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1 General introduction

Fluid Mechanics studies the behaviour and the motion of fluid flows present in nature. When we refer to a fluid
we think about either liquid, gas or plasma. For more than one hundred years mathematicians have developed
a general framework to study the equations arising in Fluid Mechanics. Precisely, these equations are some
of the most relevant in the field of Partial Differential Equations (PDEs) and present links to other branches
of mathematics. PDEs usually arise to mathematically study nature phenomena. To study mathematically a
PDE we mean to show crucial aspects like existence, uniqueness and regularity of the solutions. In most of the
cases it is not possible to analytically find an explicit solution to a PDE and we turn to construct appropriate
numerical methods.

Among the most important PDEs arising in Fluid Mechanics we have the so-called Navier-Stokes equations,
[1]. These equations describe the motion of incompressible fluid flows when we consider velocity, pressure and
density. The names of brilliant mathematicians like Leray, Ladyzhenskaya, Fefferman and others are linked to
the study of Navier-Stokes equations. However, until now there are still open problems related to existence and
regularity for the 3D case, [2].

Another very useful partial differential equation is the so-called convection-diffusion equation. This equation
models the evolution of some quantity when it is transported at some velocity with the presence of a diffusion
effect, [3]. In fact, a simplification of the convection-diffusion equation leads to consider the diffusion and heat
equations. The heat equation describes the distribution of temperature over a determined region when time is
evolving. The first mathematician who studied the heat equation was Joseph Fourier , who analytically found
an explicit solution to this equation in one dimension.

Taking into account the equations for the motion of incompressible fluids and convection-diffusion we can
obtain a system of PDEs which models the interaction of cold air masses at higher altitudes with hotter air
masses at lower altitudes, [4]. In this direction, Joseph Valentine Boussinesq1 at the nineteenth century, re-
alized that the system governing natural thermal convection consists into a coupling between Navier-Stokes
and convection-diffusion equations. Precisely, this coupling was called Boussinesq approximation, [4]. Several
applications of practical importance of Boussinesq equations are: moving of fluids to transport or remove heat,
thermal process in meteorology, atmospheric sciences, air and water pollution and chemical engineering, [5].
Studies for the Boussinesq system started with a paper by Canon and Dibedenetto of 1980, [6], and until now
there are still open problems for partial cases, [7].

The 2D Boussinesq system for an incompressible fluid flow in R2 is

2D Boussinesq system



∂u

∂t
+ (u · ∇)u +∇p− ν∆u = θe2,

∂θ

∂t
+ u · ∇θ = k∆θ,

div u = 0,

u(x, 0) = u0(x) θ(x, 0) = θ0(x),

(1.1)

where u = (u1, u2) is the velocity vector field of the fluid, and ui = ui(x, t), i = 1, 2, (x, t) ∈ R2 × (0,∞),
p(x, t) is the scalar pressure, θ(x, t) the real valued temperature, ν ≥ 0 the viscosity coefficient and k ≥ 0 the
constant of thermal diffusivity. We have introduced system (1.1) in a compact way, however it consists of four
scalar equations for the four unknown variables. As it was said before, the first equation of (1.1) describes the
motion of an incompressible fluid and second equation of (1.1) governs the transport and distribution of fluid’s
temperature.

The case where ν > 0 and k > 0 was studied in the seminal work, [6], where the authors dealt with the
Cauchy problem (1.1) with initial data in Lp, finding a unique global weak solution.

11842 –1929 Joseph Valentine Boussinesq was a French mathematician and physicist who made significant contributions to the
theory of hydrodynamics, vibration, light, and heat.
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We can consider partial situations of the Boussinesq equations (1.1) by setting to zero both or at least one
of the viscosity or thermal diffusivity constants. Studies in this direction was considered out by Cordoba et
al. in [8], where the authors work with the case k = 0, ν > 0 and showing that a type of squirt singularities
are absent. Dongho Chae2 inspired in [8] and using [9] proves in [10] the global-in-time regularity for partial
cases k = 0, ν > 0 and k > 0, ν = 0. Independently, Thomas Y. Hou and Congming Li, [11], show the global
well-posedness for the partial case k = 0, ν > 0. Finally, studies for the global regularity for k = ν = 0
constitute an open problem for the Boussinesq system, [7].

In this work we study partial cases k = ν = 0 and k = 0, ν > 0 of the Boussinesq system. We develop
the mathematical framework presented by Dongho Chae in [9] and [10] in the following way. First, we deduce
the Navier-Stokes equations and in particular we present the linearized forms of these equations based on [1]
, [3], [4] and [2]. We give an introduction to the well known heat and transport equations which allow us to
introduce the Boussinesq approximation. Then, based on [12] and [13] we introduce an appropriate functional
approach, that is, using Lebesgue, Distributions and Sobolev spaces. By using these functional spaces we give
a schematic way to construct solutions for Navier-Stokes and we establish the relation between accumulation
of vorticity and blow-up for smooth solutions. Finally, we use all the functional analysis approach developed
previously to show a blow up criterion for the zero-viscosity-thermal Boussinesq system which later allows us
to prove the global in time regularity for the zero-thermal Boussinesq system.

2 Preliminaries

In this section we introduce the basic notation that will be useful for the rest of this work. Through this work
we are dealing with the whole space Rn and in particular the two dimensional space R2. However for practical
examples we sometimes consider Ω ⊂ Rn to be a bounded domain and denote by ∂Ω its boundary.

2.1 Basic notations

We use notation “ := ” for the expression “by definition”, and we consider the spatial variable x = (x1, ..., xn)
together with the time variable t ∈ [0,∞) as the independent variables for the functions introduced later. To
avoid overload notation and to give a realistic physical intuition we denote the spacial components in three
dimensions by x, y and z respectively.

For x,y ∈ Rn, we denote:

x · y =

n∑
i=1

xiyi,

|x| =

 n∑
i=1

x2
i

 1
2

,

en = (0 0 · · · 1)t,

where wt denotes the transpose of the corresponding vector/matrix w.

In particular for the two dimensional Euclidean space R2 we have:

|x| =
√
x2 + y2

e1 =

(
1
0

)
, e2 =

(
0
1

)
.

We denote the i − th partial derivative by Di = ∂
∂xi

= ∂xi and use indistinctly D or ∇ to express the

derivative or gradient of a function.

2Dongho Chae is a Korean mathematician developing theoretical studies of Partial Differential Equations arising in Mathematical
Physics (Fluid mechanics, Gauge theories, Relativity).

Mathematician 3 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

We define the vector u(x, t) = (u1(x, t), u2(x, t)) as the velocity of a fluid at x ∈ Rn and t ≥ 0. For
u we can assume that u(t, x) → 0 as |x|→ ∞ which later will be expressed simply by belonging to a certain
functional space. By simplicity, in the notation, sometimes we do not write explicitly the dependence on x and t.

For the vector function u we denote u(x, 0) = u0(x) and the following standard operations in R2 are
considered:

∇ =

(
∂x
∂y

)
,

∇⊥ =

(
−∂y
∂x

)
,

div u = ∇ · u = ∂xu1 + ∂yu2,

∆ u = (∂2
x + ∂2

y) u,

(u ·∇) u = (u1∂x + u2∂y) u,

∇u =

(
∂xu1 ∂yu1

∂xu2 ∂yu2

)
.

2.2 The Navier-Stokes equations

In the study of Fluid Mechanics we describe the motion of a fluid by means of Euler or Lagrange coordinates,
[4]. On one side, the so-called Eulerian framework consists on looking the fluid’s motion at a referenced time
and considering the evolution of an infinitesimal portion of the fluid. For example, it can be interpreted like
being on the bank of a river and see the water passing, [4]. On the other side, Lagrangian coordinates consists
in describing the motion of a fluid by looking at a fluid particle and following it through its evolution.

The Navier-Stokes equations is a system of non-linear PDEs describing the motion of an incompressible
fluid, [4]. These equations owe its name to Claude-Louis Marie Henri Navier3 and Sir George Gabriel Stokes4.
Physically the Navier-Stokes equations consist of a formulation of Newton’s law for the motion of a continuous
distribution of the matter in fluid state. Based on the work of Charles Doering, [4], and Juan Luis Vasquez, [2],
we shall use the Eulerian coordinates to show a deduction of the Navier-Stokes equations.

Initially we consider a fluid which is not affected by the presence of viscosity, i.e. an ideal inviscid fluid. With
the aim of having a better physical intuition we consider the three dimensional case, that is x = (x, y, z) ∈ R3

and t ≥ 0 representing the space and time variables. In the Eulerian description the dependent variables are:

ρ = ρ(x, t) := density of the fluid,

u = u(x, t) := velocity vector field of the fluid,

p = p(x, t) := scalar pressure.

Let us think about an infinitesimal element of the fluid having volume δV and located at position x = (x, y, z)
at time t with mass δm = ρ(x, t)δV (see Figure 1). This infinitesimal element of fluid is moving with velocity
u(x, t) and momentum δmu(x, t). The normal force directed into δV , of area nδa centered at x, is −np(x, t)δa,
where n is the outward directed unit vector normal to the upper face of δV . Moreover, the pressure p(x, t) is
the unit of force per unit of area imposed on elements of the fluid from neighboring elements, [4].

Remark. The use of δV, δm, δn, δa comes from the Engineering and Physics point of view to express small
changes or small sizes. In the subject of Variational Calculus it gives us a convenient way to express admissible
increments. For further references see for example [14].

31785-1836 Claude-Louis Marie Henri Navier was a French physicist, mathematician and engineer.
41819-1903 Sir George Gabriel Stokes was a Anglo-Irish physicist and mathematician.
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Figure 1: Infinitesimal element of fluid δV .

The rate of change of a quantity f(x, t) with respect to time at fixed position is given by ∂f(x,t)
∂t . Additionally,

we introduce the rate of change of a quantity seeing it with respect to an observer with velocity u(x, t) by

df(x, t)

dt
:=

∂f(x, t)

∂t
+ u · ∇f(x, t), (2.1)

where (2.1) is referred as the convective or material derivative of u, [4].

The equations for the motion of an incompressible fluid comes from the Newton’s second law and we take
into account physical parameters like density, velocity and pressure. The law of conservation of mass states
that δm can not be created or destroyed, even if it can be expanded or contracted, so that we must have:

dδm

dt
= 0. (2.2)

The rate of change of the infinitesimal volume δV = δxδyδz occupied by δm is physically obtained by

dδV

dt
=
dδx

dt
δyδz +

dδy

dt
δxδz +

dδz

dt
δxδy. (2.3)

Since velocity is equal to distance over time, it is natural to think that the rate of change of δx, δy, δz can
be computed as follows:

dδx

dt
= u1(x+ δx

2 , y, z, t)− u1(x− δx
2 , y, z, t) =

∂u1

∂x
δx,

dδy

dt
= u2(x, y + δy

2 , z, t)− u2(x, y − δy
2 , z, t) =

∂u2

∂y
δy, (2.4)

dδz

dt
= u3(x, y, z + δz

2 , t)− u3(x, y, z − δz
2 , t) =

∂u3

∂z
δz.

Combining (2.3) and (2.4) we get:

dδV

dt
=

∂u1

∂x
δxδyδz +

∂u2

∂y
δxδyδz +

∂u3

∂z
δxδyδz,

dδV

dt
= ∇ · uδV. (2.5)
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Thus, the divergence of the velocity vector field is the local rate of change of the volume of elements having
mass δm, [4]. Moreover, the rate of change of the density ρ in terms of δV and δm is given by

dρ(x, t)

dt
=

d

dt

δm

δV

= − δm

δV 2

dδV

dt

= −ρδV
δV 2
∇ · uδV

= −ρ∇ · u. (2.6)

On the other side, using the definition of convective derivative (2.1) for the density ρ, we get

dρ(x, t)

dt
=
∂ρ(x, t)

∂t
+ u · ∇ρ(x, t). (2.7)

Using (2.6) and (2.7), it follows that

∂ρ

∂t
+ u · ∇ρ = −ρ∇ · u,

∂ρ

∂t
+ u · ∇ρ+ ρ∇ · u = 0,

∂ρ

∂t
+∇(uρ) = 0. (2.8)

We refer to (2.8) as the continuity equation.

Newton’s second law states that the rate of change of the momentum equals to the net applied force. And,
in the absence of external forces, the net force δF is provided by the pressure field on each element of the mass.

Figure 2: Net force provided by pressure.

The components of δF : δF1, δF2, δF3 in the x, y, z- directions can be seen in Figure 2 and are represented
by the following expression
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δF1 = p(x− δx

2
, y, z, t)δyδz − p(x+

δx

2
, y, z, t)δyδz,

= −∂p
∂x
δV. (2.9)

In the same way, doing the force decomposition in (2.9) for δF2 and δF3 we get

δF2 = −∂p
∂y
δV,

δF3 = −∂p
∂z
δV.

Thus, the Newton second law for an element of fluid mass δm takes the form

d

dt
(δmu) = δF,

d

dt
δmu +δm

d

dt
u = δF,

δm
d

dt
u = δF = −δV (∇p). (2.10)

Taking in to account the definition of convective derivative (2.1) for the velocity field u

du(x, t)

dt
=
∂u(x, t)

∂t
+ u · ∇u(x, t),

which, combined with (2.10) gives the so-called Euler’s equations:

∂u

∂t
+ u · ∇u = −1

ρ
(∇p). (2.11)

Summarizing equations (2.8) and (2.11) we have

∂ρ

∂t
+∇(uρ) = 0 (Continuity equation),

∂u

∂t
+ u · ∇u = −1

ρ
(∇p) (Euler’s equations).

Note that when n = 3 we have 4 equations for the 5 unknowns (u1,u2,u3, ρ, p). This motivates to look for a
relationship between pressure p and density ρ. From the continuity equation (2.8) we can assume that density
of the fluid to be constant. This assumption gives what is known as the incompressibility condition:

∇ · u = 0, (2.12)

which physically means that all the relevant velocities of the fluid, are much smaller than the sound speed, [4].

Therefore, Euler’s equations for an incompressible homogeneous fluid are

∂u

∂t
+ u · ∇u = −1

ρ
(∇p),

∇ · u = 0,

where ρ is a parameter and in three dimensions we have 4 unknowns and 4 equations. Note that boundary
conditions are necessary for both u and p. Those conditions are imposed by the particular physical conditions
of the problem.
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During the deduction of Euler’s equations we assumed only that the pressure was acting over the fluid, i.e.
the absence of external forces. Considering the study done for the pressure p, we can extend the deduction to
the case when external forces fex are acting over the fluid, [2]. In this case we have that Euler’s equations in
the presence of an external force are given by

∂u

∂t
+ u · ∇u = −1

ρ
(∇p) +

1

ρ
fex,

∇ · u = 0.

In order to derive the full Navier-Stokes equations it is necessary to consider the viscosity present in the
fluid. We define viscosity as the property of fluids to resist shear stress and it is analogous to the friction force
of solid mechanics, [4]. Consequently, we are going to consider another force imposed over the fluid, namely,
viscosity. The force due to viscosity fvis, a shear stress, is defined by

fvis = ∇τδV = ∇τδxδyδz, (2.13)

where τ is a shear stress.

Unlike pressure which has one component of force per direction, shear stress of viscosity is a tensor which
has 3 forces in each direction (see Figures 3 and 4).

Figure 3: Orthogonal components of the forcing viscosity terms in a small region of volume δV .
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Figure 4: planar components of the forcing viscosity terms in a small region of volume δV .

For each direction the sum of forces due to viscosity with respect to x, y, z axis are given by

∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

= fvisx , (x-direction), (2.14)

∂τxy
∂x

+
∂τyy
∂y

+
∂τzy
∂z

= fvisy (y-direction), (2.15)

∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

= fvisz (z-direction). (2.16)

For a Newtonian fluid (constant viscosity), we denote by µ the viscosity. The shear stress is proportional to
the shear strain rate over the time. For arbitrary t and distance y from the reference point x we have the strain
rate given as follows

ε̇(y, t) =

(
∂

∂t

∂x

∂y

)
(y, t)

=

(
∂

∂y

∂x

∂t

)
(y, t)

=
∂ u

∂y
(y, t).

For each component of the shear stress we have

τxy = τyx = (ε̇xy + ε̇yx)µ

=

(
∂

∂t

∂y

∂x
+
∂

∂t

∂x

∂y

)
µ

=

(
∂

∂x
u2 +

∂

∂x
u1

)
µ,
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τyz = τzy = (ε̇yz + ε̇zy)µ

=

(
∂

∂t

∂z

∂y
+
∂

∂t

∂y

∂z

)
µ

=

(
∂

∂y
u3 +

∂

∂z
u2

)
µ,

τxz = τzx = (ε̇xz + ε̇zx)µ

=

(
∂

∂t

∂z

∂x
+
∂

∂t

∂x

∂z

)
µ

=

(
∂

∂x
u3 +

∂

∂z
u1

)
µ,

τxx = 2µ
∂

∂x
u1,

τyy = 2µ
∂

∂y
u2,

τzz = 2µ
∂

∂z
u3.

