. Longer peptides may have more potential binding sites and more

stable secondary structures, which could increase their affinity for target proteins and their

resistance to adverse environmental conditions. In contrast, shorter peptides may have

more specific but less extensive interactions, and more flexible or disordered structures,

which may affect their stability and susceptibility to degradation.

As for the net charge, a wide variability was recorded, with some clusters exhibiting

positive, negative, or near-zero net charges. The Ch metric showed greater variability

in net charges, with some clusters with more prominent negative values. About the

isoelectric point, it was observed that some clusters presented higher isoelectric points,

indicating a higher propensity to positive charges. In comparison, others showed lower

points, suggesting a tendency to negative charges. In addition, differences in molecular

weights between clusters were detected, which may influence their bioavailability and abil-

ity to cross cell membranes. The Boman index variability suggests different antimicrobial

activity levels among the clusters.

Also, the average hydrophilicity and aliphatic index showed diversity, which may af-

fect the solubility and structural stability of the peptides. This analysis provides detailed

insight into the physiochemical properties of peptides in different metric contexts, essen-

tial to better understand their structure, function, and potential applications in various

biomedical and therapeutic areas. Finally, variability in instability index values was ob-

served, which may indicate differences in the structural and biological stability of the

peptides, with a higher index associated with greater susceptibility to enzymatic degra-

dation.

After examining the descriptors overall for each metric, rather than analyzing them by

cluster, the results reveal remarkable consistency among the distance metrics employed in

the analysis. Minimal variability is observed between the values of each metric, suggesting

that they provide similar insight into the physicochemical descriptors. Therefore, it can

be concluded that the trend in relation to the descriptors is conserved across all metrics

studied (Figure 4.12).
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Figure 4.12: Average of the physicochemical descriptors of the Angular Separation,
Chebyshev and Euclidean metrics. This figure was created with OriginPro2023 and edited
with Inkscape

4.5 Motif Discovery

After completing the community analysis for each metric, the corresponding motif set

was identified using MEME Suite’s STREME. STREME has previously been reported

to be the most accurate and sensitive algorithm among its state-of-the-art competing

partners for motif discovery [127]. STREME shows an advantage over previously reported

algorithms [128, 129] as STREME uses a position weighting matrix (PWM) to efficiently

count position matches of a candidate motif against a Markov model derived from the

input sequences.

In this process, STREME generated a control set by combining the input sequences
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while preserving the lower-order statistics. In this way, motif discovery focused on the

most relevant motifs. Statistical analysis was performed by comparing the occurrence of

these motifs in the primary sequences with that of the control set.

The input sequences consisted of the AAP sequences from each community for each

metric, with a total of 20 sets of sequences entered into STREME. Thirty motifs were

identified for the Eu metric with t = 0.00, 40 motifs for Ch with t = 0.00, and 28 motifs

for As with t = 0.00, with a total of 98 motifs discovered. Subsequently, an intermetric

analysis of the motifs was carried out, eliminating duplicates and condensing those that

incorporated some motifs to others. As a result of this analysis, 74 unique motifs were

obtained (Table 4.3)

Importantly, only the GRG fragment was repeated among the metrics in As, Ch and

Eu. The identification of a motif in all three metrics increases confidence in its significance,

since the consistency in the results between different metrics suggests a robustness in its

presence, which reinforces its credibility. This consistency indicates that the motif is

independent of the method of analysis used, which increases confidence in its significance.

Likewise, the motifs GVQTR and QKR were repeated in both Ch and As metrics. Several

similar, although not identical, motifs were identified. For example, the PEAP motif was

found in the Eu metric, while PEAPF was in the As metric. Similarly, the LKK motif

was found in the Eu metric, while LKKF was observed in the Ch metric.

Three motifs were identified without regard to community diversity, using the 209

AAPs as input sequences. The StarPep DB fasta file was extracted and used as input file

in STREME. These motifs were referred to as HSPN anti-angiogenic motifs.(Table 4.4)

In previous studies documented in the literature, certain motifs have been identified. In

particular, AntiAngioPred reported the discovery of 22 motifs using MERCI software[25].

This method is based on the condition that the motif must be present in at least 10% of

the total peptides in the positive data set, and its maximum length is five spaces. Other

work has also reported the discovery of 10 additional motifs, which are listed in Table

4.5

Among the motifs reported in the literature, those discovered using the metrics and

motifs found without considering community diversity, there is a single match of a three-

peptide fragment. The motif reported is NGR [112] , while the one discovered in the Eu

metric is also NGRE.
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Table 4.3: Motifs identified by STREME utilizing community data from HSPNs
generated using Euclidean (Eu), Chebyshev (Ch), and Angular Separation (As) metrics

without applying a cutoff.

No. Metric Motif Cluster
Cluster
Size

Matches
(+) Seq.

Matches
(-) Seq

Sites
(%)

Score
Match

Threshold
1 CSSR 6 0 25.00 0.011 0.935
2 ETWRTE

1 24
4 0 16.70 0.055 3.254

3 QRPS 2 35 14 0 40.00 0.000 6.785
4 RTR 11 0 25.60 0.000 7.645
5 PFL 14 1 32.60 0.000 6.809
6 RDI

3 43
5 0 11.60 0.028 9.722

7 TGAL 10 0 28.60 0.000 1.212
8 EEDP 6 0 17.10 0.012 9.615
9 HRI 6 0 17.10 0.012 9.066
10 KNWP

4 35

5 0 14.30 0.027 10.190
11 TVT 6 0 37.50 0.009 7.257
12 FST 3 0 18.80 0.110 11.252
13 IKRY

5 16
3 0 18.80 0.110 1.000

14

Eu

VRRA 6 23 7 0 30.40 0.005 8.962
15 STRI 8 0 26.70 0.002 10.703
16 WSSCS

1 30
8 0 26.70 0.002 5.064

17 ING 7 0 30.40 0.005 7.979
18 ADRAA

2 23
4 0 17.40 0.054 1.717

19 PSDK 14 0 70.00 0.000 7.208
20 RRP

3 20
7 1 35.00 0.046 6.939

21 APC 4 25 7 1 28.00 0.049 7.972
22 APF 13 0 33.30 0.000 7.180
23 GRELCL 11 0 28.20 0.000 10.134
24 IIEK

5 39
11 0 28.20 0.000 7.272

25 FGN 3 0 30.00 0.110 4.238
26 ISNA 3 0 30.00 0.110 12.109
27 GCG 2 0 20.00 0.240 9.018
28 GYCS 2 0 20.00 0.240 11.078
29 HGKG

