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Abstract 

 

 

 

The present research work focuses on the study of several neural networks trained for the 

detection of lung diseases. The networks used were ResNet-18, ResNet-50, ResNet 101, 

VGG19 and Inception V3 and the data set was obtained from NIHCC being 112120 the total 

number of images with which different experiments and optimization were performed to obtain 

better results from the training of the networks. 

 

Keywords: Pulmonary diseases, Neural networks, InceptionV3, Deep Learning, Image 

Classification. 
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Resumen  

 

El presente trabajo de investigación se centra en el estudio de varias redes neuronales 

entrenadas para la detección de enfermedades pulmonares. Las redes utilizadas fueron ResNet-

18, ResNet-50, ResNet 101, VGG19 e Inception V3 y la base de datos fue obtenida de NIHCC 

siendo 112120 el número total de imágenes con las que se realizaron distintos experimentos y 

optimización para obtener mejores resultados de los entrenamientos de las redes. 

 

Palabras Clave: Enfermedades pulmonares, Redes neuronales, InceptionV3, Deep Learning, 

Clasificación de imágenes.  
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1. Introduction  

1.1. Problem Statement 

After the heart and brain, the lungs should be considered one of the most important organs for 

the maintenance of human lives[1]. Lungs are responsible for the gas exchange process called 

respiration, which allows every cell of the human body to take oxygen and liberate carbon 

dioxide as part of the cell living process[1]–[3]. Unfortunately, the current way humans live 

and the chemicals they are exposed to daily have become a source of illness that could seriously 

affect people’s lives. Some of these illnesses cause death if they are not detected at the right 

time to handle them correctly[4]–[7]. 

 

From pneumonia, pulmonary emphysema, pleural effusion, pulmonary hernia, and pulmonary 

fibrosis to pleural thickening, tuberculosis, and lung cancer, a wide variety of diseases could 

affect human lungs and produce irreparable harm to people’s quality of life. Some of those 

illnesses are among the leading causes of death worldwide[5]–[8]. As mentioned before, time 

is the most relevant aspect that could enormously decrease the probability of an untreatable 

diagnosis and even avoid the patient’s death. Any harmful or deadly disease could be treated 

and mostly stopped when it is diagnosed early[4], [8], [9]. 

 

Diagnostic imaging plays an essential role in the diagnosis of lung diseases[3], [6]. Symptoms 

of lung disease are often similar and discriminatory only in advanced stages when the prognosis 

for the eventually named pathology is already less favorable[10]–[12]. In addition to clinical 

testing, imaging methods provide valuable information that allows for a complete differential 

diagnosis. Currently, chest X-rays, computed tomography (CT), and magnetic resonance 

imaging (MRI) are common imaging modalities that are first prescribed after examining a 

patient[4], [13]–[15]. These modalities provide high spatial resolution anatomical and 

structural information about the lung. However, more accurate methods are needed to 

distinguish lung diseases with overlapping pathophysiology or diagnose them very early[6], 

[9]. 

 

Chest X-ray interpretation is critical for detecting many thoracic diseases, including 

pneumonia, tuberculosis, and lung cancer. Nowadays, radiologists trained in interpreting chest 
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X-rays look at the chest X-ray, analyzing the lungs, the heart, and other regions of the 

radiography[5], [8], looking for clues that might suggest the presence of pneumonia, 

tuberculosis, lung cancer, or another clinical condition. However, radiograph interpretation is 

a time-consuming task[16]. Usually, it requires expert radiologists to read the images, 

increasing the risk of a fatigue-based diagnostic error and a lack of the necessary diagnostic 

expertise in rural areas of the world, where expert radiologists are not available[15]–[19]. Even 

in many cities of the world, such as Latinamerica, a shortage of qualified, trained radiologists 

exists in the healthcare systems, being this gap higher in the public healthcare systems. That is 

why an artificial intelligence system is needed to interpret chest X-rays as experienced chest 

radiologists effectively, thus providing a significant benefit in numerous clinical settings, 

detecting important lung diseases easier[20]–[24]. Furthermore, avoiding fatigue-based 

diagnostic errors, improve the workflow and the prioritization of public health services[16], 

[17], and even makes an accessible option for people that do not have ways to contact expert 

radiologist to diagnose them.  

 

1.2. Justification 

In Ecuador, pneumonia, chronic obstructive pulmonary disease (COPD), lung cancer, 

Pulmonary Fibrosis, and bronchitis represent the fifth main pulmonary diseases that kill people 

in the country. According to the National Institute of Statistics of Ecuador, even in a context 

out of COVID-19, between 2015 and 2019. Pneumonia, COPD, Lung Cancer, and Pulmonary 

Fibrosis were related to a mean rate of 6700 deaths per year in Ecuador Table 1.   

 

Pneumonia is the first of the pulmonary diseases related to people’s death in Ecuador. Between 

2015 and 2018, pneumonia was related to more than three thousand deaths yearly. In 2019 this 

sign increased to more than four thousand deaths, a tendency of most of the first-fifth diseases 

mentioned. These numbers show that even in a context out of a chaotic situation such as the 

COVID-19 pandemic, the health systems of Ecuador were having important problems 

diagnosing and treating pulmonary diseases effectively. 

 

Table 1: Cases of each disease diagnosed per year from 2015 to 2019  

DISEASE 2015 2016 2017 2018 
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PNEUMONIA 3310 3427 3879 4132 

COPD 1344 1422 1500 1513 

LUNG CANCER 750 758 876 776 

P FIBROSIS 595 597 734 727 

BRONCHITIS 232 228 222 184 

 

Nowadays, advancements in deep learning, image classification, and big datasets have allowed 

algorithms to equal the interpretation of medical professionals in various medical imaging tasks 

involving the detection and classification of pathologies such as diabetic retinopathy [25], [26], 

skin cancer [23], [27]–[30], and lymph node metastases [31]. Additionally, automated 

determination from chest imaging has received augmenting attention [14], [24], [32], [33], with 

specialized algorithms evolved for the detection and classification of pulmonary tuberculosis 

[34], COVID-19 [35]–[39], pneumonia [34], [35], [38], [40]–[42], COPD [20], [21], [34], [43],  

pneumothorax [44], lung nodules [10], [22], [32], and lung cancer [14], [32], [45]. Using chest 

radiographs to diagnose several pulmonary pathologies motivates the development of studies 

intended to detect several pathologies simultaneously [33], [43], [46], [47]. Recently, 

computing power and large data sets have enabled the development of different significant 

approaches. The implicit worth of these healthcare approaches is emphasized by the World 

Health Organization, which estimates that further than 4 billion people lack access to medical 

imaging expertise [48]. Indeed, even, in developed nations with evolved healthcare systems, 

an automated system with the ability to effectively interpret chest radiographs could give 

invaluable utility. 

 

This tool could identify and prioritize the sickest patients, allowing those to receive early 

diagnosis and adequate treatments even in rural sectors where hospitals do not immediately 

have radiologists. Furthermore, deep learning algorithms avoid some common and, at some 

point, understandable limitations that could appear even with experienced radiologists, 

including fatigue, perceptual biases, and cognitive biases; human limitations could increase 

diagnostic errors[16], [17], [19], [31]. The algorithm helps the radiologist avoid those 

perceptual errors and biases by providing information on the presence and the location of 

different chest X-ray abnormalities[13], [30], [37], [40]. In this way, deep learning algorithms 

that effectively detect pulmonary pathologies could be used as a novel system to perform faster 

and more accurate computer-aided diagnoses.  
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2. Objectives and Hypothesis Statement 

2.1. Objectives 

2.1.1. General Objective 

Develop a convolutional neural network (CNN) algorithm capable of 

effectively detecting several pulmonary pathologies from chest X ray images 

with efficient machine cost and able to be runned in rural parts of Ecuador 

giving them access to more people to an accurate and on time diagnosis. 

 

2.1.2. Specific Objectives 

 Generate and depurate a congruent dataset for the development of the 

CNN algorithm 

 Design several CCN algorithms that effectively and efficiently identify 

pulmonary pathologies avoiding extensive processing requirements.  

 Validate and compare the results of the CNN’s designed in terms of 

accuracy and efficiency with  each other and o algorithms reported in the 

literature to contrast the results obtained and select the better arrangement 

to be implemented as aid for diagnostics. 
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2.2. Hypothesis Statement  

The current thesis project is developed with two important hypothesis to prove: 

 

● About the efficacy of  detection by the CCN algorithms designed 

 

Ho: It is not possible to develop a CNN algorithm able to effectively identify pulmonary 

pathologies such as pneumonia, pulmonary nodules, atelectasis, pneumothorax, and pleural 

thickening, avoiding extensive processing requirements. 

 

Ha: It is possible to develop a CNN algorithm to effectively identify pulmonary pathologies 

such as pneumonia, pulmonary nodules, atelectasis, pneumothorax, and pleural thickening, 

avoiding extensive processing requirements. 

 

● About the efficiency of the algorithm developed 

 

Ho:  It is not possible to develop a CNN algorithm able to efficiently identify pulmonary 

pathologies such as pneumonia, pulmonary nodules, atelectasis, pneumothorax, and pleural 

thickening, avoiding extensive processing requirements. 

 

Ha:   It is not possible to develop a CNN algorithm able to efficiently identify pulmonary 

pathologies such as pneumonia, pulmonary nodules, atelectasis, pneumothorax, and pleural 

thickening, avoiding extensive processing requirements. 
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3. Theoretical Framework 

In this chapter, essential concepts of the study are presented. First, the lungs, their 

structure, functions, and pulmonary diseases are presented. Then the definitions of 

artificial intelligence, artificial neural networks, computer vision, supervised learning, 

deep learning, and image classification are described. After that, the concepts of 

convolution and how a convolutional neural network works, especially those commonly 

used for image classification tasks and biomedical image classification tasks. 

 

For the development of this thesis, different specialized search engines, such as 

PubMed, Google Scholar, Scopus, and Web of Science, were consulted in order to 

obtain data with the highest quality standards of reliability and reproducibility as the 

foundation of state of the art and this project in general. This work intends to be 

descriptive and systematically analytic. Experimental studies are described as a 

comparative analysis between authors. The documents below cited were selected 

according to their relevance and contributions to the present work. 

 

3.1. Lungs and Pulmonary conditions of interest 

 

Figure 1: Lungs Internal structure. Own elaboration [8]. 

The lungs Figure 1 are the two major organs and the centerpiece of the entire respiratory system 

[2], [49]; Lungs provide the body with a stable and continuous supply of oxygen [1], [6], [50]. 

