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Resumen 

 

Este estudio se centra en mejorar la precisión de la planificación y 

predicción de dosis de radiación en el tratamiento del cáncer de mama. Se 

utiliza una base de datos compuesta por 740 imágenes de resonancia 

magnética (RM) para el entrenamiento y 140 imágenes de tomografía 

computarizada (TC) para la validación. Se realiza una comparación entre 

dos enfoques: las Redes Neuronales (RN) y el Modelo Monte Carlo 

(MMC). 

Para abordar esta tarea, se desarrolla un modelo híbrido que combina las 

RN, utilizando las arquitecturas ResNet50 y U-Net, y el MMC. Los 

resultados obtenidos se presentan tanto cualitativa como 

cuantitativamente. La precisión de las RN, evaluada mediante métricas 

específicas, alcanza un 97.1% de precisión. Por otro lado, el MMC se 

evalúa utilizando desviación estándar y dosis máxima y mínima, 

evidenciando resultados similares en la dosis máxima absorbida. 

Es importante destacar que la diferencia media de dosis entre las RN y el 

MMC es mínima, con valores de 2.15 Gy y 2.19 Gy, respectivamente. 

Este estudio representa un avance significativo en la mejora de la 

precisión en la planificación de dosis de radiación para el tratamiento del 

cáncer de mama. Se aprovechan las capacidades de la inteligencia 

artificial y la simulación Monte Carlo en este contexto, ofreciendo 

resultados prometedores que contribuyen al campo de la radioterapia. 

 

 

Palabras Clave: Redes Neuronales Convolucionales, Modelo Monte Carlo, 

Cáncer de mama, Radioterapia, Terapia Intensiva Modulada, Predicción de 

dosis, Haces. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract 

 

This study focuses on improving the accuracy of radiation dose planning 

and prediction in breast cancer treatment. A database consisting of 740 

magnetic resonance imaging (MRI) images for training and 140 computed 

tomography (CT) images for validation is used. A comparison is made 

between two approaches: Neural Networks (NN) and Monte Carlo 

Modeling (MCM). 

To address this task, a hybrid model is developed combining the NR, 

using the ResNet50 and U-Net architectures, and the MCM. The results 

obtained are presented both qualitatively and quantitatively. The accuracy 

of the RNs, evaluated by specific metrics, reaches 97.1% accuracy. On 

the other hand, the MMC is evaluated using standard deviation and 

maximum and minimum dose, showing similar results in the maximum 

absorbed dose. 

It is important to note that the mean dose difference between Nn and 

MMC is minimal, with values of 2.15 Gy and 2.19 Gy, respectively. This 

study represents a significant advance in improving the accuracy of 

radiation dose planning for breast cancer treatment. It harnesses the 

capabilities of artificial intelligence and Monte Carlo simulation in this 

context, offering promising results that contribute to the field of 

radiotherapy. 

 

 

 

Key Words: Convolutional Neural Network, Monte Carlo Model, Breast Cancer, 

Radiotherapy,  Intensity Modulated Therapy, Dose Prediction, Beam   
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Overview 

 

The first chapter shows the background, the problem, and the objectives of this research, and 

from these two hypotheses are established regarding the use of Neural Networks and the 

Monte Carlo Model for the planning and prediction of radiation doses for patients with 

cancer. mother. 

In the second chapter, we talk about breast cancer and its implications, and statistics 

worldwide. As a very important point, radiotherapy and the equipment used for it are 

discussed. In addition, important aspects of artificial intelligence are delved into, such as the 

type of learning, and the types of neural networks. In the case of the Monte Carlo Model, the 

statistical and physical relationship related to radiotherapy and the behavior of the particles 

is established. In this section, the resources are also shown the computational resources such 

as the software, hardware, and applications that were required for the research. 

The third chapter is one of the most important, here the construction of the general model 

based on the ResNet50 and U-Net neural networks is explained in addition to the 

modifications to the Monte Carlo model code for the dose prediction and optimization 

process. 

The fourth chapter shows the results obtained by the convolutional Neural Network model, 

where the learning plots, the volume variation, the emitted dose, and the absorbed dose were 

obtained. The Monte Carlo Model on the other hand indicates more variables as a result such 

as the maximum dose, minimum dose, standard deviation, optimization graphs, dose-

volume, and the longitudinal and axial profiles of the beams. 

In the discussion section, a comparison of the models used for this thesis is established, and 

they are reflected in a mustache table where the average of the doses, and the quintiles for 

both models, are established. 

In the last chapter, we talk about the conclusions reached in this work, as well as its future 

perspectives. The use of three-dimensional images is proposed that allow us to observe the 

nodules of the breast where the cancer is located.
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Chapter 1  

Introduction  

 

1.1 Background  

 

Cancer is characterized by the uncontrolled growth of malignant cells forming tumors. One 

of the most common types of cancer is breast cancer, and it is the second  that cause of most 

women deaths per year around the world  (Hong & Xu, 2022).In Latin America, 13% of deaths 

caused by breast cancer occur in women less than 45 years old, which represents a 

significant problem for the region(American Cancer Society, 2019a) .Over the years, 

significant strides have been made in diagnosing and treating this complex 

disease(American Cancer Society, 2019b). 

 The usual course of treatment for localized breast cancer consists of either a mastectomy in 

cases where a big tumor prevents breast-conserving treatment or a lumpectomy, followed by 

radiation therapy to the breast, sometimes in conjunction with a tumor bed boost. This 

method increases overall patient survival while lowering the chance of a local recurrence 

(Jornet et al., 2021). 

For patients that are in the early stages of cancer radiotherapy and chemotherapy the best 

option is treatment (National Cancer Institute (NIH), 2022). Radiotherapy has remarkably 

improved local control and survival rates (Haussmann et al., 2020). However, delivering 

precise and tailored radiotherapy to individual patients requires sophisticated tools and 

techniques (Haussmann et al., 2020).In the case of chemotherapy is the oldest and most 

frequently used unfortunately it is not efficient in eradicating the cancer cells as expected 

(Behranvand et al., 2022). 

On the other hand, in recent years, artificial intelligence and machine learning have 

revolutionized various fields, including medical imaging and cancer treatment (Abbass, 

2002). Among these techniques, neural networks have emerged as a powerful tool for image 

analysis and pattern recognition (Chougrad et al., 2018). Their ability to learn from data and 

make accurate predictions holds tremendous promise in radiotherapy for breast cancer 

(Yamashita et al., 2018) Developing a neural network specifically tailored for analyzing 
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radiotherapy treatment in breast cancer represents a cutting-edge endeavor with immense 

potential to improve treatment outcomes and patient care. (Barragán-Montero et al., 2021) 

We will begin by reviewing the current state of breast cancer treatment and radiotherapy 

techniques. An in-depth examination of the challenges and limitations faced in current 

radiotherapy planning will be presented, emphasizing the need for innovative solutions to 

improve treatment efficacy while minimizing side effects. An overview of artificial 

intelligence, neural networks, and their applications in medical image analysis and cancer 

treatment will also be provided. 

The subsequent sections will delve into the development and implementation of the neural 

network described in this project. The data used for training and validation will be carefully 

selected, and the neural network's architecture will be tailored to suit the specific 

requirements of breast cancer radiotherapy analysis. Key features and parameters will be 

identified to optimize the network's performance, ensuring its ability to accurately analyze 

treatment plans and deliver precise dose distributions.  

The evaluation of the neural network will be a crucial aspect of this research. Comparisons 

will be made with existing radiotherapy planning methods, including manual contouring and 

other computer-based algorithms. The accuracy, efficiency, and clinical relevance of the 

developed neural network will be thoroughly assessed using a dataset of patient treatment 

plans.  

The implications of successful implementation and integration of the neural network into 

clinical practice will be discussed. The potential benefits in terms of treatment efficiency, 

cost-effectiveness, and improved patient outcomes will be highlighted. Moreover, the 

challenges and ethical considerations associated with incorporating artificial intelligence 

into healthcare will be addressed. 

1.2 Problem statement 

 

Breast cancer is one of the most common incidents in the world, however, in Ecuador, it is 

unknown which is the best treatment for each specific type of cancer, in addition to the fact 

that there is no exhaustive analysis of the patient's radiation dosage. 
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1.3 General Objective 

 

This research aims to address several critical aspects of radiotherapy planning and delivery, 

compare different types of treatments, and ultimately improve accuracy and outcomes for 

patients by leveraging the power of artificial intelligence, particularly Neural Networks, and 

the Monte Carlo method. 

 

1.4 Specific Objectives  

 

• To determine which type of therapy is best between chemotherapy and radiotherapy 

to treat breast cancer. 

• To analyze dose distribution and angles using Monte Carlo simulation. 

• To improve the accuracy in the dose calculation, using current computer capabilities, 

allows us to perform Monte Carlo Model (MCM) simulations and work with 

machine learning. 

• To interpret the results obtained by the Convolutional Neural Network (CNN) to 

provide relevant clinical information, such as the probability of treatment success, 

identification of risk factors, and recommendations for clinical decision-making. 

• To evaluate the performance of the neural network on an independent test data set, 

using performance metrics such as accuracy, sensitivity, and specificity. 

• To select relevant clinical variables to be used as inputs to the neural network. 

• To validate the clinical utility of the neural network by comparing results with 

traditional approaches for the evaluation of radiotherapy treatments. 

 

1.5 Hypothesis  

H1:Based on the findings of Sande, Sharabiani, Bluemink, Kneepkens, Bakx, Hagelaar, 

Sangen, Theuws, and Hurkmans (2021) on the automatic generation of treatment plans for 

patients with locally advanced breast cancer using a neural network model convolutional 

(CNN) combined with a dose imitation algorithm, it is postulated that the implementation of 

advanced machine learning techniques will result in a significant improvement in the 

accuracy and applicability of dose treatment plan generation (van de Sande et al., 2021). 
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H2: Given the impressive performance of rapid Monte simulation compared to 

conventional methods in estimating dose distribution in radiotherapy, it is postulated 

that its implementation in clinical settings will significantly improve the efficiency of 

the treatment planning process according to Franciosini (2023). It is hypothesized 

that its application will result in an improvement in the results of dose prediction in 

the present thesis  (Franciosini et al., 2023). 

 

 

Fig 1.1. H1 and H2 representatio 
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Chapter 2 

Literature Review 

 

2.1 Basics of Breast Cancer  

 

Breast cancer is a complex disease that can develop when abnormal cells in the breast begin 

to grow uncontrollably (Center for Disease Control and Prevention, 2019). It is one of the 

most common types of cancer in women. The exact causes of breast cancer are not fully 

understood, but it is believed to result from a combination of genetic, hormonal, 

environmental, and lifestyle factors. The development of breast cancer begins with genetic 

mutations in the DNA of breast cells (Center for Disease Control and Prevention, 

2019).These mutations can be inherited or acquired during a person's lifetime 

Hormonal factors also play a significant role in breast cancer development (Drǎgǎnescu & 

Carmocan, 2017). Estrogen and progesterone, two female hormones, can promote the 

growth of breast cells (Rastelli & Crispino, 2008) .Prolonged exposure to these hormones, 

either naturally (early onset of menstruation, late menopause) or through hormone 

replacement therapies, may increase the risk of breast cancer (NCI, 2022). Environmental 

and lifestyle factors have been linked to breast cancer risk as well as high-fat diets, lack of 

physical activity, alcohol consumption, and smoking (Burguin et al., 2021) 

 

Furthermore, exposure to certain environmental toxins and radiation has also been linked to 

breast cancer development (American Cancer Society, 2019a). For instance, ionizing 

radiation, such as that used in previous medical treatments like radiation therapy, can 

increase the risk of breast cancer, especially in women who were treated at a young age.  