Substituting the above stress-strain relations into (2.14), (2.15), (2.16) we get for the x-direction

fvisx =
∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

=
∂

∂x

(
µ
∂

∂x
u1

)
+

∂

∂y

(
µ

(
∂

∂x
u2 +

∂

∂y
u1

))
+

∂

∂z

(
µ

(
∂

∂x
u3 +

∂

∂z
u1

))

= µ

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
u1 + µ

∂

∂x

(
∂

∂x
u1 +

∂

∂y
u2 +

∂

∂z
u3

)

= µ

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
u1 + µ

∂

∂x
∇ · u

= µ

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
u1,

where we have used the condition ∇ · u = 0. In the y and z directions respectively we get

fvisy = µ

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
u2,

fvisz = µ

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
u3.

Putting all equations above together and considering (2.13) we get

fvis = µ∆uδV.

Using Newton’s second law in the presence of pressure p, viscosity µ and an external force fex we have

1

δm

∑
f =

d

dt
u,

1

δm
(−∇pδV + fexδV + µ∆uδV ) =

∂u

∂t
+ (u · ∇)u,

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+

1

ρ
fex +

µ

ρ
∆u.
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Defining ν =
µ

ρ
we have the Navier-Stokes equations with constant density and viscosity, under the action

of an external force fex, given by

Navier-Stokes equations


∂u

∂t
+ (u · ∇)u +

1

ρ
∇p− ν∆u =

1

ρ
fex,

∇ · u = 0.

(2.17)

Notice that in a domain Ω with boundary condition and initial data we have what is known as a Navier-Stokes
problem.

By simplicity, in most of the cases we assume ρ = 1 and we call ν the viscosity constant of a fluid. Moreover,
we just consider the Navier-Stokes equations in two dimensions, namely, u = (u1(x, t), u2(x, t)), x ∈ R2 and the
time variable t ∈ [0,∞).

Albeit that we will work with equations (2.17) which are nonlinear, we present some useful simplifications of
Navier-Stokes equations. We consider Ω ⊂ Rn be a bounded domain and its boundary given by ∂Ω. Moreover,
we assume the presence of an arbitrary external force f . These simplifications are needed because the general
problem has no global solutions and it is difficult to treat, [2].

The Stokes system

The Stokes equations are the linear form of the complete Navier-Stokes equations. In this case we consider very
viscous fluids which produce the motion terms to vanish. Adding the assumption of constant density ρ = 1 and
Dirichlet boundary condition we obtain

Stokes system


−ν∆u +∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω.

(2.18)

Steady-State Navier-Stokes system

At this point we allow to assume certain kind of transport given by the nonlinear term (u·∇)u. Adding Dirichlet
boundary condition, the Steady-State Navier-Stokes system is given by

Steady-State Navier-Stokes


(u · ∇)u− ν∆u +∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω.

(2.19)

In the previous equations we have considered Dirichlet boundary conditions. This condition on the boundary
can be seen as the adherence of the fluid to the boundary of Ω. For studies related to the existence, uniqueness
and regularity of solutions for the systems (2.18) and (2.19) we recommend the book by R. Temam, [1].

2.3 The heat equation

We are going to describe, briefly, one of the most important PDEs, hat is, the problem of describing the diffusion
of heat over a region. The study of this problem has its origin with Joseph Fourier5 who, in 1807 proposed what
is known as Fourier’s law of heat conduction, whence he obtained the heat equation. Fourier also proved that
a solution of the heat equation can be represented in an infinite sum of sine-cosine functions which is known as
a Fourier series.

Let Ω ⊂ Rn, be an open bounded set, which is made of a homogeneous material having constant thermal
diffusivity k. We denote the heat external source by f(x, t) and by θ(x, t) the temperature at x ∈ Ω and time
t ≥ 0. We also consider the initial distribution of heat given by θ0(x), x ∈ Ω. Then from the conservation of

5Jean-Baptiste Joseph Fourier (1768 – 1830) was a French mathematician and physicist born in Auxerre and best known for
initiating the investigation of Fourier series and their applications to problems of heat transfer and vibrations.
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energy and the Fourier law, we present the equation modeling the evolution of the heat diffusion in Ω, and we
complement it with a Dirichlet boundary condition and an initial heat distribution θ0.

The heat equation


∂θ(x, t)

∂t
− k∆θ(x, t) = f(x, t) in Ω× R+

∗ ,

θ(x, t) = 0 on ∂Ω× R+
∗ ,

θ(x, 0) = θ0(x) in Ω.

(2.20)

Note that in equation (2.20) we denote t ∈ R+
∗ and we provide a condition over the boundary of Ω which

gives a boundary value problem. The Dirichlet boundary condition physically means that the domain Ω is sur-
rounded by constant temperature equal zero. Moreover, the assumption of initial conditions lead us to consider
what is known as Cauchy problem. The problem (2.20) can be roughly explained as the evolution of heat with
respect to time when a effect of diffusion is presented and a source provides heat externally.

Some important remarks about the heat equation are described in the following:

• The quantities involved in equation (2.20) have physical units. Since our objective is to mathematically
study equations like (2.20), we neglect this dependence of physical units.

• The case of Dirichlet boundary condition in (2.20) can be extended depending of the physical context of
the problem, [3]. For example when heat flux from Ω to the exterior is not allowed, then we introduce
another boundary condition, namely, ∇θ · n = 0, where n is the outward unit vector to Ω.

• The model introduced in equation (2.20) is not only describing the heat propagation. In fact, the heat
equation can be easily generalized to the case of modeling the dissipation of any quantity over a region.

• Several applications of equation (2.20) can be mentioned. For example it is linked to probability, random
walks, Brownian motion, financial applications. Moreover, several modifications of the heat equation can
be found in the literature (see for example [15, Chapter 7]).

• The heat propagation in a fixed medium can be extended to the case when we have a phenomenon of
convection or transport through a non fixed medium. For example, we want to determine the distribution
of heat trough the motion or transport of fluid. The introduction of a transport phenomenon requires the
addition of the velocity u of the medium in which the heat propagates, [3]. Under the conditions described
above we present the convection-diffusion equation,

The convection-diffusion equation


∂θ(x, t)

∂t
+ u ·∇θ(x, t)− k∆θ(x, t) = f(x, t) in Ω× R+

∗ ,

θ(x, t) = 0 on ∂Ω× R+
∗ ,

θ(x, 0) = θ0(x) in Ω.

(2.21)

From equation (2.21) we can consider a simplification by setting the thermal-diffusivity constant k to
zero. For the case k = 0, we have the convection or transport equation that will be introduced in the next
section.

2.4 The transport equation

The transport or convection equation is a first order linear PDE. The term convection is typically used in Fluid
Mechanics. This equation can be obtained from the convection-diffusion equation (2.21) by setting the thermal
diffusivity k to be zero. To introduce the transport equation we consider a scalar field θ, which by simplicity
can be though as the unknown distribution of a physical quantity that we want to determine. In this sense,
under the presence of an external force f we have the transport or convection equation given by

The convection or transport equation


∂θ(x, t)

∂t
+ u ·∇θ(x, t) = f(x, t) in Ω× R+

∗ ,

θ(x, t) = 0 on ∂Ω× R+
∗ ,

θ(x, 0) = θ0(x) in Ω.

(2.22)
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Physically we can describe equation (2.22) as the evolution in time of some quantity θ when it is transported
proportional to the velocity u and the transport phenomenon is enhanced by an external force f .

So far, we have introduced the equations for the motion for incompressible fluids, the convection-diffusion
equation and the heat and transport equations separately. From a mathematical and physical point of view
it is important to consider cases of coupling between equations described before. Precisely, the Navier-Stokes
equations and the convection-diffusion equation gives the core of this memory, namely, the Boussinesq equations.

2.5 The Boussinesq approximation

At the beginning of this section we have considered equations governing motion for incompressible fluids, namely,
Navier-Stokes equation for the velocity field u, and we neglected temperature and density variations of the fluid.
Here we deal with the problem of thermal convection by an incompressible fluid. That is, we consider the case
when motion of fluid is caused by an external heat source. Thermal convection or heat transfer was analyzed
by Joseph Valentine Boussinesq who realized that variations in density are produced by the presence of gravita-
tional force. According to [4, Sec. 1.5] thermal conduction between neighboring fluid elements is carried out by
including a diffusive term, introducing the thermal diffusion coefficient and taking into account a buoyancy force
into the velocity evolution equation. The inclusion of a buoyancy force comes from the fact that temperature
variations lead to density variations.

Based on [4] and apart from the previous equations, we consider the whole space Rn and in that case we
present a sketchy idea for the deduction of the equations in the Boussinesq approximation. From (2.8) we have
the continuity equation given by:

∂ρ

∂t
+∇ · (ρu) = 0.

If density variations are neglected we have:

div u = 0. (2.23)

From Navier-Stokes equations (2.17) with an external force F we have

∂ u

∂t
+ (u ·∇) u +

1

ρ
∇p = ν∆ u +

1

ρ
F. (2.24)

Assuming that density variations are product of temperature variations, that is,

ρ− ρ0 = −α(T − T0),

and F being a gravitational force i.e, F = ρg, where g = −e2g. Then F results into

F = −(ρ0 − α(T − T0))e2g.

Replacing F in (2.24) gives us

∂ u

∂t
+ (u ·∇) u +∇p = ν∆ u +e2gα(T − T0),

where ρ0, T0, are the density and temperature reference, α the thermal expansion coefficient, and we have in-
cluded additive constants to p.

Moreover, the equation for the heat flow is given by

∂T

∂t
+ (u ·∇)T = k∆T, (2.25)

with k being the thermal diffusion coefficient.

In fact, the relative temperature θ = T − T0 can be put into the previous equations because T0 can be
considered as an arbitrary additive constant and derivatives in (2.25) depends only on T . In this way, equations
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(2.23), (2.24) and (2.25) constitute the Boussinesq approximation. Indeed, setting gα = 1 and providing initial
conditions we write the Boussinesq equations as follows:

The Boussinesq equations



∂ u

∂t
+ (u ·∇) u +∇p = ν∆ u +θe2,

∂θ

∂t
+ (u ·∇)θ = k∆θ,

div u = 0,

u(x, 0) = u0(x), θ(x, 0) = θ0(x).

(2.26)

Once we have introduced the Boussinesq equations we can go further and we can consider partial cases for
the Boussinesq system. These partial cases are introduced by setting either viscosity or thermal diffusivity to
zero. In the next section we present the most representative cases.

2.6 Partial Boussinesq approximations

The key feature in this section is the fact that we can consider cases when physical constants associated to
(2.26) are allowed to be zero. Beyond the physical meaning of this new models, the simplifications introduced
allow a theoretical treatment of this systems as we will see in the outcoming sections.

We introduce the case when ν, k = 0. In this case we have a coupling between the equations for the motion
of an inviscid fluid (Euler) and a transport equation. We present the zero-viscosity-thermal Boussinesq system.

The zero-viscosity-thermal Boussinesq equations



∂ u

∂t
+ (u ·∇) u +∇p = θe2,

∂θ

∂t
+ (u ·∇)θ = 0,

div u = 0,

u(x, 0) = u0(x), θ(x, 0) = θ0(x).

(2.27)

The partial case ν = 0 and k > 0 is referred to the zero-viscosity Boussinesq system. In this case we have a
coupling between the equations for the motion of an inviscid fluid and the convection diffusion equation.

The zero-viscosity Boussinesq equations



∂ u

∂t
+ (u ·∇) u +∇p = θe2,

∂θ

∂t
+ (u ·∇)θ = k∆θ,

div u = 0,

u(x, 0) = u0(x), θ(x, 0) = θ0(x).

(2.28)

Finally, setting ν > 0 and k = 0 we obtain a coupled system between the Navier-Stokes equations and the
transport equation. We denote this case as zero-thermal Boussinesq system.

The zero-thermal Boussinesq equations



∂ u

∂t
+ (u ·∇) u +∇p = θe2 + ν∆ u,

∂θ

∂t
+ (u ·∇)θ = 0,

div u = 0,

u(x, 0) = u0(x), θ(x, 0) = θ0(x).

(2.29)
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3 Functional Analysis approach

In order to mathematically study the Boussinesq system (2.26) we need to introduce some modern mathematical
facts arising in the study of fluid mechanics PDE’s. First, we present some explicit solutions for the equations
mentioned before. Then we review the functional spaces on which the theory of PDE’s is developed and its
applications to the Boussinesq system. Finally we give a schematic way to construct smooth solutions for the
Navier-Stokes equations and the relation between the accumulation of vorticity and the existence of global
smooth solutions for Navier-Stokes.

3.1 Fundamental solutions

For the study of PDEs is important to look for explicit solutions given by the nature of the problem. For exam-
ple after looking for properties like invariance under rotation and translation of the equations, we can suggest a
simple solution that can be later improved, [15]. In this sense, we introduce the concept of fundamental solution
for PDEs. The concept of fundamental solution is closely related to the space of distributions that shall be
introduced later. For the moment we just concentrate on explicit solutions for partial differential equations.

Lemma 1 (Explicit solution for the convection-diffusion equation in R). Let us consider the convection-diffusion
equation (2.21) with continuous and bounded initial data. If we assume Ω = R, u be a constant velocity and
f = 0. Then the solution of 

∂θ(x, t)

∂t
+ u

∂

∂x
θ(x, t)− k ∂

2

∂x2
θ(x, t) = 0,

θ(x, 0) = θ0(x),

(3.1)

is given by the expression

θ(x, t) =
1√

4πνt

∫
R
θ0(y) exp

(
−|x− ut− y|

2

4νt

)
dy. (3.2)

For a complete proof see [3, Exercise 1.2.1].

Now we summarize classic results for the heat and Laplace equations. For further studies of these equations
we recommend the book of L. Evans, [15].

Lemma 2 (Explicit solution for the homogeneous heat equation in R2). Let us consider the heat equation (2.20)
provided of continuous and bounded initial data. If Ω = R2 and f = 0. Then the solution of the problem

∂θ(x, t)

∂t
− k∆θ(x, t) = 0,

θ(x, 0) = θ0(x),

is given by the expression

θ(x, t) =
1

4πt

∫
R2

exp

(
−|x− y|

2

4t

)
θ0(y)dy, (x ∈ R2, t > 0).

The proof is presented in [15, Section 2.3].

An important particularization of the heat equation is given by its stationary version. This stationary version
of the heat equation does not consider the evolution in time of θ and in the homogeneous case it is typically
known as the Laplace6 equation. Under the presence of an external force f the stationary case of heat equation
is known as the Poisson7 equation.

61749-1827 Pierre-Simon Laplace was a French scholar whose work was important to the development of engineering, mathe-
matics, statistics, physics, astronomy, and philosophy.

71781-1840 Siméon Denis Poisson was a French mathematician, engineer, and physicist, who made several scientific advances.
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Lemma 3 (Solution of the Poisson equation). Let f be a smooth function in R2, vanishing sufficiently rapidly
as |x|→ ∞. Then the solution to the Poisson equation

−∆θ = f,

is given by

θ(x) =

∫
R2

N(x− y)f(y)dy,

where the fundamental solution N , also called kernel is

N(x) = − 1

2π
ln|x|.

The proof is presented in [15, Section 2.2].

Leaving aside our aim of looking explicit solutions of partial differential equations in the whole space, we
present the Grönwall inequality. This is also called Grönwall’s lemma and allows us to bound a function assumed
to satisfy certain differential or integral inequality.

Lemma 4 (Grönwall’s inequality, differential form). Let u, β be real valued functions defined on [0, T ] such that
u, β are continuous at [0, T ] and differentiable at (0, T ), satisfying the inequality

u′(t) ≤ β(t)u(t) t ∈ (0, T ),

then

u(t) ≤ u(0) exp

(∫ t

0

β(s)ds

)
. (3.3)

For the proof see [15, Appendix B].

Lemma 5 (Grönwall’s inequality, integral form). Let α, β and u be real-valued functions defined on [0, T ].
Assume that β and u are continuous such that β is non negative and if u satisfies the integral inequality

u(t) ≤ α(t) +

∫ t

a

β(s)u(s)ds, ∀t ∈ [0, T ],

then

u(t) ≤ α(t) +

∫ t

a

α(s)β(s) exp

(∫ t

s

β(r)dr

)
ds, t ∈ [0, T ].

Moreover, if α is non-decreasing, then

u(t) ≤ α(t) exp

(∫ t

a

β(s)ds

)
, t ∈ [0, T ]. (3.4)

For the proof see [15, Appendix B].