As part of their normal work, lungs can take even more than 6 million breaths per year while 

supporting the correct functioning of the entire body [8]. 
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In an easy way, the lung’s main function is to get air from the atmosphere and then introduce 

the oxygen from the atmospheric air into the bloodstream. From the lungs, oxygen circulates 

to the rest of the body. Lungs require help from other surrounding structures in the body in 

order to breathe properly. To breathe human body uses the diaphragm, the intercostal muscles, 

the muscles of the abdomen, and even some neck muscles [6]. 

The lungs are located inside the chest cavity on each side of the human heart. There is a slight 

difference in size between the lungs; the left lung is slightly smaller than the right lung since 

the heart occupies some space on the left side. Consequently, the right and the left lungs are 

divided into different number of lobes (sections). The right lung is divided into three lobes 

while the left is divided into two [4]. When someone breathes in, air enters the airways and 

travels down into the alveoli. Alveoli are where gas exchange takes place [6], [50].  

The circulatory system supports the respiratory system by carrying blood to and from the lungs. 

The circulatory system supplies nutrients and oxygen to tissues and organs throughout the 

body. The circulatory system also helps remove carbon dioxide and waste products from 

cellular respiration Figure 2. Moreover, other body systems, such as the nervous, lymphatic, 

and immune systems, also work with the respiratory system [3]. 

 

Figure 2: Internal and external respiration. Own elaboration. [51] 
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Figure 3: Diffusion path in the lungs. Own elaboration. [52] 

Human lungs have about 150 million alveoli. Alveoli are naturally elastic, meaning they can 

expand and contract at will. Furthermore, they are coated with a substance that confers them 

the ability to inflate easily [2], [51]. Lungs in their insides pose a substance called surfactant. 

The surfactant reduces the work it takes the lungs to expand and contracts during breathing. 

Thus, surfactant helps the lungs inflate more easily when a person breathes in while preventing 

the lungs from collapsing when you breathe out [4].  

 

Figure 4: Gas exchange in the lungs. Own elaboration [50], [51].  
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Blood deficient in oxygen flows through the lungs to the alveoli, where the carbon dioxide in 

the blood is exchanged for pure oxygen from breathing via hemoglobin Figure 3. Then the 

oxygen-enriched blood travels to the left side of the heart through the pulmonary veins. From 

the heart, blood is delivered to the organs and tissues of the body via the circulatory system to 

ensure proper organ function and to initiate another cycle where carbon dioxide is exchanged 

[3], [4]. Each of these alveoli is formed by an arrangement of small blood vessels called 

capillaries that connect to the body’s circulatory system, thus allowing the exchange of gases 

necessary for life. Once in the circulation, carbon dioxide returns to the heart and enters the 

right side. It then goes to the lungs through the pulmonary artery, which flows from the 

capillaries back into the alveoli in exchange for the incoming oxygen Figure 4 [52], [53]. 

3.1.1. Other functions of the lungs 

Although respiration is the best-known function of the lungs, they carry out other important 

functions, including: 

pH Balancing: The presence of high amounts of carbon dioxide can cause the body to become 

acidic. When the body detects a rise in acidity, the lungs increase the ventilation rate to expel 

more of this unwanted gas, which helps to balance pH [2]. 

Body protection: Lungs can secrete immunoglobulin A and use mucociliary clearance. Those 

substances help protect the body from harmful pathogens and infections [51].    

Speech: Without airflow, a person would be unable to speak [49], [51]. The vocal cords make 

the sounds that allow communication; these cords are separated when a person is silent. 

However, when speaking, the cords become tight so that they vibrate and create sounds when 

the air pushes between them. 
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3.1.2. Respiratory diseases 

Respiratory diseases is the name to designate those diseases that can affect any part of the 

respiratory system, from the upper respiratory tract to the bronchi and down into the alveoli. 

Some conditions that affect the lungs include inflammatory and restrictive lung diseases, 

respiratory tract infections, lung cancer, pleural cavity diseases, and pulmonary vascular 

diseases [4]. Symptoms of lung disease can be subtle. Commonly an early sign of lung disease 

can be fatigue. Other signs could be trouble breathing, shortness of breath, inability or 

decreased ability to exercise, coughing with or without blood or mucus, and pain when 

breathing in or out [8]. 

 Inflammatory lung diseases 

 

Figure 5: Inflammatory disease with bronchus obstruction.[50]. 

As their name suggests, inflammatory diseases are diseases where the airways of the respiratory 

system could be sporadically or constantly inflamed, usually due to congenital sensitivity to 

some environmental or chemical elements [7]. Asthma, cystic fibrosis, acute respiratory 
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distress syndrome, and chronic obstructive pulmonary disease (COPD), which encompasses 

emphysema and chronic bronchitis, are all included in this category Figure 5. Frequently, 

asthma symptoms are wheezing, chest tightness, coughing, and shortness of breath [5], [6]. 

COPD patients typically appear with a persistent cough with excessive mucus production and 

symptoms comparable to asthma [43], [54]. A dry cough, weariness, unexplained weight loss, 

and musculoskeletal discomfort are among the symptoms of pulmonary fibrosis. COPD is 

typically caused by lung damage caused by cigarette smoking [54], [55]. 

 Restrictive lung diseases 

 

Figure 6: Restrictive lung disease diagram. Own elaboration. [50]. 

Restrictive lung diseases Figure 6 indicate that the airways are constricted, reducing the 

quantity of air a person can take in and making breathing more difficult. It can arise due to a 

clinical condition that causes the lungs to stiffen, the airways to fill with phlegm, and problems 

with the chest wall or breathing muscles [8], such as pulmonary fibrosis [56], spinal curvature, 

or obesity [57], among other causes [58]. 
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 Respiratory tract infections  

 

Figure 7: Different stages of pneumonia and pulmonary infections. Own Elaboration. [50] 

Infections Figure 7 caused by bacteria and viruses can arise at any point in the respiratory 

system. The diseases are then classified as upper respiratory tract infection (URTI) and lower 

respiratory tract infection (LRTI) [4], [8]. The common cold is the most prevalent URTI. Others 

include tonsillitis, laryngitis, and pharyngitis. In comparison, bacterial pneumonia is the most 

prevalent kind of LRTI [9]. Viruses and fungi are two more causes of LRTI [4]. These 

infections can cause complications such as lung abscesses and spreading the infection to the 

pleural cavity. Pneumonia is an acute pulmonary infection that bacteria, viruses, or fungi can 

cause [59]. It infects the lungs, causing inflammation of the alveoli and pleural effusion, a 

condition in which the lung is filled with fluid. Pneumonia is more common in non-developed 

and developing countries, where overpopulation, pollution, and precarious environmental 

conditions exacerbate the situation, and medical resources are scanty [60], [61].                                                                                                                                                                                                                                                                            
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 Lung cancer  

 

Figure 8: Different types of pulmonary neoplasms and tumors. Own elaboration.  [2]. 

Lung cancer (LC) Figure 8 is a type of cancer where cells in the lungs divide 

uncontrollably. LC can cause tumors to appear and grow, reducing a person’s ability to 
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breathe [62]. In advanced cases, tumors could spread to other vital body parts, 

producing a systemic and untreatable disease [63]. According to evidence, lung cancer 

is the third most frequent cancer and the leading cause of cancer-related mortality in 

the United States [62]. Furthermore, while smoking is the most prevalent cause of lung 

cancer, other risk factors might include a family history of the illness and exposure to 

radiation or certain chemicals [9]. 

 Pleural cavity diseases 

 

Figure 9: Pneumothorax symptoms and stages. Own elaboration [50]. 

As mentioned before, the pleural cavity is a space between the inner and outer pleural 

membranes surrounding the lungs’ exterior. Pleural effusion is a condition that causes 

an accumulation of fluid in the pleural cavity [4]. It is always the outcome of another 

ailment, such as cancer, heart failure, or liver cirrhosis [8]. Another pleural cavity 

condition that happens when air enters the area between the chest wall and the lung, 
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known as the pleural space, is a collapsed lung, also known as pneumothorax Figure 9 

[9]. A pneumothorax can compress the lungs highly; in extreme cases, the lungs might 

collapse like a balloon. 

 Pulmonary vascular diseases

 

 Figure 10: Common Pulmonary vascular diseases. From left to right: Pleural Effusion due to heart disease, 

Embolism, and Emphysema. Own elaboration. [50] 

Pulmonary vascular diseases  Figure 10 are clinical conditions that affect the vessels 

that carry blood through the lungs. This group includes pulmonary artery embolism, 

where a blood clot could travel from elsewhere in the body to the lungs, where it 

becomes lodged [4]. Pulmonary arterial hypertension is a sudden increase in the 

pressure of the pulmonary arteries, sometimes for unclear reasons [64], [65]. Pulmonary 

edema occurs when fluid leaks from the capillaries into the air spaces within the alveoli. 

It most often occurs due to congestive heart failure [66].  
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3.2. Artificial Intelligence and Neural Networks 

3.2.1. AI 

 

Figure 11: Subfields of Artificial Intelligence. Own elaboration. 

Artificial Intelligence is a branch of computational sciences dedicated to developing different 

programs and machines that can solve problems and rationally make decisions Figure 11. The 

overall goal of AI is to develop algorithms and techniques to solve problems that humans might 

perform intuitively and almost automatically but pose a great challenge to computers, to then 

adapt those algorithms to solve problems that humans cannot because of their complexity or 

extensiveness [67]. An example of this class of AI problems is the ability to interpret and 

understand the content of an image: this assignment is something a human can do with 

relatively minimal effort. However, it has been proven to be challenging for machines. 

Therefore, when the task is about interpreting and understanding the content of millions of 

images, it is better to have an algorithm that helps performing the task efficiently [30], [47], 

[68]. 

 

Machine learning is one of the multiple branches of artificial intelligence that endows systems 

with the ability to self-learn and self-improve from experience without being explicitly 

programmed [67]. While AI combines extensive work related to automatic machine reasoning, 

machine learning tends to focus on recognizing patterns and learning from data. Machine 

learning allows  developing algorithms and programs with the capacity to learn to extract 
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patterns and data relationships by themselves [68], [69]. Then, these patterns can be used to 

predict future behaviors and make evidence-based decisions.  

 

Deep learning is a special sub-field of machine learning Figure 12 that employs artificial neural 

networks (ANNs) to perform multifactorial tasks using a structure inspired by the human brain 

processing method [67].  A deep learning architecture consists of multiple layers or stacks of 

simple nodules designed by engineers to learn from data using a structured learning procedure. 

