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Resumen

Este estudio evalúa modelos avanzados como SARIMA, Holt-Winters, Prophet, LSTM y

SARIMAX para el análisis y predicción de series temporales, enfocándose en la evolución

del precio de las acciones de Amazon y el bitcoin. Esta investigación no solo busca pronos-

ticar la tendencia de estos activos financieros, sino también evaluar su potencial rentabili-

dad en estrategias de inversión, considerando escenarios de compra y venta.

Se explica detalladamente la lógica subyacente de cada modelo, proporcionando una com-

prensión clara de las series temporales y su relevancia en el contexto financiero, aśı como

una introducción a las redes neuronales y su aplicación en este campo. Este fundamento

teórico es esencial para asegurar una adecuada comprensión de la metodoloǵıa adoptada y

los experimentos realizados.

Durante la investigación, se analizaron diversas variantes de estos modelos, ajustando sus

hiperparámetros y experimentando con la incorporación de dos variables exógenas distin-

tas. Entre los hallazgos más destacados, los modelos LSTM, Holt-Winters y SARIMAX

mostraron un rendimiento particularmente sobresaliente. Estos modelos demostraron ser

capaces de generar rentabilidades superiores al 30% en el caso de las acciones y por encima

del 3% en criptomonedas, subrayando su potencial para aplicaciones prácticas en el ámbito

financiero.

Palabras Clave:

Prophet, LSTM, Holt-Winter, SARIMA, SARIMAX, Forecasting.
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Abstract

This study evaluates advanced models such as SARIMA, Holt-Winters, Prophet, LSTM,

and SARIMAX for time series analysis and forecasting, focusing on the price trends of

Amazon stocks and Bitcoin. This research aims not only to predict the trajectories of

these financial assets but also to assess their potential profitability in investment strate-

gies, considering buying and selling scenarios.

The underlying logic of each model is explained in detail, providing a clear understanding

of time series and their significance in the financial context, as well as an introduction to

neural networks and their application in this field. This theoretical foundation is essential

to ensure a proper grasp of the adopted methodology and the experiments conducted.

Throughout the research, various versions of these models were analyzed, adjusting their

hyperparameters and experimenting with the incorporation of two different exogenous vari-

ables. Among the most notable findings, the LSTM, Holt-Winters, and SARIMAX models

exhibited particularly outstanding performance. These models demonstrated the capabil-

ity to generate returns exceeding 30% in the case of stocks and over 3% in cryptocurrencies,

highlighting their potential for practical applications in the financial realm.

Keywords:

Prophet, LSTM, Holt-Winter, SARIMA, SARIMAX, Forecasting.
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Chapter 1

Introduction

1.1 Background

In the realm of investments, it has always been crucial to have a comprehensive under-

standing of the stock market movements and the flow of stocks. This understanding is

complemented by accurate intuition and the ability to guess the optimal timing for buying

and selling operations. The main goal of these activities is to maximize profits by acquiring

stocks at low prices and selling them when their value increases.

The inherent complexity of these investment operations leads many people to avoid this

method for generating income. Instead, it is common to resort to stockbrokers who carry

out the necessary analyses. However, this option involves additional costs, not only the

capital to invest but also the broker’s fees. Thus, to invest safely and profitably, a signifi-

cant initial investment is required.

This financial barrier causes many individuals to prefer safer options, such as bank de-

posits that offer interest rates, up to 7% annually in the best cases, under specific terms

and conditions established by the bank.
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1.2 Problem statement

However, current technologies offer innovative tools that can simplify the investment pro-

cess. One of the main innovations in this field are time series models, capable of generating

short-term predictions about specific market variables. Despite these tools, the task of in-

vesting effectively remains complex, especially for those without experience in the sector.

Furthermore, the diversity of investment options has expanded, including cryptocurrencies,

which are characterized by their high volatility. This volatility, while offering opportuni-

ties for quick profit, also represents a significant challenge in terms of prediction and risk

management. Therefore, the identification of effective time series models that can adapt

to both the stock and cryptocurrency markets is necessary.

In this context, the main problem of the research is to determine which time series models

can predict the trends in the stock and cryptocurrency markets more effectively, in order to

facilitate informed and profitable investment decisions. The goal is to overcome the entry

barriers for less experienced investors and facilitate access to investments in these volatile

markets.

1.3 Objectives

1.3.1 General Objective

The general objective of this research is to compare the efficacy and profitability of various

time series models in making investment decisions in the stock and cryptocurrency markets.

The aim is to identify a model that is not only profitable but can also be implemented

automatically, providing an easy-to-use tool for investing, thereby reducing the need for

extensive prior market knowledge.

Information Technology Engineer 2 Graduation Project
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1.3.2 Specific Objectives

1. Evaluate the effectiveness of different time series models, Holt-Winters, Prophet,

LSTM, SARIMA, and SARIMAX, in predicting market trends

2. Analyze the feasibility of these models in simulating investment operations in the

stock and cryptocurrency markets, with a specific focus on Amazon stock and Bitcoin.

3. Determine which of these models offers the best combination of profitability and ease

of use for investors with different levels of experience.

4. Develop a theoretical framework for the automatic implementation of a selected

model that democratizes access to the world of investments, making it more ac-

cessible and understandable to a wider audience.

1.4 Contribution

This thesis provides a detailed experimental analysis of advanced forecasting models such

as SARIMA, Holt-Winters, Prophet, LSTM, and SARIMAX, focusing specifically on the

investment field. A key aspect of this research is the ability to identify and discard those

models that prove unsuitable for implementation in the financial sector, while highlighting

those that demonstrate superior performance.

A significant contribution of this study is the development of an automated process that

facilitates access to the world of investments. This approach is particularly valuable for

individuals with limited knowledge in the area, allowing them to participate more effec-

tively and with greater confidence in the financial market. The integration of advanced

forecasting technologies into an easy-to-use system represents a significant step forward in

the democratization of access to financial investments.
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Chapter 2

Theoretical Framework

2.1 Basic Definitions

This section is dedicated to exploring the fundamental concepts that were considered during

the preparation of this work. It includes a detailed description of time series, highlighting

their relevance and applications. Moreover, the cryptocurrency and stock markets are

examined, emphasizing their dynamics and influence in the current economic context.

Subsequently, the prediction methods used and the logic behind each one are described.

This chapter aims to provide a solid theoretical foundation, essential for a comprehensive

understanding of the subsequent sections of the work.

2.2 Time Series

Time series are defined as a sequence of data that has been collected or recorded at consec-

utive time intervals, and these intervals are usually regular. This methodology is applied in

a wide range of contexts, underscoring its versatility and relevance in multiple fields. For

example, in the commercial realm, it can be used to analyze the monthly sales figures of a

store, offering crucial insight for business strategies and decision-making. In the financial

sector, it is fundamental for tracking stock prices, providing investors and analysts with

an essential tool for predicting trends and valuing investments. Beyond these uses, time

series also play a vital role in science and technology: in seismology, seismic signals are

recorded as time series to monitor and predict tectonic activity; similarly, in the field of

medicine, time series are used to analyze electrical signals from the human body, such as

5
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the electrocardiogram (ECG), which is crucial for diagnosis and health monitoring. This

broad spectrum of applications demonstrates the importance and utility of time series in

various areas of study and professional practice [2].

As evidenced, time series are indispensable tools in a variety of fields, including statistics,

economics, engineering, and climatology, among others. The essence of time series lies in

their ability to monitor and analyze how a specific variable behaves over time. In statistics,

for example, time series allow analysts to identify trends and patterns in data, facilitating

evidence-based decision-making [3]. In the economic field, they are used to predict indica-

tors such as Gross Domestic Product (GDP), inflation, and employment rates, which are

crucial for the formulation of economic policies. In engineering, time series play a vital role

in quality control and process optimization. In the field of climatology, the collection and

analysis of temporal data allow scientists to understand and predict climate patterns, which

is essential for addressing environmental challenges. These examples illustrate the breadth

and depth of the application of time series, highlighting their importance in research and

professional practice for understanding and forecasting the behavior of phenomena over

time [4].

Time series are analyzed through three common approaches. The first, descriptive analy-

sis, is the most basic. As its name indicates, this analysis focuses on describing the events

observed in the time series. It identifies critical points, trends, stationarity, as well as

peaks and troughs. This analysis seeks to offer a comprehensive understanding of the ob-

served data, allowing an understanding of what happened with the variable under study [2].

The second approach is explanatory or inferential analysis. This method goes beyond mere

description and seeks to explain the reasons behind the observed patterns. It focuses on

identifying cause-and-effect relationships, analyzing why certain changes occur, such as no-

table growth, seasonality, or downward trends. This analysis is crucial for understanding

the underlying dynamics of the time series [2].