6 10

2 0 20.00 0.240 13.746
30 GAR 7 0 38.90 0.004 3.305
31 ATC 6 0 33.30 0.010 8.374
32 LHLV 5 0 27.80 0.023 10.337
33 EGL

7 18

7 1 38.90 0.044 7.152
34 TGKI 3 1 27.30 0.110 1.866
35 HPH 5 1 45.50 0.160 3.685
36 PEN 5 0 45.50 0.160 9.291
37

Ch

DDDD

8 11

1 0 9.10 0.500 14.139
38 As SPT 14 0 45.20 0.000 6.270
39 KVI

1 31
14 1 45.20 0.000 6.503

40 LAS 11 1 64.70 0.001 6.234
41 SLD 7 0 41.20 0.004 6.853
42 IVL 5 0 29.40 0.022 4.749
43 TFE 5 0 29.40 0.022 11.016
44 GRK

2 17

7 1 41.20 0.043 7.247
45 WSDC 3 29 19 0 65.50 0.000 6.965
46 CSASCG 4 51 19 0 37.30 0.500 1.051
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No. Metric Motif Cluster
Cluster
Size

Matches
(+) Seq.

Matches
(-) Seq

Sites
(%)

Score
Match

Threshold
47 HGHK 6 0 37.50 0.009 8.869
48 NPR 4 0 25.00 0.051 9.797
49 KIKSST 2 0 12.50 0.240 21.045
50 RSRQVR

5 16

2 0 12.50 0.240 18.755
51 EVCH 8 0 25.00 0.002 11.110
52 MPF 8 0 25.00 0.002 10.129
53 RIST 6 0 18.80 0.012 4.826
54 NDYSYW

6 32

4 0 12.50 0.057 17.595
Eu 2 35 19 0 54.30 0.000 8.872
As 3 29 18 0 62.10 0.000 7.261
Ch 3 20 14 0 70.00 0.000 1.897

55

Ch

[R][KC]GRG[T]

2 23 5 0 21.70 0.025 2.548
Ch 4 25 13 0 52.00 0.000 8.252

56
As

GVQTR
4 51 15 0 29.40 0.500 8.329

Eu 6 23 9 0 39.10 0.001 8.663
57

As
PEAP[F]

1 31 5 0 16.10 0.026 5.429
Ch 2 23 11 0 47.80 0.000 5.965

58
As

QKR
3 29 4 0 13.80 0.056 9.558

Eu 1 24 12 0 50.00 0.000 7.521
59

Ch
SPL[S]

8 11 3 0 27.30 0.110 8.034
Eu 5 16 8 0 50.00 0.001 6.995

60
Ch

LKK[F]
1 30 10 0 33.30 0.000 7.845
3 43 14 0 32.60 0.000 5.843

61 Eu CGG[G][V]
1 24 7 0 29.20 0.005 3.737

Ch 4 25 22 2 88.00 0.000 5.914
As 4 51 19 0 37.30 0.220 5.02962
Eu

[SG]PW[E][R][C]
1 24 5 0 20.80 0.025 1.481

Ch 5 39 10 0 25.60 0.001 8.041
63

Eu
VQK[I]

6 26 13 0 56.50 0.000 7.720
2 35 16 0 45.70 0.000 11.578

64 Eu WSPCS[V]
3 43 14 0 32.60 0.000 8.143

Eu 5 16 9 0 56.30 0.000 7.263
Ch 1 30 3 0 10.00 0.120 0.70765
As

YCNI[N][Z]
6 32 8 0 25.00 0.002 10.281

As 3 29 12 3 41.40 0.051 7.714
66

Eu
[D][K]PRR

2 35 8 0 22.90 0.003 7.821
Ch 3 20 10 1 50.00 0.004 7.494

67
Eu

KRRR[E][K]
2 35 8 0 22.90 0.003 5.480

Eu 4 35 5 0 14.30 0.027 8.840
68

Ch
[N][P]ASP

5 39 5 0 12.80 0.027 8.455
Eu 6 23 12 0 52.20 0.000 9.346

69
As

[K][E][I]CLD
1 31 9 0 29.00 0.001 6.843

70 Eu NGRE 6 23 9 0 39.10 0.001 10.905
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No. Metric Motif Cluster
Cluster
Size

Matches
(+) Seq.

Matches
(-) Seq

Sites
(%)

Score
Match

Threshold
1 30 6 0 20.00 0.012 1.717

71 Ch [V]TCG[D][G][V]
4 25 14 0 56.00 0.000 8.624
4 25 12 1 48.00 0.001 8.110

Ch
2 23 7 0 30.40 0.005 1.13572

As
[P][W][S]QCS[V]

5 16 6 0 37.50 0.009 9.738
As 1 31 9 0 29.00 0.001 5.230

73
Ch

[S][P]SGG[P]
7 18 4 0 22.20 0.052 2.818

Ch 3 20 10 0 50.00 0.000 8.238
74

As
[R]EKQR

3 29 11 0 37.90 0.000 7.032

Table 4.4: Motifs discovered by STREME regardless of community diversity.

No. Motif
Matches
(+) Seq.

Matches
(-) Seq

Sites
(%)

Score P-Value
Match

Threshold
1 TCGGG 33 1 17.2 2.0E-09 0.16 8.618
2 WSPCS 32 0 16.3 2.3E-10 0.29 7.856
3 REKQRP 16 0 8.6 1.5E-05 0.29 15.055

To conclude this stage, a single list of non-redundant anti-angiogenic motifs was cre-

ated, where motifs discovered using the metrics, those found using all StarPep DB AAPs,

and motifs from the literature were merged in preparation for further enrichment. In

total, the list comprises 105 motifs.

4.6 Motif Enrichment

The enrichment process allows discerning the most relevant and reliable motifs discovered,

ensuring that the occurrences within the chemical space of the anti-angiogenic peptides

have true functional and potential significance.

The validation or enrichment process using the SEA algorithm involved two stages. To

ensure the reliability of the validation process, the external data set used was subjected

to an overlap analysis to obtain non-redundant data and allow a more fruitful analysis. In

the first stage, it was carried out with E-values ≤ 10, enriching 82 motifs. Subsequently,

the validation process was refined, starting from the 82 previously enriched motifs, by

another processing in SEA, this time considering E-values ≤ 0.01, which finally resulted

in 53 enriched motifs. By comparing the occurrence of motifs in the primary sequences

with those of the control set, SEA provides information on the enrichment and significance

of motifs, which can be observed in Table 4.6.
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Table 4.5: . Motifs reported in the literature for antiangiogenic peptides. ‘X’ represents
a gap.