 

It is essential to note that not all individuals with risk factors will develop breast cancer, and 

some individuals without identifiable risk factors may still develop the disease (Foidart et 

al., 2007). Therefore, breast cancer is a multifactorial disease with complex interactions 

between genetic, hormonal, environmental, and lifestyle factors (American Cancer Society, 

2019b). 
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2.1.1 Types of breast cancer 

There are different types of breast cancer, and the differences between them are related to 

where they are located (Figure 2.1).  

• Ductal Invasive Breast Cancer: Invasive cancer, in which malignant cells that start 

in the milk ducts have moved into other areas of the breast tissue (National Cancer 

Institute (NIH), 2022). 

• Lobular Breast Cancer: Begins on the lobules and then cancer cells break out of 

the lobule and spread to the lymph nodes and other areas of the body (Wasif et al., 

2010). 

• Mixed Tumor Breast Cancer: Comprises two types of histotypes such as ductal 

and lobular carcinoma, it coexists in a single mass (Zhang et al., 2017). 

• Inflammatory Breast Cancer: Cancer cells block lymph vessels in the skin of the 

breast. Because its breast looks swollen and red or inflamed (National Cancer 

Institute (NIH), 2022). 

• Mucinous Breast Cancer: It starts on the main cells of mucus called mucin; this 

type of cancer can develop in any part of the body but is commonly developed in the 

breast (Marrazzo et al., 2020). 

 

 

 

 

 

 

 

 

Figure 2.1. Types of Breast Cancer 
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2.1.2 Stages of Breast Cancer  

Breast cancer staging is based on the TNM classification system, which evaluates the Tumor 

size and invasiveness, Lymph Node involvement, and the presence of Metastasis. Tumor 

size ranges from carcinoma in situ (Tis) to invasive tumors (T1-T4) that may involve nearby 

structures (Figure.2.3). Lymph Node involvement (N) signifies the extent of regional spread, 

while Metastasis (M) indicates the presence of distant spread. The integration of these 

parameters facilitates the categorization of breast cancer into different stages, with lower 

stages generally indicating localized disease and higher stages reflecting more advanced 

disease with potential metastatic involvement.  

Propagation and Metastasis: 

Metastasis is a complex multistep process involving tumor cell invasion, intravasation into 

blood or lymphatic vessels, dissemination through the circulation, extravasation into distant 

tissues, and colonization of distant organs. The tumor microenvironment, angiogenesis, 

immune responses, and molecular factors play pivotal roles in facilitating or inhibiting the 

metastatic cascade. The understanding of these mechanisms holds promise for targeted 

therapies aimed at disrupting the metastatic process and improving patient outcomes. 

(Burguin et al., 2021) 

Figure 2.2. Stages of Breast Cancer 
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2.1.3 Types of Treatment 

Nowadays, there are different ways to treat breast cancer and all of them have been 

described below. 

• Surgery 

It is the removal of a breast tumor with healthy tissue around it and the sentinel 

lymph node. This sentinel lymph refers to the lymph node within a cluster to obtain 

lymphatic drainage from the main tumor. This procedure starts by injecting a colored 

substance near a lump, which works as a biomarker to detect the lymph nodes that 

are directly connected (NCI, 2022). Therefore, a doctor analyzed if there were 

malignant cells inside the conducts. Then, extract only the first lymph node and the 

tumor or remove the whole breast with the total number of lymph that contains 

cancerous cells (G. N. Sharma et al., 2010). Thus, there are three kinds of surgeries 

such as breast-conserving surgery, total mastectomy, and modified radical 

mastectomy.  

 

• Radiation: It is another way to treat cancer that always uses high radiation doses to 

kill the malignant cells. This therapy uses X-rays to prevent the cells from growing 

up. Besides, it classifies into two types of methods internal and external therapies. 

External radiation uses a machine that uses X-rays to destroy the DNA of cancer 

cells (Castaneda & Strasser, 2017). Meanwhile, internal therapy injects a tube or some 

device close to the tumor to release the radioactive substance to relieve the pain of 

the patient (NCI, 2022). This treatment eliminates cancer progressively. It is due to it 

avoiding cellular division (Abbas & Rehman, 2018). Therefore, the body removes these 

dead cells over a long period. 

 

• Chemotherapy: It uses drugs for medical treatment. Thus, there are a lot of 

medicines or chemical substances that inhibit the growth of killing cells. Its 

compounds are supplied using injection or oral administration (NCI, 2022). Also, 

this treatment is delivered at various time intervals. It is also usually complementary 

to other techniques for treating cancer, such as after surgery to remove the tumor. 

Hence, it decreases the size of the cancer to apply other therapies or only to relieve 

the patient's pain (Hassan et al., 2010). It happens intending to avoid mastectomy. 
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• Hormone therapy: Endocrine therapy stops the spread of lumps and is related to the 

production of hormones, which can increase or decrease this production to retain the 

development of cancer. The goal of breast cancer is to block the connection between 

estrogen and the mechanisms that stimulate cancerous cells when they are dependent 

on estrogen (Drǎgǎnescu & Carmocan, 2017). Then, there are two forms of hormone 

therapy, which are blocking ovarian function and blocking estrogen production. The 

first of these tries to normalize the function of the ovaries, which are the main organ 

that produces estrogen. Therefore, surgery is performed to remove the ovaries, or 

through radiotherapy, the production of estrogens necessary to control the cancer is 

used (Foidart et al., 2007). Meanwhile, the second uses medications that inhibit the 

aromatase enzyme, which is the main producer of estrogen in the ovaries and tissue 

(Rastelli & Crispino, 2008). It causes alterations in the growth of breast cancer. 

 

 

• Targeted: The targets treated usually use drugs to identify and attack cancerous 

cells. As a result, physicians may recommend biomarker testing to gauge your 

likelihood of responding to specific targeted treatment medications (NCI, 2022). The 

drug development for the treatment of breast cancer has mostly focused on two well-

established therapeutic targets: the estrogen receptor (ER) and the human epidermal 

growth factor receptor 2 (HER2) (Mohamed et al., 2013). 

 

• Immunotherapy: Immunotherapy works with drugs that help the immune system of 

the patients to combat by themselves defense mechanisms counter cancer. In this 

case, The HER2+ and TNBC subtypes are thought to be the most immunogenic 

subtypes, whereas breast cancer is categorized typically as a moderately 

immunogenic malignancy (Henriques et al., 2021). Immune cells are essential for 

both the early detection and elimination of carcinoma as well as the advancement of 

tumors. Immunoediting is the term for the three-phase process that explains the 

interactions between the immune system of the host and the cells forming the tumor: 

elimination, equilibrium, and escape (Sternschuss et al., 2021). 

The following table establishes a comparison between the two most used types of treatment. 
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Characteristic Chemotherapy Radiotherapy 

Mechanism of action Chemotherapeutic agents 

to destroy cancer cells 

Ionizing radiation 

damages the DNA of 

cancer cells 

Treatment Area Entire body Specific areas of the body 

Type of cancer treated Localized or disseminated 

tumor 

Localized tumor 

Treatment Frequency Administered in cycles Daily session on a period 

Side Effects Affect the entire body 

including healthy cells 

Affect the treated area and 

nearby tissues 

Therapeutic Approach Systematic, act throughout 

the entire body 

Localized, acts in a 

specific area 

Table 2.1. Comparison between Chemotherapy and Radiotherapy.Modified from (Hassan et 

al., 2010; Haussmann et al., 2020) 

 

2.2 Techniques to Obtain Medical Images  

 

Medical images are visual representations of the inside of the human body, used for 

diagnostics, treatment, and research in the medical field (Contreras et al., 2022) . Also, it 

allows one to obtain detailed information about internal anatomy, organ, and tissue 

functions, as well as anomalies, injuries, or illnesses. 

There are several types of images and each one has its applications and advantages the most 

common to detect breast cancer are: 

 

• Radiography: This is a quick test that generates images on a plate of internal 

structures. It is obtained by exposing the patient to a radiation source, commonly X-

ray or gamma radiation. At the moment of interposing an object between the 

radiation source and the receptor, the densest parts appear with different tones in a 

grayscale (Roberts & Graham, 2001). In the case of breast cancer mammography is 
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commonly used, because is used in routine controls when no symptoms or signs 

appear. 

 

• Computerized Tomography (CT): It is a scan that uses an X-ray to make images in 

a cross-sectional way. Instead of taking a few images as normal radiography, it takes 

several images and joins these images to show a portion of the chest and surrounding 

organs and tissues (Roberts & Graham, 2001) 

 

• Magnetic Resonance Imagining (MRI): This is a diagnostic imaging technique that 

uses radio waves and strong magnets to generate images (Radhakrishna et al., 2018) 

 

• Positron Emission Tomography (PET): This is an imaging test that uses a 

radioactive substance called a tracer. This substance is administered by the vein, the 

tracer travels around the body and collects in organs and tissues. This tracer gives off 

a signal, then the patient slides into a large tunnel-shaped scanner. The PET detects 

the signal given by the tracer after a computer converts the results into a 3d picture, 

this process takes 90 minutes (Tabouret-Viaud et al., 2015)(Hadebe et al., 2023). 

 

 

• Ultrasound: This is a technique non-invasive that generates images through sound 

waves. First, a gel is applied on the breast skin surface, and then the transducer 

moves over the skin sending sound waves and picking up echoes as they bounce off 

deeper body tissues beneath the skin. These echoes are converted into images (Sood 

et al., 2019). 

 

2.2.1 Magnetic Resonance Imaging 

MRI uses magnetic fields and radio waves to obtain detailed images, it is especially useful 

for visualizing soft tissues and provides 3-dimensional images with high resolution (Varela 

et al., 2022). The magnetic resonator components are (Figure 2.3): 
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• Radiofrequency coils: These coils are designed to emit the radiofrequency pulse and 

receive the signals generated by the protons in the breast tissue. The coils are 

strategically placed around the breast to obtain detailed images(Serai et al., 2021) 

 

• Examination table: This is the surface on which the patient lies during the 

procedure. It can be moved in and out of the resonator to facilitate obtaining images 

from different angles (Varela et al., 2022) 

 

• Main Magnet: This magnet creates the strong magnetic field necessary to align the 

protons in the breast tissue (Serai et al., 2021). 

 

• Control console: From here, the technician or radiologist controls and monitors the 

procedure, adjusting parameters as necessary to obtain the desired images (Varela et 

al., 2022). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 MRI Components 

 

Figure 2.4 explains the principal steps of the process to create an image on the MRI 

considering the physics and chemical principles. 
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Figure 2.4.  Process of obtaining an image from a MRI 

 

MRI plays a crucial role in characterizing breast lesions and distinguishing between benign 

and malignant lesions, particularly when mammography and ultrasound findings are 

inconclusive. Also, some techniques improve the quality of it, such as: 

• Dynamic contrast-enhanced MRI (DCE-MRI): It allows the assessment of lesion 

vascularity, which aids in differentiating malignant tumors from benign lesions. 

Malignant tumors typically demonstrate rapid and intense enhancement, whereas 

benign lesions exhibit slower and less intense enhancement(Gordon et al., 2014). 

Then, evaluate blood perfusion and contrast uptake in real-time in breast tissues by 

observing how certain areas retain or eliminate contrast over time in sequential 

images(Thawani et al., 2022). 

 

• Diffusion-weighted imaging (DWI) is another MRI technique that can provide 

valuable information for breast cancer diagnosis. DWI assesses the random motion 

of water molecules within tissues, and it is sensitive to tissue cellularity (Partridge et 

al., 2010). Malignant breast tumors often demonstrate restricted diffusion due to 

increased cellular density, leading to higher apparent diffusion coefficient (ADC) 

values in benign lesions (Deike-Hofmann et al., 2018).  

The combination of DCE-MRI and DWI, known as multiparametric MRI, has shown 

promising results in improving diagnostic accuracy. A meta-analysis by Youk et al. (2017) 
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reported that the combination of DCE-MRI and DWI had a higher sensitivity (90%) and 

specificity (84%) for breast cancer diagnosis compared to either technique alone. 