In the next sections we give an introduction to the functional spaces used to study PDEs. These functional
spaces make use of the integration theory developed by Lebesgue8 with the construction of Lebesgue measurable
functions and Lp spaces. We give an elementary review to the space of generalized functions or distributions
developed by Schwartz9. Then, the Lp and Distributions spaces reached the pinnacle of its development with
the theory presented by Sobolev10 with the so-called Sobolev spaces.

81875-1941 Henri León Lebesgue was a French mathematician with contributions to integral and measure theory.
91915-2002 Laurent-Möıse Schwartz was a French mathematician pioneering in the theory of Distributions or generalized func-

tions.
101908-189 Serguéi Sóbolev was a Russian mathematician who worked in mathematical analysis and PDE’s.
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3.2 Lp spaces

In this section we present some elementary facts about Lp−spaces. There is an extensive classical literature
for this topic, and we refer for example [16] and [17] for a rigorous treatment about Functional Analysis and
Measure Theory. In this matter, by simplicity we consider the whole space Rn and we show results that will be
useful for further considerations. The next results will be based on [12].

Let 1 ≤ p <∞. We denote by Lp(Rn) the Banach space of all (equivalence classes of) Lebesgue measurable
real functions u defined on Rn which have finite norm

‖u‖Lp(Rn) = ‖u‖Lp :=

(∫
Rn
|u(x)|dx

) 1
p

,

where two functions u and v are in the same equivalence class if and only if u = v almost everywhere. For
sake of simplicity we shall identify an equivalence class with one of its representatives. We also write “a.e” for
“almost everywhere” concerning the Lebesgue measure.

Let 1 ≤ p <∞. We define Lploc(Rn), the set of Lebesgue measurable functions such that

‖u‖Lp(Rn) = ‖u‖Lp :=

(∫
K

|u(x)|dx
) 1
p

< +∞, ∀K ⊂ X compact.

L2(Rn) is a Hilbert space whenever is endowed with the scalar product given by

(u, v)L2(Rn) = (u, v)L2 :=

∫
Rn
u(x)v(x)dx,

for u, v ∈ L2(Rn).

If p =∞, we define L∞(Rn) be the Banach space of all measurable functions u with finite essential supremum

‖u‖L∞(Rn) = ‖u‖L∞ := ess sup
x∈Rn
|u(x)|.

Let p ∈ [1,∞]. We denote by q the conjugate exponent,

1

p
+

1

q
= 1.

Theorem 1 (A density result). The space of test functions C∞c (infinitely differentiable functions with compact
support) is dense in Lp(1 ≤ p <∞).

A proof is presented in [18, Proposition 8.17].

We collect some classical results on Lp-spaces for real valued functions that later can be extended to vector
functions. The proof of the next results can be found in any Functional Analysis book, in particular we
recommend [16].

Theorem 2 (Hölder’s inequality). If u ∈ Lp(Rn), v ∈ Lq(Rn), then uv ∈ L1(Rn), and

‖uv‖L1 ≤ ‖u‖Lp‖v‖Lq .

By using Hölder’s inequality we get the following interpolation inequality.

Corollary 1 (Interpolation inequality). Let u ∈ Lp ∩ Lr with 1 ≤ p ≤ γ ≤ r ≤ ∞, 0 ≤ α ≤ 1 such that

1

γ
=
α

p
+

1− α
r

.

Then u ∈ Lγ and
‖u‖Lγ ≤ ‖u‖αLp‖u‖1−αr ≤ ‖u‖Lp + ‖u‖Lr . (3.5)
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Theorem 3 (Young’s inequality). Let a and b two nonnegative real numbers such that 1 < p, q <∞ and

1

p
+

1

q
= 1,

then

ab ≤ ap

p
+
bq

q
. (3.6)

Theorem 4 (A generalized Minkowski inequality). Let F be a measurable function on the measurable product
space X × Y with dx and dy the measures in X and Y respectively. Then(∫

Y

(∫
X

|F (x, y)|dx
)p

dy

)1/p

≤
∫
X

(∫
Y

|F (x, y)|pdy
)1/p

dx, 1 ≤ p <∞. (3.7)

Corollary 2 (Minkowski inequality). Let f and g in Lp. Then f + g ∈ Lp, and we have the triangle inequality

‖f + g‖Lp ≤ ‖f‖Lp + ‖g‖Lp , 1 ≤ p ≤ ∞. (3.8)

We can go into several directions when studying Lp spaces. For example: reflexivity, separability and duality.
For treatments in these directions, we refer again to the classical book of Brezis, [16].

Let (uj) = (uj)
∞
j=1 be a sequence in Lp(Rn). Then we write the convergence of uj in this space as

u = lim
j→∞

uj in Lp(Rn)

meaning that u ∈ Lp(Rn) and
lim
j→∞

‖u− uj‖Lp(Rn) = 0.

Taking into account the Boussinesq equations in two dimensions we have to deal with Lp spaces for vector
fields in two dimensions u = (u1, u2). We define (Lp(Rn))2 as the Banach space of vector functions such that
each component belongs to Lp(Rn), namely,

(Lp(Rn))2 :=
{

(u1, u2);uj ∈ Lp(Rn), j = 1, 2
}
.

Moreover, (Lp(Rn))2 is endowed with the norm

‖u ‖Lp(Rn)2 = ‖u ‖Lp(Rn) =
(
‖u1‖pLp + ‖u2‖pLp

) 1
p .

In particular, the space (L2(Rn))2 is a Hilbert space with scalar product

(u,v)L2(Rn) = (u,v)L2 :=

∫
Rn

u ·vdx, (3.9)

with u ·v = u1v1 + u2v2.

Finally observe thatn the previous results for real valued functions, Hölder, interpolation and Minkowski
inequalities in Lp spaces naturally extend to the case (Lp (R2))2.

3.3 Distributions

Let Ω ⊂ Rn be an open set. We denote by
D(Ω) = C∞c (Ω),

the class of continuous infinitely differentiable functions with compact support. We say that a function f has
compact support if there is some compact set K ( Ω such that f is identically zero outside of K.

Let α be a multiindex in Rn, n ∈ N that is α is a vector in Rn given by

α = (α1, α2, · · · , αn),
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where αi ∈ N. Then the derivative of order |α|, where

|α| = α1 + α2 + · · ·+ αn,

is defined by

Dα :=
∂|α|

∂α1
x1 ∂

α2
x2 · · · ∂αnxn

.

We consider a notion of convergence in the space D(Ω) as follows: let {φk}k∈N ⊂ D(Ω). We say that {φk}k
converges to φ ∈ D(Ω) if

1. ∃ K ⊂ Ω : supp(φk) ⊂ K ∀k ∈ N.

2. ∀α ∈ Nn : Dαφk → Dαφ.

Definition (Space of distributions). We define the space of distributions as the topological dual space of D(Ω),
that is

D′(Ω) := {T : D(Ω)→ R/T is linear and continuos}.

If T ∈ D′(Ω) and φ ∈ D(Ω) we denote the duality product as

〈T, φ〉D′(Ω)×D(Ω) = T (φ).

In D′(Ω) we say that {Tk}k∈N ⊂ D′(Ω) converges to T ∈ D′(Ω) if and only if

∀φ ∈ D(Ω) : 〈Tk, φ〉 → 〈T, φ〉.

Note that the notion of convergence given above makes sense due to the fact that 〈T, φ〉 is a real number.

Example

• Given a function f ∈ L1
loc(Ω), f induces an operator Tf ∈ D′(Ω) given by

〈Tf , φ〉 :=

∫
Ω

fφdx, ∀φ ∈ D(Ω).

Indeed, if supp(f) ⊂ K ⊂ Ω then

∣∣〈Tf , φ〉∣∣ =

∣∣∣∣∫
Ω

fφdx

∣∣∣∣
≤
∫

Ω

|f ||φ|dx

≤ ‖φ‖L∞
∫
K

|f |dx <∞.

Therefore by taking c =
∫
K
|f |dx we have ∣∣Tf (u)

∣∣ ≤ c‖φ‖L∞ .
So, Tf is well defined and it is continuous in D(Ω). Obviously it is linear in φ. We make an abuse of
notation and denote f ∈ D′(Ω).
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Example

• Let us see that L2(Ω) can be seen as a subspace of D′(Ω). Remember that L2(Ω) is a Hilbert space and by
Theorem 1 D(Ω) is dense in L2(Ω). Given a function f ∈ L2(Ω), we associate the distribution Tf ∈ D′(Ω)
as

〈Tf , φ〉 :=

∫
Ω

fφdx, ∀φ ∈ D(Ω).

Note that Tf = 0 is equivalent to say, ∫
Ω

fφdx = 0, ∀φ ∈ D(Ω).

Which implies f = 0. Namely, Tf is injective, or L2(Ω) is a subspace of D′(Ω). Moreover the injection
L2(Ω) ↪→ D′(Ω) is continuous.

Remark. Note that the condition of L2 being a subspace of the space of distributions gives us a characterization
for the condition of functions vanishing sufficiently rapidly as |x|→ ∞. That is, a function vanishing sufficiently
rapidly can be though as being in L2 in such a way that in the case of integration by parts the border terms
neglect.

Definition (Distributional derivative). Let T ∈ D′(Ω). We define
∂

∂xi
= ∂iT ∈ D′(Ω) as

〈∂iT, φ〉 = −〈T, ∂iφ〉 for any φ ∈ D(Ω).

Observe that the last definition makes sense for f ∈ C1(Ω). If f ∈ C1(Ω) then ∂if ∈ C(Ω) ⊂ D′(Ω), and
we have:

〈∂iTf , φ〉; = −〈Tf , ∂iφ〉

= −
∫

Ω

f∂iφdx

=

∫
Ω

∂ifφdx

= 〈T∂if , φ〉, ∀φ ∈ D(Ω).

Then, the derivative in the sense of distributions and the usual derivative coincide for f ∈ C1(Ω).

Proposition 1 (Properties of distributional derivatives). Let {Tk}k∈N ⊂ D′(Ω) and T ∈ D′(Ω). We have:

i) ∂i(∂jT ) = ∂j(∂iT ), ∀i, j = 1, · · · , n.

ii) 〈DαT, φ〉 = (−1)|α|〈T,Dαφ〉, ∀α ∈ Nn0 .

iii) If Tk
D′(Ω)−−−−→ T then DαTk

D′(Ω)−−−−→ DαT, ∀α ∈ Nn0 .

Proof.

i) Let T ∈ D′(Ω) and φ ∈ D′(Ω), by using the integration by parts formula we have, for all i, j = 1, · · · , n :

∂i(∂jT ) = 〈∂i(∂jT ), φ〉
:= −〈∂jT, ∂iφ〉
:= 〈T, ∂j(∂iφ)〉
= 〈T, ∂i(∂jφ)〉
:= −〈∂iT, ∂jφ〉
:= 〈∂j(∂iT ), φ〉
= ∂j(∂iT ).
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ii) Let T ∈ D′(Ω) and φ ∈ D(Ω) with α a multiindex. Then, if α = (α1, · · · , αn), |α|=
∑n
i=1 αi,

〈DαT, φ〉 = 〈∂α1
1 · · · ∂αnn T, φ〉

(i)
= (−1)α1+···+αn〈T, ∂α1

1 · · · ∂αnn φ〉
= (−1)|α|〈T,Dαφ〉.

iii) Let {Tk}k∈N ⊂ D′(Ω), T ∈ D′(Ω) and for any φ ∈ D(Ω), we assume that Tk
D′(Ω)−−−−→ T , i.e.

lim
k→∞

∣∣Tk(φ)− T (φ)
∣∣ = 0.

By property (ii) we have∣∣DαTk(φ)−DαT (φ)
∣∣ =

∣∣〈DαTk, φ〉 − 〈DαT, φ〉
∣∣

=
∣∣∣(−1)|α|〈Tk, Dαφ〉 − (−1)|α|〈T,Dαφ〉

∣∣∣
=
∣∣〈Tk, Dαφ〉 − 〈T,Dαφ〉

∣∣
=
∣∣〈Tk − T,Dαφ〉

∣∣ .
Thus,

lim
k→∞

∣∣DαTk(φ)−DαT (φ)
∣∣ = lim

k→∞

∣∣〈Tk − T,Dαφ〉
∣∣ = 0,

since φ ∈ D(Ω) implies Dαφ ∈ D(Ω).

3.4 Sobolev Spaces

Sobolev spaces provide a convenient framework when working with PDEs. These spaces use the already men-
tioned distributional derivative and the Lp theory. Let us fix p ∈ [1,∞] and let m be a nonegative integer. We
define function spaces whose members have distribution or weak derivatives of various orders and its derivative
lies in Lp spaces. By simplicity we consider the whole space Rn, however the next results can be stated over a
domain Ω ⊂ Rn; these are based on [12], [15] and [16].

Definition. The Sobolev space Wm,p(Rn) consist of functions u belonging to Lp(Rn) such that for each multi-
index α with |α| ≤ m, Dαu exists in the distribution sense and belongs to Lp(Rn).

The norm in Wm,p(Rn) = Wm,p is defined by

‖u‖Wm,p :=



 ∑
|α|≤m

∫
Rn

|Dαu|p dx

 1
p

, (1 ≤ p <∞),

∑
|α|≤m

ess sup |Dαu| , (p =∞).

We denote Lp = W 0,p. The cases of m = 1, 2 for 1 ≤ p <∞ will be frequently used and we use notations

∇u = Du := (Dju)nj=1, ‖∇u‖Lp = ‖Du‖Lp :=

 n∑
j=1

‖Dju‖pLp

 1
p

,

similarly

∇2u = D2u := (DjDlu)nj,l=1, ‖∇2u‖Lp = ‖D2u‖Lp :=

 n∑
j,l=1

‖DjDlu‖pLp

 1
p

.
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And for p =∞

‖∇u‖L∞ := max
j=1,··· ,n

‖Dju‖L∞ , ‖∇2u‖L∞ := max
j,l=1,··· ,n

‖DjDlu‖L∞ .

Sometimes we use convenient equivalent norms. For instance,

‖u‖Lp + ‖∇u‖Lp ≡ |||u|||W 1,p ,

and
‖u‖Lp + ‖∇u‖Lp + ‖∇2u‖Lp ≡ |||u|||W 2,p .

In particular if p = 2, we denote,

Wm,2(Rn) := Hm(Rn) :=
{
u ∈ L2(Rn) : Dαu ∈ L2(Rn), ∀ 0 ≤ |α|≤ m

}
.

The importance of this space is given itself by the well know properties of the space L2, which is a Hilbert
space. In, in Hm(Rn) = Hm we define the inner product,

(u, v)Hm :=
∑

0≤|α|≤m

∫
Rn
DαuDαvdx, (3.10)

and the induced norm

‖u‖Hm =

 ∑
0≤|α|≤m

‖Dαu‖2L2

 1
2

. (3.11)

We present now some basic properties of Sobolev spaces, which can be found in several books (see for ex-
ample [15], [16].)

Theorem 5. Hm is a Hilbert space with the inner product (·, ·)Hm defined in (3.10).

Proof. Note that Hm is prehilbert because it is endowed with the inner product (·, ·)Hm . Thus, we have to
prove that the Hm is complete with respect to ‖ · ‖Hm .

Let {vn}n ⊂ Hm(Rn) be a Cauchy sequence. Using the definition of Hm norm (3.11) we have

‖vn − vm‖L2 ≤ ‖vn − vm‖Hm ,
‖Dαvn −Dαvm‖L2 ≤ ‖Dαvn −Dαvm‖Hm , ∀ |α|≤ m.

Namely, {vn}n and {Dαvn}n are Cauchy sequences in L2(Rn) which is complete. Then, there is v, w ∈ L2(Ω)
such that

vn → v, in L2(Rn),

Dαvn → w in L2(Rn), ∀ |α|≤ m.

Thus, if we prove w = Dαv in the distribution sense, we would haveDαv ∈ L2(Rn) which implies v ∈ Hm(Rn)
and vn → v in Hm(Rn). We know

‖vn − v‖2Hm = ‖vn − v‖2L2 +
∑

1≤|α|≤m

‖Dαvn −Dαv‖2L2 . (3.12)

We mentioned above that injection L2(Rn) ↪→ D′(Rn) is continuous. Then,

vn → v, in D′(Rn),

Dαvn → w in D′(Rn), ∀ |α|≤ m.

Since the derivative in the distribution sense defines a continuous linear operator in D′(Ω), and vn → v in
D′(Ω), then Dαvn → Dαv in D′(Ω) and in particular w = Dαv.

Finally, (3.12) implies that limn→∞ ‖vn − v‖Hm = 0.
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One question which arises when studying Sobolev spaces is the approximation of functions in Hm by smooth
functions, as is possible for Lp spaces. In this direction we present the following density result.

Theorem 6 (Density result). In the whole space Rn we have that the closure of smooth functions D(Rn) gives
Hm(Rn), namely,

C∞c (Rn) = Hm(Rn).