No. Year Motif Reference
1 1999 HWGF [106]
2 2023 HGR [107]
3 HHQK
4

2008
LVFF

[108]

5 2013 RGD [109]
6 2009 RTS [110]
7 2003 YH [111]
8 2006 NGR [112]
9 2022 IQ [113]
10 2018 NITY [114]
11 CGXG
12 TC
13 SC
14 SPXS
15 WXSXC
16 WSXC
17 SXTXC
18 SXCXS
19 CSXT
20 CXSXT
21 TXC
22 SXC
23 CXGXG
24 TR
25 SXTXG
26 SXPXS
27 SP
28 RT
29 PXW
30 PXC
31 CXN
32

2015

CG

[25]
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Table 4.6: Motif enrichment by SEA - Second stage

No. Motif P-Value E-value TP
Enrichment

Ratio
Score

Threshold
1 TC 6.52E-23 5.35E-21 63 / 182 (34.6%) 7.98 2.85
2 WSPCSV 1.04E-21 8.52E-20 30 / 182 (16.5%) 123.66 5.75
3 PWSQCSV 5.20E-21 4.27E-19 29 / 182 (15.9%) 119.67 3.14
4 WSSCS 2.60E-20 2.14E-18 28 / 182 (15.4%) 115.68 9.34
5 CSASCG 1.63E-17 1.34E-15 24 / 182 (13.2%) 99.73 12.18
6 RTR 4.23E-17 3.47E-15 65 / 182 (35.7%) 4.88 4.2
7 SC 2.92E-16 2.40E-14 46 / 182 (25.3%) 7.21 2.85
8 WSXC 3.30E-16 2.71E-14 24 / 182 (13.2%) 49.86 9.11
9 XPWERC 5.71E-16 4.68E-14 32 / 182 (17.6%) 14.63 1.73
10 CSSR 8.64E-16 7.08E-14 43 / 182 (23.6%) 7.63 2.44
11 PXC 1.12E-15 9.19E-14 100 / 182 (54.9%) 3.03 1.67
12 WXSXC 1.31E-15 1.07E-13 53 / 182 (29.1%) 5.52 0.69
13 SXC 2.92E-15 2.39E-13 97 / 182 (53.3%) 3.03 1.67
14 CGXG 9.01E-15 7.39E-13 27 / 182 (14.8%) 18.62 7.61
15 WSDC 2.52E-14 2.07E-12 24 / 182 (13.2%) 24.93 6.06
16 CXN 3.07E-14 2.51E-12 81 / 182 (44.5%) 3.27 2.22
17 VTCGDGV 5.14E-14 4.21E-12 19 / 182 (10.4%) 79.78 6.59
18 SPSGGP 1.43E-13 1.17E-11 24 / 182 (13.2%) 19.95 2.34
19 REKQR 2.57E-13 2.11E-11 18 / 182 (9.9%) 75.79 6.55
20 GCG 2.15E-12 1.76E-10 26 / 182 (14.3%) 11.97 6.36
21 CGGGV 2.20E-12 1.80E-10 21 / 182 (11.5%) 21.94 6.36
22 HGKG 3.35E-12 2.75E-10 56 / 182 (30.8%) 3.85 1.52
23 CXGXG 4.83E-12 3.96E-10 35 / 182 (19.2%) 6.53 5.28
24 SXTXG 9.65E-12 7.91E-10 20 / 182 (11.0%) 20.94 6.18
25 SP 1.38E-11 1.13E-09 39 / 182 (21.4%) 5.32 8.19
26 QRPS 4.69E-11 3.85E-09 20 / 182 (11.0%) 16.75 3.01
27 ATC 4.21E-10 3.45E-08 61 / 182 (33.5%) 3.02 0.09
28 SPXS 1.56E-09 1.28E-07 49 / 182 (26.9%) 3.38 4.02
29 CSXT 2.46E-09 2.02E-07 53 / 182 (29.1%) 3.12 0.52
30 GYCS 3.18E-09 2.61E-07 22 / 182 (12.1%) 8.34 3.38
31 SXTXC 3.18E-09 2.61E-07 22 / 182 (12.1%) 8.34 5.99
32 SPLS 3.59E-09 2.95E-07 26 / 182 (14.3%) 6.34 2.55
33 SXCXS 4.81E-09 3.94E-07 27 / 182 (14.8%) 5.88 5.58
34 CG 7.62E-09 6.25E-07 41 / 182 (22.5%) 3.64 3.23
35 SPT 8.84E-09 7.25E-07 46 / 182 (25.3%) 3.29 4.48
36 APC 1.24E-08 1.01E-06 39 / 182 (21.4%) 3.71 3.89
37 DKPRR 3.45E-08 2.83E-06 24 / 182 (13.2%) 5.87 0
38 YCNINZ 5.91E-08 4.85E-06 14 / 182 (7.7%) 14.96 2.28
39 PXW 1.20E-07 9.84E-06 29 / 182 (15.9%) 4.27 3.81
40 TXC 2.37E-07 1.94E-05 37 / 182 (20.3%) 3.3 3.14
41 GVQTR 3.69E-07 3.03E-05 16 / 182 (8.8%) 8.48 5.33
42 PSDK 1.04E-06 8.52E-05 22 / 182 (12.1%) 4.83 2.81
43 QKR 1.25E-06 1.03E-04 41 / 182 (22.5%) 2.79 4.43
44 RIST 1.39E-06 1.14E-04 49 / 182 (26.9%) 2.49 0.93
45 CXSXT 1.57E-06 1.29E-04 44 / 182 (24.2%) 2.64 1.2
46 RRP 3.26E-06 2.67E-04 12 / 182 (6.6%) 10.37 6.7
47 RT 3.41E-06 2.80E-04 35 / 182 (19.2%) 2.93 2.39
48 RTS 4.30E-06 3.53E-04 16 / 182 (8.8%) 6.16 5.43
49 SXPXS 4.48E-06 3.67E-04 10 / 182 (5.5%) 14.63 7.74
50 ETWRTE 1.59E-05 1.30E-03 10 / 182 (5.5%) 10.97 2.91
51 KNWP 2.04E-05 1.67E-03 41 / 182 (22.5%) 2.39 0.89
52 SLD 6.40E-05 5.25E-03 13 / 182 (7.1%) 5.58 5.21
53 RXGRGT 8.29E-05 6.80E-03 15 / 182 (8.2%) 4.56 3.89
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Identifying novel anti-angiogenic peptide motifs through computational tools provides