2.2.2 Computerized Tomography 

Computerized tomography is also known as computed axial tomography (CAT). CT scan is 

a medical imaging technique that uses X-rays to obtain detailed images of the body's internal 

structures. Here is an overview of the main parts of a CT scanner: 

 

• Gantry (Ring): It is the structure that contains the X-ray tube and the detectors. It 

can rotate around the patient during the scan (Zhu et al., 2022b). 

 

• X-ray Tube: Emits X-rays into the patient's body. 

 

• Detector: A series of detectors located on the opposite side of the X-ray tube that 

collect information after the X-rays pass through the body (Zhu et al., 2022a). 

 

• Motorized patient bed: Where the patient lies during the scan. It can move in and 

out of the ring to allow the acquisition of images of different parts of the body (Zhu 

et al., 2022a). 

 

• Cooling System: Due to the amount of heat produced by the x-ray tube, CT scanners 

are equipped with cooling systems to maintain the proper temperature(Zhu et al., 

2022b). 
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Figure 2.5 CT Components 

CT works as seen in the following Figure 2.6 

 

 

Figure 2.6 Process of obtaining an image from CT. 

 

2.2.3 Contrast between MRI and CT 

Magnetic resonance imaging (MRI) and computed tomography (CT) are two imaging 

techniques with different approaches to evaluating breast cancer. MRI uses magnetic fields 

and radio waves to generate detailed images of soft tissue, given superior sensitivity in 

detecting tumors, especially in women with dense breast tissue. In contrast, CT uses X-rays 

and, although it can detect tumors, it has lower sensitivity in soft tissues and involves 

exposure to ionizing radiation(Lother et al., 2023). 
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Each modality has advantages and considerations. MRI is notable for its high sensitivity and 

ability to highlight anatomical details but can be more expensive and time-

consuming(Lother et al., 2023; Radhakrishna et al., 2018). On the other hand, CT is faster 

and more accessible but has lower sensitivity in identifying subtle soft tissue changes and 

uses ionizing radiation(Zhu et al., 2022b). The choice between MRI and CT for breast 

cancer diagnosis depends on factors such as the specific clinical situation, equipment 

availability, and patient and physician preferences. They are often used in a complementary 

manner to obtain a complete evaluation of the disease. The following table represents the 

differences between both. 

 MRI CT 

Technique X-Ray Radio waves and 

magnetic field 

Resolution Contrast Spatial 

Depth Different types of tissue Bone and Soft tissue 

Radiation None Minimum dose of 

ionizing radiation 

Time 1h-2h 10 minutes 

Table 2.2 Comparison between MRI and CT. Modified from (Roberts & Graham, 2001; 

Serai et al., 2021; Varela et al., 2022) 

 

2.3 Radiotherapy 

 

Is a medical treatment that uses ionizing radiation, and it is used to damage cancerous cells, 

interrupting their growth and division (NIH National Cancer Institute, 2019). Before 

radiation therapy begins, careful planning is done to determine the exact amount of radiation 

and the precise location of the area to be treated (Castaneda & Strasser, 2017).Treatment is 

applied daily for several weeks or in shorter sessions, depending on the type and extent of 

the cancer (Martins & Azevedo, 2021). 
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2.3.1 Types of Radiotherapy 

As mentioned in the chapter above, there are two types of radiotherapy to treat breast 

cancer: internal and external beam radiation therapy. 

• Internal Beam Therapy 

This therapeutic approach involves the direct insertion of radiation sources into the body. It 

is categorized into two types. Firstly, brachytherapy entails the insertion of a solid radiation 

source within the body. Enclosed within a solid container, this radiation source emits 

radiation over a specific period to target breast cancer directly (NCI, 2022). Presently, 

various types of capsules are employed to deliver the radiation source substance into the 

body, such as multi-catheter interstitial brachytherapy, balloon catheter brachytherapy, 

conformal external beam radiation therapy, and intra-operative radiation therapy (Njeh et al., 

2012). Additionally, the second type involves the insertion of a liquid radiation source, 

known as systemic therapy. This liquid circulates through the veins until it reaches 

malignant cells and eradicates them. An example of a liquid radiation source is strontium-89, 

often injected to alleviate pain when breast cancer metastasizes to the bones (Pons et al., 

1997). 

• External Beam Radiation Therapy 

This treatment modality utilizes a machine to generate an external beam for delivering 

radiation to a specific area where cancer is located. The machine employs three types of 

radiation sources: photons, protons, and electrons (Njeh et al., 2012). Recent advancements 

have introduced techniques utilizing these radiation sources for treating breast cancer, such 

as 3D-conformational radiation, intensity-modulated radiation therapy, tomotherapy, 

volumetric arc therapy, and proton beam therapy (Kozak et al., 2006). Among these 

techniques, 3D conformational therapy has emerged as the most effective. It involves the 

utilization of multiple stationary photon or electron fields, minimizing the impact on 

surrounding healthy tissue compared to whole breast radiotherapy (Jain et al., 2009). 

Consequently, this radiation treatment method has a lower impact on the patient's health. 

 

 

 



School of Biological Science and Engineering                                                       YACHAY TECH 

 

 
18 

 

2.3.2 Equipment of Radiotherapy  

There are many equipment that are usually used to treat cancer. However, in this project, we 

focus on machines whose operating principle is that of a linear accelerator (LINAC). These 

machines work with an external beam source of radiation. It releases high energy in the area 

where the tumor appears(cite). These are classified according to the type of technique to 

launch the radiation, such as Volumetric Modulated Arc, Image Guided, Stereotactic 

Radiosurgery, Stereotactic Body Radio Therapy, and Intensity-Modulated Radiation Therapy 

(Lennox, 2001). 

• Volumetric Radiation Arc 

It works using a radiation source that has a continuous rotation. It allows treatment of the 

tumor in all 360 beam angles (Teoh et al., 2011). Overall, this technique shows three 

main parameters that can be changed, such as dose rate, gantry rotation speed, and 

treatment aperture shape via Multi-leaf collimator movement (Otto, 2008). 

• Image Guided  

The principle of work is with a cyclotron to irradiate the tumor. Besides, it uses 

technology to obtain images to scan the lump with techniques such as magnetic 

resonance, ultrasound, and X-rays. Fiducial markers or electromagnetic transponders are 

inserted into or close to the tumor (DiMaio et al., 2007). It identifies the treated area and 

is irradiated using a beam with high energy. 

• Stereotactic Radiosurgery and Stereotactic Body Radio Therapy 

It is a non-surgical treatment to hit and destroy cancer. Both stereotactic radiosurgery 

and stereotactic body techniques work with the same principle. First, this device 

determines the coordinates of the tumor using 3D images. Second, it uses a system to 

immobilize and irradiate the lump using gamma or X-rays as the radiation. 

 

• Intensity-Modulated Therapy 

The intensity-modulated therapy (IMT)works with linear accelerators as the radiation 

source. Its machines are controlled with software that delivers and precisely calculates 

radiation dose. Therefore, this device considers the volume, the state, and the region 

where the tumor appears. It is the most used technique to treat cancer with radiation 
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(Kooy & Grassberger, 2015) . Thus, in the present work, the dose quantification is done 

using an intensity-modulated photon device. 

The working principle starts with defining the volume of the tumor region. Then, these 

are obtained using images before starting the IMRT.  After, the doctor puts these images 

inside IMRT and uses the information on tumor dimensions to determine the correct 

quantity of multiple energy beams or a beam that rotates at entire angles. Besides, these 

multiple beams divide with different intensities that can build a unique pattern for each 

shape and size (Lomax et al., 2019). This feature allows radiation to reach with enough 

strength to each part of the tumor that contains cancerous cells and avoid damage to 

healthy tissues. Finally, it is evaluated with a histogram volume dose that shows the 

quantity of radiation per volume(Taylor & Powell, 2004). 

This device has some important parts to make a correct function. This is composed of a 

linear accelerator that creates an electron beam that hits a bending magnet that changes 

the direction of the beam. Then, it reaches a beam filter to classify the quantity of 

radiation dose passed. Later, it enters a beam shaping to divide the beam into multiple 

beams with different strengths to treat breast cancer (Lomax et al., 1999) . All these parts 

are classified in the next figure to understand better how they work and their main parts 

of equipment. 

Figure 2.7 Components of LINAC for IMRT. Own development is taken from TOPAS MC 
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2.4 Artificial Intelligence  

 

Artificial intelligence (AI) is considered the ability of computers to solve complex problems 

by using algorithms so that they learn from data and make decisions just as humans would. 

That is, automating intellectual tasks that we normally perform (Rouhiainen, 2018). 

Currently, artificial intelligence has grown in various areas of daily life. Some of the 

applications of AI are: 

•  Recognition of static images, classification, and labeling. 

•  Efficient and stable processing of patient data. 

•  Performance improvements of the algorithmic strategy. 

•  Distribution of content on social networks. 

•  Predictive maintenance 

The following figure shows the different fields of AI. 

 

Figure 2.8 Learning hierarchies in artificial intelligence. Own elaboration from (A. K. 

Sharma et al., 2022) 

 

2.4.1 Types of Learnings  

 

Some types of learning are used to train models depending on the task that it has. Starting 

from the basis that would be artificial intelligence, there is machine learning followed by 

deep learning, which allows the design of all types of neural networks . 
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Machine learning  

Analyze data, learn from that data, and ultimately apply what they learn to make informed 

decisions (Cavalcanti et al., 2021). 

 

• Supervised Learning: The name refers to the idea of a ‘supervisor’ that instructs the 

learning system from training (Cunningham et al., 2008). The model is trained using 

a labeled data set, which consists of inputs and expected outputs. The objective is to 

establish a relationship between inputs and outputs to make accurate predictions on 

new data. During training, the model adjusts its parameters to minimize the 

difference between predictions and actual outputs (Tiwari, 2022).  

 

• Unsupervised Learning: It is a class of algorithms, where the goal is to find 

patterns, structures, or representations in a dataset with no labels (Sen & Das, 

2023).Clustering and dimensionality reduction are common examples of 

unsupervised learning tasks. In clustering, the model groups similar data, while in 

dimensionality reduction, the objective is to simplify the representation of the data 

while preserving the most relevant information (Sen & Das, 2023). 

 

• Reinforcement Learning: the model interacts with an environment and receives 

feedback in the form of rewards or penalties. Reinforcement learning models make 

sequential decisions and learn through experience, exploring different actions and 

adjusting their behavior based on the consequences. 

 

Deep learning  

Deep learning models are designed to analyze data with a logical structure that draws 

human-like conclusions. To achieve this analysis, deep learning applications use a layered 

algorithmic structure called a deep  neural network (DNN) (Figure 2.9), which is made up of 

layers, and these in turn neurons, include 3 or more hidden layers (Microsoft, 2022). The 

input information is processed by different layers until the desired results. The disadvantage 

is It needs a large amount of data to be trained. Currently, it is used in the field of computer 

vision, thanks to the increase in computational capacity of the processors. 
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Figure 2.9 Deep learning Neural Network 

 

2.4 Neural Networks  

 

Neural Networks (NN) are computational models inspired by human brain function. These 

are part of AI and Deep Learning fields to perform specific tasks. A Neural Network has 

many interconnected processing elements known as nodes. These nodes relate to other nodes 

using a connection link. The connection link contains weights, which contain information 

about the input signal or image(Choi et al., 2020). 

 

Types of Neural Networks 

  

• Artificial Neural Network (ANN): This is a feedback neural network because the 

inputs are sent in the forward direction. It can also contain hidden layers which can 

make the model even denser, it is used for textual data and is the simplest red(Islam 

et al., 2019).  