In other words, given u ∈ Hm(Rn) there exist (φn)n ⊂ D(Rn) such that φn → φ in Hm(Rn).

The proof uses the techniques of convolution( to get C∞ functions) and cut off (to get compact support).
The details of the proof can be found in [15].

Since we are working on the whole space Rn, we make use of the Fourier transform and its properties to get
an equivalent definition of the space Hm(Rn). As is pointed in [19] we define the Sobolev space Hm(Rn) by

Hm(Rn) :=
{
u ∈ L2(Rn) : (1 + |ξ|2)

m
2 û ∈ L2(Rn)

}
, (3.13)

and the norm
‖u‖Hm(Rn) = ‖(1 + |ξ|2)m/2û‖L2(Rn), (3.14)

where û denotes the Fourier transform of the function u. That is,

û(ξ) =

∫
Rn

u(x)e−2πix·ξdx, for ξ ∈ Rn.

We can also consider the case when m = s ∈ R and the previous definition remains valid.

Now we present a result which shows us that if we consider the space Hm(Rn) with m large enough, then
the functions belong to spaces with classical derivatives.

Theorem 7. If m > n
2 then Hm(Rn) is continuously embedded in C(Rn), i.e. there exist a constant c > 0 such

that
‖u‖L∞ ≤ c‖u‖Hm .

Proof. Let u ∈ Hm(Rn), m > n
2 . By means of the Fourier transform we have

û(ξ) = (1 + |ξ|2)−
m
2 (1 + |ξ|2)

m
2 û(ξ). (3.15)

Since u ∈ Hm(Rn), then (1 + |ξ|2)
m
2 û(ξ) ∈ L2(Rn). On the other hand, using polar coordinates we obtain∫

Rn

dξ

(1 + |ξ|2)m
=

∫ ∞
0

∫
Sn−1

1

(1 + |r|2)m
rn−1dσ(x′)dr

= m(Sn−1)

∫ ∞
0

rn−1

(1 + |r|2)m
dr, (3.16)

where m(Sn−1) is the measure of the n− 1 unit sphere.

Note that expression (3.16) is finite if and only if

2m− n+ 1 > 1

m >
n

2
.

Namely, (1 + |ξ|2)−
m
2 ∈ L2(Rn) and using (3.15) together with the Cauchy-Schwartz inequality we have

û ∈ L1(Rn). Thus u = ˇ̂u ∈ C(Rn), since the Fourier transform of a L1-function is continuous.
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Moreover, ∣∣u(x)
∣∣ =

∣∣∣∣∫
Rn

û(ξ)e2πix·ξdξ

∣∣∣∣
≤ ‖û(ξ)‖L1

≤ C(n,m)‖(1 + |ξ|2)
m
2 û(ξ)‖L2

≤ C(n,m)‖u‖Hm ,

where we used the alternative definition for the norm Hm given in (3.14).

Finally, note that supx∈Rn |u(x)|≤ c‖u‖Hm , which give us the result.

Corollary 3. If k ∈ Z+ and m > n
2 + k, then

Hm(Rn) ↪→ Ck(Rn).

Proof. Since m− k > n
2 , Theorem 7 gives the continuous injection,

Hm−k(Rn) ↪→ C(Rn).

If u ∈ Hm(Rn), then Dαu ∈ Hm−k(Rn), ∀ |α|≤ k. Moreover using the above continuous injection we have
Dαu ∈ C(Rn) which give us u ∈ Ck(Rn).

Example

• In two dimensions (n = 2) and for k = 1 we have the continuous injection

Hm (R2) ↪→ C1 (R2), m > 2,

and the estimate

‖∇u‖L∞ ≤ ‖u‖Hm . (3.17)

Sobolev inequalities

Once we have presented some elementary results for the space Hilbert space Hm, we deal with the general
Banach space Wm,p. The space Wm,p inherits the completeness, reflexivity and separability from Lp. The
most important facts related to Wm,p are called Sobolev embeddings. These embeddings are summarized in
the following theorem. For a good treatment of Sobolev embeddings see for example [15].

Theorem 8 (Sobolev inequalities). In the whole space Rn we have

if p < n W 1,p(Rn) ⊂ Lq(Rn), ∀q ∈ [1, p∗],
1

p∗
=

1

p
− 1

n
,

if p = n W 1,p(Rn) ⊂ Lq(Rn), ∀q ∈ [1,+∞],

if p > n W 1,p(Rn) ⊂ C(Rn),

with continuous injection, that is, W 1,p(Rn) ↪→ E, with E denoting the corresponding space. Moreover, there
exists a constant C > 0 such that, for all u ∈W 1,p(Rn),

‖u‖E ≤ C‖u‖W 1,p(Rn).

The proof is presented in [15].

More general, if k > l and 1 ≤ p < q <∞ such that

1

p
− k

n
=

1

q
− l

n

then we have the continuous injection
W k,p(Rn) ↪→W l,q(Rn).
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Example

• In two dimensions (n=2), for m > 2 we have the continuous injection

Hm (R2) ↪→W 2,p (R2),

provided p satisfies,

1−m
2

=
1− p
p

< −1

2
,

1− p < −p
2
,

2 < p.

Thus, for m > 2 and p > 2 we have the estimate for u ∈ Hm (R2),

‖u‖W 2,p (R2) ≤ C‖u‖Hm (R2). (3.18)

Theorem 9 (Gagliardo-Nirenberg interpolation inequality). Let 1 ≤ q, r ≤ ∞ and let m ∈ N. Assume α, j ∈ N
are such that

1

p
=
j

n
+

(
1

r
− m

n

)
α+

1− α
q

, (3.19)

and
j

m
≤ α ≤ 1.

Then, there exist a constant C depending only on m,n, j, q, r and α such that

‖Dju‖Lp(Rn) ≤ C‖Dmu‖αLr(Rn)‖u‖
1−α
Lq(Rn). (3.20)

The proof is presented in [15].

Examples

• In two dimensions (n = 2) and for j, p, q, r satisfying (3.19), we have

‖u‖L∞ ≤ C‖u‖
p−2
2p−2

L2 ‖∇u‖
p

2p−2

Lp , p > 2, (3.21)

‖∇u‖L∞ ≤ C‖∇u‖
p−2
2p−2

L2 ‖D2u‖
p

2p−2

Lp , p > 2. (3.22)

• In Rn, for 0 < k < m, it holds

‖Dk u ‖L2 ≤ C‖u ‖1−k/mL2 ‖Dm u ‖k/mL2 . (3.23)

• For ω = curl u in two dimensions, for q = 2, r = 2, j = 0 and m > 2, it remains true that for

α =
p− 2

(m− 1)p
,

1− α =
2

p
+

(m− 2)(p− 2)

(m− 1)p
.

Then,

‖ω‖Lp ≤ C‖ω‖
2
p+

(m−2)(p−2)
(m−1)p

L2 ‖Dm−1ω‖
p−2

(m−1)p

L2 . (3.24)

• For a function θ in two dimensions and j = 1, r = 2, q = 2,m > 2. It is true that

‖∇θ‖Lp ≤ C‖Dmθ‖2(1− 1
p )

L2 ‖θ‖
2
p−1

L2 . (3.25)
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3.5 Mollifiers

Now we give an introduction to the regularization technique by mollifiers. This regularization involves convolu-
tion of a non regular function with a function having better properties. Mollifiers have the well known property
of smoothing things. For further references in this way see for example [16].

We define a regularizing operator called mollifier, and then we show how to use this tool to answer important
questions for Euler and Navier-Stokes equations. Given any radial function

ρ(|x|) ∈ C∞c (R2), ρ ≥ 0,

∫
R2

ρdx = 1,

we define the mollification Jεu of a function u ∈ Lp (R2), 1 ≤ p ≤ ∞, by

(Jε u)(x) = ε−2

∫
R2

ρ

(
x− y
ε

)
u(y)dy, ε > 0. (3.26)

We present now, some of the main properties of mollifiers.

Lemma 6 (Properties of mollifiers). Let u ∈ Lp (R2) and Jε be the mollifier defined in (3.26). Then Jε u is a
C∞ function and the following statements hold:

(i) Assume u is continuous in R2. Then

‖Jε u‖L∞ ≤ ‖u‖L∞ and lim
ε→0
Jε u = u

on any compact set Ω in R2.

(ii) Mollifiers commute with distribution derivatives,

Dα Jε u = JεDαu, ∀|α|≤ m, u ∈ Hm.

(iii) Mollifiers commute with integrals. For every u ∈ Lp, v ∈ Lq with 1
p + 1

q = 1, we have∫
R2

(Jε u)vdx =

∫
R2

u(Jε v)dx.

The proof is presented in [13]. (Appendix of chapter 3).

3.6 Linear transport equation

In this section we study the homogeneous linear transport problem (2.22) in the case Ω = Rn , t > 0 , provided
with an initial condition θ0 and variable velocity u = u(x, t):

∂θ

∂t
+ u ·∇θ = 0, Rn×R+

∗ ,

θ(x, 0) = θ0(x), x ∈ Rn .
(3.27)

Here u represents the velocity vector field of a fluid. Moreover, instead of considering an infinitesimal
volume of fluid at fixed time, we present now the concept of particle trajectories mapping which makes use of
the Lagrangian coordinates (see [13] for details).

Definition (Particle trajectories mapping). Given a fluid particle with velocity field u , we define the particle
trajectories mapping Ψ(·, t) as the function which takes a marker α ∈ Rn and give us the location Ψ(α, t) =
(x1, · · · , xn)t of a fluid particle at time t that was initially located at α. Moreover, this mapping Ψ(·, t) satisfies
the following differential equation:

d

dt
Ψ(·, t) = u(Ψ(·, t), t),

Ψ(·, 0) = α,

where α is known as the Lagrangian particle marker.
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Theorem 10. Let θ0 ∈ C1(Rn) and Ψ be the particle trajectories mapping associated to u. Then the problem
(3.27) has a unique solution given by

θ(t, x) = θ0(Ψ(−t, x))

Proof. Let us consider the single valued function ψ(t) = θ(t,Ψ(·, t)) depending on t. By using the chain rule we
have:

ψ′(t) = θt(t,Ψ(·, t)) +
d

dt
Ψ(·, t) · ∇θ(t,Ψ(·, t)).

Since Ψ(·, t) satisfies the differential equation of the particle trajectories mapping and Ψ(·, t) is a diffeomor-
phism such that Ψ(·, t)−1 = Ψ(·,−t),we have

ψ(t) = ψ(0) = θ(0, α) = θ0(α).

If we define α := Ψ(−t, x), then
θ(t, x) = θ0(Ψ(−t, x)).

Theorem 11 (Basic estimate). If p ∈ [1,∞] and div u ∈ L1(0, T ;L∞(Rn)), then the solution of (3.27) satisfies

‖θ(t)‖Lp ≤ ‖θ0‖Lp .

Proof. Note that the condition div u ∈ L1(0, T ;L∞(Rn)) naturally implies that the flux velocity between a
temporal average [0, T ] is finite and it is bounded spatially. So that, the assumption div u ∈ L1(0, T ;L∞(Rn))
has clearly a reasonable physical support.

If p =∞, using Theorem 10, we have

θ(Ψ(x, t), t) = θ0(x).

Taking supremum over the trajectories we have

‖θ(t)‖L∞ ≤ ‖θ0‖L∞ .

If p <∞, multiplying by θ|θ|p−2 we observe that(
∂θ

∂t
+ u ·∇θ

)
θ|θ|p−2= 0,

∂

∂t
|θ|p+ u ·∇|θ|p= 0.

Integrating over Rn and using integration by parts we have

d

dt

∫
Rn

|θ|pdx =

∫
Rn

div u|θ|pdx.

Since div(u) ∈ L1(0, T ;L∞(Rn)), it follows that

d

dt
‖θ(t)‖Lp ≤ ‖div u ‖L∞‖θ(t)‖Lp

≤ c‖θ(t)‖Lp .

Moreover, by using Grönwall’s inequality we get

‖θ(t)‖Lp ≤ c‖θ0‖Lp ,

where c depends on u.
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3.7 Leray’s formulation of incompressible flows

As it is pointed out on [13], the Navier-Stokes equation contains only three derivatives in time of the four
unknown variables. This fact motivates the search of an equation p = p(u) to eliminate the pressure from the
Navier-Stokes equations. We recall the Navier-Stokes equations in two dimensions

Navier-Stokes equations


∂u

∂t
+ (u · ∇)u +

1

ρ
∇p− ν∆u =

1

ρ
fex,

∇ · u = 0,

u|t=0 = u0.

(3.28)

Proposition 2 (Leray’s Formulation of the Navier-Stokes equations). Solving the Navier-Stokes equations
(3.28) with smooth velocity u0, div u0 = 0 is equivalent to solving the equation

∂u

∂t
+ (u · ∇)u = − 1

2π

∫
R2

x− y
|x− y|2

tr(∇u(y, t))2dy + ν∆u, (3.29)

u|t=0= u0.

The pressure p(·, ·) can be recovered from velocity u(·, ·) by the Poisson equation

−∆p = tr(∇u)2, (3.30)

where tr denotes the trace of the corresponding matrix.

Proof. To set notation let us assume that u ∈ L2. We introduce a subspace of L2 which contains all vector field
with null divergence in the sense of distributions. Notice that if u is a C1 vector field with zero divergence,
then for any test function φ we have

0 =

∫
R2

div uφdx =

∫
R2

div(uφ)dx−
∫
R2

u · ∇φdx.

Thus, we introduce the following subspace E ⊂ L2, such that it contains all vector fields u whose divergence
(in the distribution sense) vanishes.

E =

{
u ∈ L2 :

∫
R2

u · ∇φdx = 0 for any φ ∈ D(R2)

}
.

Note that if u(t) ∈ E ∀t ≥ 0, then its partial derivative with respect to time also belongs to E for all times.
Moreover, considering the condition div u = 0 into the first equation of Navier-Stokes, we observe that

div u = 0 =⇒ div ∆u = 0,

div u = 0 6=⇒ div(u · ∇u) = 0.

And in particular,

div(u · ∇u) = tr(∇u)2 + (u · ∇u) div u

= tr(∇u)2.

We now search for a scalar function p such that the equation

∂u

∂t
= (u · ∇)u + ν∆u−∇p,

lies in the subspace E. Observing that the previous equation lies on E if the identity

div[(u · ∇)u +∇p] = 0,
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is fulfilled, the following Poisson equation
−∆p = tr(∇u)2, (3.31)

has to be satisfied.
From Lemma 3 we can solve (3.31), and compute the pressure as follows,

p(t, x) =

∫
R2

1

2π
ln|x− y|tr(∇u(t, y))2dy.

And the gradient of p takes the form

∇p(x, t) =
1

2π
∇ ln|x|∗ tr(∇u)2(x).

Computing ∇ ln|x| we have

∇p(x, t) =
1

2π

∫
R2

x− y
|x− y|2

tr(∇u(t, y))2dy,

Using this formula we can drop the pressure from the standard formulation of Navier-Stokes equation and we
obtain a system of equations for u given by (3.29).

Remark. Note that if u(t, ·) ∈ E for all t ≥ 0, in particular we have that div u0 = 0 is enough to have div u = 0
for all times, so the incompressiblity condition can be dropped when we are solving (3.30). That is, we have
shown that we can recover the scalar pressure(up to additive constants) from a closed evolution equation for u.
In what follows we will assume that pressure can be recovered from (3.29) and we will not go into its explicit
computation.

In the solution of the Poisson equation for the pressure (3.30) we were dealing with a kernel which has a
singularity at the origin i.e. this kernel is not locally integrable and we need to take into account the cancellation
of the integral of N over any sphere centered at zero. Thus, we have to consider the integral over |x|> ε, for a
given ε > 0 and then let ε→ 0. Namely, we consider the expression

lim
ε→0

∫
|x|>ε

N(y)f(x− y)dy, (3.32)

which is referred as a singular integral.

The kernel N mentioned above and
1

2π

xi
|x|

for i = 1, 2., are typical examples of Calderón-Zygmund kernels

which include any function N(·)+ in Rn of the form

N(x) =
P (x)

|x|n+d
,

where P (x) is a homogeneous polynomial of degree d ≥ 1 with
∫
|x|=1

P = 0.

In this context we present a fundamental result by Calderón and Zygmund. This result lies outside the scope
of this memory and is presented as a result that lies in the subject of singular integrals and differentiability
properties of functions.

Theorem 12 (Calderón-Zygmund theory). Suppose N(·) is a Calderón-Zygmund kernel in Rn. For any func-
tion g ∈ Lp(Rn), 1 < p <∞, the limit

(Tg)(x) := lim
ε→0

∫
|x|>ε

N(y)f(x− y)dy

converges a.e. in Lp and
‖Tg‖Lp ≤ C(n, p)‖g‖Lp .