a solid foundation for developing more precise and targeted cancer therapies. These pep-

tides can selectively target angiogenic pathways that promote tumor growth, potentially

limiting vascularization and nutrient delivery to cancer cells. Diversifying anti-angiogenic

peptide motifs could help overcome the drug resistance observed in some cancer treat-

ments. By targeting multiple checkpoints in angiogenesis, these peptides could be less

likely to generate resistance from cancer cells. The ability to identify and use different

motifs of anti-angiogenic peptides may pave the way for more personalized treatments

tailored to the specific characteristics of each cancer type and patient.

A comparison of the motifs discovered and validated with the scientific literature was

carried out. Among them, the RTS motif stands out with an E-value of 0.000353, being

one of the highest statistically among the validated ones, which positions it as one of the

most significant anti-angiogenic motifs.

RTS disintegrins, present in snake venom, have demonstrated their ability to specifi-

cally disrupt the interaction between integrin α1β1 and collagens IV and I in vitro, leading

to inhibition of angiogenesis in vivo. Extensive research on these snake venom disintegrins

reveals their selectivity to block α1β1 integrin function in laboratory settings and living

organisms, making them promising candidates for antiangiogenic drugs [130].

The therapeutic potential of snake venom disintegrins, including RTS, has been high-

lighted in the blockade of specific integrin receptors involved in tumor neovascularization.

Selective inhibition of α1β1 integrin function by integrin-targeted disintegrins such as

α5β1, αvβ5 and αvβ3, all containing the RGD motif, has been studied. The use of syn-

thetic peptides and disintegrins, together with recombinant α1β1 integrin-specific ligands,

such as jerdostatin, opens new possibilities to explore KTS/RTS disintegrins in various

applications [131]. The importance of these findings is confirmed when considering alter-

native cancer therapies with antiangiogenic peptides.

In addition, another important motif is CG with an E-value of 0.000000261. This

motif is present in DNA rich in unmethylated CpG motifs and plays a crucial role in

facilitating the induction of immune responses against co-administered antigens. CpG

motifs, being free of methylation, are recognized by the immune system and trigger robust

responses against foreign agents. For this reason, CpGs are considered among the most

promising adjuvants to date for enhancing the efficacy of immunotherapeutic interventions
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and vaccine development. Their ability to stimulate significant immune responses makes

them crucial components in formulating therapeutic and preventive strategies against

infectious diseases and other immune-related disorders [132].

On the other hand, the WSPCSV motif (E-value: 8.52E-20 )has emerged as a promi-

nent element in the analysis of the humoral immune response to TRAP (Thrombospondin-

Related Protein). It is also one of the motifs enriched in this section. This motif is shared

between TRAP and thrombospondin and other proteins that exhibit cell adhesion prop-

erties, such as propidin. In addition, the presence of these motifs has been observed in

proteins of sporozoites of different Plasmodium species and in the cytoplasmic protein

HL6 of the parasite Eimenriatenella [133].

The remarkable conservation of the WSPCSV motif in the Trap gene of several TRAP

isolates suggests that it plays a crucial functional role [133]. Given its presence in pro-

teins associated with cell adhesion and its conservation across diverse species, including

parasites, it is likely that this motif is involved in cell interaction and other biological

activities essential for the function and pathogenicity of these organisms [133].

The PXW motif, enriched by our method with an E-value of 0.00000984 is present

in the C-terminal domain (HP35) of chicken villin, highlighted by the sequence Pro62-

Xxx63-Trp64-Lys65. It has been observed that the arrangement of Trp64 on the side

chains of Pro62 and Lys65 is essential for the interaction with F-actin and the structural

stability of HP. The conservation of this sequence suggests its importance in the proper

folding of the C-terminal domain, with Pro62 as a crucial requirement. These Pro-Trp

interactions are fundamental to the structure and function of chicken villin [134].

The SPXS motif with a E-value of 0.000000128, is present in the intracellular region of

LRP6/5, is critical for Wnt/b-catenin signaling. Phosphorylation of the PPPSPxS motifs

in this region inhibits GSK3b, a crucial step in the Wnt signaling pathway. Synthetic

peptides containing this motif inhibit GSK3b in vitro when phosphorylated. The intra-

cellular region of LRP6/5 acts as a direct inhibitor of GSK3b by recruiting and inhibiting

it, suggesting a novel activation mechanism in this signaling pathway. Experiments with

LRP6/5 mutants confirm the importance of the SPxS motif in Wnt/b-catenin signal trans-

duction. In summary, the SPxS motif in the intracellular region of LRP6/5 is crucial in

regulating the Wnt/b-catenin signaling pathway by specifically inhibiting GSK3b activ-

ity[135].
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The 53 motifs identified mark a significant advance in preparing future pharmacological

studies focused on peptides with antiangiogenic properties. However, it is worth noting

that motifs with a higher E-value are statistically more significant. Among them are:

PSDK, QKR, RIST, CXSXT, RRP, RT, RTS, SXPXS, ETWRTE, KNWP, SLD, and

RXGRGT. These motifs, having a higher E-value, suggest a higher probability of random

sequence occurrence, potentially making them more statistically and biologically relevant

for future research and pharmacological applications in angiogenesis inhibition.



Chapter 5

Conclusions

5.1 Conclusions

The research has provided insightful knowledge that enriches our understanding of an-

tiangiogenic peptides by creatiating of METNs. Special attention has been paid to the

main databases from which these peptides originate, SATDPdb being the most prominent.

In addition, an exhaustive evaluation of their functionalities has been carried out, high-

lighting their antiangiogenic activity and their connection with antitumor and anticancer

functions. Likewise, the origin of these peptides has been studied in depth, observing that

most of them come from synthetic constructs.