Finally, the third approach, and the one this work focuses on, is predictive analysis. This

Information Technology Engineer 6 Graduation Project
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method involves using historical data to make projections about the future behavior of

the time series. In this study, we employ predictive analysis to anticipate whether the

price of the variable in question will increase or decrease, which is fundamental for making

informed decisions. Each of these three analyses provides valuable information and offers

different perspectives on the time series. Depending on the specific objectives of the study,

one can choose to use one or a combination of these methods [3].

Defining analysis objectives is a crucial step, as it guides the selection and collection of

relevant data. A fundamental aspect of this process is determining the temporal frequency

of the data, that is, its periodicity. In this study, a daily periodicity was chosen for the

analysis of stocks, focusing exclusively on business day, reflecting the dynamics of the stock

market. On the other hand, for the Bitcoin analysis, a five-minute periodicity was chosen.

This choice is due to the volatile nature and the constant flow of changes in the value of

Bitcoin, making a shorter time interval feasible and relevant.

It is imperative to maintain the same periodicity throughout the entire series to ensure

consistency and accuracy of the analysis. Moreover, it is crucial to define the time horizon

of the study, that is, the length of the historical record that will be used for predictions. In

this work, time series of different historical lengths were experimented with. This allowed

for comparison and selection of the most effective length for applications in real-world sce-

narios [3].

The main components of a time series are crucial for its analysis and understanding. These

include:

• Trend: This component reflects a general pattern or direction in the data over

time. It can manifest as a sustained increase or decrease. Identifying a trend helps

to understand the long-term trajectory of the time series, indicating, for example,

continuous growth in a company’s sales or a gradual decrease in average temperature

due to climate change [1].

• Seasonality: Represents regular and predictable fluctuations that occur in specific
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cycles. These fluctuations can be daily, weekly, monthly, or annually. For example,

an increase in toy sales during the Christmas season or daily traffic patterns in a city.

Seasonality is crucial for planning and anticipating periodic variations [1].

• Cycle: This component refers to long-term fluctuations that are not of a seasonal

nature. Cycles can be less predictable and not follow a fixed pattern. For example,

economic cycles that include periods of recession and expansion. These cycles are

important for understanding the longer-term dynamics that could influence the time

series [1].

• Noise or Irregularity: This component captures random variability in the data,

that is, fluctuations that are not due to trend, seasonality, or cycles. Noise can

be the result of measurement errors, unexpected events, or any other inexplicable

variation in the data. Understanding and mitigating noise is essential for improving

the accuracy of predictions and analysis of the time series [2].

In time series analysis, it is fundamental to distinguish between two main categories of

models used for the interpretation and prediction of future data. These categories are:

• Linear Models: These models assume a linear relationship between past and future

data. A prominent example is the ARIMA (Autoregressive Integrated Moving Aver-

age) model. ARIMA is particularly useful for analyzing and forecasting time series

that are stationary, i.e., those whose statistical properties such as mean and variance

do not change over time. This model combines autoregressive and moving average

techniques, allowing it to model a variety of temporal patterns in data [1].

• Non-Linear Models: These models are suitable for capturing more complex re-

lationships that cannot be adequately described by linear models. An example is

neural network models. These networks are especially valuable for time series with

complex and non-stationary patterns, as they can learn from data and detect non-

linear interactions and long-term dependencies. Their flexibility and deep learning

capability make them ideal for a wide range of applications, from financial market

prediction to climate trend analysis [2].
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The choice between a linear and a non-linear model depends on the nature of the time

series and the specific objective of the analysis. While linear models are often simpler and

easier to interpret, non-linear models offer greater flexibility and potential to capture more

complex dynamics in data [3].

In summary, time series emerge as a powerful and versatile analytical tool, fundamental for

understanding how data evolves over time. Their ability to identify consistent patterns and

make informed predictions makes them indispensable in multiple disciplines. Particularly,

their application in the financial field, which will be the focus of this work, is of vital

importance. In the financial world, time series facilitate the understanding of market

trends, allowing investors and analysts to make more informed decisions based on historical

analysis and future projections of financial instruments like stocks and cryptocurrencies.

The ability to predict market behavior and anticipate price movements is crucial for success

in this field, and time series provide the necessary tools to perform these tasks with greater

accuracy and confidence. This work will delve into the application of time series in the

financial field, demonstrating their effectiveness and relevance in a sector where precision

and predictive analysis are of utmost importance.

2.3 Types of Prediction

In the field of prediction, two fundamental methodologies stand out: the walk-forward

method and the recursive method. Each of these approaches has specific characteristics

and applications that make them suitable for different types of data analysis and forecast

scenarios.

2.3.1 Walk-Forward

Walk-Forward Analysis is a key technique in the prediction and modeling of time series,

particularly standing out in the field of finance and investments. This methodology is

based on making predictions using current actual values, instead of relying solely on past

predictions as a basis, which is essential to differentiate it from the recursive method [7].
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Key features of Walk-Forward Analysis:

• Basic Concept: It involves training a predictive model with a set of historical data,

followed by testing on a subsequent time period not included in the training. In each

cycle, the model forecasts one step ahead using the latest real data available and

then compares the outcome with the following actual data to evaluate its accuracy

[8].

• Practical Approach: This approach simulates a realistic trading situation, using

recent and current data for each prediction, which helps to assess how the model

would have performed under real market conditions and reduces the risk of overfitting

[6].

• Process Steps:

1. Data Division: The data is divided into a training period and a testing period

[7].

2. Model Training: The training set is used to develop the model [7].

3. Validation and Testing: The model is applied to the test set [7].

4. Repetition: The process is repeated, advancing the training and testing peri-

ods to cover different data segments [7].

• Prevention of Overfitting: One of the main reasons for using Walk-Forward Anal-

ysis is its ability to prevent overfitting, maintaining the model’s accuracy and rele-

vance for future data [7].

• Applications in Finance: This method is widely used in finance to demonstrate

a model’s effectiveness for predictions, leveraging its ability to adapt to changing

market data [6].

The figure 2.1 [9], presents the Walk-Forward time validation scheme through five successive

passes. Each pass illustrates the division of the available time series into segments used

for training and testing the model. The dark gray sections represent the discarded data,

the light gray sections show the data used for training the model, and the orange sections

Information Technology Engineer 10 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

indicate the forecast periods. This sequential approach of advancing the training and

forecast period with each pass reflects how the model adjusts and validates in relation to the

proximity of the present time, thereby improving its ability to predict future observations

more effectively.

Figure 2.1: Walk-Forward Time Validation Scheme.

2.3.2 Recursive

Recursive prediction is an advanced technique in the realm of forecasting, especially rel-

evant in contexts where a continuous projection over time is required. This approach is

distinguished by its use of predictions generated by the model itself as inputs for future

predictions, representing a fundamental difference from methods that rely exclusively on

actual historical data [10].

Key features of the recursive method:

• Basic Concept: In recursive prediction, a model relies on its own previous pre-

dictions, in addition to historical data, to generate new predictions. This approach

allows the model to “learn” from its own performance and adjust its future predictions

accordingly [11].

• How the Method Works:

1. Start with Historical Data: The model begins its analysis with a set of

historical data to make the first prediction [11].
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2. Recursive Update: Subsequent predictions incorporate both the historical

data and the previous predictions made by the model [10].

3. Continuous Process: This cycle of updating and predicting repeats continu-

ously, with each new prediction feeding the dataset for the next one [11].

• Advantages and Challenges:

1. Adaptability: Recursive prediction is valuable in scenarios where real data are

not immediately available or when consistent trends are expected [10].

2. Risk of Deviation: A significant challenge is the potential accumulation of

errors. Incorrect predictions can negatively influence future ones, increasing the

risk of significant deviations from reality [10].

• Applications in Finance: This method is used in modeling long-term investment

scenarios and in the development of anticipative trading strategies. However, it is

crucial to be aware of the risk associated with the accumulation of errors [10].

• Contrast with Walk-Forward: Unlike Walk-Forward analysis, which focuses on

avoiding overfitting and validating the robustness of the model with real data, recur-

sive prediction focuses on continuous projection based on its own outputs, which can

increase susceptibility to cumulative errors if initial predictions are not accurate.

In the context of this work, where the goal is to predict short-term changes in stock and

cryptocurrency prices, the recursive method stands out for its ability to project several

steps into the future, using its own predictions to advance. This offers a broader time-

frame for making informed and strategic decisions.

Figure 2.2 [12], shows the successive phases of the recursive prediction method. At the

top, the starting point with the initial prediction Tn+1 is based on actual historical data

up to Tn. In the middle, the next prediction Tn+2 uses both the historical data and the

previous prediction Tn+1. At the bottom, the progression of the model is observed, where

the prediction Tn+3 is made based on the previous predictions Tn+1 y Tn+2 ,showing how

the model feeds on its own predictions to advance in time. Solid bars represent observed
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values, dotted lines represent the predicted values, and circles indicate the point at which

the model is used to predict the next step.