 

• Recurrent neural networks (RNNs): A class of computational models that are 

designed to handle sequential data and model temporal dependencies. Unlike 

feedforward neural networks, RNNs have feedforward connections, allowing them to 

maintain an internal state or memory that can remember information from previous 

inputs. 
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• Convolutional Neural Network (CNN): This kind of network was designed to 

process grid data such as images, they have proven effective in a variety of tasks, 

from object recognition to semantic segmentation. CNN learns in an automatic and 

adaptative form through backpropagation by using multiple building blocks such as 

convolutional layers, pooling layers, and fully connected layers (Yamashita et al., 

2018). Convolutional layers apply filters to local regions of the input to extract 

relevant features while pooling layers reduce the spatial dimension of the 

representation. 

Figure 2.10 Convolucional Neural Network. Own elaboration from (Krizhevsky et 

al., 2017) 

 

2.4.3 ResNet50 

It has an architecture of 50 layers and uses a bottleneck design for the building block. This 

allows for much faster training of each layer. Use a three-layer stack instead of two two-

layers. The key innovation in ResNet is the introduction of residual blocks, which use skip 

connections also known as identity mappings to skip one or more layers during the forward 

pass. This helps mitigate the vanishing gradient problem and makes it easier to train 

(Mascarenhas & Agarwal, 2021). Besides ResNet50 layers consisting of multiple convolutional 

layers, batch normalization (BN), rectified linear unit (ReLU) activation functions, and 

shortcuts(A. K. Sharma et al., 2022). In mathematical terms, it would mean Eq 2.1 𝑦 = 𝑥 +

𝐹(𝑥) where F is the residual, x is the input, and y is the final output of the layer, (Figure. 

2.11). 
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Figure 2.11 Residual Learning: Building blocks ResNet50.Own elaboration from (A. K. 

Sharma et al., 2022) 

 

The residual network is composed of the initial convolutional layers and multiple basic 

blocks. ResNet‐50 features 49 convolutional layers, a 3×3 max‐pooling layer, an 

intermediate pool layer, a ReLU nonlinearity fully connected layer, and batch normalization 

applied to all convolutional layers (as illustrated in Figure.x). The SoftMax function is 

utilized in the final layer. Additionally, ResNet employs transfer learning (TL), which refers 

to the reuse of knowledge gained from solving one problem to tackle a related but distinct 

problem. This includes utilizing the weight and bias values from prior similar problems that 

have required considerable time and computational resources (Mascarenhas & Agarwal, 

2021). 

 

2.4.4 U-Net 

It is a convolutional neuronal network. The main goal of it is to classify the images with a 

unique label (Krizhevsky et al., 2017). In recent years, it has developed to apply this 

network in biomedical images. It is used to localize a region in dataset collected images. 

These regions are localized. It means assigning a label to each pixel in the processed image. 

Hence, this network complements the acquiring network because these additional layers 

improve the resolution to find the characteristics using the high-resolution image (Cireşan et 

al., 2012). The convolutional layer learns to identify these features to give a more precise 

output. 

The architecture network is based on two sides that have a U form. In the left part, it has a 

contractive way. Meanwhile, on the right side, it has an expansive way. Thus, the left side 

follows the design of a convolutional network. Its part employs two convolutions 3x3. Per 

each convolution, there is a rectified linear unit. Then, the 2x2 max pooling down-sampling 
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procedure using stride 2. Every step of the down-sampling process doubles the amount of 

feature channels. Then, on the right side, enhance the feature map's quality by continuing 

with 2x2 ascendent convolution, which reduces the number of channels in equal parts. It has 

a concatenation with the cropped left side and two 3x3 convolutions, each with a rectified 

linear unit (Ronneberger et al., 2015). Finally, the convolution 1x1 works to assign the 

vector with 64 components to the required number of classes. All of the entire process works 

until getting the output image. 

 

2.5 Monte Carlo Method  

 

In simplified form, the Monte Carlo method is a stochastic simulation technique in which 

multiple independent results are obtained from a modeled system by repeatedly solving the 

model for randomly sampled (input) values of the input variables and events(Koch, 2018). 

Unlike a normal forecasting model, Monte Carlo simulation predicts a set of outcomes based 

on an estimated range of values against a set of fixed input values (Fielding, 2023). In other 

words, a Monte Carlo simulation creates a model of possible outcomes by taking advantage 

of a probability distribution, for example, a uniform or normal distribution, for any variable 

that has inherent uncertainty. It then recalculates the results repeatedly, each time using a 

different set of random numbers between the minimum and maximum values(Gentle, 2009). 

 

2.5.1 Boltzmann Transport Equation (BTE) 

 

This is the equation system of Boltzmann Transport Equation. 

𝑸𝟏(𝒙, 𝑬, 𝛀) = 𝛀 ∙ 𝚫𝝍𝟏  + 𝚺𝟏𝝍 − 𝑲𝟏𝝍 

𝑸𝟐(𝒙, 𝑬, 𝛀) = 𝛀 ∙ 𝚫𝝍𝟐  + 𝚺𝟐𝝍 − 𝑲𝟐𝝍 

𝑸𝟑(𝒙, 𝑬, 𝛀) = 𝛀 ∙ 𝚫𝝍𝟑  + 𝚺𝟑𝝍 − 𝑲𝟑𝝍 

• 𝑸𝑵(𝒙, 𝑬, 𝛀)  Represents the neutron source in the angular direction Ω at spatial point 

x for the N number of repetition  

• 𝝍𝟏, 𝝍𝟐, 𝝍𝟑 Represents the rate of change of neutron flux in the angular directions Ω 

and energy. 

Eq 2.2) 
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• 𝑲𝟏, 𝑲𝟐,𝑲𝟑 Represents the macroscopic absorption cross-section at spatial point x for 

the three energies. 

It describes the preservation of the radiation source during the transfer of this source across 

the medium. Thus, the flow of particles travels at a specific point directly to the patient 

tissue, where this flow depends on the increase or decrease of the net particles due to the 

dispersive events (Bedford, 2019). This model has an approach to non-homogeneous 

materials such as tissues. Therefore, it is necessary to have the total and differential cross 

sections, which rely on how particles interact (Tervo et al., 2008). Then, the BTE solution 

gives the exact dose distribution for the patient. 

This model has three partial differential-integral equations system. The stationary solution is 

obtained from the following function with these three terms: ψ1, ψ2, ψ3. This solution 

works in six-dimension space, such as position, energy, and velocity direction (Tervo, 2007). 

Hence, these three components explain particulate phase space number densities. Then, for 

radiation therapy, a derived equation Eq 2.3), where a multigroup approach is used for 

energy discretization and, more recently, the finite element method for spatial discretization 

(St. Aubin et al., 2015). 

𝑄 =
1

𝑁
∑ 𝑞𝑖

𝜎   

𝑁

𝑖=1

 

 

• 𝑸 indicates the dose.  

• 𝒒𝒊 indicates the irradiated dose. 

• N Position particle Matrix  

• 𝝈 independent histories  

 

2.5.2 Monte Carlos simulation in Radiotherapy treatment 

 

In the context of radiotherapy treatment, the Monte Carlo method is used to simulate the 

interaction of radiation with biological tissue (Fielding, 2023). To begin, the Monte Carlo 

model uses information about the shape of the linear accelerator head to measure the 

distribution of photographs and electrons entering the patient in terms of energy, angle, and 

location. This information is crucial to understanding how radiation interacts with the patient 

Eq 2.3) 



School of Biological Science and Engineering                                                       YACHAY TECH 

 

 
27 

 

(DeMarco et al., 2022) The simulation also considers the depth at which the target tissue is 

located, as this significantly affects how the radiation dose is distributed in the tissue. The 

linear accelerator (LINAC) equipment and the specific geometry of the patient's treated 

region are combined with the Monte Carlo code to accurately calculate the radiation dose 

(Rogers, 2021). This involves simulating how photons and electrons interact with tissues, 

depositing energy as they travel through the body. Accuracy in simulating these interactions 

is critical to ensuring that the correct radiation dose is delivered to the cancerous tissue while 

minimizing exposure to surrounding tissues(Franciosini et al., 2023). 

 

2.6 Computational Sources  

 

MATLAB is a high-level programming language and interactive environment widely used in 

engineering, mathematics, and applied science. It is known for its ease of use and wide 

range of tools and functions for numerical analysis, data visualization, algorithm 

development, and model creation. It allows you to perform complex numerical calculations, 

manipulate matrices and vectors efficiently, and visualize the results interactively. In 

addition, it has numerous tools for solving problems in a variety of fields, such as signal 

processing, image processing, automatic control, artificial intelligence, simulation, 

modeling, and more (Mathworks, 2022). 

The MATLAB integrated development environment (IDE) provides a code editor, debugger, 

and tools for interactively executing and testing code. In addition, MATLAB supports the 

creation of graphical user interfaces (GUIs) and integration with other programming 

languages, such as C/C++, Java, and Python (Mathworks, 2022). In this research were used 

to special software and toolkits of MATLAB like: 

• MatRad: is an open-source software for radiation treatment planning for photon, 

proton, and carbon ion therapy. MatRad comprises MATLAB functions to model the 

entire treatment planning workflow, physically and biologically based data for all 

required calculations. It comprises functions to model treatment planning, for 

example, patient data, and physical and biological base data. Also, this software 

provides (H. P. Wieser et al., 2017): 

▪ Ray tracing 

▪ Photon dose calculation 
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▪ Proton dose calculation 

▪ Carbon ion dose calculation (including 3D RBE modeling) 

▪ Inverse planning (based on physical dose and biological effect) 

▪ Multileaf collimator sequencing 

▪ Basic treatment plan visualization and evaluation 

  2.7 Related Works  

 

In the field of dose prediction in radiotherapy, there are various research studies employing 

different approaches and techniques. The relationship between these works and the current 

thesis lies in their shared objective of enhancing accuracy and efficiency in the 

administration of radiotherapy treatments. However, it is crucial to highlight the differences 

in the methods and approaches utilized, as well as the specific contributions of each study. 

For this reason, the following table establishes a relationship with different authors in the 

field of NN in the treatment of cancer. 

 

Type of 

Neural 

Network  

Application Data Set Type of leads Reference 

CNN Breast Cancer 

Screening  

DDSM Multichannel (Chougrad et 

al., 2018) 
EANN  Breast Cancer  

Diagnosis  

Mammography  Multichannel (Abbass, 

2002) 

CNN Breast Cancer 

Histology Image 

Analysis 

Biopsy Images  Multichannel (Rakhlin et 

al., 2018) 

CNN Improve Radiologist’s 

Performance in Breast 

Cancer  

ELMDS 22 Channels (Wu et al., 

2020) 

PPN Breast Cancer 

classification 

FDMDS Multichannel (Azar & El-Said, 
2013) 

DCNN Breast cancer 

diagnosis in digital 

breast tomosynthesis 

 

Tomosynthesis 

 

Multichannel (Samala et al., 

2018) 

Table 2.3 Summary of the literature referring to CCN on breast cancer. 
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When comparing work related to Monte Carlo modelling in radiotherapy, it is essential to 

evaluate various factors in different studies to understand their contributions and limitations. 

The following table provides a comparative overview of several studies conducted by 

different authors in this field. Each study aims to evaluate the effectiveness or accuracy of 

the Monte Carlo model in different aspects of radiotherapy planning and delivery. 

 

Table 2.4 Summary of the literature referring to MCMC on radiotherapy treatment. 

 

 

 

 

 

 

 

Autor Year Application Methodology Type of 

particle 

Lagendijk et al. 2008 Evaluate 

precision of MC 

in IMRT 

Utilization of MC 

to simulate IMRT 

in a water phantom; 

validation with 

measurements. 

Photons 

Adamson et al. 2023 Investigate the 

efficacy of MC 

in SRS 

(Stereotactic 

Radiosurgery) 

Employing MC to 

simulate SRS in a 

head phantom; 

validation with 

measurements. 

Photons 

Boylan et al. 2013 Analyze VMAT 

(Volumetric 

Modulated Arc 

Therapy) on 

prostate cancer. 