As its name indicates, a neural network is an arrangement of simple processing units (neurons) 

that get specific inputs and, based on them, obtain the desired output [67]. ANNs are not 

intended to be realistic models of the human brain. ANNs are a mathematical approach that 

allow establishing parallelisms within a basic model of the brain and deduce how to mimic 

some of its behaviors using computational methods in which the inputs are equivalent to the 

dendrites of neurons. The outputs are like the axons of neurons [70]. 

 

Figure 12: Venn diagram describing machine and deep learning as a part of AI [71]. 

 

 

Deep learning mimics the process of human learning by an abstraction of the process. As 

mentioned before, ANNs are systematic arrangements of multiple layers of simple processing 

units connected to each other. Furthermore, a common neural network is comprised of four 

main components: inputs, weights, a bias or threshold, and an output Figure 13 [67]. 

 

Each layer will have a different “weight”. This weighting reflects what was known about the 

images and their components and how important is the information provided. 
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Figure 13: a) Timeline of some of the highest discoveries in deep learning history since perceptron development 

until GoogleNet presentation. b) Schematic view of artificial neural networks. Own elaboration  [72], [73]. 
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3.2.2. Supervised Learning 

Supervised learning is a term used to describe a model or algorithm that makes predictions 

using class or labels distribution in terms of predictor features. According to the training data, 

a model is created through a training process in which the model makes predictions about the 

input data and then is corrected when the predictions are erroneous. The training process 

continues until the model reaches a certain desired shutdown criterion, like a maximum number 

of training iterations or a low error rate. The resultant classifier is used then to assign labels of 

its respective class to test images where the values of the predictor features are already known, 

but the values of the class label are not known Figure 14 [73]. 

 

Figure 14: Supervised leaning process 

 

Supervised learning aims to develop an artificial intelligence system capable of learning the 

mapping between the input and output signals and predicting the outcome of the system given 

the new inputs. As its names show, this field of machine learning is supervised because, in the 

training process, the data labels indicate to the program which is the class to which this image 

belongs[67]. Based on that, later, the model will be able to determine whether future images 

belong to it or not. Supervised learning is the most known and studied machine learning 

algorithm to develop classifier and detector software for natural and medical images.  
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3.2.3. Convolutional Neural Networks 

In deep learning, a convolutional neural network (CNN) is a particular type of artificial neural 

network (ANN), often designed to process structured arrays of data such as images and other 

visual resources. CNN’s, also known as Space Invariant Artificial Neural Networks, is based 

on a shared-weight architecture. The kernels or convolution filters of the network glide along 

the input features and provide equal translational responses known as feature maps.  

 

A convolution is a mathematical operation, more precisely, an integral that conveys the degree 

of superposition of one function over another, yielding a third function that expresses how the 

shape of one is altered by the other [74]. In deep learning terms, a convolution (of images) is a 

multiplication by elements of two matrices followed by an addition. The convolution 

operations consider the distribution of the information in a matrix space, making them suitable 

for the detection or classification even in complex images [74]. The convolutional kernel is a 

small matrix with an anchor point used to determine the position of the kernel concerning the 

image and numbers in each cell. The anchor point starts at the image’s top-left corner to be 

analyzed and moves over each pixel sequentially. At each position, the kernel overlaps a few 

pixels on the image. Each overlapping pair of numbers is multiplied and added. Finally, the 

value at the current position is set to this sum [67]. The CNN obtains high-level features in the 

first filters, like edges, contours, and colors, among others, whereas the inner layers extract 

abstract characteristics. 

 

Convolutions are one of the fundamental building blocks in computer vision and image 

processing algorithms. Convolutions have applications in image and video recognition, natural 

language processing, image classification and segmentation, medical image analysis, and 

brain-computer interfaces, among many others [75].  Concerning the overall architecture, there 

are many types of layers used to build a Convolutional Neural Network, but the most likely 

used are:  

 

 Convolutional (CONV). 

 Activation (activation function). 

 Pooling (POOL). 

 Fully connected (FC). 
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 Batch normalization (BN). 

 Dropout (DO). 

 Convolutional Layer  

As mentioned before, convolution is a mathematical operation that extracts features from an 

image taking an image matrix and a filter or kernel. The convolutional layers of a CNN apply 

learned filters to the incoming images to construct feature maps that summarize the existence 

of those features in the input. Convolutional layer feature maps predict the class probabilities 

for each feature by applying this filter to the whole image, a few pixels at a time [76]. The 

output of the filters goes through a linear or nonlinear activation function to form the output 

feature maps [67]. See Figure 15 . 

 

Figure 15: Convolution layer. 

 Activation Layers 

Activation layers are not technically recognized as “layers” (because no parameters or weights 

are learned within an activation layer). They are sometimes omitted in network architecture 

diagrams since it is assumed that an activation immediately follows a convolution. However, 

it is important to note that the activation function is being implemented within the network 

architecture. After each CONV layer in a CNN, applying a nonlinear activation function, such 

as Sigmoid, ReLU, ELU, or any other activation function variants, is necessary. 
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 Pooling Layer  

 Spatial Pooling layers aim to gradually decrease the number of data points in images that are 

too large [74]. A pooling layer is commonly added after a nonlinear activation function (i.e. 

Sigmoid) is applied to feature maps produced by the convolutional layer. 

 

Spatial pooling or down sampling reduces the dimensionality of each map but retains essential 

information [74]. Additionally, as the pooling layer operates upon each feature map separately, 

spatial pooling creates a new dataset of the same number of the feature map pooled. 

 

The pooling operation or filter is smaller than the feature map; in particular, it is nearly always 

2x2 pixels applied with a stride of 2 pixels [77]. This means that a pooling operation will lower 

the size of each feature map by a factor of two, i.e., each dimension is halved, decreasing the 

number of pixels or values in each feature map to one-quarter of its original size. A pooling 

layer applied to an 8x8 (64 pixels) feature map produces an output feature map of 4x4 pixels 

(16 pixels). 

 

There are two forms of spatial pooling: max polling and average pooling [69]. Max Pooling 

returns the maximum value from the Kernel-covered region of the picture. On the other hand, 

average pooling returns the average of all values from the region of the picture covered by the 

kernel [74]. An example is shown in Figure 16. 
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Figure 16: Average Pooling and Max Pooling example. 

 Fully Connected Layers 

As is customary for feed-forward neural networks, neurons in FC layers are completely linked 

to all activations in the preceding layer, see Figure 17. In the previous phases, a fully connected 

layer or classification layer computes the score of each class using the retrieved features from 

a convolutional layer [78].  Now, once the input picture is turned into a format suited for the 

Multi-Level Perceptron, it will flatten into a column vector. The flattened output is input into 

a feed-forward neural network, and backpropagation is used for each training iteration. The 

model can discriminate between dominant and certain low-level characteristics in pictures and 

categorize them using the Softmax Classification algorithm across a series of epochs [68]. FC 

layers are always applied at the network’s end (i.e., the model does not apply a CONV layer, 

then an FC layer, then another CONV layer).  
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Figure 17: Fully connected layer. 

 Batch Normalization  

Batch normalization (or BN) layers are used to normalize the activations of a particular input 

dataset before passing it to the next layer of the network, as the name implies. Ioffe and Szgedy 

introduced BN in 2015. Batch Normalization: Accelerating Deep Network Training by 

Reducing Internal Covariate Shift [79]. Using this equation, activations coming out of a batch 

normalization layer will have a mean of zero and a variance of one (i.e., centered at zero). 

 

 Dropout  

Dropout is a type of regularization that seeks to minimize overfitting by boosting testing 

accuracy, sometimes at the price of training accuracy. Dropout layers randomly disconnect 

inputs from the upstream layer to the downstream layer in the network architecture for each 

mini-batch in the training set with probability p [80]. Figure 18 shows an example of a neural 

network after dropout. 
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Figure 18: a) fully connected neural network b) the same network after dropout. 
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3.3. Image Classification 

For computers, trying to identify the objects inside an image is much harder than for humans. 

An image is just interpreted by machines like a large arrangement of binary information. In this 

way, it is also important to understand that a computer will not understand anything about the 

thoughts, knowledge, or meaning the image is trying to transmit. 

 

In order to help computers understand the contents of an image, it is necessary to apply an 

image classification task. Image classification consists of implementing computer vision and 

machine learning algorithms that allow the computer to extract the meaning from a set of 

images. This action could be simple as assigning a label to what a single object image contains, 

to as advanced as interpreting the content of an image with many objects and returning a 

human-readable sentence with the number of objects per class from a list of classes designed. 

Image classification is a vast and very promising field of study, covering a wide variety of 

techniques and a wide range of fields of application both inside and outside the medical field.  

 

As mentioned before, “Image classification, at its very core, is the task of assigning a label to 

an image from a predefined set of categories.” In practice, the goal in image classification is to 

parse an input image and output a label that categorizes the image into one of the categories 

set. For example, assume that one set of possible categories includes: categories = {car, house, 

tree}. Then a car photograph is presented to the classification system. The aim is to take this 

entry image and assign it a label from the categories set. In this case, the correct label is a car. 

Besides that, the classification systems could also assign multiple labels to a single image 

indicating the probability of fitting for each category (i.e., car: 95%; house: 4%; tree: 1%). 
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3.3.1. Deep Learning and Biomedical Imaging  

Deep learning has been present since the 1940s, going by several names and incarnations 

depending on different schools of thought and major research trends. Since then, a very long 

way of discoveries and improvements have been assembled by scientists around the world. 

Those discoveries/improvements help this field grow and develop to the point that nowadays, 

DL algorithms surpass the performance of many medical professionals in a broad spectrum of 

medical imaging tasks. 

 

While difficult to access, it is still important to access a medically validated data set to run tests 

with CNNs. Emerging progress in deep learning and large data sets has permitted algorithms 

efficiently outperform a broad range of medical imaging challenges, from diabetic retinopathy 

detection [25], [26] and skin cancer classification [29], [30], to COVID-19 detection [35], [37], 

[39], and pulmonary nodules identification [22], [32]. Furthermore, the automated diagnosis of 

chest radiographs gained increasing attention with algorithms intended to identify and classify 

a broad spectrum of pulmonary diseases. 

 

Using the publicly available OpenI dataset, researchers discovered that the same deep 

convolutional network architecture does not perform well across all abnormalities [81]. 

Ensemble models significantly improved classification accuracy compared to single models, 

and deep learning methods improved accuracy compared to rule-based methods. 

 

Furthermore, it is essential to remember that medical and daily life images differ. The regions 

of interest or ROI, the specific points in the image aimed to be identified because they indicate 

relevant information to the classification process, are significantly smaller in medical images 

than those in lifelike pictures. As a result, recognizing them may be significantly more difficult 

for the neural network. 