Effective chemical space representation of the 209 stored StarPep DB AAPs was

achieved by constructing HSPNs. Sixteen HSPNs were generated for each metric, re-

sulting in a complete set of 96 HSPNs. For ease of visualization and analysis, two HSPNs

per metric were selected: one corresponding to the optimal cutoff point and one without

a cutoff point, totaling 12 visualizations. These provide a representative and detailed per-

spective of the chemical space explored by the AAPs. For a more accurate identification

of representative peptides, the use of HB centrality is recommended. After analysis of the

global network parameters and scaffold analysis with Dover Analyzer, it was determined

that the As, Ch and Eu metrics best represent the set of AAPs. Furthermore, it was

highlighted that, in terms of representation, there are no significant differences between

the optimal cut-off points and no cut-off points for each metric, evidencing the similarity

in the information provided by both.

A thorough analysis of structural and physicochemical descriptors of As, Ch, and

Eu metrics highlighted distinctive antiangiogenic peptides (AAPs) patterns, providing

detailed insight into the biochemical diversity among clusters and their potential relevance

in therapeutic applications.

Using the most representative HSPNs allowed the discovery and enrichment of motifs

in antiangiogenic peptides (AAPs). Through the STREME algorithm, 74 unique motifs

were identified, which were complemented by 32 motifs previously reported in the lit-

62
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erature and validated and enriched through the SEA algorithm, resulting in 82 motifs

initially enriched using the AntiangioPred and BIG ANTIAN DB databases. Ultimately,

through reverse validation, 53 potential antiangiogenic motifs are reported. These identi-

fied motifs provide valuable information, contributing significantly to the understanding

and discovery of AAPs, and establishing solid foundations for alternative cancer therapies

by inhibiting angiogenesis in tumors.

It is suggested that further research should delve deeper into the relationship between

the identified motifs and the three-dimensional structure of peptides, using techniques

such as docking or molecular dynamics simulation. This would allow a more complete

understanding of how motifs fold and adapt in specific biological contexts, thus improving

the accuracy of biological activity predictions and facilitating the rational design of new

peptides with therapeutic applications in cancer and other angiogenesis-related diseases.
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(99) Blöcker, C.; Nieves, J. C.; Rosvall, M. Applied Network Science 2022, 7, DOI:

10.1007/s41109-022-00477-9.

https://doi.org/10.1126/sciadv.1602548
https://doi.org/10.1126/sciadv.1602548
https://doi.org/10.1007/s41109-022-00477-9


REFERENCES 70

(100) Shimagaki, K.; Barton, J. P. 2023, 107, 1–14.

(101) Fruchterman, T. M. J.; Reingold, E. M. Force-Directed Placement, in: Software-

Practice and Experience 1991, 21, 1129–1164.

(102) Ortega, J. M. E.; Eballe, R. G. Advances and Applications in Discrete Mathematics

2022, 31, 13–33.

(103) Needleman, S. B.; Wunsch, C. D. Journal of Molecular Biology 1970, 48, 443–453.

(104) Xia, Z.; Cui, Y.; Zhang, A.; Tang, T.; Peng, L.; Huang, C.; Yang, C.; Liao, X.

Interdisciplinary Sciences – Computational Life Sciences 2022, 14, 1–14.

(105) Aguilera-Mendoza, L.; Marrero-Ponce, Y.; Tellez-Ibarra, R.; Llorente-Quesada,

M. T.; Salgado, J.; Barigye, S. J.; Liu, J. Bioinformatics 2015, 31, 2553–2559.

(106) Koivunen, E.; Arap, W.; Rajotte, D.; Lahdenranta, J.; Pasqualini, R. Journal of

Nuclear Medicine 1999, 40, 883–888.

(107) Robles, J. P.; Zamora, M.; Siqueiros-Marquez, L.; Adan-Castro, E.; Ramirez-
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Table 5.1: Motifs discovered by STREME for Chevyshev metric.

HSPN 00 Ch

No. Motif Cluster Cluster Size
Matches
(+) Seq.

Matches
(-) Seq.

Sites(%) Score
Match

Threshold
1 LKKF 10 0 33.3 0.0004 7.84538
2 STRI 8 0 26.7 0.0023 10.7027
3 WSSCS 8 0 26.7 0.0023 5.06424
4 TCGDGV 6 0 20 0.012 1.71709
5 YCNINZ

1 30

3 0 10 0.12 0.70716
6 QKR 11 0 47.8 0.0001 5.96461
7 ING 7 0 30.4 0.0046 7.97888
8 PWSQCS 7 0 30.4 0.0046 1.13462
9 RCGRGT 5 0 21.7 0.025 2.54819
10 ADRAA

2 23

4 0 17.4 0.054 1.71699
11 KGRG 14 0 70 0.0000017 1.89673
12 PSDK 14 0 70 0.0000017 7.20803
13 EKQR 10 0 50 0.00022 8.23836
14 KRRR 10 1 50 0.0042 7.49419
15 RRP

3 20

7 1 35 0.046 6.93898
16 SPW 22 2 88 0.00000018 5.91394
17 VTCG 14 0 56 0.0000048 8.62409
18 GVQTR 13 0 52 0.000015 8.25228
19 QCS 12 1 48 0.00096 8.11015
20 APC

4 25

7 1 28 0.049 7.97233
21 APF 13 0 33.3 0.000037 7.18049
22 GRELCL 11 0 28.2 0.00022 10.1337
23 IIEK 11 0 28.2 0.00022 7.27161
24 VQK 10 0 25.6 0.00051 8.04087
25 NPASP

5 39

5 0 12.8 0.027 8.45514
26 FGN 3 0 30 0.1100 4.23788
27 ISNA 3 0 30 0.1100 12.1092
28 GCG 2 0 20 0.2400 9.01765
29 GYCS 2 0 20 0.2400 11.0779
30 HGKG

6 10

2 0 20 0.2400 13.7461
31 GAR 7 0 38.9 0.0038 3.30461
32 ATC 6 0 33.3 0.0095 8.37408
33 LHLV 5 0 27.8 0.023 10.3365
34 EGL 7 1 38.9 0.044 7.15219
35 SPSGGP

7 18

4 0 22.2 0.052 2.81781
36 SPLS 3 0 27.3 1.10E-01 8.03363
37 TGKI 3 1 27.3 1.10E-01 1.86612
38 HPH 5 1 45.5 1.60E-01 3.68463
39 PEN 5 0 45.5 1.60E-01 9.29149
40 DDDD

8 11

1 0 9.1 5.00E-01 14.1391



ATTACHMENTS 75

Table 5.2: Motifs discovered by STREME for Euclidean metric.