Compare MC with 

other methods in 

VMAT 

Photons  

Rosenstrom et 

al. 

2023 Assess MC in 

FLASH 

treatments 

MC to simulate 

FLASH treatments; 

comparison with 

conventional 

techniques. 

Photons  
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Chapter 3 

Methodology 

 

The development project in the present thesis has two parts: first, the prediction of radiation 

dose using CNN of MRI images based on tumor sizes. In the next step, a DICOM database 

of CT images is used to implement MatRad, a software extension of MATLAB for radiation 

treatment planning of intensity-modulated photon therapy. The goal is to compare the dose 

radiation prediction of both methods in contrast with real dose and set the best treatment for 

breast cancer. The following Block diagram shows the main structure of the methodology 

(Figure 3.1). 

 

                                    Figure 3.1 Block diagram of the research methodology 
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3.1 Data Set 

• MRI Data Set 

Data set Duke-Breast-Cancer-MRI (Dynamic contrast-enhanced magnetic resonance 

images of breast cancer patients with tumor locations) were obtained from The Cancer 

Imaging Archive. The dataset is a collection of 922 patients with invasive breast cancer, it 

contains the following data components: clinical notes, radiology reports, pathological 

reports, and the type of scanner, of these data, 280 patients were taken (Saha, et al.2021). 

The MRI images and clinical notes were classified as follows: on the one hand, the 

information of the patient as code, cancer stage, and tumor size, and in some of these cases 

if patients went to surgery, and on another the radiological information provided such as 

dose, type of scanner (1.5T or 3.0T) and type of therapy. In the case of images, 560 medical 

images were extracted and divided into two groups according to the treatment in 

Chemotherapy (280 images and 140 patients) and Radiotherapy (280 images and 140 

patients), which in turn, were classified into early stage 1 and medium early stage 2. For the 

entire set of images, the information before (initial) and after (final) applying the 

radiotherapy and chemotherapy treatment plan was considered to analyze the tumor size and 

therapy treatment. 

Therapy  Number 

of 

patients 

Stage Case Number 

of images 

 

Radiotherapy 

 

140 

1 Initial 70 

Final 70 

2 Initial 70 

Final 70 

 

Chemotherapy  

 

140 

1 Initial 70 

Final 70 

2 Initial 70 

Final 70 

 

Table 3.1 Descriptions for classes and subclasses of Data Distribution 
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• CT Data Set  

Data Set ACRIN-FLT-Breast (ACRIN 6688) is a DICOM collection of multi-center trials 

that measure cellular proliferation in the primary early tumor stages. The trial examines pre-

therapy and post-therapy through the association of F-FLT uptake with the tissue 

proliferative marker Ki-67 to compare F-FLT/CT. In this study, 90 patients were enrolled of 

which 140 images were selected for NN and 1000 for MC (Acs et al., 2019).  

CT images were used at this stage due to MatRad’s capability for only reading DICOM-CT 

scans. In addition,, the DICOM format allows communication between information systems 

and at the same time with medical image storage format that generates interoperability 

between different types of devices (Cisternas et al., 2015; H. P. Wieser et al., 2017) 

Both data sets are used in the development of the neural network, however, the Duke-

Breast-Cancer-MRI is used in the training of CNN and ACRIN-FLT-Breast (ACRIN 

6688) in the validation of CNN. 

3.2 Preprocessing  

In Image acquisition, some factors influence the quality of images like contrast, lightning, 

size, and noise. In general, CNN needs some readjustments in the quality and size of the 

image, therefore the following scheme (Figure 3.2) indicates the first step of the image 

where it resizes from a value of 223x217 pixels to 224x224, followed by process of 

thresholding and segmentation. 

 

Figure 3.2 Preprocessing of Data 

3.2.1 Thresholding  

Thresholding is a technique widely used in different applications, in the medical field it is 

used to identify anatomic structures, types of tissues, and pathologies. In this case, the 

binary thresholding was applied using the function cv2.threshold from the OpenCV library, 

it converts images to grayscale, where each pixel is classified into two categories: black or 

white. This process is done by selecting a threshold value, and the original image pixels are 
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assigned white if their intensity is greater than the threshold, and black if it is less than or 

equal to the threshold. The threshold value set was 100 and a maximum value of 255 was 

assigned to pixels that exceed the threshold. All pixels with intensity greater than 100 are 

converted to white (255) and those with intensity equal to or less than 100 are converted to 

black (0), thus creating a binary image that highlights regions of the original image that 

exceed the intensity threshold (Figure 3.3). 

 

 

 

 

 

 

 

 

 

Figure 3.3 Original and Threshold images 

Figure 3.4 shows the algorithm process for executing thresholding starting from the original 

images until the threshold images are obtained (Figure 3.4) 

 

Figure 3.4 Block diagram of the thresholding process. 
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3.2.2 Segmentation  

Image segmentation is defined as the semantic extraction or division of images, that is, into 

shapes or areas that have a direct relationship with a real object or shape, in this case with an 

organ or tissue. Segmentation algorithms try to look for relationships of homogeneity 

(regions) or heterogeneity (contours) within the images to classify and determine the parts 

that compose them (Chen et al., 2010).In this segmentation process with the function 

cv2.finCountours from threshold images, the detected contours are drawn on a copy of the 

original image, thus creating a visual representation of the identified areas of interest. This 

contour-based segmentation approach is commonly used to extract features and delineate 

regions of interest in this area peripheral to the tumor (Figure 3.5) 

 

 

 

 

 

 

    

 

Figure 3.5 Threshold and Segmented images 

Figure 3.6 shows the process for executing segmentation starting from the thresholding 

images until the segmented images are obtained. 
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Figure 3.6 Segmentation process  

3.3 Neural Network 

 

The models were built in Spyder in the Phyton language. GPU and High RAM functions 

were used because of the large amount of data to train. The first model is based on ResNet 

50, and the second model is on U-Net. Both are deep neural network models, in the first 

case, this is a network that allows us to create 50 layers of depth in addition to helping us 

with characteristic extraction, on the other hand, the U-Net allows us to identify structures 

through semantic segmentation. 

In general, to develop the process of these models, some types of libraries were imported, 

such as: 

•  TensorFlow for training and interference with the deep neural network. 

• Matplotlib generates the graphics of loss and training and allows visualization of 

breast images.  

• Os for reading the files and path directions. 

• OpenCv allows the manipulation of phyton images. 

• Panda provides data structure. 

• Numpy provides support to multidimensional arrays. 
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3.3.1 Construction of CNN based on ResNet 50 

Based on a previously created model from ResNet50, certain parameters are modified that 

are required to extract features from breast cancer images. As was mentioned in section 3.1 

there are 700 images (560 are for training and 140 for validation). Then these images are 

loaded from the directory where each folder is located. The input layer of the ResNet50 

model is arranged to receive data from the data set as 224,224,1, this means that the 

dimensions of the input image are 224x224 pixels and a channel size of 1 corresponding to 

the grayscale (A. K. Sharma et al., 2022). 

Then through ‘cv2.imread function’ images are read from a specific path. A pre-trained 

neural network architecture (ResNet50) is used, and custom layers are added to fit the 

categorical classification problem. The model is compiled with the 

'categorical_crossentropy' loss function and the 'adam' optimizer (Figure 3.7) 

The neural network is made up of an initial layer, max pooling, and four main blocks. Each 

of these blocks contains residual layers, followed by custom layers continuing with a 

flattening layer that converts the base neural network's three-dimensional output into a one-

dimensional vector. Then, there is a dense layer with a ReLU activation function, a dropout 

(0.5) layer that randomly turns off 50% of neurons to prevent overfitting during training. 

Finally, there is a connected dense layer with as many units as there are classes in the 

problem, and an activation softmax function for categorical classification (Choi et al., 2020; 

Islam et al., 2019; Yamashita et al., 2018). 
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Figure 3.7 Network architecture and parameters at each layer based on ResNet50. 

 

3.3.2 Construction of CNN based on U-Net 

Taking as input the global average pooling layer of ResNet 50 and the dose information that 

was specified in section 3.1. This layer takes the higher-level features extracted by ResNet-

50 and uses them as input for the next part of the network images here have 224x224 pixels 

and a channel size of 3 corresponding to RGB (red, green, blue). As mentioned in section 

2.4.4, the u-net network works with an encoder-decoder system where the image is reduced 

through convolutional filters, then this feature vector follows the opposite path, increasing 
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its dimensions up to the size of the original image, where at the same time output a mask is 

created. As in the previous section, a U-net network previously trained with Application 

Programming Interface (API) 'Keras' is used as a base, since the problem, in this case, is 

related to the value of the volume extracted by the network and the prediction, the following 

modifications are made: 

• Modify the Output Layer by placing an additional layer for dosage prediction. Using 

an appropriate activation function such as 'linear' to generate a regression. 

• Adjust the Loss Function, using the 'mean_squared_error' to avoid dosage 

regression problems. 

• Modify the Data Generator so that it generates batches of images and their respective 

associated dosages.The following image represents the architecture of this section of NN . 

 

Figure 3.8 Network architecture and parameters at each layer based on U-Net 

The global architecture (Figure 3.9) operates by applying convolutions and pooling 

operations to extract features, followed by the integration of the U-Net layer that performs 

the tumor segmentation task. Regarding dose, the architecture is extended to address the 

differentiation between two groups of images based on the treatment dose. The total tumor 

volume in each group is calculated using segmented images and the difference in volume is 

compared between the groups. This is achieved through functions that calculate the area and 

volume of the tumor in segmented images, considering the thickness of the slices to obtain 
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the volume in units of cubic millimeters ( 𝑚𝑚3). It is necessary to emphasize that during 

training, the model adjusts its parameters based on the established images and doses to make 

accurate predictions about the dose and tumor volume in new medical images in the 

validation section. 

 

 

 

 

 

Figure 3.9 CNN Final Model 

3.3.3 Strategies of Training and Validation    

 

In this section, the strategy for the training and validation process is based on Pareto’s 

principle, where a division of training data and evaluation of 80 and 20. According to this 

principle, a statistical phenomenon is described by which in any population that contributes 

to a common effect, a small proportion contributes most of the effect. The 80/20 rule 

suggests that, in any example, a few (20%) are vital, and many (80%) are trivial (Kheybari 

et al., 2019). 

As explained in the previous paragraph and the reviewed state-of-the-art articles, it is 

considered a division of 80% of the total number of images, for the training process, leaving 

20% of the total amount for the evaluation process of the trained modules classification (see 

Figure 3.10). Both partitions will be duly represented with the two classifications: MRI and 

CT. 

 

Figure 3.10 Distribution of Data Set 
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3.4 Monte Carlo Simulation 

 

3.4.1 MatRad  

As it was mentioned before, the Monte Carlo Model is a stochastic technique in which 

multiple independent results are obtained from a modeled system by repeatedly solving the 

model for randomly sampled (input) values and events (Koch, 2018). To develop this 

simulation, MatRad was used, it comprises MATLAB functions to model the entire 

treatment planning workflow, physically and biologically based data for all required 

calculations.  

MatRad is a cloud-based treatment planning software that enables conformal radiotherapy 

and radiosurgery treatment planning. It relies on advanced optimization algorithms to 

calculate the radiation doses needed to effectively treat tumors while minimizing adverse 

effects on surrounding tissues (H.-P. Wieser et al., 2018).  

• Graphical User Interface  

 

The GUI has some sections : 

 

o Workflow: In the Workflow section, the patient data is initially loaded. Also 

here starts the dicom import data previously segemented . After the 

adjustment of all parameters, the dose calculation and the fluence 

optimization can be started from here. 