 

On the other hand, some medical photos quality is enormous compared to conventional images, 

and more pixels equals more information. This large disparity in the amount of information per 

image makes treating the program more difficult. Medical imaging data is scarce, costly, and 

loaded with legal patient privacy issues. As a result, the vast majority of such data cannot be 

used for broad public study. 
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However, despite all the limitations, important advances have been made in medical image 

classification. Some of the most relevant ones are summarized in Table 2. As [82] whom using 

the freely accessible OpenI dataset, investigated the performance of several convolutional 

architectures on various anomalies. [83] Whom published ChestX-ray-14, a dataset that is an 

order of magnitude larger than prior datasets of its sort. Also, they benchmarked several 

convolutional neural network architectures pre-trained on ImageNet. [84] used statistical 

dependencies between labels to improve prediction accuracy, outperforming [83] in 13 of 14 

classes.  

 

Then, between 2018 and 2019, several scientists developed proposals for the detection and 

classification of chronic obstructive pulmonary disease, tuberculosis[34], pneumonia, asthma, 

malignant pulmonary neoplasm, and lung cancer [33], [34], [85], [86]. The comparative work 

from [34] is of remarkable interest. They considered Convolutional neural networks (CNNs), 

backpropagation neural networks (BPNNs) with supervised learning, and competitive neural 

networks (CpNNs) with unsupervised learning for the detection of five of the diseases 

previously mentioned. At the end of their experimentations, scientists conclude that compared 

to other networks, CNNs have attained the greatest recognition rate for training and testing 

data. In contrast, the superiority of CNN over other networks requires more time and a greater 

number of learning iterations. Besides that, [86] developed a deep learning-based algorithm 

using single-center data collected where the algorithm demonstrated significantly higher 

performance than all three physician groups in both image-wise classifications (0.983 vs 0.814-

0.932; all P < .005) and lesion-wise localization (0.985 vs 0.781-0.907; all P < .001) increasing 

the precedents of the potency and scope of deep learning in the detection of pulmonary diseases. 

In 2020 with the COVID-19 pandemic, a new epoch for the detection of pulmonary pathologies 

has emerged. With dozens of papers published and algorithms developed for the early detection 

and classification of COVID-19 patients in Japan, China, India, and Italy, among others. 2020 

was the year data scientists from every point in the world focused on deep learning trying to 

stop the huge record of COVID deaths [35], [37], [38], [62], [87], [88] In this part, it is 

remarkable the job performed by [35]. They developed eleven convolutional neuronal networks 

based on different CNN models for detecting infected coronavirus patients. From their several 

experimentations, scientists discover that ResNet201 plus J48 CNN method results in better 
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classification for detection of COVID-19 with Accuracy, Recall, Specificity, Precision, and 

F1-Score of 98.50%, 100%, 97.20%, 100%, and 98.40%, respectively. 
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Table 2: Bibliographic summary on neural networks. 

Name of the 

study 
Authors Year 

Pathology of 

interest 
Model Main Methods Performance Ref. 

CheXNet: 

Radiologist-Level 

Pneumonia 

Detection on 

Chest X-Rays 

with Deep 

Learning. 

Rajpurkar, Pranav; 

Irvin, Jeremy; Zhu, 

Kaylie; Yang, 

Brandon; Mehta, 

Hershel; Duan, Tony; 

Ding, Daisy; Bagul, 

Aarti; Langlotz, Curtis; 

Shpanskaya, Katie; 

Lungren, Matthew P.; 

Ng, Andrew Y. 

2017 Pneumonia. CheXNet, is a 121-

layer CNN trained on 

ChestX-ray14, 

currently the largest 

publicly available chest 

X-ray dataset, 

containing over 

100,000 frontal view 

X-ray images with 14 

diseases. 

Four practicing academic 

radiologists annotate a test set, on 

which the performance of 

CheXNet is compared to that of 

radiologists. 

They find that CheXNet exceeds average 

radiologist performance on the F1 metric. 

CheXNet was extended to detect all 14 diseases 

in ChestX-ray14 and achieve state of the art 

results on all 14 diseases. 

[89] 

Deep 

Convolutional 

Neural Networks 

for Chest 

Diseases 

Detection. 

Abiyev, Rahib 

H.; Sallam Ma'aitah, 

Mohammad Khaleel. 

2018 Chronic obstructive 

pulmonary disease, 

pneumonia, asthma, 

tuberculosis, and 

lung diseases. 

Convolutional neural 

networks (CNNs, 

backpropagation neural 

networks (BPNNs) 

with supervised 

learning, and 

competitive neural 

networks (CpNNs) 

with unsupervised 

learning. 

All the considered networks CNN, 

BPNN, and CpNN were trained 

and tested on the same chest X-ray 

data set, and the performance of 

each network is discussed. 

CNN has achieved the highest recognition rate 

for training and testing data, compared to other 

employed networks. In contrast, this 

outperformance of CNN over other networks 

requires longer time and a larger number of 

learning iterations than that of BPNN2 and 

CpNN2. 

[34] 
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Deep learning for 

chest radiograph 

diagnosis: A 

retrospective 

comparison of the 

CheXNeXt 

algorithm to 

practicing 

radiologists. 

Rajpurkar, 

Pranav; Irvin, 

Jeremy; Ball, Robyn 

L.; Zhu, Kaylie; Yang, 

Brandon. 

2018 Tuberculosis and 

lung cancer. 

CNN to concurrently 

detect the presence of 

14 different 

pathologies. 

CheXNeXt was trained and 

internally validated on the ChestX-

ray8 dataset, with a held-out 

validation set consisting of 420 

images, sampled to contain at least 

50 cases of each of the original 

pathology labels. On this 

validation set, the majority vote of 

a panel of 3 board-certified 

cardiothoracic specialist 

radiologists served as reference 

standard. 

CheXNeXt achieved radiologist-level 

performance on 11 pathologies and did not 

achieve radiologist-level performance on 3 

pathologies. The radiologists achieved 

statistically significantly higher AUC 

performance on cardiomegaly, emphysema, and 

hiatal hernia. CheXNeXt performed better than 

radiologists in detecting atelectasis, statistically 

significantly higher than radiologists; there were 

no statistically significant differences in the 

detection of other 10 pathologies. 

[33] 

Development and 

Validation of a 

Deep Learning-

Based Automated 

Detection 

Algorithm for 

Major Thoracic 

Diseases on 

Chest 

Radiographs. 

Hwang, Eui Jin; Park, 

Sunggyun; Jin, 

Kwang-Nam; Kim, 

Jung Im; Choi, So 

Young; Lee, Jong 

Hyuk; Goo, Jin 

Mo; Aum, Jaehong; 

Yim, Jae-Joon. 

2019 Pulmonary 

malignant neoplasm, 

active tuberculosis, 

pneumonia, and 

pneumothorax. 

Deep learning-based 

algorithm using single-

center data collected. 

The algorithm was externally 

validated with multicenter data 

collected between May 1 and July 

31, 2018. A total of 486 chest 

radiographs with normal results 

and 529 with abnormal results 

from 5 institutions were used for 

external validation. Fifteen 

physicians, including non-

radiology physicians, board-

certified radiologists, and thoracic 

radiologists, participated in 

observer performance testing. 

The algorithm demonstrated a median (range) 

area under the curve of 0.979 (0.973-1.000) for 

image-wise classification and 0.972 (0.923-

0.985) for lesion-wise localization; the algorithm 

demonstrated significantly higher performance 

than all 3 physician groups in both image-wise 

classification (0.983 vs. 0.814-0.932; all P < 

.005) and lesion-wise localization (0.985 vs. 

0.781-0.907; all P < .001). 

[86] 



 

 

 

 

32 

Development and 

Validation of 

Deep Learning-

based Automatic 

Detection 

Algorithm for 

Malignant 

Pulmonary 

Nodules on Chest 

Radiographs. 

Nam, Ju Gang; Park, 

Sunggyun; Hwang, Eui 

Jin; Lee, Jong 

Hyuk; Jin, Kwang-

Nam; Lim, Kun 

Young; Vu, Thienkai 

Huy; Sohn, Jae 

Ho; Hwang, 

Sangheum; Goo, Jin 

Mo; Park, Chang Min. 

2019 Malignant 

pulmonary nodules. 

Deep learning–based 

automatic detection 

algorithm (DLAD). 

DLAD was developed by using 43 

292 chest radiographs in 34 676 

patients (healthy-to-nodule ratio, 

30 784:3892; 19230 men [mean 

age, 52.8 years; age range, 18–99 

years]; 15 446 women [mean age, 

52.3 years; age range, 18–98 

years]) obtained between 2010 and 

2015. 

Radiograph classification and nodule detection 

performances of DLAD were a range of 0.92–

0.99 (AUROC) and 0.831–0.924 (JAFROC 

FOM), respectively. 

[90] 

An Efficient 

Deep Learning 

Approach to 

Pneumonia 

Classification in 

Healthcare. 

Stephen, Okeke; Sain, 

Mangal; Maduh, 

Uchenna 

Joseph; Jeong, Do-Un. 

2019 Pneumonia. CNN model from 

scratch to features 

extraction and image 

classification. 

CNN model trained from scratch 

to classify and detect the presence 

of pneumonia from a collection of 

chest X-ray image samples.  

Several data augmentation 

algorithms were used to improve 

the validation and classification 

accuracy of the CNN. 

Average training and validation accuracies of 

0.94814 and 0.93012 respectively were obtained 

along with different changes in the experiment 

set up related to the image sizes. 

[91] 
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Performance of a 

Deep Learning 

Algorithm 

Compared with 

Radiologic 

Interpretation for 

Lung Cancer 

Detection on 

Chest 

Radiographs in a 

Health Screening 

Population. 

Lee, Jong Hyuk; Sun, 

Hye Young; Park, 

Sunggyun; Kim, 

Hyungjin; Hwang, Eui 

Jin; Goo, Jin Mo; Park, 

Chang Min. 

2020 Lung cancer. A commercially 

available deep learning 

algorithm (Lunit 

Insight for Chest 

Radiography, version 

4.7.2; Lunit, Seoul, 

Korea). 

The algorithm provides both an 

image-wise probability value of a 

chest radiograph being abnormal 

and a per-pixel localization map 

overlaid on the input chest 

radiograph identifying the location 

of abnormalities. 

In a validation test comprising 10 285 

radiographs from 10202 individuals with 10 

radiographs of visible lung cancers, the 

algorithm’s AUC was 0.99 (95% confidence 

interval: 0.97, 1), and it showed comparable 

sensitivity (90% [nine of 10 radiographs]) to that 

of the radiologists (60% [six of 10 radiographs]; 

P = .25) with a higher FPR (3.1% [319 of 10 275 

radiographs] vs. 0.3% [26 of 10275 

radiographs]; P , .001). 