HSPN 00 Eu

No. Motif Cluster Cluster Size
Matches
(+) Seq.

Matches
(-)Seq.

Sites(%) Score
Match

Threshold
1 SPL 12 0 50 3.90E-05 7.52098
2 CGGGV 7 0 29.2 4.70E-03 3.73733
3 CSSR 6 0 25 1.10E-02 0.934526
4 GPWERC 5 0 20.8 2.50E-02 1.48061
5 ETWRTE

1 24

4 0 16.7 5.50E-02 3.25366
6 CGRG 19 0 54.3 6.40E-08 8.87225
7 WSPCSV 16 0 45.7 1.60E-06 11.5784
8 QRPS 14 0 40 1.20E-05 6.78501
9 DKPRR 8 0 22.9 2.50E-03 7.82051
10 KRRREK

2 35

8 0 22.9 2.50E-03 5.47961
11 CGG 14 0 32.6 1.70E-05 5.84324
12 WSPCS 14 0 32.6 1.70E-05 8.14282
13 RTR 11 0 25.6 2.40E-04 7.64453
14 PFL 14 1 32.6 3.60E-04 6.80863
15 RDI

3 43

5 0 11.6 2.80E-02 9.7223
16 TGAL 10 0 28.6 4.60E-04 1.2123
17 EEDP 6 0 17.1 1.20E-02 9.61524
18 HRI 6 0 17.1 1.20E-02 9.06642
19 ASP 5 0 14.3 2.70E-02 8.83988
20 KNWP

4 35

5 0 14.3 2.70E-02 10.1901
21 YCNI 9 0 56.3 4.10E-04 7.26261
22 LKK 8 0 50 1.20E-03 6.99532
23 TVT 6 0 37.5 8.80E-03 7.25726
24 FST 3 0 18.8 1.10E-01 11.2518
25 IKRY

5 16

3 0 18.8 1.10E-01 1.00024
26 VQKI 13 0 56.5 1.10E-05 7.71998
27 CLD 12 0 52.2 3.50E-05 9.3464
28 NGRE 9 0 39.1 7.40E-04 10.9047
29 PEAP 9 0 39.1 7.40E-04 8.66254
30 VRRA

6 23

7 0 30.4 4.60E-03 8.96213
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Table 5.3: Motifs discovered by STREME for Angular Separation metric.

HSPN 00 As

No. Motif Cluster Cluster Size
Matches
(+) Seq.

Matches
(-) Seq.

Sites(%) Score Match Threshold

1 SPT 14 0 45.2 0.0000091 6.26986
2 KVI 14 1 45.2 0.00023 6.50308
3 KEICLD 9 0 29 0.00099 6.84349
4 SGG 9 0 29 0.00099 5.2302
5 PEAPF

1 31

5 0 16.1 0.026 5.42949

6 LAS 11 1 64.7 0.0012 6.23357
7 SLD 7 0 41.2 0.0036 6.85265
8 IVL 5 0 29.4 0.022 4.74948
9 TFE 5 0 29.4 0.022 11.0156
10 GRK

2 17

7 1 41.2 0.043 7.24671

11 WSDC 19 0 65.5 2.1E-08 6.96496
12 CGRG 18 0 62.1 7.7E-08 7.26064
13 REKQR 11 0 37.9 0.00015 7.03206
14 PRR 12 3 41.4 0.051 7.71382
15 QKR

3 29

4 0 13.8 0.056 9.55798

16 SPWE 19 0 37.3 0.22 5.02883
17 CSASCG 19 0 37.3 0.5 1.05052
18 GVQTR

4 51
15 0 29.4 0.5 8.32856

19 HGHK 6 0 37.5 0.0088 8.86924
20 QCSV 6 0 37.5 0.0088 9.73766
21 NPR 4 0 25 0.051 9.79705
22 KIKSST 2 0 12.5 0.24 21.0446
23 RSRQVR

5 16

2 0 12.5 0.24 18.7546

24 CNIN 8 0 25 0.0024 10.2809
25 EVCH 8 0 25 0.0024 11.1098
26 MPF 8 0 25 0.0024 10.1288
27 RIST 6 0 18.8 0.012 4.82639
28 NDYSYW

6 32

4 0 12.5 0.057 17.5945
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Table 5.4: Motif enrichment by SEA, first stage (first part)