 

 

Figure 3.11 GUI of Workflow 

o Adjustment of plan parameters 

The plan parameters are adjusted before to calculate the dose-influence-

matrix  
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Figure 3.12 GUI of Plan Parameters  

 

o Adjustment of optimization parameters 

The optimization parameters regarding the volumes of interest (VOIs) are 

stored in the variable cst which is configurated from MATLAB-matrad code  

 

 

Figure 3.13 GUI of Optimization parameters 

o Visualization of plan treatment 

Using the visualization parameters, you can change the view. The radio 

buttons can be used to turn off/on, among others, the plotting of contours, 

dose (isolines) and isoline labels. 

 

Figure 3.14 GUI of Visualization 
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3.4.2 Development of MCM 

 

For this part of the methodology, as mentioned in section 3.1, a CT DICOM database is used 

following the following steps. 

• Tumor delimitation  

The first step in radiotherapy treatment planning involves the precise delineation of 

the tumor on the patient's medical images, because is necessary to determinate the 

isocenter of tumor an surrounding area. This is achieved by using the Volume 

Segmenter tool in MATLAB, which provides an interactive interface for the 

segmentation of anatomical structures in three-dimensional images. Using this tool, 

the tumor is visually identified and accurately delineated by semi-automatic and 

manual methods. Subsequently, the contours of the segmentation are refined and 

verified to ensure accuracy. Finally, the resulting segmentation is exported for further 

processing and analysis in the context of radiotherapy treatment planning, while all 

steps and adjustments made during the process are documented and recorded. In the 

following images is shown the delimitation of tumor. 

 

 

Figure 3.15 Tumor segmentation  
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• Set treatment plan parameters 

Plan parameters: First, the patient data is imported in the native matRad format, the 

desired configuration is specified in the structure plan where the maximum and 

minimum values of emitted doses are established, which were between 20 and 50 Gy 

according to the bibliography (H.-P. Wieser et al., 2018), the type of tissue, in this 

case, soft and photons as the radiation mode. The intensity-modulated radiation 

treatment plan comprised seven coplanar beams with angles of gantry: 0°, 50°, 114°, 

206°, 257°, and 309°. The corresponding sofa angles were set to 0° (Cisternas, et 

al..,2015) 

Optimization parameters: Parameter optimization in matRad is performed taking 

into account several factors and using specific tools within the software interface. 

First, patient data, including medical images and segmentation of relevant anatomical 

structures, such as tumor and organs at risk (OAR), are taken into consideration. This 

segmentation is performed beforehand using tools such as Volume Segmenter in 

MATLAB (Koch, 2018). 

Once the patient geometry has been defined and the structures of interest have been 

specified, parameter optimization proceeds. This involves adjusting the optimization 

parameters to achieve an optimal radiation dose distribution that meets the 

established clinical objectives (Koch, 2018). 

Within the matRad interface, users can modify the optimization parameters by 

editing the source code in MATLAB using specific fields, such as the objective 

function, penalty and parameters associated with each structure of interest. For 

example, they can select the desired objective function, which can include criteria 

such as average dose, maximum or minimum dose, and dose uniformity within the 

structure. In addition, they can adjust the penalty for each objective, allowing certain 

constraints to be prioritized over others (Koch, 2018). 

For parameter optimization, an optimization approach is used based on algorithms 

that seek to minimize a global objective function that takes into account all specified 

constraints and objectives. This is done iteratively, adjusting the planning parameters 

until an optimal solution is reached that meets the established criteria(H.-P. Wieser et 

al., 2018). 
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• Dose influence matrix calculation. 

 

The calculation of the dose influence matrix in matRad is divided into two parts: the 

irradiation geometry and the generation of dosimetric information through the pre-

computation of dose influence matrices for inverse planning. In the irradiation 

geometry, a beam and bixel concept is used, where the beams cover the target 

volume, such as the tumor, with a series of discrete bixels forming a two-dimensional 

slice. These bixels, which represent rectangular fluence elements, cover the entire 

target volume (Figure 3.16) .  

 

 

Figure 3.16 Schematic visualization of the concept of beam and bixel. 

 

For dose generation, Monte Carlo sampling is employed where a dose influence 

matrix is generated. The dose in a voxel is calculated as the weighted sum of the 

bixel contributions using a matrix-vector multiplication.  

𝑑𝑖 = ∑ 𝐷𝑖𝑗𝑤𝑗    𝑜𝑟  𝑑→= 𝐷𝜔→

𝑗

 

Here, the matrix D stores the dose contribution to a given voxel by each bixel-pencil 

beam in unit intensity, and 𝑤𝑗  represents the weight of the corresponding bixel-pencil 
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beam. This dose influence matrix is stored in double precision sparse matrix format 

and is realized through the IPOPT tool. 

 

• Fluence optimization 

 

It focuses on projecting the patient geometry onto the beam view plane for each 

beam orientation. The patient geometry is transformed into beam view coordinates 

and the target volume is projected onto the isocenter plane perpendicular to the 

connection of the virtual radiation source and the isocenter. Since this isocenter was 

not reflected in the database, adjustments were made to the base code to adapt the 

measurements according to the depth of the tumor volume(H.-P. Wieser et al., 2018). 

During optimization, one seeks to find the optimal fluence distribution that 

maximizes the dose in the target volume while minimizing the dose in the 

surrounding tissues. This is achieved by adjusting the bixel weights iteratively to 

meet predefined dose targets. The mathematical formulation of fluence optimization 

involves solving a convex optimization problem that seeks to minimize an objective 

function subject to constraints, where the objective function can be either 

minimization of dose to healthy tissues or maximization of dose to the target volume. 

This process is repeated over multiple optimization cycles, the duration of which 

may vary according to the patient's evolution. Although the exact tumor-killing dose 

cannot be calculated, the average target dose is sought during these cycles to achieve 

the desired therapeutic effect. 

 

• Visualization 

Through the GUI the workspace is automatically verified, and the result data is 

shown according to the defined plan. 
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Chapter 4 

Results  

 

4.1. Results of CNN 

 

4.1.1 Hyperparameters 

To describe the model is essential to mention the hyperparameters used. This term refers to 

configuration variables external to the model itself and whose value. In general, the data 

cannot be estimated, and the programmer adjusts the learning algorithms. First, the 

hyperparameters of the two base models used are related to the algorithm learning level: 

ResNet was trained with 50 epochs in about 2.5 hours, using a batch size of 32 and a 

learning rate of 0.001. U-net was trained on 50 epochs in about 4 hours, using a batch size of 

32 and a learning rate of 0.001. Secondly, the hyperparameters related to structure and 

topology were the layers. The ResNet50 model consists of fifty layers, and U-Net has 23 

layers. Figures x and x show the architecture of the neural network networks. The Activation 

layer is the most critical because it determines the output of one or more nodes through a 

function. For the first model, was used an output layer activation that is softmax. The reason 

is that the NN fulfills the classification function, and at the same time, it is a multiclass 

classification; that is, each input can be a single output value. In other words, one node per 

class. The second model used a hidden layer activation function that was selected depending 

on the type of NN that is CNN therefore, a ReLU activation function was chosen. An Adam-

type optimizer is then used in both models. Use the first and second-moment gradient 

estimates to dynamically adjust the learning rate of each parameter. In other words, after 

correcting the deviation, each iteration of the learning rate has a specific range, which makes 

the parameters stable. Furthermore, to select the loss function, both models are multiclass 

classification, and the cross-entropy function is selected. The two base models are 

considered to avoid overfitting in one of the architectures, however, the results of the metrics 

represent the values resulting from the model in general. Table 4.1 shows all parameters 

used on time. 
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Hyperparameters ResNet50 U-Net 

Epoch number 50 50 

Time of training 2.5 hours 4 hours  

Batch size 32 32 

Learning rate 0,001 0,001 

Number of layers 50 23 

Activation function Soft Max 

ReLU 

ReLU 

Optimizer Adam Adam 

Loss function Categorical 

Cross-Entropy 

Categorical Cross-

Entropy 

 

Table 4.1 Hyperparameters used in the training of neural networks. 

 

4.1.2 Plots of Learning  

As mentioned in section x, for this model, two pre-trained neural networks were applied, and 

these were subsequently combined to generate a general convolutional network model. 

Thus, in Figure x we can see how ResNet 50 evolves in terms of precision and loss. A clear 

correlation is observed between the blue line that represents training and the orange line that 

represents validation. In the case of precision Figure 4.1a shows this tends to a percentage of 

95%. On the other hand, in the case of loss, it is necessary to consider the use of a loss 

function: Categorical Cross-Entropy that is defined like Equation, the lower the value of the 

function, the more similar both distributions will be and the better the model. Taking this 

into account in Figure 4.1b, the training and validation loss tend to 0. 

 

𝐿(𝑦, 𝑦′) = ∑ ∑ (𝑦𝑖𝑗 × log(𝑦′𝑖𝑗)𝑁
𝑖=0

𝑀
𝑗=0 ) 
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Figure 4.1 Plots of training and validation accuracy and loss of ResNet50 

 

Now in Figure 4.2 shows how U-net evolves in terms of precision and loss. As in the 

previous network there is a clear correlation between the blue line and the orange line. In the 

case of precision, Figure 4.2a shows that it tends to a percentage of 86%. On the other hand, 

in the case of loss, it is necessary to consider that the Categorical cross entropy function is 

also used and has a low value, in Figure 4.2b, the training and validation loss tends to 0. 

This model shows excellent precision; however, it is not better than the previous network. 

 

 

 

 

 

 

 

Figure 4.2. Plots of training and validation accuracy and loss of U-Net 

 

This last Figure 4.3 represents the final development of the model in general, the accuracy 

percentage is greater than 97% (Figure 4.3a) and the loss function is low, tending to 0 

(Figure 4.3b). In addition, there is a clear correlation between training and validation. Unlike 

the results provided by each network separately, we see that the general model is better, this 

A) B) 

B) 
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is because it combines the most important functions of each one to work around the problem 

that we want to solve in this case, the delimitation of the tumor volume and dose prediction. 

 

Figure 4.3 Plots of training and validation accuracy and loss of the General CNN Model 

 

Confusion Matrix  

The confusion matrix allows visualization of the performance of the algorithm. Each row of 

the matrix represents the real classes, while columns represent the predicted classes by the 

model. On the other hand, each cell of the matrix shows the count of instances classified 

correctly or incorrectly (Xu et al., 2020). In the following figures indicate the confusion 

matrices of the ResNet50 (Figure 4.4 a), U-net (Figure 4.4b) and the General Model (Figure 

4.4c). The cell in the diagonal corresponds to true negatives (TN) and true positives (TP) 

(dark purple) and the two leftovers are false positives (FP) and false negatives (FN). 

 

 

 

 

 

 

 

 

 

 

A) B) 

A) 
B) 
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Figure 4.4 Confusion Matrix A) ResNet50 B) U-net C) General CNN Model 

 

Based on the information in the confusion matrix, the evaluation metrics can be calculated, 

given by the following formulas: 

Eq 4.1) 𝐴𝑐𝑐 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
           Eq 4.2)  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
 

        Eq 4.2) 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                    Eq 4.4) 𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2

𝑃𝑟𝑒𝑠𝑐×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑠𝑐+𝑅𝑒𝑐𝑎𝑙𝑙
 

Below are the values obtained for each metric as a result calculated with the values of each 

confusion matrix related to each type of neural network in this study. 

 

Figure 4.5 Accuracy, Precision, Recall, and F1 score of different models. 

C) 
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Recovery or sensitivity values focus on type II errors (FN). A type II error occurs when a 

false null hypothesis is accepted. This is when the model states that the dose has not been 

correctly predicted when it has. For all models, the recovery is greater than 90% but we 

focus especially on the general model in which this value was greater than 98%. Specificity 

values focus on type I errors (TF). A type I error occurs when a false null hypothesis is 

accepted. This is when the prediction says that a disease has been detected but is not present. 

For the U-net model, we see that the accuracy value is the lowest of all, reaching 87%, 

however, we see that this generally has no impact on the general model where it reaches an 

excellent value greater than 97%. Finally, precision indicates how close the result of a 

measurement is to the real value, this being greater than 95%. The last thing to evaluate is 

the F1 score, it is an estimator of the classification capacity of a diagnostic test, in this case, 

the dosage where, as in other metrics, the general model exceeds 98%. 