Figure 2.2: Illustration of the Recursive Prediction Process.

2.4 Methods

2.4.1 Univariate Method

The univariate method in time series prediction uses the historical values of a single variable

to predict its future values. This approach assumes that the past information of the variable

is sufficient to understand and project its future behavior. Univariate models, such as

ARIMA, rely on the series’ own dynamics to make forecasts [1].

2.4.2 Method with Exogenous Variables

Unlike the univariate method, the approach with exogenous variables incorporates addi-

tional information in the form of other variables that are believed to influence the main

variable to be predicted. This method is useful when the variable of interest is affected by

external factors, allowing for modeling and prediction that takes into account the broader

environment [3].

In the present study, a comprehensive comparative analysis of various predictive models

employing both the univariate method and the method with exogenous variables has been
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undertaken. The goal is to evaluate and contrast the efficacy of each model in a variety of

scenarios.

2.5 Stocks

In simple terms, stocks represent a fraction of ownership in a publicly traded company. The

buying and selling of these stocks involve acquiring or relinquishing parts of the company,

based on market fluctuations. Investors can earn income in two ways: through dividends,

which are smaller but consistent earnings as the value of the company increases, or by

selling the stocks themselves. The latter method relies on buying stocks when their price

is low and selling them when their value increases. The central focus of this work is the

ability to predict short-term fluctuations in stock prices. By anticipating these changes,

the goal is to buy at the lowest possible price and sell at the highest estimated point,

aiming to maximize profits [13].

2.6 Cryptocurrencies

To understand cryptocurrencies, it is essential to recognize that they function as a digital

monetary system. Unlike traditional currencies in the gold standard era, their value is not

derived from the material they are made of nor their physical utility. Cryptocurrencies

are virtual currencies whose value is based on the social consensus of market participants

who agree on their value. This value is primarily determined by their relevance in the

market: the greater the interest and demand from investors, the higher their value. It’s

important to note that Bitcoin, while the most well-known, is just one among hundreds of

cryptocurrencies available in the market today [15].

The term “cryptocurrency” comes from its encrypted nature, which offers robust security,

making them extremely difficult to alter or hack. This security is one of their most sig-

nificant advantages. Additionally, cryptocurrencies operate independently of banking or

governmental entities, meaning they are not subject to the influence or control of these

institutions. A distinctive feature of cryptocurrencies is their foundation on decentralized

and encrypted technology, known as “Blockchain”. This system records all transactions in
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a block chain, ensuring transparency and traceability while maintaining user privacy and

security [14].

Despite their advantages, it is crucial to recognize that the cryptocurrency market is largely

based on speculation. This speculative nature leads to high volatility, causing prices to

vary significantly from one day to the next or even within weeks. Such instability repre-

sents a considerable risk, especially for impulsive and uninformed investments. Moreover,

in the realm of cryptocurrencies, it is not uncommon to find new coins that appear and

disappear quickly, often created with the purpose of deceiving investors [15].

It is fundamental, therefore, to weigh both the positive and negative aspects when con-

sidering investments in cryptocurrencies. For this reason, this work has chosen to focus

on Bitcoin. This decision is due to Bitcoin being one of the most established and reliable

cryptocurrencies in the market, offering an additional degree of security against the risks

mentioned.

2.6.1 Blockchain

The concept of blockchain is intrinsically linked to the realm of decentralized systems in

computing. To better understand this relationship, it’s useful first to examine what con-

stitutes a centralized structure, something most people are familiar with. A daily example

is the downtime of services like WhatsApp, during which no one can access the app. This

issue arises due to its centralized structure: all users connect to the company’s servers to

interact with other users on the network. In this model, the service is supported by a

set of central nodes responsible for coordinating and processing every aspect of the net-

work’s processing. Although this implementation is effective and simple, it is not without

disadvantages. For example, a failure in the central server can cause the entire network

to collapse. Additionally, concentrating control, decision-making, and management at a

single network point can open the door to unethical practices and a complete collapse when

the server fails, see Figure 2.3 [14][16].
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(a) Centralized System (b) Centralized System Down

Figure 2.3: Fallibility of a Centralized System.

The alternative to centralized structures is decentralized ones, where, instead of relying

on a central point for network management, the participating nodes themselves manage

the data. In these structures, decision-making is done collectively, ensuring that if one of

the nodes fails, the network can continue to operate without significant interruptions, see

Figure 2.4 [16]. However, this architecture presents much greater complexity and is harder

to implement, entailing several unique challenges. This complexity arises from the need

to coordinate multiple nodes, ensure data consistency across the network, and manage

security in a distributed environment [15].

(a) Decentralized System (b) Decentralized System Down

Figure 2.4: Fallibility of a Decentralized System.

Coordination in a decentralized system presents unique challenges, as it operates under
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the principle of collective self-management, without depending on a central authority. In

this context, all participants interact in a peer-to-peer (P2P) model. This methodology,

applied to the financial sector, constitutes the basis of the operation of cryptocurrencies,

a decentralized financial system [15].

In cryptocurrency networks, each node transmits specific information, such as transactions

between users. For example, in the case of a cryptocurrency like Bitcoin, what is transmit-

ted and recorded on the network is the complete set of transactions made by users. When

a user performs a transaction, this information is distributed to all other network nodes.

In this way, each participant maintains an updated and consistent copy of the transaction

record, ensuring the transparency and verifiability of all operations within the network.

The decentralized nature of cryptocurrencies presents significant challenges in terms of

information distribution. It is crucial that all users receive consistent and up-to-date infor-

mation to maintain accurate and synchronized records. However, in practice, information

in these networks tends to flow at variable rates, meaning not all nodes receive the same

information at the same time [14].

This lag can lead to a lack of coordination in the records. For example, while some nodes

continue to record and share new transactions, others may not have yet received previous

updates. This can result in different nodes having identical transaction records but in

different orders. This situation poses a fundamental challenge: ensuring the consistency

and reliability of information across the network, a vital task to maintain the integrity and

trust in the cryptocurrency system [14].

To overcome the challenges of synchronization and transaction verification in blockchain

networks, a technique known as “block formation” is employed. In this system, trans-

actions are grouped into blocks within a set time window. This approach facilitates the

verification of the validity of transactions, as any user can access and examine the complete

record, organized by blocks. By verifying each block, users can confirm the authenticity of

each transaction [14].
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This block structure provides a significant level of security against fraud and data mis-

representation. Since each user maintains a copy of the complete record, manipulating

or altering transactions would require modifying the record on all network nodes, an ex-

tremely difficult task. If an individual record is altered, it will be considered invalid, as it

will not match the majority of the records in the network. Thus, the integrity and relia-

bility of transactions on the blockchain are maintained through distributed consensus and

the inherent difficulty of altering multiple records simultaneously. The blockchain system

incorporates an advanced encryption mechanism based on secure hash algorithms. These

algorithms generate a unique hash from a set of data. The distinctive property of these

hashes is their sensitivity: even the slightest change in the input data results in a com-

pletely different hash. In the context of blockchain, each block is encrypted in this way,

producing a unique hash for each block [14].

Figure 2.5: Hash algorithm output.

In the case of Bitcoin, for example, the hash algorithm dictates that the generated hash

must start with a specific number of zeros, see Figure 2.5 [17]. To achieve this, the block

and a variable integer are provided as input to the algorithm. The difficulty lies in the fact

that the only way to find the correct hash is by using significant computational resources

to find the right combination of the integer [14].

This process, known as “mining,” is open to any user on the peer-to-peer network and is

public in nature. When a user successfully finds the correct hash for a block, they have the

right to add that block to the common record maintained by all users. In simple terms,

this user has “mined a block,” thereby contributing to the extension of the blockchain and

receiving a cryptocurrency reward for their contribution. The constant operation of mining

on the Bitcoin blockchain network generates a continuous sequence of encrypted blocks,
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representing the transactions made. A scenario that may arise is two users mining a valid

block at the same time, leading to the temporary creation of two different versions of the

blockchain. These two chains coexist until a new block is mined on one of them. At this

point, the conflict is resolved by applying the “longest chain” rule, where the chain with

the additional block becomes the official version accepted by the network [14].

This process ensures that, although temporary discrepancies may arise, the network as a

whole will converge towards a single version of the truth. Block mining, given its com-

putational intensity and associated costs, comes with a reward. The miner who succeeds

in adding a block to the chain receives a special transaction, known as a block reward,

which grants them a certain amount of bitcoins. This reward not only compensates for

the costs of mining but also incentivizes active and honest participation in the network [14].

The inherent security of the blockchain system derives from its decentralized nature, its

public transparency, and the mining processes involved. A crucial aspect of this security is

the way each block uses the hash of the previous block in its own encryption, see example

in Figure 2.6 [17]. As mentioned previously, any change in the data of a block alters its

hash, which in turn affects the hashes of all subsequent blocks. This means that if an

attacker attempts to modify an old block, they would have to redo the mining of all the

following blocks to maintain the chain’s consistency [14].