For a proof see for example [20, Section 3.2].
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3.8 Vorticity stream formulation for Euler and Navier-Stokes equations

We turn out to the study of the vorticity associated to a fluid. Roughly speaking, vorticity is a particular form
in the motion of fluid, which has its origin in the rotation of fluid elements. Physically we can say that vorticity
is the quantity that characterizes the rotation of a fluid. Mathematically we define the vorticity as ω = ∇× u,
where u is the velocity field of the fluid. In this manner, we can also define vortex as the region of the fluid
which has high concentration of fluid rotation in comparison of its surroundings. Even when the motion of the
fluid implies the origin of small vortex, this region have essential importance and it has been called by several
authors as “the voice of the fluid”, [21].

In this section, based on [13], we present the vorticity stream formulation for the Euler and Navier-Stokes
equations. We show that, in two dimensions, we can transform the Navier-Stokes equations into a self contained
equation for the vorticity ω. In particular, we present the so-called vorticity-transport formula, which states
that for inviscid fluid we can integrate exactly by means of the particle-trajectory mapping.

For two dimensional flows, we can transform the Navier-Stokes equations into a vorticity equation by means of
the curl operator. Seen the velocity field as u = (u1, u2, 0)t, we can define the vorticity as ω = (0, 0, ∂xu2−∂yu1)t,
which is orthogonal to u. Thereby, taking curl operation to both sides of Navier-Stokes equations we have

∇×
(
∂u

∂t
+ (u · ∇) u +∇p− ν∆ u

)
= 0,

since the dimension is two, we denote ω = curl u =
(
∂xu2 − ∂yu1

)
.

For each term

∇×
(
∂u

∂t

)
=

∂

∂t

(
∂xu2 − ∂yu1

)
=

∂

∂t
ω,

∇× (u · ∇) u = (u · ∇)ω,

∇×∇p = 0,

∇× ν∆ u = ν∆ω,

∇× u0 = ω0.

Putting all above computations together we get
∂ω

∂t
+ (u · ∇)ω = ν∆ω,

ω|t=0= ω0.
(3.33)

Let us note that for inviscid fluids we have ν = 0. In this case we state the following result which is called
the vorticity-transport in two dimensions.

Proposition 3. Let Ψ(α, t) be the smooth trajectories corresponding to a divergence-free velocity field. Then
for ν = 0, the vorticity ω(·, ·) in equation (3.33) satisfies

ω(Ψ(α, t), t) = ω0(α), α ∈ R2, (3.34)

and the vorticity ω0(α) is conserved along particle trajectories for two-dimensional (2D) inviscid fluid flows.

Proof. Note that for ν = 0 we have a linear transport equation in terms of ω. Then using Theorem 10 we have
the result.

In general for fluid flows in two dimensions we can render vorticity equation (3.33) into a self contained
equation for ω.
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Proposition 4. For 2D flows vanishing sufficiently rapidly as |x| → ∞, the Navier-Stokes equations (2.17) are
equivalent to the vorticity-stream formulation,

∂ω

∂t
+ (u · ∇)ω = ν∆ω, (x, t) ∈ R2 × [0,∞),

ω|t=0= ω0,

where the velocity u is determined from the vorticity ω by

u(x, t) =

∫
R2

K2(x− y)ω(y, t)dy, x ∈ R2,

involving the kernel

K2(x) =
1

2π

(
−x2

|x|2
,
x1

|x|2

)t
.

Proof. From the condition of incompressibility we have div u = 0. Since we are in two dimensions it implies
the existence of a stream function ψ defined by

u1 = −∂ψ
∂y

, u2 =
∂ψ

∂x
.

Note that with the previous definition, ψ makes sense, and it is valid for all fluid flows. The equation that
the stream function ψ has to satisfy comes from the vorticity equation as follows

u = ∇⊥ψ, (3.35)

ω = ∆ψ,

where we have applied curl operation to both sides of the equation for the velocity field u.
Thus, we have arrived to a Poisson equation ω = ∆ψ in R2 in terms of the vorticity and the stream function.

The fundamental solution of this Poisson problem is given by (see Lemma 3)

ψ(x, t) =
1

2π

∫
R2

ln|x− y|ω(y, t)dy.

Since we can define ψ as the product of convolution, we can compute the gradient of ψ by differentiation
under the integral. Thus, velocity can be recovered from ψ by applying orthogonal gradient to equation (3.35)
as

u(x, t) =

∫
R2

K2(x− y)ω(y, t)dy. (3.36)

Where K2(·) is given by

K2(x) =
1

2π

(
−x2

|x|2
,
x1

|x|2

)t
. (3.37)

Remark. Note that K2 (3.37) defines a Calderón-Zygmund operator and (3.36) a singular integral operator.
Then, using Theorem 3 we obtain

‖∇u‖Lp ≤ Cp‖ω‖Lp , 1 < p <∞. (3.38)

Moreover if ω ∈W 1,p (R2),
‖D2u‖Lp ≤ Cp‖∇ω‖Lp , 1 < p <∞. (3.39)
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3.9 Other useful inequalities

Using the theory of Sobolev spaces and the vorticity formulation for incompressible fluids in two dimensions we
present the following useful results.

Theorem 13 (Potential theory estimate). Let u be a smooth velocity field in L2 (R2)∩L∞ (R2), div u = 0.
Then, for m > 2

‖∇u‖L∞ ≤ C
(

1 + log+ ‖u‖Hm + log+ ‖ω‖L2

) (
1 + ‖ω‖L∞

)
, (3.40)

here log+(x) denotes log(x) for x > 1 and 0 otherwise.

A proof is presented in [13].

Theorem 14 (Brezis-Wainger inequality). For u ∈ L2
(
R2
)
∩W 1,p(R2) and p > 2 we have the inequality

‖u ‖L∞ ≤ C
(
1 + ‖∇u ‖L2

) [
1 + log+

(
‖∇u ‖p

)] 1
2

+ C‖u ‖L2 . (3.41)

Proof. For the proof see [22].

Proposition 5. Let u be a solution of the Navier-Stokes equations (2.17). If the norms ‖u(t)‖Hm and
‖∇u(t)‖L∞ remain bounded. Then there exist a constant cm such that

d

dt
‖u(t)‖2Hm ≤ cm‖∇u(t)‖L∞‖u(t)‖2Hm . (3.42)

Proof. The proof takes Dα of the Navier-Stokes equations and multiply it by Dα u . After we integrate over
Rn and make use of Sobolev inequalities. A complete proof is presented in [13].

Proposition 6. Let θ,u be a solution to the Boussinesq system (2.27) such that the norms ‖u(t, ·)‖Hm ,
‖∇u(t, ·)‖L∞ and ‖θ(t, ·)‖Hm remains bounded. Then there exists cm such that

d

dt
‖θ(t)‖Hm ≤ cm‖∇u(t)‖L∞(‖u(t)‖Hm + ‖θ(t)‖Hm). (3.43)

Proof. Similar to Proposition 5 we take Dα of the Boussinesq equations and multiply it by Dαθ . Then we
integrate over Rn and make use of Sobolev inequalities. A complete proof is presented in [9].

3.10 Energy methods, stability and uniqueness for Euler and Navier-Stokes equa-
tions

In this section we give an introduction to a fundamental method for the study of PDEs, that is, we describe
the concept of the energy method. Energy methods arise from questions like, [13]:

• Given an initial data. Is it possible to find a solution at any time?

• If there is a solution. Is it unique?

• Does the solution present a singularity or experiment a blow-up at finite time?

• Is there a criterion for the blow-up of smooth solutions at later times?

To answer this type of questions we construct finite estimates for physical quantities like kinetic energy

E :=
1

2

∫
R2

|u|2dx

and we use approximation schemes associated with the equations, [13]. To be more intuitive, we consider the
prototype case of Euler and Navier-Stokes equations and we show a sketchy process for the construction of its
solutions. Moreover, we state the relation of the accumulation of vorticity and the existence of smooth solutions
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globally in time.

In a general framework, we construct energy estimates by multiplying a PDE by a function which is as-
sumed to be smooth enough, and then integrating it over the corresponding domain. In most of the cases we
use integration by parts and in the case of being working with the hole space we neglect the border terms by
recalling the condition of rapidly decreasing as |x|→ ∞, say for example being in L2, [13].

It is important to remark that multiplying by a smooth function and estimating its norm in a determined
functional space will give the regularity of a determined function in a problem. Moreover, any estimate has to
involve an appropriate initial condition, say for example, being in L2 or having distribution derivatives in Lp.

We present an standard argument to show uniqueness of the Navier-Stokes equations. It makes use of the
ideas described above.

3.10.1 Uniqueness of solutions

Let us consider the Navier-Stokes equation for an incompressible fluid in two dimensions

∂ u

∂t
+ (u ·∇) u +∇p = ν∆ u,

div u = 0, (3.44)

u(x, 0) = u0(x).

Theorem 15 (Uniqueness of solutions). Let u1 and u2 be solutions of the Navier-Stokes problem (3.44), having
bounded energy with the same initial conditions. And if u2 satisfies∫ T

0

‖∇u2 ‖L∞dt <∞, (3.45)

then u1(t, ·) = u2(t, ·) for all t ∈ [0, T ].

Proof. We assume that u1,u2 ∈ L2 and p1, p2 are two solutions of (3.44) with the same initial conditions and
satisfying the condition of rapidly decreasing as |x|→ ∞. If we make the difference of the equations satisfying
the corresponding velocities , and we define ũ := u1−u2, p̃ = p1 − p2. Then ũ and p̃ satisfy the following
partial differential equation

∂ũ

∂t
+ (u1 ·∇)ũ + (ũ · ∇) u2 +∇p̃ = ν∆ũ. (3.46)

Since we have u1,u2 having bounded energy, we take L2 inner product of (3.46) with ũ, that is

1d

2dt

∫
R2

ũ2 + ν

∫
R2

|∇ũ|2dx = −
∫
R2

(ũ · ∇) u2 ·ũdx, (3.47)

div ũ = 0,

where we used integration by parts and the following facts∫
R2

(u1 ·∇)ũ · ũdx =

2∑
i=1

∫
R2

u1 ·∇

(
|ũi|
2

)
=

2∑
i=1

∫
R2

div

(
u1
|ũi|
2

)
= 0,∫

R2

∇p̃ · ũ = −
∫
R2

p̃ div ũ = 0.

From (3.47) we obtain

1

2

d

dt

∫
R2

ũ2 + ν

∫
R2

|∇ũ|2dx ≤
∫
R2

|∇u2||ũ|2dx,

d

dt
‖ũ(t)‖2L2 ≤ 2‖∇u2(t)‖L∞‖ũ(t)‖2L2 ,
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where we used Cauchy-Schwartz inequality.

Using Grönwall’s inequality we have

‖ũ(t)‖2L2 ≤ ‖ũ(0)‖2L2 exp

(∫ t

0

2‖∇u2(s)‖L∞ds

)
.

Since we assume u1 and u2 having the same initial condition and using estimate (3.45), then we conclude
that

u1(t, ·) = u2(t, ·) ∀t ∈ [0, T ].

3.10.2 Construction of solutions

Now we present an argument to show the existence of solutions to the Navier-Stokes equations, locally in time.
The key step is related with the construction of finite estimates for the velocity in the ‖ · ‖Hm norm. The
next energy estimates assume the existence of smooth solutions and then we construct a priori estimates about
them. In particular based in the book by Andrew Majda, [13], we show that for smooth initial data belonging
to some functional space, we can prove that solutions exists on a finite-time interval. We emphasize that the
following results will be presented in a sketchy way and it does not constitute a rigorous proof for the existence
of solutions to the Navier-Stokes equations.

The scheme for proving the existence of solutions is summarized as follows: first we prove existence for
regularized Navier-Stokes equations, and then we make use of a priori Hm estimates to pass to the limit in the
approximation scheme which give us a solution to the Navier-Stokes equations.

We present the arguments used for the construction of solutions to the Navier-Stokes equations in two steps.

Step one

Let us consider the Navier-Stokes equations

∂ u

∂t
+ (u ·∇) u +∇p = ν∆ u,

div u = 0,

u(x, 0) = u0(x).

By using the properties of mollifiers presented in Lemma 6 , we apply Jε to the above equations. After some
computations we obtain

uεt +Jε
[
(Jε uε) · ∇(Jε uε)

]
= −∇pε + ν Jε(Jε ∆ uε),

div uε = 0,

uε|t=0 = u0 .

Using the Leray formulation for incompressible fluids, we can drop the dependence of p in the above equations.
That is, we project into the space of free divergence functions. Then the regularized Navier-Stokes equations
produces an ordinary differential equation in the Banach space E ⊂ L2,

duεt
dt

= Fε(u
ε),

uε|t=0 = u0,
(3.48)

where Fε(u
ε) = ν Jε2 ∆ uε−P Jε[(Jε uε) · ∇(Jε uε)] and P denotes the Leray projection operator.
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Since the right hand side of (3.48) is Lipschitz because of the presence of mollifiers, then we can use Picard’s
theorem for ODE’s in Banach spaces (see [23]) to prove existence, uniqueness and global persistence of solutions
in the space C1([0, T ];C2 ∩ V m), with V m :=

{
u ∈ Hm(Rn) : div u = 0

}
.

Step two

From Proposition 5 we have for regularized solutions,

d

dt
‖uε(t)‖2Hm ≤ cm‖∇uε(t)‖L∞‖uε(t)‖2Hm .

Using Corollary 3, provided that m > n
2 + 1, we get

d

dt
‖uε(t)‖2Hm ≤ cm‖uε(t)‖3Hm .

Definig z(t) := ‖uε(t)‖2Hm , the corresponding ODE takes the form:

z′(t) ≤ cmz(t)3/2.

Then for an appropriate small enough interval [0, T ], the Grönwall inequality gives us that ‖uε(t)‖2Hm
remains bounded.

Step three

We claim that the sequence uε : [0, T ] → E ⊂ L2, is Cauchy when ε → 0. Thus for ε, ε′ > 0 it is possible to
show that (see [13, Section 3.2] for details)

d

dt
‖uε−uε

′
‖L2 ≤ c(1 + ‖uε ‖Hm + ‖uε

′
‖Hm)

[
(ε+ ε′) + ‖uε−uε

′
‖L2

]
.

By step two ‖uε ‖Hm is uniformly bounded for t ∈ [0, T ] and using Grönwall’s inequality we obtain

‖uε(t)− uε
′
(t)‖L2 ≤ (ε+ ε′) exp(kt), t ∈ [0, T ].

Passing to the limit when ε → 0 we conclude that uε is a Cauchy sequence. Namely, there is u ∈
C([0, T ];L2(Rn)) such that

lim
ε→0
‖uε(t)− u(t)‖L2 = 0.

Step four

We claim that the derivatives Dα uε with |α|≤ m converge to the corresponding derivatives of u. For 0 < k < m
we make use of the Gagliardo- Nirenberg interpolation inequality (3.23) which give us

lim
ε→0
‖uε−u ‖Hk ≤ Ck lim

ε→0
‖uε−u ‖1−k/mL2 lim

ε→0
‖uε−u ‖k/mHm = 0,

where we used step three and the Banach11-Alaoglu12 theorem, [18, Theorem 5.18], which in particular states
that a bounded sequence in Hm has a convergent subsequence in Hm.

In particular, if m > n
2 , we have the following uniform estimates for t ∈ [0, T ]

‖(uε ·∇uε)− (u ·∇) u ‖L2 → 0,

‖∆ uε−∆ u ‖L2 → 0.

111892-1945 Stefan Banach was a Polish mathematician who is generally considered one of the world’s most important and
influential 20th-century mathematicians. He was the founder of modern functional analysis.

12Leonidas Alaoglu was a Greek mathematician, known for his result, called Alaoglu’s theorem on the weak-star compactness of
the closed unit ball in the dual of a normed space.
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Step five

From equation (3.48) we get

uε(t) = u0 +

∫ t

0

ν Jε2 ∆ uε(s)ds−
∫ t

0

P Jε[(Jε uε(s)) · ∇(Jε uε(s))]ds.

Moreover, using step four and letting ε→ 0, we have that there is u ∈ E such that

u(t) = u0 +

∫ t

0

{
P [(u(s) · ∇) u(s)] + ν∆ u(s)

}
ds, t ∈ [0, T ]. (3.49)

Finally, all the above steps can be summarized in the next theorem.

Theorem 16. Let u0 ∈ Hm and m > n
2 + 2. Then there exist a solution of the Navier-Stokes equations given

by (3.49) for t ∈ [0, T ] with T sufficiently small.