 

4.2 Volume Analysis 

 

The model of NN also calculates the volume of the tumor, starting from the results of the 

delimitation area obtained from the modified ResNet50, while the definition of the entire 

volume of the tumor was done by modified U-Net. The resulting images are shown below.  

 

Figure 4.6 Segmentation of Volume a) Surrounding area b) y c) Tumor. 
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4.2.1 Difference between Chemotherapy and Radiotherapy  

One of the objectives of this research was to demonstrate the effectiveness of Radiotherapy 

compared with other techniques. This section shows the difference in tumor volume before 

(purple) and after (blue) each therapy. 

Figures 4.7 and 4.8 show the graph of early state 1 of chemotherapy and radiotherapy 

correspondingly. 

 

 

 

 

 

 

 

 

Figure 4.7 Difference in tumor size before and after Chemotherapy state 1 

 

 

 

 

 

 

 

 

 

Figure 4.8 Difference in tumor size before and after Radiotherapy state 1 
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The results obtained from the comparison of tumor volumes in patients undergoing 

chemotherapy and radiotherapy in medium early stage 2 are presented below. 

 

 

 

 

 

 

 

 

 

Figure 4.9 Difference in tumor size before and after Chemotherapy state 2 

 

 

 

 

 

 

 

 

 

Figure 4.10 Difference in tumor size before and after Radiotherapy state 2 

 

During the analysis of the results, a significant finding related to the effectiveness of 

radiotherapy in reducing tumor size was observed. It was found that radiotherapy 

demonstrated a 20% greater reduction in tumor size than chemotherapy at the same time. 

This finding suggests that radiotherapy may be a more effective therapeutic option in terms 

of tumor size reduction compared to chemotherapy. 
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4.3 Radiation Dose  

4.3.1 Results of CNN on dosage prediction 

The CNN-based dose calculation model provided detailed results. It should be noted that in 

the network results, the calculated dose was the emitted dose. Therefore, using the 

information on the volume calculated in the previous section, the next equation (Antolak, 

2015) was used: 

𝐴𝑏𝑠𝑜𝑟𝑏𝑒𝑑 𝑑𝑜𝑠𝑒 = 𝐸𝑚𝑖𝑡𝑡𝑒𝑑 𝑑𝑜𝑠𝑒 × 𝐴𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟  

The attenuation factor was provided on dataset clinical information, Figure 4.11 depicts 

radiation dose distributions across axial, coronal, and sagittal planes. Each color gradient 

represents absorbed doses ranging from 1.5 to 2.5 Gy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 Patient ACRIN-FLT-005 CNN-Dose distribution a) Axial Cort b) Coronal Cort 

c) Sagittal Cort 
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The neural network model generates an output that indicates the maximum absorbed dose in 

a specific treatment point based on the breast volume of each patient. This result is obtained 

by adjusting the weights and parameters during the model training process to minimize the 

error between the actual and predicted absorbed doses. Since the model was trained with 

maximum emitted dose data, the predicted absorbed dose matches this maximum dose at the 

treatment point, and its value is multiplied by the attenuation factor. 

Overall, the output of the neural network model provides an accurate prediction of the 

maximum absorbed dose at a treatment point, using breast volume as input. This prediction 

is based on the model's learning during training and is consistent with the maximum emitted 

dose used for its training. Table 4.2 illustrates the result of the dose of a sample of 25 

patients out of the total, which was 90. 

 

ID PATIENT Emitted Dose Absorbed dose 

ACRIN-FLRT-Breast_001 23.813 2.286048 

ACRIN-FLRT-Breast_002 23.238 2.230848 

ACRIN-FLRT-Breast_003 24.766 2.377536 

ACRIN-FLRT-Breast_004 22.295 2.14032 

ACRIN-FLRT-Breast_005 22.759 2.184864 

ACRIN-FLRT-Breast_006 20.577 1.975392 

ACRIN-FLRT-Breast_007 22.996 2.207616 

ACRIN-FLRT-Breast_008 24.447 2.346912 

ACRIN-FLRT-Breast_009 20.43 1.96128 

ACRIN-FLRT-Breast_010 20.747 1.991712 

ACRIN-FLRT-Breast_011 20.686 1.985856 

ACRIN-FLRT-Breast_012 23.786 2.283456 

ACRIN-FLRT-Breast_013 22.743 2.183328 

ACRIN-FLRT-Breast_014 22.075 2.1192 

ACRIN-FLRT-Breast_015 23.28 2.23488 

ACRIN-FLRT-Breast_016 24.463 2.348448 

ACRIN-FLRT-Breast_017 24.001 2.304096 

ACRIN-FLRT-Breast_018 23.067 2.214432 

ACRIN-FLRT-Breast_019 23.115 2.21904 

ACRIN-FLRT-Breast_020 20.345 1.95312 

ACRIN-FLRT-Breast_021 20.129 1.932384 

ACRIN-FLRT-Breast_022 22.725 2.1816 

ACRIN-FLRT-Breast_023 24.974 2.397504 

ACRIN-FLRT-Breast_024 23.619 2.267424 

ACRIN-FLRT-Breast_025 23.053 2.213088 

Table 4.2 Dose Prediction Results of CNN 
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4.3.2 Results of MC on dosage prediction 

In this section, the radiation dose distribution in the axial, sagittal, and coronal planes is 

shown with values ranging from 0 to 2.5 Gy. It is important to note that, unlike the neural 

network, here the isocenter is set to the LPS (Left, Posterior,Superior) coordinates of the 

area to be treated. In this case, this is called "target." 

 

Figure 4.12 Patient ACRIN-FLT-005 MC-Dose distribution a) Axial Cort b) Coronal Cort c) 

Sagittal Cort 
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Taking into consideration that the area of interest is the 'target', the model enables us to 

extract dosage information solely for the segmented tumor (Figure 4.13). Consequently, it’s 

observed that within this region, the dosage values range from 1.8Gy and upwards. This 

precision in dosage within the tumor area is crucial for ensuring effective treatment and 

minimizing side effects on surrounding tissues. 

 

Figure 4.13 Tumor dose distribution.  

 

Dose Optimization 

Next, figure 4.14 shows the dose optimization of one of the 50 patients (ACRIN-FLT-005), 

where is seen that as the iterations increase, the value of the objective function tends to zero. 

Fluence optimization aims to determine the best set of bixel or spot weights that can produce 

an optimal dose distribution based on the clinical goals and limitations of radiation treatment 

(H. P. Wieser et al., 2017). To achieve mathematical optimization, the clinical objectives and 

restrictions should be converted into mathematical objectives and constraints (Yoon et al., 

2023). matRad provides support for the mathematical optimization of a weighted sum of 

targets. This helps in finding an optimal balance between adequate target coverage and 

preservation of normal tissue for each patient. Additionally, matRad also facilitates the 

formulation of constraints. 
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Figure 4.14 Progress of Fluence Optimization (ACRIN-FLT-005) 

 

Dose-Volume Histogram 

The dose-volume histogram (DVH) shows the distribution of radiation dose concerning the 

volume of the breast tissue being targeted. The horizontal axis of the histogram represents 

the different radiation dose levels, while the vertical axis shows the percentage of the tissue 

volume that receives that dose or less. Each point on the DVH indicates what percentage of 

the total tissue volume receives a specific dose or less. 

Figure 4.15 DVH of ACRIN-FLT-005 patient. 

From this graphic, some metrics were calculated: 
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• Mean (Mean dose): It is the average radiation dose received by the tissue or 

anatomical structure of interest. 

• Std (Standard Deviation): It is the standard deviation of the radiation dose, which 

indicates the dispersion of the dose values around the mean. 

• Max (Maximum dose): It is the highest radiation dose received by the tissue. 

• Min (Minimum dose): It is the lowest radiation dose received by the tissue. 

• D2, D5, D50, D95, D98: Represent the dose percentiles, that is, the doses 

corresponding to 2%, 5%, 50% (median), 95%, and 98% of the tissue volume. 

• V0Gy, V0.4Gy, V0.8Gy, V1.3Gy, V1.7Gy, V2.2 Gy: These metrics represent the volume of 

tissue that receives at least a specific dose of radiation. For example, V0Gy indicates 

the volume of tissue that receives no dose (0 Gy), V2.2 Gy while indicates the volume 

of tissue that receives at least 2.2 Gy. 

• Cl2Gy: This is the Coverage Index for a 2 Gy dose, indicating the proportion of the 

target volume that receives at least 2 Gy(Cisternas et al., 2015). 

• HI2Gy: It is the homogeneity index (Homogeneity Index) for a dose of 2 Gy, which 

evaluates the uniformity of the dose within the target (Cisternas et al., 2015). 

 

Metric 

ID-Patient 

Patient 

003 

Patient 

004 

Patient 

005 

Patient 

006 

Patient 

007 

Patient 

008 

mean 1.4585 1.6912 1.6027 1.6646 1.5802 1.7476 

std 0.5636 0.4746 0.5363 0.4943 0.5568 0.5235 

max 2.1075 2.1598 2.229 2.2599 2.3777 2.2407 

min 0 0 0 0 0 0 

D2 2.0291 2.0426 2.0852 2.107 2.0674 2.0735 

D5 2.0159 2.0285 2.0515 2.0806 2.0464 2.0536 

D50 1.6113 1.9662 1.9235 1.9466 1.9018 1.9939 

D95 0.362 0.6463 0.4769 0.5926 0.3982 0.3402 

D98 0.1582 0.3178 0.1717 0.3549 0.2055 0.2722 

V0Gy 1 1 1 1 1 1 

V0.4Gy 0.9436 0.9727 0.9661 0.9755 0.9484 0.9386 

V0.8Gy 0.8375 0.9166 0.8961 0.8917 0.8409 0.8962 

V1.3Gy 0.6881 0.8229 0.7407 0.7791 0.6975 0.8371 

V1.7Gy 0.5055 0.6797 0.5943 0.5886 0.5013 0.7793 

V2.2 Gy 1.21E-

04 

5.67E-

04 

6.73E-

04 

3.72E-04 1.71E-

04 

9.91E-05 

Cl2Gy 0.3594 0.5953 0.5105 0.5399 0.5013 0.7418 

HI2Gy 82.6958 69.1075 78.7288 74.4019 82.4072 85.6733 

 

Table 4.3 Results of metrics of MCM simulation for dose Calculation 
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Beams Geometry  

In radiotherapy, a "beam" refers to a flow of charged particles (such as electrons or protons) 

or photons (x-rays or gamma rays), in this case, photons that are directed toward the target 

(Bedford, 2019). These beams are used to deliver focused, controlled doses of radiation to 

cancerous tissue (Njeh et al., 2012). These beams were generated theoretically using 

software that simulates particle accelerators. 

 

In this part of the results, the interaction of the 5 radiation beams with the tissue anatomy is 

analyzed. Below is a three-dimensional (3D) image that represents the distribution of voxels 

of tissues and anatomical structures in the treatment area. These voxels are constructed 

through interpolation of a series of CT images and represent discrete volumetric elements 

within the patient's anatomy, offering a comprehensive depiction of tissue composition and 

density variations. This 3D image provides a detailed representation of the anatomical 

environment in which the radiotherapy treatment is administered, allowing to study how the 

radiation beams affect the tissues and structures in this area.  

 

Figure 4.16 3D representation of dose and beam distribution 

Another way to analyze the behavior of the particles is to examine their interaction with the 

tissue. The simulation was made on 5 to 10 cycles with the interaction of five X-ray beams 

in most cases, in each cycle the depth of beams change. Figure 4.17 shows the longitudinal 

and lateral profiles of five beams in the last cycle of the physical dose of the patient ACRIN-

FLT-005. 