Figure 2.6: A Simplified Illustration of Blockchain Technology.
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In practice, altering a block in the blockchain chain is further complicated by the fact

that, while the attacker works on modifying a block, the rest of the network continues to

add new blocks. This creates a situation where the attacker would need computational

capacity superior to the total sum of all other network users for their altered chain to

be considered valid. In large-scale networks, like Bitcoin, this becomes practically an

impossible task. Therefore, the combination of these factors ensures that the blockchain

system is extremely secure and reliable, being open and accessible to all users without

compromising its integrity [15].

2.7 Neural Networks

A neural network is a computational model that mimics the way biological neural networks

in the human brain process information. It consists of a series of interconnected nodes or

“artificial neurons” that collaborate to perform specific tasks. Unlike traditional neural

networks, LSTM (Long Short Term Memory) networks are designed to remember informa-

tion for longer periods, making them particularly suited for tasks involving data sequences,

such as natural language processing. Neural networks, including LSTMs, are key compo-

nents in the field of artificial intelligence and machine learning, allowing machines to learn

from data and improve their performance in complex tasks [20].

A typical neural network has three types of layers: an input layer, one or more hidden

layers, and an output layer. Each layer consists of units or nodes, which can receive and

process signals [20].

Neural Network Structure::

• Input Layer: The input layer is the starting point where the network receives data

from the outside world. Each node in this layer represents a unique feature of the

input data. For example, in an image recognition task, each node could correspond

to the intensity of a specific pixel in the image. This layer acts as an intermedi-

ary, passing the data to the subsequent layers without performing any significant

transformation on them [18].
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• Hidden Layers: After the input layer come one or more hidden layers. These

layers are where most of the network’s computational processing occurs. The nodes

in these layers transform the inputs received from the previous layer through complex

mathematical operations. They are the “heart” of the network, enabling the learning

and recognition of complex patterns and features from the input data [18].

• Output Layer: The output layer marks the end of the processing pathway of the

network. The nodes in this layer take the transformations made by the hidden layers

and generate the final output of the network. The design of this layer varies according

to the specific task the network performs. For example, in a classification task, each

node in the output layer could represent a different category, delivering as a result

the probability of the input belonging to each category [18].

Node Components

Nodes, or artificial neurons, are the basic elements of a neural network [20]. Each node is

composed of several key components:

• Neurons or Nodes: Each node in a neural network simulates the behavior of

a biological neuron. These nodes receive input signals (either from external data

or from previous nodes in the network), process them, and transmit an output to

the following nodes. The operation of each node is crucial for data processing and

generating meaningful results [19].

• Weights: These are coefficients applied to the inputs of the nodes. During the

network’s learning process, these weights are adjusted to improve the accuracy of the

network’s predictions or classifications [19].

• Biases: Function as an independent adjuster within the node, allowing to modify

the node’s output in addition to the weighted inputs. This component helps the

network better adapt to patterns in the data, even when inputs are low or null [19].

• Activation Functions: The activation function in each node determines if and

how that node will be activated, i.e., how it will process and transmit the signal.

These functions can be linear or, more commonly, non-linear, allowing the network
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to learn and represent complex relationships in the data. Common examples include

the sigmoid function, the ReLU (Rectified Linear Unit) function, and the hyperbolic

tangent. Choosing the right activation function is crucial for the performance and

effectiveness of the network [18].

• Connections Between Nodes: Nodes in different layers of the network are inter-

connected. These connections are the pathways through which signals are transmit-

ted from one node to another. The way these nodes are connected largely defines the

network’s architecture and affects its ability to process information and learn from

data [19].

• Varied Architectures: There are various neural network architectures, each opti-

mized for specific tasks. For example, Convolutional Neural Networks (CNNs) are

ideal for image processing, while Recurrent Neural Networks (RNNs) are suitable for

processing temporal sequences such as language [18].

Information Processing in Nodes

The processing of information in a neural network begins at the individual nodes of each

layer [20]. The operation of each node can be broken down into the following key steps:

• Reception of Inputs: Each node receives a series of inputs. In the input layer,

these inputs are the raw data that the network is processing. For example, in a

network designed for image recognition, the inputs would be the pixel values of the

image. In subsequent layers, the inputs to a node come from the outputs of the nodes

in the previous layer [18].

• Multiplication by Weights: Weights are crucial parameters that determine the

influence of each input on the output of the node. Each input is multiplied by a

corresponding weight. These weights are adjustable and are modified during the

training of the network. This multiplication weights the importance of each input,

allowing the network to focus on particular features of the data. For example, in

object identification in images, certain weights may emphasize aspects such as edges

or specific colors [18].
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• Integration of Weighted Inputs: Once each input has been multiplied by its

corresponding weight, all these weighted inputs are added together to form a total

sum. This sum represents the combined information that the node will receive and

process [18].

Weighted Sum and Bias:

Once the nodes of a neural network have received and multiplied their inputs by the

corresponding weights, the next step is the weighted sum and the integration of the bias

[20].

• Weighted Sum of Inputs: The weighted inputs of a node, resulting from multiply-

ing each input by its associated weight, are added together to form a total sum. This

weighted sum is the basis for the next stage of processing in the node. It represents

the integration of all input signals, each adjusted in importance by its specific weight

[19].

• Incorporation of Bias: A bias term is added to the weighted sum. The bias is

an additional parameter in each node that allows adjusting the output of the node

independently of the inputs. This addition is crucial because it provides the node

with a kind of activation threshold. Even in the absence of significant inputs, or

when all inputs are zero, the bias allows the node to produce a non-null output. This

aspect is especially important to ensure that the neural network can handle a variety

of situations, including those where input information may be minimal or nonexistent

[19].

Activation Function

The activation function in the nodes of a neural network is a critical component that

adds non-linearity to the network’s learning and processing. Once the net input of a node

has been calculated through the weighted sum and bias, it is passed through the node’s

activation function [20].

1. Purpose of the Activation Function: The activation function determines the out-

put of the node based on the net input received. Its main objective is to introduce
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non-linearities into the system, allowing the network to learn and model complex

relationships in the data. Without these functions, the neural network would es-

sentially be a linear model, limiting its ability to handle complex and varied tasks

[18].

2. Common Types of Activation Functions:

• Sigmoid Function: Produces an output in the range of 0 to 1. It is useful

for models where we need probabilities, as its output can be interpreted as a

probability [18].

• ReLU (Rectified Linear Unit) Function: Provides a non-negative output

(zero or positive). It is popular in deep neural networks due to its computational

simplicity and effectiveness in training [19].

• Hyperbolic Tangent Function: Offers an output in the range of -1 to 1. It is

similar to the sigmoid function but can handle negative values more effectively

[20].

3. Impact on Network Learning: The choice of the activation function has a signifi-

cant impact on how the network processes information and learns. Different functions

may be more suitable for different types of tasks. For example, ReLU functions are

commonly used in convolutional networks for image processing, while the sigmoid

function is often used in the last layer of networks intended for classification tasks

[19].

Forward Propagation

Forward propagation is the process through which a neural network processes information,

from the input layer to the output layer [18].

• Information Flow in the Network: In forward propagation, information flows

sequentially through the network. It begins at the input layer, where the network

receives external data. Then, this data is transmitted through the hidden layers,

where it is successively processed [19].

Information Technology Engineer 24 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

• Processing at Each Node: At each network node, the calculation of the weighted

sum of the inputs is performed, the bias is added, and the activation function is

applied. This process transforms the input data in such a way that each subsequent

layer receives a more processed and abstract version of the data [19].

• Importance of Hidden Layers: Each hidden layer can learn different aspects of

the input data. For example, in a neural network for image recognition, the early

hidden layers may learn to identify edges and textures, while deeper layers may learn

to identify more complex shapes and patterns [19].

• Result at the Output Layer: Finally, the information reaches the output layer,

where the network produces its final result. This result can vary depending on

the task for which the network was designed, such as classification into categories,

generating a continuous value in regression tasks, or even generating new images or

text sequences in more advanced networks [19].

Feedback and Weight Adjustment (Backpropagation)

Once a neural network has processed data through forward propagation and generated an

output, the next step is feedback and weight adjustment, a process known as backpropa-

gation [20].

• Error Evaluation: Feedback begins with evaluating the network’s performance by

comparing the generated output with the desired or actual output. This comparison

results in determining an error or difference, measuring how much the network’s

prediction has deviated from the expected result [18].

• Error Propagation: The calculated error is propagated backward through the

network, from the output layer to the hidden layers. This process of reverse error

propagation is what gives the term “backpropagation” its name [19].

• Adjustment of Weights and Biases: During backpropagation, the network’s

weights and biases are adjusted. This adjustment is made in a way that reduces the

error in future predictions. The most common algorithm used for this adjustment is
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gradient descent, where changes in weights are made in the direction that minimizes

the error [19].