3.10.3 Accumulation of vorticity and existence of solutions

In the previous section we have constructed classical solutions for the Navier-Stokes equations. Namely, u ∈
C1([0, T ];C2 ∩ V m). A key feature for the proof of existence of solutions were related to the boundedness of
‖u(·, t)‖Hm . In fact, the solutions can be extended provided that ‖u(·, t)‖Hm remains bounded. In this section
we follow ideas presented in [13, Section 3.3] to show that the global existence is related with the accumulation
of vorticity. We state that the maximum of Hm norm for u is controlled by the L1([0, T ];L∞(Rn)) of the
vorticity.

Theorem 17 (L∞ Vorticity control and global existence). Let the initial velocity u0 ∈ V m, m > n
2 + 2, so that

there exist a classical solution u ∈ C1([0, T ];C2 ∩ V m) to the 2D Navier-Stokes equation. Then:

i) If for any T > 0 there exists a classical solution u ∈ C1([0, T ];C2 ∩ V m) such that the vorticity ω satisfies∫ T

0

‖ω(·, t)‖L∞dt ≤M, (3.50)

then the solution u exist globally in time, u ∈ C1([0,∞);C2 ∩ V m).

ii) If the maximal time T of the existence of solutions u ∈ C1([0, T ];C2 ∩ V m) is finite, then necessarily the
vorticity accumulates so rapidly that

lim
t→T

∫ t

0

‖ω(·, s)‖L∞ds =∞. (3.51)

For a proof see [13, Theorem 3.6].
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4 Blow-up criterion for the zero-viscosity-thermal Boussinesq sys-
tem

In this section we mathematically study the zero viscosity-thermal Boussinesq system under the action of an
external force f satisfying curl(f) = 0. That is,

∂u

∂t
+ u · ∇u +∇p = θf ,

∂θ

∂t
+ u · ∇θ = 0,

∇ · u = 0,

u(x, 0) = u0(x), θ(x, 0) = θ0(x),

(4.1)

where θ is the scalar temperature depending on x and t, u = (u1, u2) and (x, t) ∈ R2 × (0,∞).

We want to show mathematically that provided of suitable initial velocity and temperature u0, θ0, there
exists a unique solution for the system (4.1) that is controlled by u0 and θ0 . Moreover, we want to establish a
blow-up or breakdown criterion for smooth solutions. Concretely, the solution for (4.1) remains bounded if we
control the gradients of velocity and temperature. In this sense we present the following theorem

Theorem 18. Suppose (u0, θ0) ∈ Hm(R2), div u0 = 0 with m > 2 being an integer and suppose that f ∈
L∞([0, T ];Wm,∞((R2)). Then, there exist a unique local classical solution (u, θ) ∈ C([0, T1];Hm(R2)) for some
T1 = T1(‖u0‖Hm , ‖θ0‖Hm). Moreover, the solution remains in Hm(R2) up to some time T > T1, namely
(u, θ) ∈ C([0, T ];Hm(R2)) if and only if ∫ T

0

‖∇θ(t)‖L∞dt <∞. (4.2)

Proof. Existence and uniqueness of solutions follow ideas presented in Section 3.10.2. That is, we regularize
the Boussinesq equations and we use properties of Sobolev spaces to show that there is a sequence converging
to the solution of the Boussinesq system. A complete proof for existence and uniqueness of (4.1) is presented
in [9]. The second part related to the breakdown of solutions is summarized in the next theorem.

Theorem 19. Let (u0, θ0) ∈ Hm(R2) with div u0 = 0 for some m > 2 and suppose that f ∈ L∞([0, T ];Wm,∞(R2)).
Then we have:

lim
t→T

sup(‖u(·, t)‖Hm + ‖θ(·, t)‖Hm) <∞ if and only if

∫ T

0

‖∇θ(·, τ)‖L∞dτ <∞.

Proof. ( =⇒ ) Let us assume that

sup
0≤t≤T

(‖u(·, t)‖Hm + ‖θ(·, t)‖Hm) ≤ CT . (4.3)

Assumption (4.3) implies that
sup

0≤t≤T
‖θ(·, t)‖Hm ≤ CT .

In particular,
‖θ(·, t)‖Hm ≤ CT , ∀t ∈ [0, T ].

Since we are in two dimensions we can use Sobolev inequality (3.17) to get

sup
x∈R2

|∇θ(·, t)|≤ ‖θ(·, t)‖Hm(R2),

moreover using the bound for ‖θ(·, t)‖Hm(R2), we get:

‖∇θ(·, t)‖L∞ (R2) ≤ ‖θ(·, t)‖Hm(R2) ≤ CT .
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Integrating from 0 to T : ∫ T

0

‖∇θ(·, t)‖∞dt ≤
∫ T

0

CT dt,

which give us the result ∫ T

0

‖∇θ(·, t)‖∞ ≤MT .

(⇐= ) Let us suppose that ∫ T

0

‖∇θ(·, t)‖∞ ≤MT . (4.4)

Applying the curl operator to the first equation of (4.1) and following the scheme presented in Section 3.8
we get a scalar equation in terms of the vorticity ω, namely,

ωt + u · ∇ω = (∇θ × f)3 , (4.5)

with initial condition curl u0 = ∇× u0 = ω0 and (·)3 denoting the third component of a 3D vector.

Note that (4.5) can be seen as a first order equation in ω, more precisely, as a transport equation with
velocity u and external force (∇× f)3. Thus, using Proposition 3 we obtain

ω
(
Ψt(α), t

)
= ω0(α) +

∫ t

0

(∇θ × f)3

(
Ψs(α), s

)
ds, (4.6)

where Ψt(α) is the particle trajectories mapping satisfying the following ordinary differential equation

d

dt
Ψt(α) = u

(
Ψt(α), t

)
,

Ψ(α)|t=0 = α.

Applying modulus to both sides and taking p power on (4.6) we get

∣∣∣ω (Ψt(α), t
)∣∣∣p =

∣∣∣∣∣ω0(α) +

∫ t

0

(∇θ × f)3

(
Ψs(α), s

)
ds

∣∣∣∣∣
p

1 ≤ p <∞.

Integrating over R2 and taking p root,

(∫
R2

∣∣∣ω (Ψt(α), t
)∣∣∣p dx) 1

p

=

∫
R2

∣∣∣∣∣ω0(α) +

∫ t

0

(∇θ × f)3

(
Ψs(α), s

)
ds

∣∣∣∣∣
p

dx

 1
p

. (4.7)

Applying the classical Minkowski inequality (3.8) to the right hand side of (4.7),∫
R2

∣∣∣∣∣ω0(α) +

∫ t

0

(∇θ × f)3

(
Ψs(α), s

)
ds

∣∣∣∣∣
p

dx

 1
p

≤
(∫

R2

∣∣ω0(α)
∣∣p) 1

p

+

∫
R2

∣∣∣∣∣
∫ t

0

(∇θ × f)3

(
Ψs(α), s

)
ds

∣∣∣∣∣
p

dx

 1
p

.

Moreover, the Minkowski generalized inequality (3.7) gives us:∫
R2

∣∣∣∣∣
∫ t

0

(∇θ × f)3

(
Ψs(α), s

)
ds

∣∣∣∣∣
p

dx

 1
p

≤
∫ t

0

(∫
R2

∣∣∣(∇θ × f)3

(
Ψs(α), s

)∣∣∣p dx) 1
p

ds.

Thus, equation (4.7) implies,(∫
R2

∣∣∣ω (Ψt(α), t
)∣∣∣p dx) 1

p

≤
(∫

R2

∣∣ω0(α)
∣∣p) 1

p

+

∫ t

0

(∫
R2

∣∣∣(∇θ × f)3

(
Ψs(α), s

)∣∣∣p dx) 1
p

ds.

Mathematician 38 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

In particular, inequality above can be written as

(∫
R2

∣∣∣ω (Ψt(α), t
)∣∣∣p dx) 1

p

≤
(∫

R2

∣∣ω0(α)
∣∣p) 1

p

+

∫ t

0

(∫
R2

∣∣∣∣(∇⊥θ · f) (Ψs(α), s
)∣∣∣∣p dx

) 1
p

ds.

By using the Cauchy-Schwartz inequality and the assumption f ∈ L∞([0, T ];Wm,∞(R2)) we obtain(∫
R2

∣∣∣ω (Ψt(α), t
)∣∣∣p dx) 1

p

≤
(∫

R2

∣∣ω0(α)
∣∣p) 1

p

+

∫ t

0

(∫
R2

∣∣∣∇⊥θ (Ψs(α), s
)∣∣∣p ∣∣∣f (Ψs(α), s

)∣∣∣p dx) 1
p

ds

≤
(∫

R2

∣∣ω0(α)
∣∣p) 1

p

+

∫ t

0

(∫
R2

∣∣∣∇⊥θ (Ψs(α), s
)∣∣∣p sup

x∈R2

∣∣f (x, s)
∣∣p dx) 1

p

ds

≤
(∫

R2

∣∣ω0(α)
∣∣p) 1

p

+

∫ t

0

‖f(·, s)‖L∞
(∫

R2

∣∣∣∇θ (Ψs(α), s
)∣∣∣p dx) 1

p

ds.

Note that by definition of Lp norm we have

‖ω(·, t)‖Lp ≤ ‖ω0‖Lp +

∫ T

0

‖∇θ(·, s)‖Lp‖f(·, s)‖L∞ds. (4.8)

On the other hand, since f ∈ L∞([0, T ];Wm,∞(R2)), it is possible to take L∞ norm of (4.6) to get, as before,

‖ω(·, t)‖L∞ ≤ ‖ω0‖L∞ +

∫ T

0

‖∇θ(·, s)‖L∞‖f(·, s)‖L∞ds, (4.9)

where ‖ω0(t)‖L∞ is finite because the Sobolev inequality (3.17) for m > 2 implies that

‖ω0‖L∞ ≤ ‖u0‖Hm <∞. (4.10)

Moreover, by using (4.4) and (4.10) in (4.9) we obtain

‖ω(·, t)‖L∞ ≤ C

(
‖u0‖Hm(R2), sup

0≤t≤T
‖f(·, s)‖L∞ ,MT

)
. (4.11)

Together with the above estimates, we can apply the orthogonal gradient ∇⊥ to second equation of (4.1) to
obtain

∇⊥θt + (u · ∇)∇⊥θ = ∇u∇⊥θ. (4.12)

If we denote by Ψ = Ψ(x, t) the particle trajectories associated to u and we evaluate (4.12) in Ψ we have

d

dt
∇⊥θ

(
Ψ(x, t), t

)
= ∇u

(
(Ψ(x, t), t

)
∇⊥θ

(
(Ψ(x, t), t

)
.

Integrating from 0 to t the above equation yields

∇⊥θ
(
Ψ(x, t), t

)
= ∇⊥θ0(x) +

∫ t

0

∇u
(
(Ψ(x, t), t

)
∇⊥θ

(
(Ψ(x, t), t

)
. (4.13)

Taking into account the previous steps done for (4.6), we can estimate the Lp norm of ∇θ(·, t) in equation
(4.13) as follows

‖∇θ(·, t)‖Lp ≤ ‖∇θ0‖Lp +

∫ T

0

‖∇θ(·, t)‖L∞‖∇u(·, t)‖Lpdt.

By using Calderón-Zygmund inequality (3.38) to the right hand side of the above inequality we get

‖∇θ(·, t)‖Lp ≤ ‖∇θ0‖Lp + Cp

∫ T

0

‖∇θ(·, t)‖L∞‖ω(·, t)‖Lpdt. (4.14)
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Adding (4.8) and (4.14), we obtain

‖ω(·, t)‖Lp+‖∇θ(·, t)‖Lp ≤ ‖∇θ0‖Lp+‖ω0‖Lp+Cp

∫ T

0

(
‖f(·, s)‖L∞ + ‖∇θ(·, s)‖L∞

) (
‖ω(·, s)‖Lp + ‖∇θ(·, t)‖Lp

)
ds.

(4.15)
Then using Grönwall’s inequality to (4.15),

‖ω(·, t)‖Lp + ‖∇θ(·, t)‖Lp ≤
(
‖ω0‖Lp + ‖∇θ0‖Lp

)
exp

[
Cp

∫ t

0

(
‖f(·, s)‖L∞ + ‖∇θ(·, s)‖L∞

)
ds

]

≤ C
(
‖u0‖Hm + ‖θ0‖Hm

)
exp

[
Cp

∫ t

0

(
‖f(·, s)‖L∞ + ‖∇θ(·, s)‖L∞ds

)]

≤ C
(
‖u0‖Hm + ‖θ0‖Hm

)
exp

[
Cp

∫ t

0

sup
0≤t≤T

‖f(·, s)‖L∞ + ‖∇θ(·, s)‖L∞
]

≤ C

(
‖u0‖Hm , ‖θ0‖Hm , sup

0≤t≤T
‖f(·, s)‖L∞ ,MT , Cp

)
,

where we estimate ‖ω0‖Lp and ‖∇θ0‖Lp by means of the Gagliardo-Nirenberg interpolation inequalities (3.24)
and (3.25) for u0 and θ0 respectively.

From Theorem 13 we recall that

‖∇u‖L∞ ≤ C
(

1 + log+ ‖u‖Hm + log+ ‖ω‖L2

) (
1 + ‖ω‖L∞

)
,

which together with estimates (4.8) and (4.11) gives

‖∇u(·, t)‖L∞ ≤ C

(
‖u0‖Hm , sup

0≤t≤T
‖f(·, t)‖L∞ ,MT , Cp

)(
1 + log+ ‖u‖Hm

)
. (4.16)

Applying Proposition 5 to the first equation of (4.1) we have

d

dt
‖u(·, t)‖Hm ≤ C

(
‖f(·, t)‖Wm,∞ + ‖∇u(·, t)‖L∞

)
‖u(·, t)‖Hm

≤ C

(
‖u0‖Hm , ‖θ0‖Hm , sup

0≤t≤T
‖f(·, s)‖Wm,∞ ,MT , Cp

)(
1 + log+ ‖u(·, t)‖Hm

)
‖u(·, t)‖Hm ,

(4.17)

where we have used (4.16).

Note that it is possible to write (4.17) as follows

d

dt

(
1 + log+ ‖u‖Hm

)
≤ C

(
1 + log+ ‖u‖Hm

)
,

and by means of Grönwall’s inequality we have(
1 + log+ ‖u‖Hm

)
≤
(

1 + log+ ‖u0‖Hm
)

exp (CT ) .

Therefore (4.17) can be written as

d

dt
‖u(·, t)‖Hm ≤ C

(
1 + log+ ‖u0‖Hm

)
exp (CT ) ‖u(·, t)‖Hm .

Again, by means of Grönwall’s we have

‖u(·, t)‖Hm ≤ ‖u0‖Hm exp

(
C
(

1 + log+ ‖u0‖Hm
)

exp (CT )

)
<∞, ∀ 0 < t < T
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and thus

sup
0≤t≤T

‖u‖Hm ≤ C

(
‖u0‖Hm , ‖θ0‖Hm , sup

0≤t≤T
‖f(·, s)‖Wm,∞ ,MT , Cp

)
. (4.18)

Taking in to account Proposition 6 together with the previous estimates (4.16) and (4.18) we can use
Grönwall’s inequality to get

d

dt
‖θ(t)‖Hm ≤ C‖∇u(t)‖L∞(‖u(t)‖Hm + ‖θ(t)‖Hm),

d

dt
‖θ(·, t)‖Hm ≤ C‖θ(·, t)‖Hm ,

‖θ(·, t)‖Hm ≤ ‖θ0‖ exp (CT ) <∞, ∀ 0 < t < T,

sup
0≤t≤T

‖θ(·, t)‖Hm ≤ C

(
‖u0‖Hm , ‖θ0‖Hm , sup

0≤t≤T
‖f(·, s)‖Wm,∞ ,MT , Cp

)
. (4.19)

Finally, using estimates (4.18) and (4.19) we obtain

lim
t→T

sup(‖u(·, t)‖Hm + ‖θ(·, t)‖Hm) <∞.
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5 Global in time regularity for the zero-thermal Boussinesq system

We consider the 2D zero-thermal Boussinesq system (2.29). This system can be seen as a coupling between the
Navier-Stokes equations and a linear transport equation:

∂ u

∂t
+ (u ·∇) u +∇p = θe2 + ν∆ u,

∂θ

∂t
+ (u ·∇)θ = 0,

div u = 0,

u(x, 0) = u0(x), θ(x, 0) = θ0(x).

(5.1)

We want to prove mathematically that provided of suitable initial data, there exists a unique solution that
can be extended to an arbitrary time T > 0. The fact that the solution of the zero-thermal Boussinesq system
can be continued until any time give us what is know as the global in time regularity. The global in time
regularity for the 2D zero-thermal Boussinesq system is summarized in the next theorem.

Theorem 20. Let ν > 0 be fixed, and div u0 = 0. Let m > 2 be an integer and (u0, θ0) ∈ Hm(R2). Then, there
exists a unique solution (u, θ) with θ ∈ C([0,∞);Hm(R2)) and u ∈ C([0,∞);Hm(R2)) ∩ L2(0, T ;Hm+1(R2))
of the system (5.1). Moreover, for each s < m, the solutions (u, θ) of (2.26) converges to the corresponding
solutions of (5.1) in C([0, T ];Hs(R2)) as k → 0.