[92] 

Explainable Deep 

Learning for 

Pulmonary 

Disease and 

Coronavirus 

COVID-19 

Detection from 

X-rays. 

Brunese, Luca; 

Mercaldo, Francesco; 

Reginelli, Alfonso; 

Santone, Antonella. 

2020 COVID-19. CNN for image 

classification. 

Fine-tuning transferred learning of 

a VGG-16 network trained on the 

ImageNet data set trained for 

weeks using NVIDIA Titan Black 

GPU’s and 6,523 chest X-rays: 

250 related to patients afflicted by 

COVID-19, 2,753 related to 

patients with other pulmonary 

diseases and 3,520 related to 

healthy patients. All the diagnosis 

were confirmed by expert 

radiologists. 

The model for healthy and generic pulmonary 

diseases discrimination obtains a sensitivity 

equal to 0.96 and a specificity of 0.98. The 

model for generic pulmonary diseases and 

COVID-19 discrimination exhibits a sensitivity 

of 0.87 and a specificity equal to 0.94. Finally, in 

regard to the accuracy, the first model reaches an 

accuracy of 0.96, while the second model 

obtains a value of 0.98 with an average time for 

COVID-19 detection of approximately 2.5 

seconds. 

[39] 
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Multi-View 

Ensemble 

Convolutional 

Neural Network 

to Improve 

Classification of 

Pneumonia in 

Low Contrast 

Chest X-Ray 

Images. 

Ferreira, Jose Raniery; 

Cardona 

Cardenas, Diego 

Armando; Moreno, 

Ramon Alfredo; De Sa 

Rebelo, Marina de 

Fatima; Krieger, Jose 

Eduardo; Gutierrez, 

Marco Antonio. 

2020 Pneumonia. VGG-16 CNN and 

replaced its fully-

connected layers with a 

customized multilayer 

perceptron. 

Four different training strategies 

were proposed and evaluated: 

original chest X-ray image 

(baseline), chest-cavity-cropped 

image (A), and histogram-

equalized segmented image (B). 

The last strategy method (C) 

implemented is based on ensemble 

between strategies A and B. 

The ensemble model C yielded the highest 

performances: AUC of 0.97 (CI: 0.96–0.99) to 

classify pneumonia vs. normal, and AUC of 0.91 

(CI: 0.88–0.94) to classify bacterial vs. viral 

cases. 

[93] 

Modality-specific 

deep learning 

model ensembles 

toward improving 

TB detection in 

chest 

radiographs. 

Rajaraman, 

Sivaramakrishnan; Ant

ani, Sameer K. 

2020 Tuberculosis. CNN and selected 

popular pre-trained 

CNNs. 

CNNs are trained to learn 

modality-specific features from 

large-scale publicly available chest 

X-ray collections including (i) 

RSNA dataset, (ii) Pediatric 

pneumonia dataset and (iii) Indiana 

dataset. The models are evaluated 

through cross-validation (n = 5) at 

the patient-level with an aim to 

prevent over fitting, improve 

robustness and generalization. 

It is observed that a stacked ensemble of the top-

3 retrained models demonstrates promising 

performance (accuracy: 0.941; 95% confidence 

interval (CI): [0.899, 0.985], area under the 

curve (AUC): 0.995; 95% CI: [0.945, 1.00]).  

The ensemble model resulted in reduced 

prediction variance and sensitivity to training 

data fluctuations. Results from their combined 

use are superior to the state-of-the-art. 

[94] 
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Automated 

segmentation and 

diagnosis of 

pneumothorax on 

chest X-rays with 

fully 

convolutional 

multi-scale ScSE-

DenseNet: a 

retrospective 

study. 

Wang, Hongyu; Gu, 

Hong; Qin, Pan; Wang, 

Jia. 

2020 Pneumothorax. Fully convolutional 

DenseNet (FC-

DenseNet). 

Fully convolutional DenseNet 

(FC-DenseNet) with multi-scale 

module and spatial and channel 

squeezes and excitation modules in 

the detection and segmentation of 

pneumothoraces. 

Mean pixel-wise accuracy of 93% and Dice 

score of 0.92, with diagnostic accuracy 93.45% 

and F1-score 92.97%. 

[95] 

Validation of a 

Deep Learning 

Algorithm for the 

Detection of 

Malignant 

Pulmonary 

Nodules in Chest 

Radiographs. 

Yoo, Hyunsuk; Kim, 

Ki Hwan; Singh, 

Ramandeep; 

Digumarthy, Subba R.; 

Kalra, Mannudeep K. 

2020 Malignant 

pulmonary nodules - 

lung cancer. 

Deep learning–based 

AI algorithm using 

separate training (in-

house) and validation 

(NLST) data sets. 

A deep CNN that uses residual 

information of 34 layers (ResNet-

34) was selected. The raw pixel 

map of the Digital Imaging and 

Communications in Medicine file 

was normalized with windowing 

information, and the normalized 

pixel map was used as input for the 

AI model. 

The area under the ROC curve (AUROC) of the 

AI algorithm was 0.93 (95% CI, 0.90-0.96) for 

all chest radiographs, 0.99 (95% CI, 0.97-1.00) 

for digital radiographs, and 0.86 (95% CI, 0.79-

0.93) for computed radiographs. 

[32] 
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Deep learning-

based automated 

detection 

algorithm for 

active pulmonary 

tuberculosis on 

chest 

radiographs: 

diagnostic 

performance in 

systematic 

screening of 

asymptomatic 

individuals. 

Lee, Jong Hyuk; Park, 

Sunggyun; Hwang,  

Eui Jin; Goo, Jin Mo, 

Lee, Woo Young; Lee, 

Sangho; Kim, 

Hyungjin; Andrews, 

Jason; Park, Chang 

Min. 

2021 Pulmonary 

tuberculosis. 

DLAD algorithms in 

systematic screening 

for active pulmonary 

tuberculosis. 

Out-of-sample testing of a pre-

trained DLAD algorithm, using 

CRs from 19.686 asymptomatic 

individuals (ages, 21.3 ± 1.9 years) 

as part of systematic screening for 

tuberculosis between January 2013 

and July 2018. 

With high specificity thresholds, DLAD showed 

comparable diagnostic measures with the pooled 

radiologists (p values > 0.05). For the radio 

logically identifiable relevant abnormality (n = 

28), DLAD showed an AUC value of 0.967 

(95% confidence interval, 0.938-0.996) with 

sensitivities of 0.821 and 0.679, specificities of 

0.960 and 0.997, PPVs of 0.028 and 0.257, and 

NPVs of both 0.999 at high sensitivity and high 

specificity thresholds, respectively. 

[24] 

Prediction of 

Obstructive Lung 

Disease from 

Chest 

Radiographs via 

Deep Learning 

Trained on 

Pulmonary 

Function Data. 

Schroeder, Joyce D.; 

Lanfredi, Ricardo 

Bigolin; Li, Tao; Chan, 

Jessica; Vachet, 

Clement; Paine, 

Robert; Srikumar, 

Vivek; Tasdizen, 

Tolga. 

2021 Obstructive lung 

disease. 

CNN trained with near 

concurrent pulmonary 

function test (PFT) 

data. 

The Image Model (Resnet18 pre-

trained with ImageNet CNN) is 

trained using frontal and lateral 

radiographs and PFTs with 10% of 

the subjects for validation and 19% 

for testing. The NLP Model is 

trained using radiologist text 

reports and PFTs. 

The Image Model achieves an AUC of 0.814 for 

prediction of obstructive lung disease 

(FEV1/FVC <0.7) from chest radiographs. The 

Image Model predict severe or very severe 

COPD (FEV1 <0.5) with an AUC of 0.837. 

[96] 
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A deep-learning 

pipeline for the 

diagnosis and 

discrimination of 

viral, non-viral 

and COVID-19 

pneumonia from 

chest X-ray 

images. 

Wang, Guangyu; Liu, 

Xiaohong; Shen, Jun; 

Wang, Chengdi; Li, 

Zhihuan. 

2021 COVID-19. Fully automated deep-

learning pipeline for 

the standardization of 

chest X-ray images, for 

the visualization of 

lesions and for disease 

diagnosis can identify 

viral pneumonia 

caused by coronavirus 

disease 2019 and other 

types of pneumonia. 

Deep neural network based on the 

DenseNet-121 architecture and 

120,702 chest X-ray  images from 

92,327 patients with labels of 14 

common thoracic pathologies, was 

used for model training. 

AUC of 0.914 for differentiating pneumonia 

from all other groups and an AUC of 0.935 for 

the overall classification of lung opacity. 

Furthermore, the AI system achieved 

comparable performance to the senior 

radiologists’ level with an AUC of 0.981 (95% 

CI: 0.970-0.990) for the viral pneumonia 

diagnosis. 

[88] 

Deep Learning 

Algorithm for 

COVID-19 

Classification 

Using Chest X-

Ray Images. 

V. J., Sharmila; D., 

Jemi Florinabel. 

2021 COVID-19. Deep convolutional 

generative adversarial 

networks (DCGANs) 

that classify chest X-

ray images into 

normal, pneumonia, 

and COVID-19. 

The proposed CNN method was 

trained with four distinct publicly 

accessible datasets of chest X-ray 

images (COVID-19 X-ray, COVID 

Chest X-ray, COVID-19 

Radiography, and CoronaHack-

chest X-ray) datasets based on the 

DCGAN synthetic images. 

The proposed CNN model was more efficient in 

detecting COVID-19 from four different datasets 

than the pre-trained models. However, although 

the proposed DCGAN-CNN provided a 

significant advantage over COVID-19 detection, 

it contained some shortcomings with respect to 

multilabel classification, time consumption, and 

efficiency. 

[97] 

DON: Deep 

Learning and 

Optimization-

Based 

Framework for 

Detection of 

Novel 

Coronavirus 

Dhiman, Gaurav; 

Vinoth Kumar, V; 

Kaur, Amandeep; 

Sharma, Ashutosh. 

2021 COVID-19. Eleven different CNN-

based models 

(AlexNet, VGG-16, 

VGG-19, GoogleNet, 

ResNet18, ResNet500, 

ResNet101, 

InceptionV3, 

InceptionResNetV2, 

Multiobjective optimization and a 

deep-learning methodology 

according to the J48 algorithm for 

the detection of infected 

coronavirus patients with X-rays. 