E-values ≤ 10

No. Motif P-Value E-value Q-Value TP FP
Enrichment

Ratio
Score

Threshold
1 TC 6.52E-23 6.85E-21 1.15E-21 63 / 182 (34.6%) 31 / 729 (4.3%) 7.98 2.85
2 WSPCSV 1.04E-21 1.09E-19 9.15E-21 30 / 182 (16.5%) 0 / 729 (0.0%) 123.66 5.75
3 PWSQCSV 5.2E-21 5.46E-19 3.05E-20 29 / 182 (15.9%) 0 / 729 (0.0%) 119.67 3.14
4 WSSCS 2.6E-20 2.73E-18 1.15E-19 28 / 182 (15.4%) 0 / 729 (0.0%) 115.68 9.34
5 CSASCG 1.63E-17 1.72E-15 5.76E-17 24 / 182 (13.2%) 0 / 729 (0.0%) 99.73 12.18
6 RTR 4.23E-17 4.44E-15 1.24E-16 65 / 182 (35.7%) 53 / 729 (7.3%) 4.88 4.2
7 SC 2.92E-16 3.07E-14 7.27E-16 46 / 182 (25.3%) 25 / 729 (3.4%) 7.21 2.85
8 WSXC 3.3E-16 3.47E-14 7.27E-16 24 / 182 (13.2%) 1 / 729 (0.1%) 49.86 9.11
9 CSSR 8.64E-16 9.07E-14 1.69E-15 43 / 182 (23.6%) 22 / 729 (3.0%) 7.63 2.44
10 PXC 1.12E-15 1.18E-13 1.97E-15 100 / 182 (54.9%) 132 / 729 (18.1%) 3.03 1.67
11 WXSXC 1.31E-15 1.37E-13 2.09E-15 53 / 182 (29.1%) 38 / 729 (5.2%) 5.52 0.69
12 SXC 2.92E-15 3.07E-13 4.28E-15 97 / 182 (53.3%) 128 / 729 (17.6%) 3.03 1.67
13 CGXG 9.01E-15 9.46E-13 1.22E-14 27 / 182 (14.8%) 5 / 729 (0.7%) 18.62 7.61
14 WSDC 2.52E-14 2.65E-12 3.18E-14 24 / 182 (13.2%) 3 / 729 (0.4%) 24.93 6.06
15 CXN 3.07E-14 3.22E-12 3.6E-14 81 / 182 (44.5%) 99 / 729 (13.6%) 3.27 2.22
16 VTCGDGV 5.14E-14 5.39E-12 5.65E-14 19 / 182 (10.4%) 0 / 729 (0.0%) 79.78 6.59
17 SPSGGP 1.43E-13 1.5E-11 1.48E-13 24 / 182 (13.2%) 4 / 729 (0.5%) 19.95 2.34
18 REKQR 2.57E-13 2.7E-11 2.52E-13 18 / 182 (9.9%) 0 / 729 (0.0%) 75.79 6.55
19 RXGRGT 1.6E-12 1.68E-10 1.48E-12 41 / 182 (22.5%) 29 / 729 (4.0%) 5.58 0.47
20 GCG 2.15E-12 2.26E-10 1.84E-12 26 / 182 (14.3%) 8 / 729 (1.1%) 11.97 6.36
21 CGGGV 2.2E-12 2.31E-10 1.84E-12 21 / 182 (11.5%) 3 / 729 (0.4%) 21.94 6.36
22 HGKG 3.35E-12 3.52E-10 2.68E-12 56 / 182 (30.8%) 58 / 729 (8.0%) 3.85 1.52
23 XPWERC 3.96E-12 4.16E-10 3.03E-12 18 / 182 (9.9%) 1 / 729 (0.1%) 37.9 4.83
24 CXGXG 4.83E-12 5.07E-10 3.54E-12 35 / 182 (19.2%) 21 / 729 (2.9%) 6.53 5.28
25 SXTXG 9.65E-12 1.01E-09 6.8E-12 20 / 182 (11.0%) 3 / 729 (0.4%) 20.94 6.18
26 SP 1.38E-11 1.44E-09 9.32E-12 39 / 182 (21.4%) 29 / 729 (4.0%) 5.32 8.19
27 QRPS 4.69E-11 4.93E-09 3.06E-11 20 / 182 (11.0%) 4 / 729 (0.5%) 16.75 3.01
28 ATC 4.21E-10 4.42E-08 2.65E-10 61 / 182 (33.5%) 81 / 729 (11.1%) 3.02 0.09
29 SPXS 1.56E-09 1.64E-07 9.47E-10 49 / 182 (26.9%) 58 / 729 (8.0%) 3.38 4.02
30 CSXT 2.46E-09 2.59E-07 1.45E-09 53 / 182 (29.1%) 68 / 729 (9.3%) 3.12 0.52
31 GYCS 3.18E-09 3.34E-07 1.75E-09 22 / 182 (12.1%) 10 / 729 (1.4%) 8.34 3.38
32 SXTXC 3.18E-09 3.34E-07 1.75E-09 22 / 182 (12.1%) 10 / 729 (1.4%) 8.34 5.99
33 SPLS 3.59E-09 3.77E-07 1.92E-09 26 / 182 (14.3%) 16 / 729 (2.2%) 6.34 2.55
34 SXCXS 4.81E-09 5.05E-07 2.49E-09 27 / 182 (14.8%) 18 / 729 (2.5%) 5.88 5.58
35 CG 7.62E-09 0.0000008 3.83E-09 41 / 182 (22.5%) 45 / 729 (6.2%) 3.64 3.23
36 SPT 8.84E-09 9.28E-07 4.32E-09 46 / 182 (25.3%) 56 / 729 (7.7%) 3.29 4.48
37 APC 1.24E-08 0.0000013 5.88E-09 39 / 182 (21.4%) 42 / 729 (5.8%) 3.71 3.89
38 DKPRR 3.45E-08 0.00000362 1.6E-08 24 / 182 (13.2%) 16 / 729 (2.2%) 5.87 0
39 YCNINZ 5.91E-08 0.00000621 2.67E-08 14 / 182 (7.7%) 3 / 729 (0.4%) 14.96 2.28
40 PXW 0.00000012 0.0000126 5.29E-08 29 / 182 (15.9%) 27 / 729 (3.7%) 4.27 3.81
41 TXC 2.37E-07 0.0000249 1.02E-07 37 / 182 (20.3%) 45 / 729 (6.2%) 3.3 3.14
42 GVQTR 3.69E-07 0.0000387 1.55E-07 16 / 182 (8.8%) 7 / 729 (1.0%) 8.48 5.33
43 PSDK 0.00000104 0.000109 4.26E-07 22 / 182 (12.1%) 18 / 729 (2.5%) 4.83 2.81
44 QKR 0.00000125 0.000132 5.02E-07 41 / 182 (22.5%) 59 / 729 (8.1%) 2.79 4.43
45 RIST 0.00000139 0.000146 5.45E-07 49 / 182 (26.9%) 79 / 729 (10.8%) 2.49 0.93
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Table 5.5: Motif enrichment by SEA, first stage (Second part)