• Importance of Gradual Learning: Backpropagation allows the network to adjust

its weights incrementally. In each iteration, the network learns from its errors and

improves its ability to make more accurate predictions. This gradual learning is key

to developing a neural network that is effective and precise in its task [19].

Iterative Learning

This process involves repeating cycles of forward propagation and backpropagation several

times, allowing the network to continuously improve its performance [20].

• Definition of Epoch: Each complete step of sending the data through the net-

work (forward propagation) and adjusting the weights (backpropagation) is called

an “epoch”. During an epoch, the network processes the input data set, makes pre-

dictions, compares these predictions with the actual results, and adjusts its weights

accordingly [20].

• Learning Process Over Epochs: In each epoch, the network learns from its

previous errors. The adjustments made to the network’s weights and biases are

designed to reduce the error in future predictions. With each iteration, the network

becomes more accurate in its predictions or in performing the task it was designed

for [19].

• Convergence Towards an Optimal Solution: Ideally, over many epochs, the

neural network converges towards an optimal solution, where the error in its pre-

dictions is minimal. This convergence process is indicative of the network’s effective

learning [19].

• Continuous Evaluation and Adjustment: It is crucial to continuously evalu-

ate the network’s performance during the iterative learning process. This may in-

volve adjusting the learning rate, modifying the network’s architecture, or applying

techniques such as cross-validation to ensure that the network is not only learning

effectively but also generalizing well to new data [19].
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Network Training and Validation

Network Training: Training is an essential process in the development of neural net-

works. This phase involves the iterative adjustment of the network’s weights in response to

a training set, which includes examples of inputs and the corresponding desired outputs.

The main goal is for the network to learn to effectively map these inputs to their outputs,

optimizing its performance through successive iterations. It is crucial to highlight that

the quality and variety of the training set play a crucial role in the network’s learning

effectiveness, as they determine how and what the model learns [20].

Network Validation: Validation is a crucial step to assess the network’s generalization

ability. It is carried out using a validation set, consisting of data not present during the

training phase. This process is vital to detect issues like overfitting, where the network

shows high performance with training data but fails when facing new data. Validation

helps ensure that the network not only memorizes the training examples but also learns to

correctly infer from previously unseen inputs [18].

Adjustment of Hyperparameters in Neural Networks: Hyperparameters, which are

variables not learned during training but that configure the architecture and behavior of the

network, include the learning rate, the number of layers and neurons, the type of activation

function, and regularization techniques, among others. Adjusting these hyperparameters is

a significant and crucial challenge, as they have a direct impact on the network’s efficiency

and performance. Strategies such as grid search and random search are popular techniques

for exploring different hyperparameter combinations. However, it is important to consider

more advanced methods like Bayesian optimization, which can be more efficient in finding

the optimal configuration for a given problem [19].

In the context of this research, the LSTM neural network architecture is adopted for

its robustness and proven ability to make accurate predictions that require not only the

retention of relevant short-term information but also the effective integration of long-term

knowledge. This approach is aligned with the goal of developing predictive models that not
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only capture the temporal essence of the data but also dynamically adapt to the evolution

of underlying patterns see a description of the LSTM in Section 2.8.4.

2.8 Models

2.8.1 Prophet

Predicting time series involves unique challenges, such as accounting for trends and the

influence of special events, such as holidays or festive days. These complexities require a

prediction model specially adapted to this type of data. In response to this need, Facebook’s

Core Data Science team developed Prophet, an advanced prediction model designed to

efficiently address these peculiarities [7].

The core of Prophet is based on an additive model where time series are composed of

several parts:

Xt = Tt + St + Ht + ϵt (2.1)

• Tt: This component models the long-term trend of your data. It can capture non-

periodic patterns and changes in the direction of the time series, such as increases or

decreases not tied to seasonality. For example, it could represent a gradual growth

of users on a social media platform over several years [21].

• St: The seasonality component handles patterns that repeat at regular intervals.

Prophet allows flexibility in modeling both weekly and annual seasonality. This

means it can adapt to fluctuations in the data that occur in consistent cycles, such

as increases in sales over weekends or seasonal variations in hotel bookings [7].

• Ht: This component is for variations that occur on specific days that can be an-

ticipated but do not follow a periodic pattern, like holidays or special events. For

example, the model can be adjusted to forecast increases in sales during Black Friday

or reductions in website traffic on New Year’s Day [21].

• ϵt: Finally, the noise term captures the random irregularities in the data that the

other components do not model. These could be anomalies or noise inherent in
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the data measurement. It’s an error term that helps keep the model realistic by

recognizing that not all variations can be explained [7].

This formulation allows Prophet to flexibly adjust to the different characteristics of a time

series, making it robust against changes and variations in the data.

Generalized Additive Models (GAM)

Generalized Additive Models (GAM) are an extension of linear models that allow the re-

lationship between independent variables and the dependent variable to be non-linear and

modeled by smooth functions. This makes them particularly suited for capturing com-

plex and non-linear patterns in data. The Kolmogorov-Arnold representation theorem is

a profound mathematical result stating that any continuous multivariate function can be

represented as a sum of compositions of univariate functions. This is crucial for GAMs,

as it provides a theoretical basis for decomposing a complex, multivariate function into

simpler components that are easier to estimate and understand [21].

This functions as the heart of Prophet, the practical application of the Kolmogorov-Arnold

representation theorem, which mathematically underpins the model’s ability to decompose

a complex time series function into more manageable components. Prophet leverages

this theorem to transform the task of modeling a multivariate time series into estimating

several simpler univariate functions. Each of Prophet’s components - trend, seasonality,

and holiday effects - can be viewed as a univariate function that adds up to reconstruct the

original time series. This allows the model to flexibly and accurately address the various

patterns and changes in the data, resulting in a powerful and adaptable prediction tool

[21].

f(x1, . . . , xn) =
2n∑

q=0
Φq

 n∑
p=1

ϕq,p(xp)
 (2.2)

Where:

• Φq are external univariate functions.

• ϕq,p are internal univariate functions that only depend on one variable xp.

• The outer sum iterates over a set of 2n functions Φq.
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• The inner sum is over the n variables de entrada xp, for each function Φq.

The Kolmogorov-Arnold representation theorem provides a theoretical basis for the decom-

position of complex multivariate functions into simpler univariate components. However,

the theorem itself does not offer a constructive methodology for such decomposition, which

is essential in statistical modeling and machine learning. In practice, especially in predic-

tive tools like Prophet, a simplification is necessary to make the approach computationally

viable and applicable to predictive modeling problems [21].

The simplification can be expressed in the following mathematical form:

f(x1, . . . , xn) = Φ
 n∑

p=1
ϕp(xp)

 (2.3)

• f is the multivariate target function we want to model, in this case, the complete

time series.

• Φ is a combination function that synthesizes the contributions of the univariate com-

ponents.

• ϕp(xp) are univariate functions representing the individual components of the time

series, such as trend and seasonality.

This approach not only facilitates understanding and interpretation of the model but also

ensures that Prophet can be specifically tailored to each time series, resulting in a powerful

and versatile predictive model.

2.8.2 SARIMA

The SARIMA model, known as “Seasonal Autoregressive Integrated Moving Average Model”,

is an extension of the ARIMA model, specifically designed to capture seasonality in time

series data. ARIMA, which stands for “Autoregressive Integrated Moving Average”, is a

popular statistical approach for analyzing and predicting time series data. This model

is particularly useful when data exhibit non-stationary patterns but lacks tools to handle

seasonality [1].
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The main components of the ARIMA model are three, described through the parameters

p, d, and q:

• AR (Autoregressive) p: his models the dependent relationship between a current

observation and a number of previous observations. In the ARIMA model, it is

assumed that future values of a time series can be explained by its past values [2].

For example, in an AR model of order 1 AR(1), the relationship is typically expressed

as:

Xt = c + ϕXt−1 + εt (2.4)

where Xt is the current value of the series, c represents a constant, ϕ is the coef-

ficient measuring the degree of influence of the previous value Xt−1 on the current

value, and εt s the error term that captures random variations. This model is es-

pecially useful for predicting time series where a clear trend is observed in the past

data. In higher-order AR models, like AR(2) or more, the relationship extends to

more past values, increasing the model’s complexity and allowing it to capture more

sophisticated dynamics in time series data [1].

• I (Integrated) d: This component is crucial for achieving stationarity in the time

series through differencing. Differencing is performed by subtracting the current value

of the series from its previous value, which helps eliminate trends and seasonality in

the data. For example, the first difference of a series Xt is calculated as ∆Xt =

Xt − Xt−1. In some cases, it may be necessary to apply higher-order differences (like

the second difference ∆2Xt = ∆Xt − ∆Xt−1), especially when the time series shows

more complex trends or non-linear patterns [1].