Taking into account the proof of Theorem 18 we can infer that a similar conclusion holds for system (5.1)
when viscosity is included, [10]. Thus, for the proof of the global-in-time regularity, it suffices to prove that
the L∞ norm of the gradient of the temperature remains bounded for any T ∈ (0,∞) for the solutions (u, θ) of
(5.1). Namely, we have to prove that, for any T > 0,∫ T

0

‖∇θ(·, t)‖L∞dt <∞,

remains true.

This section is dedicated to the proof of Theorem 20

5.1 Preliminary estimates

Let T > 0 be a fixed time. From the second equation of (5.1) we have

∂θ

∂t
+ u · ∇θ = 0. (5.2)

We recall the following standard result for the linear transport equation (5.2) (see Theorem 11)

‖θ(t)‖Lp ≤ ‖θ0‖Lp ∀t ∈ [0, T ], p ∈ [1,∞]. (5.3)

Now, we consider the first equation of (5.1) and we take L2 inner product with u. For each term we have(
∂u

∂t
,u

)
L2

=

∫
R2

∂u

∂t
· udx,

=

∫
R2

[
1

2

d

dt
(u1)2 +

1

2

d

dt
(u2)2

]
dx,

=
1

2

d

dt

∫
R2

|u|2 dx,

=
1

2

d

dt
‖u(t)‖2L2 . (5.4)
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For the nonlinear term we get, after integration by parts(
(u · ∇) u,u

)
L2 =

∫
R2

(u · ∇) u · udx

=

∫
R2

(
u1∂xu1u1 + u2∂yu1u1 + u1∂xu2u2 + u2∂yu2u2

)
dx

=

∫
R2

(u1
∂x
2
|u|2+u2

∂y
2
|u|2)dx

=
1

2

∫
R2

u · ∇|u|2)dx

=− 1

2

∫
R2

div u|u|2dx

= 0. (5.5)

For the gradient of the pressure, we find after integration by parts,

(∇p,u)L2 =

∫
R2

∇p · udx

=−
∫
R2

divu pdx

= 0. (5.6)

For the viscosity-diffusion term, using integration by parts

(ν∆u,u)2 =

∫
R2

ν∆u · u

= ν

∫
R2

(
u1∂

2
xu1 + u1∂

2
yu1 + u2∂

2
xu2 + u2∂

2
yu2

)
dx

=− ν
∫
R2

[
(∂xu1)

2
+
(
∂yu1

)2
+ (∂xu2)

2
+
(
∂yu2

)2]
dx

= −ν
∫
R2

(|∇u1|2+|∇u2|2)dx

= −ν
∫
R2

|∇u|2 dx

= −ν‖∇u(t)‖2L2 . (5.7)

Using Hölder’s inequality we obtain

(θe2,u)L2 =

∫
R2

θu2dx,

≤
(∫

R2

θ2dx

)1/2(∫
R2

(u2)2

)1/2

dx,

≤
(∫

R2

|θ|2 dx
)1/2(∫

R2

|u|2dx
)1/2

≤ ‖θ(t)‖L2‖u(t)‖L2 . (5.8)

Joining (5.4),(5.5), (5.6) , (5.7) and (5.8) we have

1

2

d

dt
‖u‖2L2 + ν‖∇u‖2L2 ≤ ‖θ‖L2‖u‖L2 .

Using estimate (5.3) for p = 2 in the above equation we get

1

2

d

dt
‖u‖2L2 ≤ ‖θ0‖L2‖u‖L2 ,

d

dt
‖u‖L2 ≤ ‖θ0‖L2 . (5.9)
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Integration from 0 to t equation (5.9) yields

‖u(t)‖L2 ≤ ‖u0‖L2 + ‖θ0‖L2t

≤ ‖u0‖L2 + ‖θ0‖L2T, ∀t ∈ [0, T ]. (5.10)

Now we transform the first equation of the Boussinesq system (5.1) into an equivalent vorticity formulation
as was presented in Proposition 4:

ωt + (u · ∇)ω = ∂xθ + ν∆ω, (5.11)

where ω = ∂xu2 − ∂yu1.

We are going to construct a Lp estimate for the vorticity ω by multiplying equation (5.11) by ω |ω|p−2
and

integrating it over R2. After integration by parts for each term and p ≥ 2 we get

∫
R2

ωtω |ω|p−2
dx =

1

p

∫
R2

d

dt
|ω|p dx. (5.12)

∫
R2

(u · ∇)ωω |ω|p−2
dx =

1

p

∫
R2

u · ∇ |ω|p dx

I.P.
= −1

p

∫
R2

div u |ω|p dx

= 0. (5.13)

∫
R2

∂xθ ω |ω|p−2
dx

I.P.
= −

∫
R2

θ∂x(ω|ω|p−2)dx

= −(p− 1)

∫
R2

θ ∂xω |ω|p−2
dx. (5.14)

∫
R2

ν∆ωω |ω|p−2
dx

I.P.
= −ν

∫
R2

∇ω · ∇(ω |ω|p−2
)dx

= −ν
∫
R2

∇ω · (∇ω |ω|p−2
+ (p− 2) |ω|p−2∇ω)

= −(p− 1)ν

∫
R2

|∇ω|2 |ω|p−2
dx. (5.15)

Combining (5.12), (5.13), (5.14) and (5.15) we can write (5.11) as follows

1

p

d

dt

∫
R2

|ω|p dx+ (p− 1)ν

∫
R2

|∇ω|2 |ω|p−2
dx = −(p− 1)

∫
R2

θ ∂xω |ω|p−2
dx,

≤ (p− 1)

2ν

∫
R2

θ2 |ω|p−2
dx+

(p− 1)ν

2

∫
R2

(∂xθ)
2 |ω|p−2

dx

≤ (p− 1)

2ν

∫
R2

|θ|2|ω|p−2
dx+

(p− 1)ν

2

∫
R2

|∇ω|2 |ω|p−2
dx,

where we have used Young’s inequality

ab ≤ 1

2ν
a2 +

ν

2
b2 for ν > 0.

Note also that using Hölder inequality for p̂ =
p

2
, q̂ =

p

p− 2
such that

1

p̂
+

1

q̂
= 1 we have

∫
R2

θ2 |ω|p−2
dx ≤ ‖θ‖2Lp‖ω‖

p−2
Lp .
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Replacing in the above equation we find that

1

p

d

dt

∫
R2

|ω|p dx+ (p− 1)ν

∫
R2

|∇ω|2 |ω|p−2
dx ≤ (p− 1)ν

2

∫
R2

|∇ω|2 |ω|p−2
dx+

(p− 1)

2ν
‖θ‖2Lp‖ω‖

p−2
Lp ,

1

p

d

dt
‖ω‖pLpdx+

(p− 1)ν

2

∫
R2

|∇ω|2 |ω|p−2
dx ≤ (p− 1)

2ν
‖θ‖2Lp‖ω‖

p−2
Lp . (5.16)

In particular for p = 2 and using initial estimate (5.3) we obtain

d

dt
‖ω‖2L2 + ν‖∇ω‖2L2 ≤

1

ν
‖θ0‖2L2 .

Integrating from 0 to t yields, for t ∈ [0, T ]

‖ω(t)‖2L2 − ‖ω0‖2L2 + ν

∫ t

0

‖∇ω(s)‖2L2ds ≤
1

ν
‖θ0‖2L2t,

‖ω(t)‖2L2 − ‖ω0‖2L2 + ν

∫ T

0

‖∇ω(t)‖2L2dt ≤
1

ν
‖θ0‖2L2T, ∀t ∈ [0, T ],

‖ω(t)‖2L2 + ν

∫ T

0

‖∇ω(t)‖2L2dt ≤ ‖ω0‖2L2 +
1

ν
‖θ0‖2L2T ∀t ∈ [0, T ].

We find that, by Hölder inequality,∫ T

0

‖∇ω(s)‖L2ds ≤ C
√
T

(∫ T

0

‖∇ω(s)‖2L2ds

) 1
2

,

and noting that (∫ T

0

‖∇ω(s)‖2L2ds

) 1
2

≤ C(‖ω0‖L2 +
1√
ν
‖θ0‖L2

√
T ) ∀t ∈ [0, T ], (5.17)

we get ∫ T

0

‖∇ω(s)‖L2ds ≤ C‖ω0‖L2

√
T + C‖θ0‖L2T ∀t ∈ [0, T ]. (5.18)

Note that expression (5.17) give us a priori that u belongs to L2(0, T ;Hm+1(R2)). This fact will be clarified
in the outcoming steps.

On the other hand, from (5.16), we have for p ∈ [2,∞)

1

p

d

dt
‖ω(t)‖pLp ≤

(p− 1)

2ν
‖θ0‖2Lp‖ω(t)‖p−2

Lp ,

‖ω(t)‖p−2
Lp

d

dt
‖ω(t)‖2Lp ≤

(p− 1)

ν
‖θ0‖2Lp‖ω(t)‖p−2

Lp ,

d

dt
‖ω(t)‖2Lp ≤

(p− 1)

ν
‖θ0‖2Lp .

Integration from 0 to t gives

‖ω(t)‖2Lp ≤ ‖ω0‖2Lp +
(p− 1)

ν
‖θ0‖2Lpt,

‖ω(t)‖2Lp ≤ ‖ω0‖2Lp +
(p− 1)

ν
‖θ0‖2LpT ∀t ∈ [0, T ]

≤

(
‖ω0‖Lp +

√
p− 1√
ν
‖θ0‖Lp

√
T

)2

∀t ∈ [0, T ],
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so that,

‖ω(t)‖Lp ≤ ‖ω0‖Lp +

√
p− 1√
ν
‖θ0‖Lp

√
T ∀t ∈ [0, T ], p ∈ [2,∞). (5.19)

Now we recall the following Gagliardo-Nirenberg interpolation inequality (3.22) in R2 :

‖u ‖L∞ ≤ C‖u ‖
p−2
2p−2

L2 ‖D u ‖
p

2p−2

Lp , u ∈W 1,p(R2), p > 2. (5.20)

Thus using inequality (5.20) and the Calderón-Zygmund inequality (3.38) combined with estimates (5.10)
and (5.19) for p ∈ (2,∞) we find

‖u(t)‖L∞ ≤ ‖u(t)‖
p−2
2p−2

L2 ‖∇u(t)‖
p

2p−2

Lp

≤ C‖u(t)‖
p−2
2p−1

L2 ‖ω(t)‖
p

2p−2

Lp

≤ C (u0, θ0, T, ν, p) ∀t ∈ [0, T ]. (5.21)

So far, L2 estimate for u and Lp estimate for ω allow us to use Gagliardo-Nirenberg and Calderón-Zygmund
inequalities such that u remains uniformly bounded. Namely,‖u ‖L∞ ≤ C. In the next section we will see how
the estimate for ‖u ‖L∞ allows us to bound ‖∇u ‖L∞ such that ‖∇θ(t)‖Lp <∞ remains finite.

5.2 W 2,p estimate for u

We take derivative operation D =
(
∂x, ∂y

)
on the vorticity equation (5.11), and then we take L2 inner product

with Dω |Dω|p−2
for p > 2. For each term, after integration by parts, we get(

Dωt, Dω |Dω|p−2
)
L2

=

∫
R2

Dωt ·Dω |Dω|p−2
dx

=
1

p

d

dt

∫
R2

|Dω|p dx

=
1

p

d

dt
‖Dω(t)‖pLp .

(
D (u · ∇)ω,Dω |Dω|p−2

)
L2

=

∫
R2

[
D (u · ∇)ω

]
·Dω |Dω|p−2

dx

=

∫
R2

[(u · ∇)ω]D · (Dω |Dω|p−2
)dx

=− (p− 1)

∫
R2

[(u · ∇)ω]|Dω|p−2D2ωdx.

(
Dθx, Dω |Dω|p−2

)
L2

=

∫
R2

Dθx ·Dω |Dω|p−2
dx

=

∫
R2

θxD · (Dω |Dω|p−2
)dx

=− (p− 1)

∫
R2

θx |Dω|p−2
D2ωdx.

(
νD∆ω,Dω |Dω|p−2

)
L2

= ν

∫
R2

D∆ω ·Dω |Dω|p−2
dx

= ν

∫
R2

∆ωD · (Dω |Dω|p−2
)dx

=− (p− 1)ν

∫
R2

|D2ω|2|Dω|p−2
dx.
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Collecting the previous results, we get for p > 2

1

p

d

dt
‖Dω‖pLp + (p− 1)ν

∫
R2

|D2ω|2|Dω|p−2
dx = (p− 1)

∫
R2

[
(u · ∇)ω

]
|Dω|p−2

D2ωdx− (p− 1)

∫
R2

θx |Dω|p−2
D2ωdx.

Using the inequality ab ≤ ν

4
a2 +

1

ν
b2 in the right hand side of the preceding equation,

1

p

d

dt
‖Dω‖pLp + (p− 1)ν

∫
R2

|D2ω|2|Dω|p−2
dx

≤ (p− 1)ν

4

∫
R2

|D2ω|2|Dω|p−2dx+
(p− 1)

ν

∫
R2

|u(x)|2|Dω|pdx

+
(p− 1)ν

4

∫
R2

|D2ω|2|Dω|p−2dx+
(p− 1)

ν

∫
R2

|∇θ|2|Dω|p−2dx.

Grouping similar terms to the left hand side we obtain

1

p

d

dt
‖Dω‖pLp +

(p− 1)ν

2

∫
R2

|D2ω|2|Dω|p−2
dx ≤ (p− 1)

ν

∫
R2

|u(x)|2|Dω|pdx+
(p− 1)

ν

∫
R2

|∇θ|2|Dω|p−2dx

≤ (p− 1)

ν

∫
R2

sup
x∈R2

|u(x)|2|Dω|pdx+
(p− 1)

ν

∫
R2

|∇θ|2|Dω|p−2dx

≤ (p− 1)

ν

∫
R2

‖u‖2L∞‖Dω‖
p
Lp +

2(p− 1)

pν
‖∇θ‖pLp +

(p− 1)(p− 2)

pν
‖Dω‖pLp ,

where, in the last line, we used Young’s inequality

a2bp−2 ≤ 2

p
ap +

p− 2

p
bp for p ≥ 2.

Taking in to account estimate of ‖u‖L∞ in (5.21), we get that

1

p

d

dt
‖Dω‖pLp ≤ C‖Dω‖

p
Lp + C‖∇θ‖pLp + C‖Dω‖pLp

d

dt
‖Dω‖pLp ≤ C‖Dω‖

p
Lp + C‖∇θ‖pLp ∀t ∈ [0, T ], (5.22)

where C(‖u0 ‖W 1,p , ‖θ0‖Lp , T, ν, p).

Now we take orthogonal gradient in the second equation of (5.1), similarly to (4.12) we obtain

∇⊥θt + (u · ∇)∇⊥θ = ∇u∇⊥θ.

Taking L2 inner product with ∇⊥θ|∇⊥θ|p−2, we deduce, for each term(
∇⊥θt,∇⊥θ|∇⊥θ|p−2

)
L2

=

∫
R2

∇⊥θt · ∇⊥θ|∇⊥θ|p−2dx

=
1

p

d

dt

∫
R2

|∇θ|pdx.

(
(u · ∇)∇⊥θ,∇⊥θ|∇⊥θ|p−2

)
L2

=

∫
R2

(u · ∇)∇⊥θ · ∇⊥θ|∇⊥θ|p−2dx

=
1

p

∫
R2

u · ∇|∇θ|pdx

=− 1

p

∫
R2

div u|∇θ|pdx

= 0.
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(
∇u∇⊥θ,∇⊥θ|∇⊥θ|p−2

)
L2

=

∫
R2

∇u∇⊥θ · ∇⊥θ|∇⊥θ|p−2dx

≤
∣∣∣∣∫

R2

∇u∇⊥θ · ∇⊥θ|∇⊥θ|p−2dx

∣∣∣∣
≤
∫
R2

|∇u||∇θ|pdx.

Bringing together the above computations we find

1

p

d

dt

∫
R2

|∇θ|pdx ≤
∫
R2

|∇u(x)||∇θ|pdx,

d

dt
‖∇θ‖pLp ≤ p

∫
R2

sup
x∈R2

|∇u(x)||∇θ|pdx

≤ p‖∇u‖L∞‖∇θ‖pLp . (5.23)

Note that for u ∈ L2
(
R2
)
∩W 1,p(R2) and p > 2 we can use Brezis-Wainger inequality (3.41) presented in

Theorem 14. Then we have

‖∇u‖L∞ ≤ C
(

1 + ‖D2u‖L2

)[
1 + log+

(
‖D2u‖p

)] 1
2

+ C‖∇u‖L2

≤ C(1 + ‖∇u‖L2 + ‖D2u‖L2)

[
1 + log+

(
‖D2u‖p

)] 1
2

≤ C(1 + ‖∇u‖L2 + ‖D2u‖L2)

[
1 + log+

(
‖D2u‖p

)]
, (5.24)

where we used the fact that ∀a ≥ 1 :
√
a ≤ a.