ResNet101 plus J48 CNN method result better 

classification for detection of COVID-19 with 

Accuracy, Recall, Specificity, Precision, and F1-

Score are 98.50%, 100%, 97.20%, 100%, and 

98.40%, respectively. 

[35] 
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Disease Using X-

ray Images. 

DenseNet201 and 

XceptionNet). 

UBNet: Deep 

learning-based 

approach for 

automatic X-ray 

image detection 

of pneumonia and 

COVID-19 

patients. 

Widodo, Chomsin S; 

Naba, Agus; Mahasin, 

Muhammad M; 

Yueniwati, Yuyun; 

Putranto, Terawan A; 

Patra, Pangeran I. 

2022 COVID-19. Three CNN 

architectural 

hierarchies to classify 

between normal 

images and pneumonia 

images, bacterial and 

viral pneumonia 

images, and 

pneumonia virus 

images and COVID-19 

virus infected images. 

An open-source data set with 9,250 

chest X-ray images including 

3,592 COVID-19 images were 

used in this study to train and test 

the developed deep learning 

models. 

CNN architecture with a hierarchical scheme 

developed in UBNet v3 using a simple 

architecture yielded following performance 

indices to detect chest X-ray images of COVID-

19 patients namely, 99.6%accuracy, 

99.7%precision, 99.7%sensitivity, 

99.1%specificity, and F1 score of 99.74%. 

[98] 
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4.  Methodology 

Based on the information presented in the previous chapters, this chapter will describe the 

methodology used to develop this study. In addition, important methodological notions related 

to data acquisition and preprocessing will be addressed, as well as the implementation of 

different convolutional models and the metrics used to measure the performance of the models. 

In the same way, a section in this chapter is dedicated to analyze the possible sources of error 

or uncertainty in the models and how to avoid them. 

 

Figure 19: Flow diagram of the methodology 

The methodology of this study is summarized in Figure 19. The images and dataset 

preprocessing, as well as the development of the Convolutional models proposed, were 

performed in Google Colaboratory (colab); it is a hosted version of Jupyter Notebooks with 

access to Google hardware, where Notebooks are run in Linux-based virtual machines (VMs) 

provided and maintained by Google and the computation can be performed with central 

processing units (CPUs) or accelerated through specialized graphical processing units (GPUs) 

and tensor processing units (TPUs) that allows to run and share modern AI and ML techniques 

[99] 
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4.1. Data acquisition 

The data used for this research are Chest X-ray images from ChestX-Ray14, a Hospital-scale 

Chest X-ray data set with up to 112,120 frontal-view X-ray images of 30,805 unique patients 

(collected between 1992 and 2015) with the text-mined fourteen common disease labels, mined 

from the text radiological reports via NLP techniques.  

 

The ChestX-Ray14 benchmark was recently introduced in [83]. The publicly available dataset 

was obtained from the NIH Clinical Center Library, see Figure 20, a repository of freely-

available medical research data managed by the NIH Clinical Center. The dataset contains 

112,120 high-resolution frontal view chest X-ray images from 30,805 patients, and each image 

is labeled with one or multiple common thorax diseases or “Normal” otherwise. Images are 

available in PNG format, numbered from “00000001_000.png” to ‘“00030805_000.png”. The 

data entry protocol and data collection can be found in the original study.  

 

As mentioned before,  the original data set generated in this study [83] is a large dataset of 

radiological evidence from Atelectasis, Cardiomegaly, Effusion, Infiltration, Mass, Nodule, 

Pneumonia, Pneumothorax, Consolidation, Edema, Emphysema, Fibrosis, Pleural Thickening, 

and Hernia. Unfortunately, the number of diseases is not always limited to one per image, and 

these images would make the training of the models harder. Thus the .csv file with the labels’ 

information associated with each image must be filtered and reorganized.  

 

 

Figure 20: Images obtained from the NIHCC data set. a. No finding, b. Nodule, c. Emphysema, d. Infiltration 

Chest X-ray images are the most common diagnostic analysis available and easy to obtain for 

the detection and treatment of most pulmonary diseases. They have been proven to be crucial 

in providing different features for detecting and diagnosing several pulmonary and thoracic 

diseases and, in this case, for training the networks proposed. Chest X-ray images are available 
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in every experiment in the selected data set, so these images have been chosen for their 

convolutional feature extraction and multi-label classification study. However, the results 

obtained by different scientists in studies related to this dataset are not as accurate as needed 

for developing an accepted medical-grade computer-aided diagnosis software. Therefore, the 

data should be treated based on the number of diseases the models are trying to learn; this in 

order to understand if the number of diseases categorized has any relevance in the learning 

capacity each model can develop. 

 

4.2. Method Threats 

Before training the neural networks, the data set must be filtered first to avoid images with 

misleading information, thus allowing the networks to learn to recognize the proposed diseases 

correctly. The data should be analyzed to identify the number of images per class/disease in 

the data set. It is essential to avoid frequent problems such as the well-known class imbalance 

problem, which consists of the imbalance of information generated when one of the classes 

present in the dataset has a much higher number of images than the others.  

 

If the images present class imbalance, the number of images will be manually balanced, and 

discriminating factors will be determined to select the diseases that are more apt for the training 

of the networks. i.e., the diseases with the highest number of images, the diseases with the 

highest medical relevance, and diseases that do not generate noise among themselves. It is also 

crucial to avoid the information leakage that occurs when files or data used in the training of 

the networks are also used in the testing or validation processes. 

 

4.3. Data Preprocessing 

ChestX-Ray14 benchmark was recently introduced in [56]. The dataset contains 112,120 high-

resolution frontal view chest X-ray images from 30,805 patients. Each image is labeled with 

one or multiple common pulmonary and Thorax diseases or “Normal” otherwise. The first step 

is to refine data to obtain a new dataset only with images with a single label instead of two or 

more. For reading the images from the main .csv file, the python Pandas and NumPy libraries 

have been used to read, annotate and perform other data refinement and splitting techniques. 

For preprocessing and data refinement, some practical methods, such as the .loc and .asnumpy 

methods, will help refine the data for training the implemented models.  
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First, the initial .csv file containing the data of all the images hosted in the dataset must be 

filtered by eliminating the data of the images with more than one label. Then the data of the 

remaining images will be read and stored in a data frame of the Pandas library, where the data 

will be registered by counting the number of images per class. Then the images will be 

separated into individual folders for each disease.  

 

In case of class imbalance problems, the data for model training will be decided based on three 

discriminating factors:  

 the diseases with the highest number of images,  

 the diseases with the highest medical relevance, and  

 diseases that do not generate noise among themselves 

 

Once the images have been divided, and the presence or absence of class imbalance has been 

determined and overcome based on the discriminant factors presented, the number of images 

per class will be established.  

 

Then the previously determined number of images per class will be randomly taken, and the 

information concerning these and their respective classes will be loaded into a new .csv file. 

Subsequently, this new .csv file containing all the information concerning the images for 

training and their classes will be divided into three sets: training, validation, and testing, with 

80%, 10%, and 10% of the images, respectively. Since the data is separated after each image 

has been individually identified so that they do not have the same name or information, there 

is no risk of data leakage. Then the files are ready to feed the models prepared for the study. 

 

4.4. Models Development 

For the development of the present study, different convolutional models were developed under 

the methodology known as transferred learning. In particular, four types of networks, the VGG, 

Resnet, Densenet, and Inception models were chosen for classifying the medical images on the 

first mapping of results. These networks were chosen after the bibliographic review. It was 

determined that they were the most appropriate for classifying and recognizing the diseases in 

the data set.  
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The mentioned networks were chosen in their stock version to map the results obtained under 

the fine tuning and feature extraction modalities. After obtaining the initial results generated 

by the proposed networks, the best performing networks were selected in order to study their 

performance after hyperparameter optimization. 

 

4.4.1. Models Description 

 VGG nets 

VGG stands for Visual Geometry Group; first introduced in [100], it is a standard deep 

Convolutional Neural Network (CNN) architecture with multiple layers. The “deep” refers to 

the number of layers with VGG-16 or VGG-19 consisting of 16 and 19 convolutional layers. 

The VGG architecture Figure 21 is the basis of ground-breaking object recognition models. It 

is now still one of the most popular image recognition architectures. For example in [101] they 

use a VGG-19 network for melanoma thickness prediction. 

 

As for the architecture, VGG-16 has 16 layers (VGG-19 has 19 layers) consisting of 13 

convolution and 3 fully connected layers as shown in Figure 21; the first and second layers 

have 64 kernels; the third and fourth layers are of 124 kernels. The fifth, sixth, and seventh 

layers use 256 kernel filters. Eighth to thirteenth have 512 kernel filters. All these layers are 

followed by a max pooling layer each, and finally, layers fourteen and fifteen layers are fully 

connected hidden layers of 4096 units, followed by a softmax output layer in layer sixteenth 

[102]. 

 

.   

Figure 21: VGG architecture [102]. 
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 Inception 

The Inception network was an essential milestone in the development of CNN classifiers. It 

was first introduced in [76] and was designed to solve a problem of a variation in the location 

of information in an image, see Figure 22. Before its introduction, it was usual to stack 

convolutional layers on CNNs to obtain a better performance over time, which did not always 

work. The idea behind Inception networks was to have multiple-sized filters on the same levels 

instead of making multiple levels, going wider instead of deeper. 

 

 

Figure 22: Variation on the location and size of the image 

The Inception network was complex, and its constant evolution led to several versions of the 

network. The most popular versions are Inception v1, which will be briefly explained; 

Inception v2 and Inception v3, the last being the one implemented in this study, were both 

introduced in [103]; Inception v4 and Inception-ResNet, introduced in[104].  

 

The Inception v1 architecture consists of nine inception modules stacked linearly. It is known 

as the GoogLeNet. In Figure 23, can be seen the modules for the Inception v1. The naive 

version (a) performs convolution with three different sizes of filters (1x1, 3x3, 5x5) and max 

pooling. The outputs are concatenated and sent to the next module. Moreover, to make the 

computational cost cheaper and reduce the number of input channels, an extra 1x1 convolution 

before the 3x3 and 5x5 convolutions is added , and a 1x1 convolution after the max pooling 

layer [76] as shown in (b).  
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Figure 23: Inception modules [76] 

Inception v2 and Inception v3 were proposed to improve the first version since there were a 

few problems. There was a representational bottleneck due to the dimension alteration.  It was 

solved in the Inception v2 model by changing the 5x5 convolution by two 3x3 convolutions or 

factoring an nxn convolution into a combination of 1xn and nx1 convolutions [103]. While this 

improved the computational cost, the auxiliary classifiers contributed little near the end of the 

training process. The inception v3 model implements the ideas of the Inception v2 model 

without drastically changing the modules; they implemented an RMSProp Optimizer, 

factorized 7x7 convolutions, BatchNorm in the auxiliary classifiers, and Label Smoothing to 

prevent overfitting [103]. 