The importance of this process lies in the fact that ARIMA models are more ef-

fective with time series that do not exhibit strong trends or seasonal patterns. By

converting the series into a stationary one, the identification and modeling of the

underlying structures in the data are significantly facilitated. This is essential for

making accurate predictions and for understanding the true nature of the temporal

relationships in the series [2].
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• MA (Moving Average) q: This component focuses on modeling the prediction

error as a combination of past errors. In a moving average model, the current value

of the time series is expressed as a function of past error terms. For example, in an

MA model of order 1 MA(1), the relationship can be described as:

Xt = µ + εt + θεt−1 (2.5)

where µ is the mean of the series, θis the moving average coefficient measuring the

degree of influence of the past error εt−1 on the current value, and εt is the current

error term [1].

This component is especially valuable for adjusting the model to random fluctua-

tions or “noise” present in historical data. By incorporating past error terms, the

MA model can effectively ’smooth’ the time series, making it more representative of

underlying trends and less sensitive to short-term random variations. This is crucial

for improving the accuracy of predictions and for better understanding the dynamics

of errors in time series [2].

When the AR, I, and MA components are combined, the ARIMA model becomes a power-

ful tool capable of capturing and leveraging both long-term trends and short-term patterns

in historical data. This process involves fitting the model to historical data to optimally

estimate the parameters that best describe these patterns and trends. Once calibrated with

these parameters, the ARIMA model is equipped to extrapolate and predict future values

effectively. Consider, for example, a time series of monthly sales that shows an increasing

trend over time, along with regular patterns in past prediction errors. In this scenario, a

properly adjusted ARIMA model has the capability to predict future sales with reasonable

accuracy. It relies on recognizing these trends and patterns, using historical information

not only to understand how sales have changed in the past but also to anticipate how they

might evolve in the future. This approach makes the ARIMA model particularly valuable

in environments where accurate understanding and prediction of time series dynamics are

crucial for decision-making [7].

It is crucial to recognize that the accuracy of the predictions generated by the ARIMA
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model is intrinsically linked to the quality and characteristics of the used historical data,

as well as to the suitability of the specific model to those data. The importance of selecting

a model that faithfully reflects the nature of the time series cannot be underestimated, as

this directly impacts the accuracy and reliability of the predictions [1].

In this context, when a seasonal component is introduced, we evolve towards the SARIMA

model, that is, the “Seasonal Autoregressive Integrated Moving Average Model”. This

model extends the capabilities of ARIMA by explicitly incorporating seasonality, making

it particularly suitable for data that exhibit trends and patterns repeating at regular inter-

vals. Common examples of such time series include monthly sales that fluctuate according

to the season or temperatures that vary with the seasons. By integrating a seasonal compo-

nent, the SARIMA model can identify and model these periodic variations, thus enhancing

the accuracy of predictions in contexts where seasonality plays a crucial role [6].

SARIMA models are defined by a set of parameters denoted as (p, d, q) x (P, D, Q, S),

where:

• p, d, q: Represent the non-seasonal ARIMA model parameters, corresponding to

autoregression, differentiation, and moving average, respectively. These parameters

are fundamental for modeling the trends and patterns inherent in the time series,

regardless of seasonality [7].

• P, D, Q: Are the seasonal equivalents of the previous parameters. These are used

to capture and model seasonality in the data, allowing the SARIMA model to adjust

and predict time series with clear seasonal patterns [7].

• S: Indicates the periodicity of the seasonality. For example, S would be 12 for monthly

data showing annual seasonality [7].

Seasonal Component:

• SAR (Seasonal Autoregression): Similar to the AR component, but focuses on

seasonal dependency relationships. For example, in a monthly time series with annual
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seasonality, the model might use the values of each December to predict the values

of December in the following year [6].

• Seasonal Differencing (D): This is an extension of the integration (I) component.

Instead of differentiating consecutive terms, terms that are separated by a full sea-

sonal interval are differentiated. For example, in monthly data with annual patterns,

the value of each month would be subtracted from the same month in the previous

year to eliminate seasonality [6].

• SMA (Seasonal Moving Average): Functions similarly to the MA component,

but focuses on prediction errors that follow a seasonal pattern. This component helps

adjust the model to the specific seasonal fluctuations observed in the data [6].

Success in applying a SARIMA model depends heavily on the correct identification of the

nature and periodicity of the seasonality present in the data. In addition, it is crucial to

adjust the model’s parameters accurately to adequately reflect the observed patterns in

the time series. This fine-tuning allows the SARIMA model to make more accurate and

relevant predictions for data with seasonal characteristics.

2.8.3 SARIMAX

Understanding the SARIMA model and its ability to handle seasonality in time series, it

becomes crucial to explore the SARIMAX model. This extension of SARIMA incorpo-

rates exogenous variables, as indicated by the “X” in SARIMAX. The model is especially

valuable when the behavior of the time series is influenced not only by its own past trends

and seasonal patterns but also by external factors. SARIMAX adopts the form (p, d, q) x

(P, D, Q, S), similar to SARIMA, for its autoregressive, integration, and moving average

components, both in seasonal and non-seasonal aspects. Its distinction lies in the ability

to integrate one or more exogenous variables. These can range from economic indicators to

weather conditions, significant events, or any other external element considered influential

for the analyzed time series [22].

Consider, for example, modeling the monthly sales of a store. The SARIMAX model, be-

yond analyzing the seasonality and past trends of sales, can incorporate exogenous variables
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such as marketing campaigns, holidays, or changes in the local economy. This inclusion

allows the model not only to rely on historical sales patterns but also to consider how

these external factors may impact the future. The integration of exogenous variables into

SARIMAX transforms it into a more comprehensive and adaptable analytical tool, offer-

ing more accurate and detailed predictions than models that only take into account the

internal information of the time series [22].

Success in using SARIMAX critically depends on the accurate selection of relevant exoge-

nous variables and a deep understanding of their interaction with the main time series.

An inappropriate choice or a misinterpretation of these variables can result in incorrect

conclusions or inaccurate predictions.

2.8.4 LSTM

LSTM Networks (Long Short-Term Memory) represent a significant advancement in the

field of deep learning, demonstrating their effectiveness particularly in handling temporal

sequences. These networks, an advanced variant of Recurrent Neural Networks (RNN), are

designed to capture long-range dependencies, efficiently addressing the gradient vanishing

problem posed by traditional RNNs. Their distinctive architecture allows LSTMs to store

information over extended periods, facilitating the learning and retention of complex pat-

terns in input data that unfold over time. This capability makes them particularly suitable

for applications requiring detailed analysis of temporal sequences, such as natural language

processing and time series prediction [24].

The architecture of an LSTM network is distinguished by its set of specialized “gates”:

the forget gate, the input gate, and the output gate. These gates allow for regulating the

flow of information within the network, granting it the ability to determine which data

are relevant to retain or discard during the processing of each element in a data sequence.

This selection mechanism enables LSTMs to excel in complex tasks like natural language

processing, time series prediction, and in advanced automatic translation systems [24].

Figure 2.7 [27], provides a schematic diagram of the internal structure of an LSTM cell,
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illustrating how the different gates interact with the cell state (the network’s long-term

memory) and the hidden state (the short-term memory) to control and preserve relevant

information over time.

Figure 2.7: LSTM.

Cell State (Long-Term Memory)

The cell state in LSTM units represents a computational analogy of long-term memory.

This component, visualized as a line extending across the cell, is the retention of informa-

tion across extended intervals of time. Its main function is to store and preserve internal

states for understanding the data sequence [23].

The management of information within the cell state is conducted through a dynamic

system of gates. The forget gate, for example, has the capability to remove obsolete or

irrelevant information from the cell state, ensuring that only significant information is

retained. Concurrently, the input gate introduces new data into the cell state, integrating

the current network input with previously accumulated memory. The ability of LSTM

cells to overcome the gradient vanishing problem, inherent in conventional RNNs, allows

for the effective capture of extended temporal dependencies [23].
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Hidden State (Short-Term Memory)

In LSTM networks, the hidden state acts as a short-term memory mechanism, analogous

to working memory in human cognition. This state not only transmits information to the

next temporal step within the network but also contributes to the LSTM cell’s output

at each moment. Visually, in the diagram, this state is represented as a line that flows

horizontally and then splits towards the output, carrying relevant and current information

for the data sequence in process [24].

Unlike the cell state, designed to store information across extensive intervals of time, the

hidden state is more ephemeral and dynamic. It is renewed at each temporal step, in-

tegrating information from the previous state and the current input, also influenced by

the cell state. This constant updating allows the network to adapt flexibly and quickly to

variations in input data [24].

LSTM Gates

Forget Gate: The forget gate is an essential component in the architecture of LSTMs,

designed to control the retention or deletion of information within the cell state. It op-

erates by applying a sigmoid activation function to the combination of the current input

x(t) and the previous hidden state h(t − 1). This function produces a vector with values

between 0 and 1 for each element of the cell state c(t − 1). A value close to 0 indicates

that the corresponding information should be “forgotten”, that is, discarded from the cell

state, while a value close to 1 means that the information should be retained [23].