School of Biological Science and Engineering                                                       YACHAY TECH 

 

 
61 

 

For each beam, a specific angle was set, in the case of the gantry angle it’s 0°,72°,144°,216° 

,288° (Figure 4.17) respectively, while the couch angle was 0° for all, as the couch in this 

case did not move and remained static while the beams radiated. 

 

Figure 4.17 Angles of beams  

 

The next figures show the longitudinal and lateral profiles of each of the five beams in the 

last cycle. The y-axis shows the dose value, while the x-axis shows the radiological depth 

which is also known as the radiation length or radiation attenuation length, is a measure used 

in radiation physics to quantify the amount of material that a high-energy photon or electron 

traverses before its intensity is reduced (Hussain et al., 2012), red line represents the 

physical dose, the purple line is the target boundary, and the light blue line is the data.   
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Figure 4.18 Longitudinal profile beam 1  

 

Figure 4.19 Lateral profile beam 1 

 

Now analyzing the graphs, the following was obtained.  

The first beam at a radiological depth between 325mm and 370mm it reached a 

higher physical dose of 2Gy in the longitudinal plane (Figure 4.18), in the case of the 

lateral profile it reached a value a little less than 2Gy at a depth of 155mm and 

190mm (Figure 4.19). For the case of beam 2,3 and 4 shows a similar behavior as 

this, just the last beam has differences. 



School of Biological Science and Engineering                                                       YACHAY TECH 

 

 
63 

 

 

 

Figure 4.20 Longitudinal profile beam 5 

 

 

Figure 4.21 Lateral profile beam 5 

 For the last beam the longitudinal profile, the physical dose range reaches 2Gy between 

315mm and 360mm radiological depth values. In the case of the lateral profile, 

something different occurs with the rest of the beams since in this graph some peaks are 

observed, and the lowest reaches a value of 0.4 Gy and the highest 2.05 Gy, between 

340mm and 380mm of radiological depth, however, it is important to point out that these 
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values are slightly outside the delimitation lines that marked by target boundary limit 

and the data provided. 

In the context of radiotherapy, it is important to know the behavior of the particle. The 

following graphs provide information on the specific characteristics of the first radiation 

beam in the treatment plan, including its shape, width and the configuration of the 

collimator leaves used to form the beam. 

• Beam: Indicates the beam in the treatment plan of Radiotherapy. 

• Shape: refers to the type of beam shape or profile. Radiation beams may have 

different shapes or profiles depending on how the collimators or beam-shaping 

devices are configured.  

• W: This value could represent the width of the beam in millimeters. Indicates the 

measurement of the beam in the horizontal direction. 

• Leaf Pair number: Refers to the number of pairs of leaves of the multi-leaf 

collimator used to shape the beam. These leaves are moved to modify the beam 

shape and adjust the radiation dose distribution. 

• Horizontal Position (mm): Indicates the horizontal position of the collimator 

leaves in millimeters. This position can influence the shape and size of the 

radiation  delivered to the tissue or tumor. 

 

Examining the characteristics of the first beam, a discernible pattern emerges regarding the 

collimator position. It initiates at -40mm and steadily traverses horizontally, reaching a 

maximum value of 20mm as the complexity of the shapes being formed increases. 

Correspondingly, the collimator blades expand incrementally up to shape 9, aligning with 

the evolving contours of the beam. However, an intriguing observation arises in the final two 

shapes, where there is a noticeable reduction in the number of blades. This phenomenon 

suggests a possible correlation with the imminent conclusion of the beam's duration, hinting 

at an adaptive mechanism to optimize efficiency or accommodate specific requirements. 

Furthermore, it's noteworthy that the width of the beam remains consistent throughout, 

measuring at a precise 0.2mm. 
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Figure 4.22 Shapes of beam 1 

In this last beam it can be noticed that the duration time was shorter than all the other beams, 

because the number of shapes is only 9, as well as the shape does not vary so much, the 

horizontal position range goes from -40mm to 40mm as well as some beams. 

 

Figure 4.23 Shapes of beam 5 
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In this last beam it can be noticed that the duration time was shorter than all the other beams, 

because the number of shapes is only 9, as well as the shape does not vary so much, the 

horizontal position range goes from -40mm to 40mm as well as some beams. 

 

4.3 T-test  

The comparison between the doses obtained by the neural network and the Monte Carlo 

model yielded a p value of 0.4649 when a statistical analysis was performed using a t-test. 

This value indicates that there is not enough evidence to reject the null hypothesis that there 

is no significant difference between the doses calculated by both methods. 

Consequently, according to the results of the statistical test performed, the doses obtained by 

the neural network and the Monte Carlo model are comparable in terms of their effect on the 

results obtained. It is important to note that this conclusion is based solely on the p-value 

obtained and the significance level used, which was 0.05. 
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Chapter 5 

Discussion  

 

5.1 Analysis between MCM and CNN 

 

In this thesis, two models were implemented to simulate radiotherapeutic treatments: the 

convolutional neural network (CNN) and the Monte Carlo Model. Both models offer 

significant potential for improving the accuracy and efficacy of treatments, however, their 

approaches and applications differ in several key aspects. 

CNN has demonstrated remarkable accuracy and efficiency in dose prediction, making it a 

valuable tool in radiotherapeutic treatment planning. When trained on a data set, the CNN 

can generalize patterns and predict doses with a considerable accuracy of 97.10%. In our 

study, CNN showed high agreement with actual dose values in the 90 patients analyzed, 

suggesting its clinical utility in daily practice on an extensive and automatic dataset. 

However, it is crucial to keep in mind the inherent limitations of CNN. Despite its accuracy, 

CNN cannot provide detailed information on the spatial distribution of dose on the shape 

and propagation of the radiation beam. In addition, CNN relies on prior training and cannot 

easily adapt to changes in treatment conditions or patient anatomy during radiation therapy. 

This can be especially problematic in situations where anatomical variability or patient 

response to treatment is significant. 

On the other hand, the Monte Carlo Model offers a more complete and detailed view of 

radiotherapeutic dosimetry. By simulating the interaction of radiation particles with matter 

the Monte Carlo Model can accurately predict the dose distribution in specific tissues and 

organs. Our study revealed that the Monte Carlo Model provided crucial clinical and 

physical information, such as collimator shape, patient position, and radiation beam 

distribution, which facilitates more accurate and personalized treatment planning. 

In addition, MCM allows detailed visualization of dose optimization through histograms and 

dose maps, which facilitates the identification of critical areas and assessment of 

surrounding tissue toxicity. However, if multiple patients need to be analyzed, as in the 

present case which addressed more than 50 cases, the analysis with the Monte Carlo Model 
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is more time-consuming, as it can only be performed after all individual treatments have 

been completed. This temporal limitation should be considered when planning large studies 

or in clinical settings with high patient demand. 

It is important to note that, although our study focused on a group of 90 patients (validation 

group) for the network and 50 patients for the model, since the number of images per patient 

was approximately 30 images, it was too large to take the same number of images as for the 

network. The results obtained are consistent with previous studies that have demonstrated 

the efficacy of both models in the optimization of radiotherapeutic treatments. The high 

agreement between the predicted doses and the actual doses observed in our patients 

supports the validity and clinical utility of these advanced approaches. 

The following table summarizes the advantages and disadvantages of these models and the 

joining of both. 

 CNN MCM Both 

Advantages High precision in dose 

prediction. 

Precise simulation of 

radiation-matter 

interaction. 

Complementary 

precision and detail 

Automatization of CT 

image analysis. 

Detailed radiotherapy 

dosimetry. 

Efficiency in 

analysis. 

Generalization of 

patterns. 

Optimal visualization of 

dose optimization. 

Automation and 

detail in planning. 

Disadvantages Lack of spatial 

distribution detail in 

doses. 

Time and resource-

intensive patient-by-

patient analysis. 

Requires exhaustive 

validation between 

both models. 

Limitations in 

adapting to treatment 

conditions 

Higher computational 

complexity and 

technical requirements. 

Limitations in 

adaptability 

Dependence on prior 

training. 

Prerequisites of the plan 

depend on tissue or 

organ 

 

 

Table 5.1 Advantages and Disadvantages of Models 
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Finally, the following image shows the distribution of the dose data, where the mean values 

of both MCM and CNN are almost similar, and concerning the predicted dose, both models 

show similar values of dose, their small differences may be due to the attenuation factor. 

 

 

Figure 5.1 Distribution of dose data of CNN and MCM 

 

5.2 Comparison with Other Studies  

 

Another way to analyze this thesis is to compare it with other studies related to the same 

topic and verify the values obtained in their metrics. 

Autor Method Metric Reference 

Acc Precision 

---- Our Method 97.10 99.2  

Chougrad et al., DCNN 96.67 97.1 (Chougrad et al., 2018) 

Abbass EANN 97.5 98.05 (Abbass, 2002) 

Rakhlin et al.., CNN 87.2 88 (Rakhlin et al., 2018) 

Wu et al.., CNN 90 92.03 (Wu et al., 2020) 

Azar & El-Said PPN 92.46 --- (Azar & El-Said, 2013) 

Samala et al., DCNN 95 97.8 (Samala et al., 2018) 

Table 5.2 Comparison of different methods 
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Chapter 6 

Conclusions and Future Works  

 

6.1 Conclusions  

 

The convergence between convolutional neural network (CNN) and Monte Carlo Model 

(MMC) in the optimization of radiotherapeutic treatments poses a promising prospect, with 

the potential to elevate the reliability and accuracy of results. Delving into the specific 

advantages of ResNet50 and U-Net-based CNN, together with the IMRT-focused Monte 

Carlo Model approach, highlights their unique capabilities and the synergy that could be 

achieved through their integration. 

CNN, particularly based on architectures such as ResNet50 and U-Net, excels at efficiently 

handling large data sets and accurately predicting radiation dose. This makes it an invaluable 

tool in the initial treatment planning phase, where it provides a quick and reliable estimate of 

the initial dose distribution. Its ability to discern general patterns and trends in dose 

distribution is essential for accurate and timely preliminary decision-making by the medical 

team. 

On the other hand, the IMRT-based Monte Carlo Model provides a detailed and accurate 

assessment of radiation dose at each tissue site, considering critical factors such as 

collimator shape, patient position, and tissue composition. By simulating the interaction of 

radioactive particles at the subatomic level, MCM provides thorough validation at the 

physical level, increasing confidence in the accuracy of the final treatment plan. 

The combination of these methodologies establishes a synergy that leverages the strengths of 

each approach and mitigates their respective limitations. While CNN provides a quick and 

reliable initial estimate, the Monte Carlo Model refines and validates this initial distribution, 

thereby improving the reliability and accuracy of the final treatment plan. This strategic 

integration not only improves the reliability of the results but also increases confidence in 

the accuracy of the final treatment plan. 
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However, this convergence faces technical and computational challenges, such as 

interoperability between the two systems and efficient management of large volumes of data. 

Moreover, additional validation and verification methods will be required to ensure the 

consistency and accuracy of the results obtained through this integration. 

In summary, the marriage of the ResNet50 and U-Net-based convolutional neural network 

with the IMRT-centric Monte Carlo Model could significantly improve radiotherapy 

treatment planning and delivery if applied together, rather than separately. This strategic 

integration represents a move towards more sophisticated and effective approaches, with the 

final goal of improving clinical outcomes based on previous studies such as this one and the 

quality of life of patients. 

 

6.2 Future Works  

 

It is proposed to develop a model that integrates neural networks and the Monte Carlo 

Model for radiation analysis, extending its application beyond radiotherapy to other 

therapies. In addition, a more detailed analysis considering the mammary anatomy is 

contemplated, providing a three-dimensional representation of the intramammary nodes, 

arteries, and the location of the tumor. The figure below shows the breast structure, although 

for the moment the tumor has not been located. 

 

Figure 6.1 Breast Anatomical Structure including intramammary nodes . 
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