 ResNet  

While working with neural networks, there was the idea that increasing the number of layers 

increases precision, which is true to a certain level because, after some depth, the performance 

degrades. This degradation of the performances is a problem in deep learning known as the 

Vanishing/Exploiding gradient, which causes the gradient to become 0 or too large.  In Figure 

24 one  can see the degradation of training accuracy; on the left, the training error, and on the 

right, the test error for a CIFAR-10 net with 20 and 56 layers; the deeper network (56 layers) 

has higher training and test error [105]. 

 

Figure 24: Training and test error for a CIFAR-10 net [105]. 
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ResNet architecture was first introduced in [105] for solving vanishing/exploiding gradient 

problems. The architecture introduces the concept of Residual Blocks by using the Skip 

Connections technique; it consists of connecting activations of a layer to further layers, 

skipping some layers in between, and forming a residual block. By stacking these residual 

blocks, a ResNet CCN can be created. In general, the network uses a 34-layer network 

architecture similar to a VGG-19 net, in which the shortcut connection is added. 

 

Neural networks are good function approximators; they should be able to solve the identity 

function f(x) = x easily [105]; hence the network is allowed to fit the residual mapping, where 

the output of a function becomes the input itself, i.e., let h(x) be the initial mapping. The 

function needed to be filled by the network is: 

F(x) := h(x) - x ⇔ h(x) := F(x) + x. 

Graphically this idea can be interpreted as in Figure 25. 

 

Figure 25: Residual block [105]. 

 DenseNet 

DenseNets were introduced in [106]. This network connects every layer to every other layer. 

DenseNets alleviate the vanishing-gradient problem, strengthen feature propagation, encourage 

feature reuse, and substantially reduce the number of parameters [106]. DenseNet consists of 

several dense blocks, see Figure 26; between two adjacent blocks, there are two layers 

performing convolution and pooling, known as transition layers. 
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Figure 26: A 5-layer dense block in a DenseNet [106]. 

Regarding connectivity, in each layer, the feature maps of all the previous layers are not 

summed; instead, they are concatenated and used as inputs; consequently, DenseNets require 

fewer parameters. Mathematically [106], the l-th layer receives the feature maps of previous 

layers as input 

𝑥𝑙 = 𝐻𝑙([𝑥0, 𝑥1, … , 𝑥𝑙−1]) 

The multiple inputs of 𝐻𝑙 are concatenated into a single tensor to ease implementation. 

 

There are several models of DenseNet. Due to the implementation of the Dense blocks, these 

networks can become deeper without worrying about the vanishing gradient problem. In this 

investigation work, the implemented networks are: a DenseNet 121 that consists of 1 7x7 

Convolution, 58 3x3 Convolution, 61 1x1 Convolution, 4 AvgPool, and 1 Fully Connected 

Layer. In summary, it has 120 Convolutions and 4 AvgPool. 

 

4.4.2. Framework and hardware acceleration  

Machine learning framework 

PyTorch was used to develop and implement the trained models in the present study since all 

the pre-trained models under study are implemented in the framework and can be easily 

imported using torchvision. As previously mentioned, the implemented models are pre-trained 

and pre-tested on the ImageNet data set, a data set generated for object detection with more 

than 14 million images and 20 000 categories or classes. Thus, the proposed models will be 

developed under the transferred learning methodology applying fine tuning and feature 

extraction methods. 

 

Hardware acceleration 
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Several graphics processing units (GPUs) were employed (Nvidia A100, Nvidia Tesla P100, 

and Nvidia TeslaT4 of 40GB, 16GB, and 16GB, respectively) from Google Colaboratory with 

a 2.00GHz Intel® Xeon(R) CPU for hardware acceleration. GPUs are vital in the training of a 

DL model since training might take more or less time depending on their capacity. It is critical 

to understand that the Nvidia A100 GPU has a performance of 19.5 TFLOPs, the Tesla P100 

GPU has a performance of 10.6 TFLOPs, and the Tesla T4 GPU has a performance of 

8.07TFLOPs. Unfortunately, the Nvidia A100 and Tesla P100 GPUs are only available in the 

pro edition of Google Colab. Hence the Nvidia Tesla T4 GPU was the most utilized for network 

training and testing. 

 

4.5. Metrics 

In order to objectively determine the results of the trained models, the following metrics are 

used. See Figure 27 for reference on the formulas and definitions.  

 

 

Figure 27: Possible predictions from the network. 

Accuracy 

As illustrated in Formula (1), accuracy is defined mathematically as the fraction or percentage 

of correct predictions (TP+TN) towards the total number of predictions (TP + FP + TN + FN). 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (1) 
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Where: 

When the model accurately predicts positive outcomes, it is said to have a true positive value 

(TP). A true negative (TN) value is obtained when the model accurately predicts negative 

outcomes. A false positive value (FP) occurs when the model predicts positive outcomes 

inaccurately. Furthermore, a false negative (FN) value occurs when the model predicts a 

negative outcome inaccurately. 

 

Accuracy is used to evaluate and fine-tune the model's objectives function. However, accuracy 

is only sometimes sufficient to indicate a model's total performance because accuracy might be 

high while other measures diverge. 

 

Precision 

Precision see Formula (2), also called the Positive Predictive Value (PPV). It is a metric that 

quantifies the number of "True Predictions" (True Positives values) out of all the positive 

predicted values (all the diagnoses classified as "positive" by the model), whether or not they 

have been correctly classified. High Precision is the aim when the objective is to minimize 

false positives.  

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒𝑠
=  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 

Recall 

Recall, Formula (3), is another performance indicator that counts the number of positive 

predictions (TP) that the model successfully identifies out of all possible positive predictions. 

It is determined by dividing the number of true positive values by the total number of true 

positives + false negatives values It is also known as a model's True Positive Rate or Sensitivity. 

Recall shows missed positive predictions, as opposed to Precision, which only comments on 

the right positive predictions out of all positive predictions. In this way, Recall offers some 

idea of the positive class's coverage. When the goal is to limit false negatives, a high recall is 

desired. 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 
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F1 Score 

Even though it is intuitive to use accuracy to evaluate a model, it is also recommendable to use 

Precision and Recall measures as there can be situations where accuracy is very high, but 

Precision or Recall is low. The aim is to avoid situations leading to mistreating subjects; for 

example, when the subject presents a disease, but the model classifies it as healthy, i.e., a FN, 

or when the subject does not present any disease, but the model classifies the opposite, i.e., a 

FP. 

 

Maximizing Precision will minimize the number of FP, whereas maximizing the Recall will 

minimize the number of FN. Although the aim is to obtain high precision and recall values, it 

is impossible to achieve both simultaneously. Both metrics are important in medical diagnosis, 

so the aim is not only for a high recall but also for high Precision. Therefore, these two metrics 

are balanced using an F1 Score see formula (4). It is the harmonic mean of the Precision and 

Recall  

 𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(4) 

 

F1 Score can be improved to indicate good Precision and recall value, so it is easier to work 

with than improving Precision or Recall. 
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5. Results and Discussion 

5.1.  Data acquisition  

The label information of each image in the dataset as well as the entire number of images were 

accessed via cloud technology from the NIH Clinical Center. Images in form 14 zip archives 

that contain a total of 45 GB of information as well as a main csv file called 

“Data_Entry_2017_v2020.csv”, see Figure 28, and were downloaded from the NIHCC cloud 

data set. 

 

Subsequently the data stored in the .zip files were unzipped, stored in a single folder, 

compressed into a mega file named "images.zip", and finally uploaded together with the csv 

file to the google drive space designated for the development of the studies which will then be 

accessed through google colab. 

 

 

Figure 28: Data set. 

 

5.2. Data Preprocessing 

After uploading the .zip file containing the images and the .csv file with the information of the 

classes per image to the google colab environment, the information in the dataset was read and 

loaded into a pandas data frame structure. The information present in the dataset was read and 

loaded into a pandas data frame structure. Once the data was loaded into the data frame, it was 
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possible to visualize the presence of images reported with more than one disease see Figure 29, 

which, if not eliminated, would generate problems and errors in the learning process of the 

implemented models.   

 

 

Figure 29: Images labeled with more than one disease. 

 

In this way, the information in the initial dataset was filtered, eliminating the information of 

the images whose report indicated more than one detected disease, thus reducing the number 

of images from 112 120 images to 89 237. After eliminating images with more than one class, 

the filtered dataset classes were separated by columns, where a positive diagnosis for a given 

class was marked with the number one. In contrast, a negative diagnosis for the rest of the 

diseases was marked with zero’s see Figure 30. 
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Figure 30: Structured data from the dataset once the overlapping was eliminated. 

 

Thus, based on the results obtained and represented in Figure 31, it was possible to verify that 

the dataset does not maintain the balance between the different classes that compose it. The 

number of images belonging to the "no finding" class or "healthy patients" equals 58,509 of 

the 89,237 usable images, while classes such as pneumonia, emphysema, hernia, and 

pneumoperitoneum have less than five hundred images each. This type of class imbalance is 

very problematic because it dramatically affects the ability of the networks to learn and 

recognize each of the classes of interest effectively. 
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Figure 31: Number of Images per class 

 

Thus, taking class imbalance into account, two different actions were required to reduce the 

class imbalance observed in the dataset. First, the discriminant method mentioned previously 

in the methodology section is employed. By counting the classes with the highest number of 

images, and the classes with the highest medical relevance, three classes, in addition to the "no 

finding" class, were selected for the training of the proposed neural networks. The selected 

classes were: "pneumonia", "atelectasis", and "mass".  

 

Second, since "pneumonia" is one of the classes with the fewest images in the dataset, but it is 

also the disease with the highest medical relevance for the study, according to INEC. An 

specialized search for data sets that contained X-ray images for the detection of pneumonia 

was conducted. Chest X-Ray Images (Pneumonia), an open-access repository of Kaggle, a 

subsidiary of Google users may use to search and post data sets, was selected to increase the 

number of images of this important class.  

 

Further data set filtering was performed to obtain the names of the images belonging to each 

selected class. Once the names of the images of interest were collected, the data of two thousand 

images per class were randomly taken to generate the definitive repository of images that would 

be used for the training of the models. In the case of the "pneumonia" class, all the existing 
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images in the primary dataset, ChestXnet, were taken, and the remaining images were randomly 

taken from the second repository found to optimize the learning of this class. Once the two 

thousand images were collected for each class, the repository was divided as described in the 

methodology. 80% of the images were for model training, and the remaining 20% was divided 

for validation and testing, 10% each. Finally, the filtered and separated images were stored in 

2 folders, the first one called "training" (which in turn is divided into two subfolders, "training" 

and "validation"), and a second one called "testing" to facilitate the access to the information 

of the models during the learning process. 