E-values ≤ 10

No. Motif P-Value E-value Q-Value TP FP
Enrichment

Ratio
Score

Threshold
46 CXSXT 0.00000157 0.000165 6.01E-07 44 / 182 (24.2%) 67 / 729 (9.2%) 2.64 1.2
47 RRP 0.00000326 0.000342 0.00000122 12 / 182 (6.6%) 4 / 729 (0.5%) 10.37 6.7
48 RT 0.00000341 0.000358 0.00000125 35 / 182 (19.2%) 48 / 729 (6.6%) 2.93 2.39
49 RTS 0.0000043 0.000451 0.00000155 16 / 182 (8.8%) 10 / 729 (1.4%) 6.16 5.43
50 SXPXS 0.00000448 0.00047 0.00000158 10 / 182 (5.5%) 2 / 729 (0.3%) 14.63 7.74
51 ETWRTE 0.0000159 0.00167 0.00000549 10 / 182 (5.5%) 3 / 729 (0.4%) 10.97 2.91
52 KNWP 0.0000204 0.00214 0.00000691 41 / 182 (22.5%) 69 / 729 (9.5%) 2.39 0.89
53 SLD 0.000064 0.00672 0.0000213 13 / 182 (7.1%) 9 / 729 (1.2%) 5.58 5.21
54 TR 0.000125 0.0131 0.0000408 26 / 182 (14.3%) 38 / 729 (5.2%) 2.76 8.09
55 HHQK 0.000163 0.0171 0.0000521 32 / 182 (17.6%) 54 / 729 (7.4%) 2.39 0.54
56 STRI 0.00026 0.0273 0.0000818 27 / 182 (14.8%) 43 / 729 (5.9%) 2.54 1.56
57 FST 0.000312 0.0327 0.000095 7 / 182 (3.8%) 2 / 729 (0.3%) 10.64 6.44
58 RGD 0.000313 0.0328 0.000095 38 / 182 (20.9%) 73 / 729 (10.0%) 2.1 3.75
59 GRELCL 0.000369 0.0387 0.00011 6 / 182 (3.3%) 1 / 729 (0.1%) 13.96 2.27
60 NPR 0.000533 0.056 0.000156 29 / 182 (15.9%) 51 / 729 (7.0%) 2.3 4.65
61 EGL 0.00146 0.154 0.000423 9 / 182 (4.9%) 7 / 729 (1.0%) 4.99 5.27
62 KRRREK 0.00236 0.247 0.000669 21 / 182 (11.5%) 36 / 729 (4.9%) 2.37 0
63 ING 0.00305 0.32 0.000852 6 / 182 (3.3%) 3 / 729 (0.4%) 6.98 12.08
64 APF 0.00361 0.379 0.000994 31 / 182 (17.0%) 66 / 729 (9.1%) 1.91 4.01
65 KEICLD 0.00465 0.488 0.00126 5 / 182 (2.7%) 2 / 729 (0.3%) 7.98 2.12
66 IQ 0.00506 0.531 0.00135 87 / 182 (47.8%) 249 / 729 (34.2%) 1.4 1.08
67 EVCH 0.0057 0.598 0.0015 26 / 182 (14.3%) 54 / 729 (7.4%) 1.96 1.49
68 GRK 0.00582 0.612 0.00151 36 / 182 (19.8%) 84 / 729 (11.5%) 1.74 3.79
69 NGRE 0.00609 0.64 0.00155 10 / 182 (5.5%) 12 / 729 (1.6%) 3.38 2.42
70 KIKSST 0.00784 0.824 0.00197 11 / 182 (6.0%) 15 / 729 (2.1%) 2.99 1.39
71 NPASP 0.00797 0.837 0.00198 3 / 182 (1.6%) 0 / 729 (0.0%) 15.96 7.47
72 TVT 0.0157 1.65 0.00385 23 / 182 (12.6%) 51 / 729 (7.0%) 1.84 4.36
73 HGR 0.018 1.89 0.00433 7 / 182 (3.8%) 8 / 729 (1.1%) 3.55 6.01
74 MPF 0.0255 2.67 0.00606 22 / 182 (12.1%) 51 / 729 (7.0%) 1.76 4.61
75 PFL 0.0271 2.85 0.00628 3 / 182 (1.6%) 1 / 729 (0.1%) 7.98 12.02
76 HWGF 0.0271 2.85 0.00628 3 / 182 (1.6%) 1 / 729 (0.1%) 7.98 6.2
77 VQKI 0.0299 3.14 0.00683 6 / 182 (3.3%) 7 / 729 (1.0%) 3.49 8.62
78 YH 0.0351 3.69 0.00793 50 / 182 (27.5%) 146 / 729 (20.0%) 1.38 2.05
79 LVFF 0.0428 4.5 0.00954 17 / 182 (9.3%) 39 / 729 (5.3%) 1.8 1.55
80 PEAPF 0.0558 5.86 0.0122 8 / 182 (4.4%) 14 / 729 (1.9%) 2.39 2.01
81 ADRAA 0.0561 5.89 0.0122 4 / 182 (2.2%) 4 / 729 (0.5%) 3.99 5.23
82 HPH 0.0766 8.04 0.0165 17 / 182 (9.3%) 43 / 729 (5.9%) 1.63 0.37



Figure 5.2: Graphical representation of HSPN of Chevyshev Metric with t = 0.00 show-
casing its respective clusters: i) Cluster 1, ii) Cluster 2, iii) Cluster 3, iv) Cluster 4, v)
Cluster 5, vi) Cluster 6, vii) Cluster 7, viii) Cluster 8 . Node colors signify distinct peptide
communities, and the size of the node was calculated by the HB centrality value. Layout:
Fruchterman-Reingold [101]. Networks were created with StarPep toolbox [36], visualized
in Gephi [87] and edited with Inkscape
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Figure 5.3: Graphical representation of HSPN of Angular Separation Metric with t = 0.00
showcasing its respective clusters: i) Cluster 1, ii) Cluster 2, iii) Cluster 3, iv) Cluster 4,
v) Cluster 5, vi) Cluster 6. Node colors signify distinct peptide communities, and the size
of the node was calculated by the HB centrality value. Layout: Fruchterman-Reingold
[101]. Networks were created with StarPep toolbox [36], visualized in Gephi [87] and
edited with Inkscape
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Figure 5.4: Representation of parameters considered for the Analysis 1 of scaffolds ex-
traction in Dover Analyzer. Identical Overlap, Similarity overlap, Diversity Ratio.
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Figure 5.5: Representation of parameters considered for the Analysis 2 of scaffolds ex-
traction in Dover Analyzer. Identical Overlap, Similarity overlap, Diversity Ratio.
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Figure 5.6: Representation of parameters considered for the Analysis 3 of scaffolds ex-
traction in Dover Analyzer. Identical Overlap, Similarity overlap, Diversity Ratio.
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Figure 5.7: Representation of parameters considered for the Analysis 4 of scaffolds ex-
traction in Dover Analyzer. Identical Overlap, Similarity overlap, Diversity Ratio.
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Figure 5.8: Representation of parameters considered for the Analysis 5 of scaffolds ex-
traction in Dover Analyzer. Identical Overlap, Similarity overlap, Diversity Ratio.
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Figure 5.9: Representation of parameters considered for the Analysis 6 of scaffolds ex-
traction in Dover Analyzer. Identical Overlap, Similarity overlap, Diversity Ratio.
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Figure 5.10: Representation of parameters considered for the Analysis 7 of scaffolds ex-
traction in Dover Analyzer. Identical Overlap, Similarity overlap, Diversity Ratio.
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Figure 5.11: Representation of parameters considered for the Analysis 8 of scaffolds ex-
traction in Dover Analyzer. Identical Overlap, Similarity overlap, Diversity Ratio.
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