Mathematically, the forget gate f(t) is calculated as follows:

f(t) = σ(Wf · [h(t − 1), x(t)] + bf ) (2.6)

where σ denotes the sigmoid function, Wf is the weight matrix for the forget gate bf is

the bias of the forget gate, and [h(t − 1), x(t)] represents the concatenation of the previous

hidden state and the current input.

The result of this operation is multiplied element-wise with the previous cell state, directly
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affecting the information that will be retained or eliminated in the next stage:

c(t)′ = f(t) ∗ c(t − 1) (2.7)

this mechanism of selective forgetting is crucial for the LSTMs’ ability to handle long-term

dependencies and prevent old and irrelevant information from saturating the network’s

memory, allowing more effective management of the gradient during training and reducing

the risk of issues like gradient vanishing [23].

Input Gate: This gate determines which part of the new information received at each

time step should be stored in the cell state. Like the forget gate, the input gate uses a

sigmoid activation function to decide which information is relevant and thus should be

preserved.

Simultaneously, a separate operation involves the hyperbolic tangent (tanh) activation

function, which generates a vector of new candidate values that could be added to the cell

state. This candidate vector is created considering the same input and the previous hidden

state. The tanh function has an output range of -1 to 1, allowing this step to adjust the

scale of the values to be added to the cell state, thus providing a new candidate for state

update [23].

The input gate is calculated as follows:

i(t) = σ(Wi · [h(t − 1), x(t)] + bi) (2.8)

C̃(t) = tanh(WC · [h(t − 1), x(t)] + bC) (2.9)

where i(t)is the output of the input gate, Wi and WC are the weight matrices corresponding

to the input gate and the creation of the cell state candidates, respectively, while bi and

bC are the corresponding biases. The output of the input gate i(t) is multiplied with the

candidate vecto C̃(t) to determine what new information will be added to the cell state [23].

Finally, the cell state is updated by adding the product of the input gate and the candidate
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vector to the result of the forget gate:

c(t) = f(t) ∗ c(t − 1) + i(t) ∗ C̃(t) (2.10)

Output Gate: The output gate in LSTM cells plays a fundamental role in determining

which part of the current cell state information will be used in the next hidden state and,

therefore, in the cell’s final output at that specific moment. This gate is responsible for

filtering and transmitting only the relevant information from the cell’s internal state to the

outside, which is crucial for decision-making and predictions based on the sequence of data

processed up to that point [24].

Just like the other gates in the LSTM, the output gate employs a sigmoid activation func-

tion to decide which components of the cell state should pass to the hidden state. This

decision is based on both the current input and the previous hidden state. The output of

the output gate is then combined with the cell state, which has been processed through

a hyperbolic tangent (tanh) activation function, to produce the new hidden state. This

additional step of applying the tanh function helps to regulate the values of the cell state,

keeping them within a manageable range [24].

The operation of the output gate can be described mathematically as:

o(t) = σ(Wo · [h(t − 1), x(t)] + bo) (2.11)

h(t) = o(t) ∗ tanh(c(t)) (2.12)

here, o(t) represents the output of the output gate, Wo is the weight matrix associated

with this gate, and bo is the corresponding bias. The new hidden state h(t)is calculated by

multiplying the output of the output gate by the cell state passed through the tanh function.

This ensures that the hidden state reflects the most relevant and updated information from

the cell state [23].
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2.8.5 Holt-Winters

The exponential smoothing method, fundamental in time series analysis, was initially de-

veloped by Charles C. Holt in 1957. Holt introduced an innovative approach for forecasting

time series data, focusing primarily on adapting to level changes. In 1958, Holt evolved his

model to incorporate data trends, allowing for a more dynamic forecast adapted to tem-

poral variations. Subsequently, in 1960, Peter Winters extended Holt’s model to include

seasonality, a crucial component in many time series, especially those related to economic,

financial, and climatological data. This extension enabled the method to address seasonal

patterns, in addition to trends and levels [26].

As a result of these contributions, the method known as “Holt-Winters” emerged, an inte-

grated approach that combines level, trend, and seasonality in the analysis and forecast of

time series. This method has proven to be particularly effective in situations where data

exhibit clear trends and seasonal patterns, being widely adopted in various fields for short

and medium-term prediction [26].

In the context of exponential smoothing, the indices that play a fundamental role in the

modeling and forecasting of time series are:

• Smoothing Index (α):This parameter controls the level of smoothing of the most

recent data, giving them more or less weight in the prediction. In simple exponential

smoothing, only this index is used, making it suitable for time series without clear

trends or seasonal patterns [25].

• Trend Linear Index (β): This index is introduced in double exponential smoothing

to handle data with trends. Here, in addition to α, β is used to adjust and predict

the trend of the data over time [25].

• Seasonal Factor Index (γ): In triple exponential smoothing, also known as the

Holt-Winters method, this third index is incorporated. γ allows the model to address

seasonality [25].
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The Holt-Winters method adapts to different seasonal patterns through two main ap-

proaches: additive and multiplicative [6]. The choice between these two depends on the

nature of the data’s seasonality:

• Multiplicative Effect: This approach is used when the seasonal pattern varies in

proportion to the time series values. In other words, the amplitude of the seasonal

pattern increases or decreases based on the data level. This is typical in situations

where seasonal effects intensify as the series values increase, making it suitable for

time series where seasonal patterns are proportionally more pronounced at higher

levels [26].

Figure 2.8: Multiplicative Seasonal Pattern.

• Additive Effect: In contrast, the additive approach is applied when the series’ sea-

sonal pattern is constant, regardless of the data level. This means that the magnitude

of the seasonal effect does not change even if the time series increases or decreases

in value. This method is appropriate for time series where seasonal patterns are

consistent and do not vary in proportion to the series values [26].
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Figure 2.9: Additive Seasonal Pattern.

Formulas Used for the Multiplicative Model

Estimated Level

The estimated level or exponentially smoothed series, denoted as Lt. This formula is for

updating the series level at time t, and is calculated as follows [26]:

Lt = α

(
Yt

St−s

)
+ (1 − α)(Lt−1 + Tt−1) (2.13)

where:

• Yt represents the observed value at time t.

• St−s is the seasonal component corresponding to time t − s, where sis the length of

the season.

• Lt−1 is the estimated level at time t − 1.

• Tt−1 is the estimated trend at time t − 1.

• α is the smoothing coefficient for the level, a parameter chosen between 0 and 1.

This equation adjusts the current estimated level based on the most recent observation Yt,

correcting for seasonality, and combining this value with the sum of the estimated level
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and trend from the previous period, weighted by 1 − α. The weighting reflects the relative

contribution of the most recent observed value compared to the projection based on past

level and trend. In this way, Lt provides a basis for future projections, continuously ad-

justing as new data becomes available [26].

Trend Estimation

The trend estimation is calculated using the formula [26]:

Tt = β(Lt − Lt−1) + (1 − β)Tt−1 (2.14)

where:

• Tt: Estimated trend at time t.

• Tt−1: Estimated trend at time t − 1.

• Lt: Estimated level at time t.

• Lt−1:Estimated level at time t − 1.

• β: Smoothing coefficient for the trend.

This formula adjusts the current trend Tt by taking into account the change between the

last two estimated levels (Lt − Lt−1) and the value of the previous trend Tt−1. The co-

efficient β, which varies between 0 and 1, determines the relative weighting between the

difference in levels and the previous trend, allowing the model to adapt to changes in the

time series trend over time. A higher value of β gives more weight to the recent change in

levels, while a lower value places more emphasis on the historical trend [26].

The estimated trend Tt allows understanding and projecting the long-term direction of the

time series, which is especially useful in strategic planning and decision-making based on

historical trends [25].

Seasonal Component

The seasonal component in the Holt-Winters method is designed to adjust to seasonal
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patterns in time series. The formula for estimating seasonality St is as follows [26]:

St = γ

(
Yt

Lt

)
+ (1 − γ)St−s (2.15)

where:

• St: Seasonal component at time t.

• Yt: Observed value at time t.

• Lt: Estimated level at time t.

• St−s: Seasonal component of the same period in the last season.

• s: Length of the seasonal cycle.

• γ: Smoothing coefficient for seasonality.

In this equation, the seasonal component is updated by weighting the observed value Yt

adjusted by the estimated level Lt, providing a relative measure of seasonality at the cur-

rent time. The term (1 − γ)St−s represents the influence of the seasonality from the same

period in the last season, ensuring continuity and consistency of seasonal patterns year

after year. Like with the other components of the Holt-Winters method, the coefficient γ

is selected between 0 and 1 and determines the relevance given to the most recent obser-

vation compared to historical seasonality [26].