 

5.3. Testing different deep learning classification models. 

As part of this experimental procedure, the first approach to image classification with balanced 

classes was performed using the convolutional neural models Resnet18, Resnet 50, and Resnet 

101 with 25 epochs each, as well as the models Densenet 121, VGG19, and Inception V3 with 

15 epochs respectively. The optimizer used to carry out the six experiments was the Stochastic 

Gradient Descent with Momentum (SGDM), and the results obtained are summarized in Table 

3 and Figure 32. 

 

Figure 32: Accuracy results for the models a) resnet18, b) resnet50, c) resnet101, d) densenet121, e) vgg19, y f) 

InceptionV3. 



 

 

 

 

56 

 

Table 3: Training Initial Results 

Model Name Val acc Test acc Optmizer 

resnet18_1_25epochs_SGDM 75,87 72,98 SGDM 

resnet50_1_25epochs_SGDM 79,00 75,50 SGDM 

resnet101_1_25epochs_SGDM 78,87 72,99 SGDM 

densenet121_1_15epochs_SGDM 77,12 75.00 SGDM 

vgg19_60_15epochs_SGDM 78,87 75.62 SGDM 

inceptionv3_1_15epochs_SGDM 78,75 75,87 SGDM 

 

The model name includes the number of training epochs; for each of the models, it  can be  seen 

that the Test Acc values vary from 72.98 to 75.87, showing that the network with the best 

performance in this first experiment was the Inception V3 network, followed by the VGG19 

network, and the Densenet121 network in third place. On the other hand, the Resnet type 

networks did not present better performance within the learning process, and it is essential to 

note that for this task, it is observed that a greater number of layers does not ensure a higher 

accuracy value. 

 

Figure 33: Confusion matrix of Resnet 18, InceptionV3, and VGG19 models for the initial dataset. 

 

Also, in Figure 33 it is possible to observe the confusion matrices corresponding to the Resnet 

18, Inception V3, and VGG19 networks. Here one can observe these networks performance in 

classifying each of the selected classes. 
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5.4. Testing different Optimizers and Number of Epochs for the better 

classification models 

For the subsequent experiments, the network with the highest initial performance (Inception 

V3) was taken for further training to optimize its metrics and achieve the best possible 

classification capacity. Thus, the previously trained InceptionV3 network was taken, and the 

value of the training epochs and the optimizer used were modified, as shown in Table 4. 

 

Table 4: InceptionV3 results for the initial dataset with different optimizers and epochs. 

Model Name Val acc Test acc Optmizer 

inceptionv3_1_14epochs_SGDM 78,75 75,87 SGDM 

inceptionv3_2_25epochs_SGDM.pt 79,25 78,26 SGDM 

inceptionv3_4_50epochs_SGDM 79,50 75,12 SGDM 

inceptionv3_5_25epochs_ADAGRAD 79,62 79,27 ADAGRAD 

inceptionv3_10_15epochs_ADAGRAD 79,36 77,28 ADAGRAD 

 

From the results obtained, two essential things were inferred: 

1. The model that best fits the classification of the analyzed medical images is the 

InceptionV3 model with 25 training epochs and the Adagrad optimizer achieving a final 

result of 79.27% Acc in the testing process. 

2. A higher number of epochs does not always ensure a better accuracy result because the 

model may start to memorize the training images and not develop a good generalization 

capacity in the testing. This can be evidenced in Figure 34 where the InceptionV3 

network with 50 epochs and SGDM optimizer obtained a test acc of 75.12 compared to 

the model with 25 epochs and the same optimizer, which obtained an acc test of 78.26. 
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Figure 34: Confusion Matrix and Metrics of the model InceptionV3 with SGDM with 

 

In addition, after performing an analysis of the confusion matrices generated by the two best 

models previously mentioned, Figure 34 and the models trained in the initial stage, Figure 33. 

There is a pattern in the results that reduce the overall accuracy of the implemented networks. 

In confusion matrices of the models, it is possible to observe that the highest number of errors 

in the classification is between the classes "atelectasis" and "no finding". 

 

5.5. Testing a different dataset for a better classification model. 

With this discovery, the next test proceeded based on the third discriminant condition for the 

treatment of the data mentioned in the methodology "classes will be chosen that do not generate 

errors between them." Thus, the data was checked once again to obtain a new class that would 

allow testing a new hypothesis (atelectasis and non-finding are classes that generate noise 

among themselves and do not allow a better performance of the networks). 

 

"Effusion" was the class selected to replace "atelectasis" in the subsequent experiments. So 

again, three convolutional networks of the InceptionV3 type were retrained with a new dataset 

(Dataset5) and three different optimizers (Adagrad, SGDM, and Adam). 

 



59 
 

Table 5: InceptionV3 results with Adagrad, SGDM, and Adam,for the new dataset were Eddusion replace 

atelectasis(dataset5).Ccomparared with InceptionV3+Adagrad with the initial dataset. 

Model Name Val acc Test acc Optmizer 

inceptionv3_5_25epochs_ADAGRAD 79,625 79,27 ADAGRAD 

inceptionv3_52_15epochs_ADAGRAD_d

ataset5 

83,625 84,5 ADAGRAD 

inceptionv3_55_15epochs_SGDM_datas

et5 

81,25 82,25 SGDM 

inceptionv3_54_15epochs_ADAM_datas

et5 

80,125 78,625 ADAM 

 

The results obtained in these three experiments are summarized in Table 5. Here it is possible 

to observe that, indeed, after changing the class "atelectasis" to the class "effusion," the test acc 

increases its value from 79.27% to 84.5% in the case of the best-performing network 

(inceptionv3_52_15epochs_ADAGRAD_dataset5). Moreover, based on the confusion 

matrices of the last trained models, Figure 35, it can be observed that this increase in the 

accuracy value is due to better discrimination between the "effusion" and "no finding" classes. 

 

Figure 35: Confusion Matrix of InceptionV3 model for the initial dataset, and the second dataset (Effusion 

instead of atelectasis) 

 

5.6. Final Considerations 
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Table 6: Different models trained in the current experimental process with the precision results obtained per 

each of the pathologies analyzed 

 

Different approaches to developing an efficient classifier for detecting pulmonary pathologies 

were developed during the current experimental process. Between these, it is possible to 

observe again that the best configuration among the number of epochs, optimizers, and diseases 

of interest was the model “inceptionv3_52_15epochs_ADAGRAD_dataset5” with an overall 

accuracy of 84.5% compared with a similar model with the same optimizer and number of 

epochs one different disease that obtained just 79.27%. In the same way, in Table 6 it can be 

observed that this change in the accuracy of between models responds to the negative/positive 

interaction the diseases “atelectasis” and “Effusion” have with the class no finding, and it must 

be considered in future experiments. 

 

Finally, as can be seen in Table 7,  among the results obtained in the literature search, it is 

possible to note that in [83], scientist report accuracies of 70.69%, 66.42%, 56.44%, and 

63.33% for the classes atelectasis, effusion, mass, and pneumonia, respectively, diagnosed 

through a Resnte50 type network pre-trained with the imagenet data set. While in [84], results 

of 77.2%, 85.9%, 79.2%, and 71.3% accuracy are reported through the training of networks 

elaborated from scratch. Thus, one can say that the experiments performed through the 

InceptionV3 network have managed to surpass the results obtained by [83]. In contrast, these 

results are slightly below those of [84]. This improvement in the results of [84] is because the 

implemented models are pre-trained in the Imagenet data set, which can present particular types 

of optimization biases that the networks trained from scratch do not generate and can improve 
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their accuracy. It is also important to mention that thanks to the addition of the specialized 

image data set for pneumonia detection, InceptionV3 model far outperforms both previously 

performed studies and outperforms the results reported by [91]. They obtained an accuracy of 

94% in their intentional study for pneumonia detection. 

 

Table 7: Comparison of results among references. 

 

  

Pathology Wang [83] Yao[84] Okeke [91] Our Results 

Atelectasis 0.716 0.772 - 0.71 

Effusion 0.784 0.859 - 0.81 

Mass 0.706 0.792 - 0.81 

Pneumonia 0.633 0.713 0.9373 1 
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6. Conclusions  

After knowing the results of the work performed it can be concluded that although it was 

possible to create and debug a congruent dataset for the convolutional neural networks training, 

it was also possible to train and improve the proposed models efficiently with a mapping of 

their enhancement parameters. It was also possible to train and improve the proposed models 

efficiently by mapping their improvement parameters. The trained models still need to improve 

their accuracy to be accepted and used within a hospital environment. Therefore, it was not 

possible to build a model that effectively and efficiently identifies the proposed lung 

pathologies.  

 

However, this model could be upgraded for use in rural areas. If this is the case, a minimum of 

technical specifications will be required such as a computer with average capabilities with 

respect to processor and ram memory specifications and without the need for a GPU, but with 

good internet connection to run the program on the Google Collab platform or in case of not 

having internet access a computer with an intel core i5 8th gen processor or higher, a graphics 

card with at least 8 Gb of dedicated memory and 12 Gb of RAM. Once the network is trained, 

it will not require the same amount of memory used during the training phase. 

 

The inceptionV3 convolutional network with a fine-tuning transfer learning methodology is 

the network best suited to the proposed problem. Similarly, Adagrad is the optimizer that 

generates the best results among the proposed optimizers. However, despite the different 

optimizers, the number of epochs, and the learning coefficients proposed, a single variable 

seems to have the power to drastically change results previously obtained in the literature, the 

quantity, and the quality of images used to feed the network. This was evidenced by the 

significant change in accuracy observed for the pneumonia category, whose images were 100% 

identified by the InceptionV3 model.  

 

Therefore, it is of utmost importance to encourage the creation and development of public 

repositories of images and medical data, which in an organized way, allow scientists to train 
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and improve their computational models and generate solutions that help detect, discover, and 

overcome important pathologies for nowadays humanity. 

 

Finally, it is essential to recognize that more technology and data are needed to develop a 

system to help detect lung pathologies efficiently. Nevertheless, the results obtained in this 

investigation work are promising, especially for areas with no radiology specialists. 

Furthermore, with the accession of new data sets with quality images, achieving results that 

will help thousands of people in Ecuador and the world, as they helped with the detection of 

COVID-19 during the 2020 pandemic, is possible. 
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