Moreover by using Calderón-Zygmund inequality (3.38) together with equations (5.23) and (5.24) for p > 2
we get

d

dt
‖∇θ‖pLp ≤ p‖∇u‖L∞‖∇θ‖pLp

≤ C(1 + ‖∇u‖L2 + ‖D2u‖L2)

[
1 + log+

(
‖D2u‖Lp

)]
‖∇θ‖pLp

≤ C(1 + ‖ω‖L2 + ‖Dω‖L2)
[
1 + log+

(
‖Dω‖pLp + ‖∇θ‖pLp

)]
‖∇θ‖pLp .

The above inequality and estimate (5.19) gives

d

dt
‖∇θ‖pLp ≤ C(1 + ‖Dω‖L2)

[
1 + log+

(
‖Dω‖pLp + ‖∇θ‖pLp

)]
‖∇θ‖pLp , (5.25)

where C(‖u0 ‖L2 , ‖θ0‖L2 , T, ν, p).

Adding (5.22) and (5.25) together, and defining

X(t) = ‖∇θ‖pLp + ‖Dω‖pLp ,

we obtain

d

dt
X ≤ C(1 + ‖Dω‖L2)

[
1 + log+

(
‖Dω‖pLp + ‖∇θ‖pLp

)]
‖∇θ‖pLp

+ C(1 + ‖Dω‖L2)
[
1 + log+

(
‖Dω‖pLp + ‖∇θ‖pLp

)]
‖Dω‖pLp

+ C(1 + ‖Dω‖L2)
[
1 + log+

(
‖Dω‖pLp + ‖∇θ‖pLp

)]
X,
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which implies
d

dt
X ≤ C(1 + ‖Dω‖L2)(1 + log+X)X,

for all t ∈ [0, T ].

Using Gronwall’s inequality we have

X(t) ≤ X(0) exp

(CT + C

∫ T

0

‖Dω‖L2ds

)
exp

{
CT + C

∫ T

0

‖Dω‖L2ds

} ∀t ∈ [0, T ],

which combined with estimate (5.18) gives us for p > 2

‖Dω(t)‖Lp ≤ C(‖u0‖W 2,p , ‖θ0‖W 1,p , T, ν, p) ∀t ∈ [0, T ]. (5.26)

By the Gagliardo -Nirenberg (3.23) and Calderón-Zygmund inequality (3.39) we have

‖∇u(t)‖L∞ ≤ C‖∇u(t)‖
p−2
2p−2

L2 ‖D2u(t)‖
p

2p−2

Lp

≤ C‖ω(t)‖
p−2
2p−2

L2 ‖Dω(t)‖
p

2p−2

Lp

≤ C(‖u0‖W 2,p , ‖θ0‖W 1,p , T, ν, p), ∀t ∈ [0, T ], p ∈ (2,∞], (5.27)

where we used estimates (5.19) and (5.26).

Recall that from (5.23) we have that

d

dt
‖∇θ(t)‖pLp ≤ p‖∇u‖L∞‖∇θ(t)‖pLp ;

in particular,
d

dt
‖∇θ‖Lp ≤ ‖∇u‖L∞‖∇θ‖Lp .

Moreover, by Grönwall’s inequality we get

‖∇θ(t)‖Lp ≤ ‖∇θ0‖Lp exp

(∫ t

0

‖∇u(s)‖L∞ds

)
. (5.28)

Note that estimate for ‖∇u ‖L∞ was possible because previous estimates for ‖ω‖L2 and ‖Dω‖Lp . We also
use the Gagliardo-Nirenberg and Calderón-Zygmund inequalities.

Finally, let us see that in equation (5.28) we can pass to the limit when p → ∞. To do that we define the
following region depending on t

Aε,r(t) =
{
x ∈ R2 : |∇θ(x, t)|> ‖∇θ(t)‖L∞ − ε, |x|< R

}
.

We apply interpolation inequality (3.5) presented in Corollary 1 to (5.28), in this way we have

‖∇θ(t)‖Lp ≤ ‖∇θ0‖
2
p

L2‖∇θ0‖
1− 2

p

L∞ exp

(∫ t

0

‖∇u(s)‖L∞ds

)
.

If we restrict our attention to the set Aε,R(t), we have

(‖∇θ(t)‖L∞ − ε)

(∫
Aε,r(t)

dx

) 1
p

< ‖∇θ(x, t)‖p,

(‖∇θ(t)‖L∞ − ε)|Aε,r(t)|
1
p < ‖∇θ(x, t)‖p,
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where |Aε,R(t)| is the Lebesgue measure of the set Aε,R(t) which is finite because of |x|< R and t ∈ [0, T ].

Combining computations above, together with (5.28) we obtain

(‖∇θ(t)‖L∞ − ε)|Aε,r(t)|
1
p≤ ‖∇θ0‖

2
p

L2‖∇θ0‖
1− 2

p

L∞ exp

(∫ t

0

‖∇u(s)‖L∞ds

)
. (5.29)

Taking p→∞, and then ε→ 0 in (5.29), we have

‖∇θ(t)‖L∞ ≤ ‖∇θ0‖L∞ exp

(∫ t

0

‖∇u(s)‖L∞ds

)
≤ C ∀t ∈ [0, T ],

where C depends on ‖u0‖W 2,p , ‖θ0‖W 2,p , T, p, ν and we used estimate (5.27).

Therefore, since we have the embedding, Hm(R2) ↪→ W 2,p(R2) (see inequality (3.18)) for all m > 2 and
p > 2 we attained desired estimate for the gradient of the temperature for any given T ∈ (0,∞) and for all
u0, θ0 ∈ Hm(R2) with m > 2.

The last part of Theorem 20 is presented in the next section.

5.3 Vanishing diffusivity limit

Now we are in the position to deal with the problem of letting k → 0 in the complete Boussinesq system. We
make use of energy estimates, and we use similar techniques as before to get the convergence of solutions.

Let (u, p, θ) and (ũ, p̃, θ̃) be solutions of the zero-thermal Boussinesq system (5.1) and the full Boussinesq
system (2.26) respectively with the same initial conditions . We can see that all estimates done previously are
still valid for the solutions (ũ, p̃, θ̃). We summarize the key estimates which are independent of thermal constant
k.

From equation (5.27) we have

‖∇ũ‖L∞ ≤ C(‖u0‖W 2,p , ‖θ0‖W 1,p , ν, T, p).

Considering the second equation of (2.26), after applying orthogonal gradient and integrating over R2 we
find that for p > 2,

d

dt
‖∇θ̃‖pLp + (p− 1)k

∫
R2

|D2θ̃|2|∇⊥θ̃|p−2dx ≤
∫
R2

|∇ũ||∇θ̃|pdx,

d

dt
‖∇θ̃‖pLp ≤

∫
R2

|∇ũ||∇θ̃|pdx,

which implies after computations

‖∇θ̃‖L∞ ≤ C(‖u0‖W 2,p , ‖θ0‖W 2,p , ν, T, p).

Note also that from (5.26) we have the following estimate

‖ũ‖W 2,p ≤ C(‖u0‖W 2,p , ‖θ0‖W 2,p , ν, T, p),

which is independent of θ̃.

And from (5.28) we get
‖θ̃‖W 2,p ≤ C(‖u0‖W 2,p , ‖θ0‖W 2,p , ν, T, p).

Summarizing the previous estimates done for θ̃ and ũ we have

‖∇ũ‖L∞ + ‖∇θ̃‖L∞ + ‖ũ‖W 2,p + ‖θ̃‖W 2,p ≤ C(‖u0‖W 2,p , ‖θ0‖W 2,p , ν, T, p). (5.30)
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For Θ = θ − θ̃, P = p− p̃, U = u− ũ we obtain

Θt + (u · ∇)Θ + (U · ∇)θ̃ = k∆Θ + k∆θ̃, (5.31)

and
Ut + (u · ∇)U + (U · ∇)ũ = −∇P + Θe2 + ν∆U, (5.32)

with the incompressibility condition div U = 0.

Taking L2 inner product (5.31) with Θ, after integration by parts we have

1

2

d

dt
‖Θ‖2L2 + k‖∇Θ‖2L2 = −

∫
R2

(U · ∇)θ̃Θdx− k
∫
R2

∇θ̃ · ∇Θdx

≤
∣∣∣∣∫

R2

(U · ∇)θ̃Θdx

∣∣∣∣+

∣∣∣∣k ∫
R2

∇θ̃ · ∇Θdx

∣∣∣∣
≤ ‖∇θ̃‖L∞

∫
R2

|UΘ|dx+ k

∫
R2

|∇θ̃ · ∇Θ|dx

≤ ‖∇θ̃‖L∞‖U‖L2‖Θ‖L2 + k‖∇θ̃‖L2‖∇Θ‖L2

≤ C‖U‖2L2 + C‖Θ‖2L2 +
k

2
‖∇θ̃‖2L2 +

k

2
‖∇Θ‖2L2 ,

where we used estimate (5.30) and 2ab ≤ a2 + b2. Joining similar terms to the left hand side we obtain

d

dt
‖Θ‖2L2 + k‖∇Θ‖2L2 ≤ C‖U‖2L2 + C‖Θ‖2L2 + Ck‖∇θ̃‖2L2 . (5.33)

In the same way for equation (5.32), taking L2 inner product with U , and integrating by parts, we have

1

2

d

dt
‖U‖2L2 + ν‖∇U‖2L2 = −

∫
R2

(U · ∇)ũ · Udx+

∫
R2

Θe2Udx

≤ ‖∇ũ‖L∞‖U‖2L2 + ‖Θ‖L2‖U‖L2

≤ C(‖U‖2L2 + ‖Θ‖2L2), (5.34)

where C(u0, θ0, T, ν) and we used estimate (5.30).

Combining (5.33) with (5.34), and denoting X(t) = ‖U(t)‖2L2 + ‖Θ(t)‖2L2 , we get

d

dt
X(t) ≤ CX(t) + Ck‖∇θ̃‖2L2 .

By using Gronwall’s lemma we have

X(t) ≤ X(0)eCt + Ck

∫ t

0

‖∇θ̃(s)‖2L2eC(t−s)ds

≤ CeCT k
∫ T

0

‖∇θ̃(t)‖2L2dt

≤ Ck,

where we used estimate (5.30) and the fact that both Boussinesq systems (2.26) and (5.1) have the same initial
conditions .i.e., X(0) = 0. Thus we obtain the following estimate

‖U(t)‖2L2 + ‖Θ(t)‖2L2 ≤ Ck.

In particular

‖U(t)‖2L2 ≤ ‖U(t)‖2L2 + ‖Θ(t)‖2L2 ≤ Ck,

‖U(t)‖L2 ≤ C
√
k,

‖Θ(t)‖L2 ≤ C
√
k,
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which implies that

sup
0≤t≤T

(‖U(t)‖L2 + ‖Θ(t)‖L2) ≤ C
√
k,

sup
0≤t≤T

(‖u(t)− ũ(t)‖L2 + ‖θ(t)− θ̃(t)‖L2) ≤ C
√
k, (5.35)

where C(u0, θ0, T, ν).

The next argument can be done exactly for Θ and U . Here we present the case for Θ. By (5.35) we have

sup
0≤t≤T

(‖θ(t)− θ̃(t)‖L2) ≤ C
√
k.

From the Gagliardo-Nirenberg interpolation inequality (3.21), estimate (5.30) and the embeddingHm(R2) ↪→
W 2,p(R2) for m > 2 we infer that for 0 ≤ s < m

sup
0≤t≤T

‖θ(t)− θ̃(t)‖Hs ≤ sup
0≤t≤T

‖θ(t)− θ̃(t)‖αL2‖θ(t)− θ̃(t)‖1−αHm

≤ C(‖θ0‖Hm + ‖θ̃0‖Hm)1−α sup
0≤t≤T

‖θ(t)− θ̃(t)‖αL2

≤ Ck α2 ,

where
α = 1− s

m
and C = C(u0, θ0, T, ν, s,m).

Similarly for U we have
sup

0≤t≤T
(‖u(t)− ũ(t)‖L2) ≤ Ck α2 .

Finally, making k → 0 we obtain the convergence (ũ, θ̃)→ (u, θ) in C([0, T ];Hs(R2)).
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6 Conclusions

We have studied the global in time regularity for the two dimensional Boussinesq system in the following way.
First, we have introduced the equations involved in the Boussinesq system, that is, the Navier-Stokes equations,
together with the heat and transport equations. Second, we review the functional framework in which PDE’s
are developed, namely, Lp, distributions and Sobolev spaces, as well as, the Leray and vorticity formulation
for two dimensional fluid flows. Third, we have presented a breakdown or blow-up criterion for the partial
Boussinesq case when k = ν = 0. Finally, we have proved the global in time regularity for the two dimensional
Boussinesq case when k = 0, ν > 0.

The Boussinesq equations constitute a coupling between the Navier-Stokes equations and the convection-
diffusion equation, that is, we have dealt with a system of PDE’s describing the case when temperature variations
are allowed in the fluid. Beyond the physical meaning of the Boussinesq equations, constants like viscosity and
thermal diffusivity of the fluid can be partially neglected to study it mathematically. In this sense we have
considered the cases k = ν = 0 and k = 0, ν > 0.

Functional spaces like Lp, distributions and Sobolev spaces provide an appropriate framework to state cer-
tain inequalities like: Grönwall, Gagliardo-Nirenberg, Calderón-Zygmund and Brezis-Wainger that have been
used frequently through this memory. The above inequalities have been useful to establish a priori estimates
for velocity and temperature concerning the Boussinesq equations. Moreover, we have taken advantage of being
working in two dimensions and we have transformed the Navier-Stokes equations into a self contained scalar
equation in terms of vorticity. This vorticity formulation together with the Leray formulation have gave us a
schematic way to construct solutions locally in time for the Euler and Navier-Stokes equations.

Based on [9], we have established a blow-up criterion for the partial Boussinesq case when k = ν = 0. In this
case, we have shown that the breakdown or blow-up of smooth solutions is closely related to the accumulation of
gradients of temperature. That is, ‖u ‖Hm and ‖θ‖Hm remains bounded if and only if ∇θ ∈ L1(0, T ;L∞ (R2)),
and T depending on ‖u0 ‖Hm , ‖θ0‖Hm for m > 2. In one hand, since we are in two dimensions and m > 2,
we have the injection Hm (R2) ↪→ C1 (R2). On the other hand, energy estimate for ‖∇u ‖L∞ together with a
priori estimates for u and θ gives ‖u ‖Hm <∞ and ‖θ‖Hm <∞.

Based on [10], we have shown the global in time regularity for the two dimensional zero-thermal Boussi-
nesq system. Namely, we can find solutions of the partial Boussinesq system k = 0 and ν > 0 that can be
extended for any time provided that u0, θ0 ∈ Hm for m > 2. In this sense, we have realized that if we prove
the blow-up criterion for any time then we are done with the global in time regularity for the case k = 0 and
ν > 0. For the proof of the global regularity we have combined a priori estimates for u and θ together with
Gagliardo-Nirenberg, Calderón-Zygmund and Brezis-Wainger inequalities. That is, we estimate uniformly the
velocity and its gradient, which together with estimates for vorticity gives a bound for the maximum norm of
the temperature’s gradient.

We conjecture that with the theory developed in this memory we can consider without any problem the
remaining content presented in [10], which consider the case k > 0 and ν = 0. Moreover, as we mentioned
in the introduction, we believe that we can take advantage of the properties of the space Hm to go over the
implementation of numerical methods for solving partial cases of the Boussinesq system. Aside of this, for
further considerations we can show that in the partial case k = ν = 0, the solutions can be extended for any
time. That is, the global in time regularity for the zero-viscosity-thermal is still an open problem in the subject.
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équations aux dérivées partielles. Dunod Paris, 1998, vol. 2.

[20] E. M. Stein and R. Shakarchi, Functional analysis: introduction to further topics in analysis. Princeton
University Press, 2011, vol. 4.

[21] J.-Z. Wu, H.-Y. Ma, and M.-D. Zhou, Vorticity and vortex dynamics. Springer Science & Business Media,
2007.

[22] H. Engler, “An alternative proof of the brezis-wainger inequality,” Communications in Partial Differential
Equations, vol. 14, no. 4, pp. 541–544, 1989.

[23] P. Hartman, “Ordinary differential equations,” 1964.

Mathematician 54 Final Grade Project