The estimated seasonality St helps forecast periodic fluctuations and allows the Holt-

Winters model to capture seasonal patterns that can be used to enhance the forecast

accuracy in data with significant seasonal variations [25].

Forecasting

Forecasting future values in the Holt-Winters method is performed through the forecast

formula for p future periods, which is expressed as [25]:

Ŷt+p = (Lt + pTt)St−s+p (2.16)

where:
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• Ŷt+p: Forecasted value for p periods in the future.

• Lt: Estimated level at time t.

• Tt: Estimated trend at time t.

• St−s+p: Seasonal component adjusted for the forecast period.

• p: Number of periods in the future for the forecast.

The formula combines the current level and trend multiplied by the number of periods

p in the future, with the seasonal component corresponding to the future period. This

approach allows the Holt-Winters model to adjust forecasts to reflect not only the current

trend and level but also the expected seasonality [26].

The use of pTt allows the model to project how the trend will impact the forecasted value

in each of the p future periods, while St−s+p adjusts this forecast to reflect the seasonality

anticipated for that specific period. The Holt-Winters model’s ability to integrate these

three components – level, trend, and seasonality – makes it suitable for forecasting in con-

texts where seasonal patterns are a relevant factor [26].

Formulas Used for the Additive Model

Estimated Level

In the additive model of the Holt-Winters method, the estimated level or exponentially

smoothed series are calculated with the following formula [26]:

Lt = α(Yt − St−p) + (1 − α)(Lt−1 + Tt−1) (2.17)

where:

• Lt is the estimated level at time t.

• α is the smoothing coefficient for the level.

• Yt represents the observed value at time t.
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• St−p is the seasonal component in the corresponding period of the previous season.

• Lt−1 is the estimated level at time t − 1.

• Tt−1 is the estimated trend at time t − 1.

In this version of the model, the update of the estimated level is made by adjusting the ob-

served value Yt for the seasonal component of the same period in the last season St−p. This

means that the seasonal effect is directly subtracted from the observed value before apply-

ing exponential smoothing. The term (1 − α)(Lt−1 + Tt−1) combines the level and trend

from the previous period, allowing the model to gradually adjust to long-term changes in

the time series [26].

The key distinction of the additive model is that it considers seasonality to have a constant

effect, rather than one proportional to the magnitude of the series, as in the multiplicative

model. This makes it more suitable for time series where seasonal patterns remain consis-

tent over time, regardless of the trend or level of the series [25].

Trend Estimation

The trend estimation in the Holt-Winters method, whether in the additive or multiplicative

model, is calculated using the following equation [25]:

Tt = β(Lt − Lt−1) + (1 − β)Tt−1 (2.18)

where:

• Tt: is the estimated trend at time t.

• β: is the smoothing coefficient for the trend.

• Lt: is the estimated level at time t.

• Lt−1: is the estimated level at time t − 1.

This formula allows updating the trend for the current period by taking the difference be-

tween the last two estimated levels, weighted by the coefficient β, and adjusting it with the
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estimated trend from the previous period, weighted by 1−β.This balances the influence of

the recent trend with the historical trend, allowing the trend estimation to evolve smoothly

over time [26].

The smoothing coefficient β plays a significant role, as a higher value will assign more

weight to recent changes in the level, while a lower value will give more importance to the

previous trend, reflecting the inertia or continuity of the trend over time [25].

Seasonal Component

The estimation of seasonality within the additive model of the Holt-Winters method is

performed with the following mathematical expression [26]:

St = γ(Yt − Lt) + (1 − γ)St−p (2.19)

where:

• St: Estimated seasonal component at time t.

• γ: Smoothing coefficient for seasonality.

• Yt: Observed value at time t.

• Lt: Estimated level at time t.

• St−p: Seasonal component from the same period in the previous season.

• p: Length of the seasonal period.

The update of the seasonal component is performed by subtracting the estimated level Lt

from the observed value Yt, and then applying the smoothing coefficient γ to this result.

This is added to the adjusted seasonal component from the corresponding period of the

previous season, weighted by 1 − γ. This method ensures that seasonality is updated with

the most recent information while maintaining continuity with the historical seasonal pat-

tern [26].
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The application of γ and 1 − γ allows the model to balance between the influence of the

new observation and the previous seasonality.

Forecasting

The forecast for future periods in the additive Holt-Winters model is calculated using the

sum of the estimated components of level, trend, and seasonality. The formula is as follows

[25]:

Ŷt = Lt−1 + Tt−1 + St−p (2.20)

where:

• Ŷt: is the forecasted value for period t.

• Lt−1: is the estimated level from the previous period.

• Tt−1: is the estimated trend from the previous period.

• St−p: is the seasonality component from the corresponding period of the previous

season.

• p: is the length of the seasonal cycle.

This equation is based on the premise that the future forecast is a direct sum of the last

estimated level, the last estimated trend, and the adjusted seasonality component from

the same period of the previous season. In contrast to the multiplicative model, where

the seasonal component is multiplied, in the additive model, seasonality is added, reflect-

ing a constant influence of seasonality on the time series, regardless of the level or trend [25].

This methodology is particularly useful for time series where seasonality does not vary

proportionally with the trend or level but remains constant over time. By applying this

formula, the Holt-Winters model can provide forecasts that accurately reflect fixed seasonal

patterns and underlying trends in the data [25].
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2.9 Summary

This study focuses on the implementation of time series analysis to assess the fluctuations

in Bitcoin prices and Amazon stock. Through a recursive prediction strategy, their behav-

ior patterns will be examined to derive accurate inferences about their future trends. To

achieve this, advanced analytical models, including Prophet, SARIMA, SARIMAX, LSTM,

and Holt-Winters, will be employed with the aim of identifying which method offers supe-

rior adaptability against the dynamics of the time series. This approach will allow for the

optimization of predictions by more effectively understanding the complexities inherent in

the price movements of these two significant financial variables.
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Chapter 3

Methodology

3.1 Phases of the Problem

3.1.1 Description of the Problem

Investing in cryptocurrencies or stocks requires meticulous and well-informed analysis. In-

vestment involves significant risks, and making poorly founded decisions can result in the

loss of invested capital. However, accessing and understanding the information necessary

to make informed decisions represents a considerable challenge, especially for those without

previous experience in the financial domain.

The overwhelming volume of data, analysis, and opinions available makes it difficult for

a novice to discern valuable and reliable information from that which is misleading, irrel-

evant, or fraudulent. This excess of information, often contradictory, can be paralyzing,

leaving beginner investors in a state of uncertainty about how and where to begin. De-

termining a clear starting point in this vast sea of data becomes a significant obstacle,

creating a barrier to effectively and safely entering the world of investments.

The complexity of investing is intensified in the case of cryptocurrencies. This market

is characterized by its rapid evolution, with the constant emergence of new cryptocur-

rencies. Many of these emerging digital currencies present a high degree of uncertainty

regarding their viability and long-term profitability potential. For the average investor,

this dynamism of the cryptocurrency market represents an even greater challenge: facing
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an environment saturated with misinformation and potential scams. Investment methods

in cryptocurrencies are not always reliable, and the amount of information to process can

be overwhelming for those seeking to gain a basic understanding of the market. Moreover,

the ability to make accurate predictions in this sector is particularly complex and requires

extensive and in-depth study. Even so, due to the unpredictable nature of the market,

there is no absolute guarantee that such predictions will be effective or lead to successful

investment decisions.

In summary, for the average individual looking to enter the world of investments, the path

is fraught with uncertainties and challenges, making deep preparation and understanding

essential before making any investment.

3.1.2 Analysis of the Problem

Initial Challenges for Beginners in Investments

For an average person with an interest in the field of investments, a significant barrier

often encountered is the lack of prior knowledge. In their quest for information, the most

common recourse is to accessible online sources, such as Google or YouTube. However,

this initial approach presents two main problems. Firstly, the oversaturation of information

available on these platforms can be overwhelming, making it difficult to identify a clear

and reliable starting point. Given the massive volume of content, filtering out relevant and

suitable information for beginners becomes a challenging task..

Figure 3.1 represents a simple Google search on how to invest in Bitcoin. The number of

results is staggering: approximately 892 million. This screenshot encapsulates the colos-

sal challenge individuals face when trying to navigate the vastness of the digital space to

inform themselves about cryptocurrency investments. This volume of information, while

reflecting a rich ecosystem of knowledge and resources, also presents a labyrinth of po-

tential detours and distractions. For the novice investor, discerning which of these nearly

900 million results offers accurate, ethical, and valuable advice is a daunting task. This
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information overload can not only lead to analysis paralysis but also increases the risk of

encountering inaccurate advice or, worse, fraudulent schemes.

Figure 3.1: The amount of information available with just a general search google.com.

Secondly, with the growing interest in investment topics, social media and online platforms

tend to actively promote websites, videos, and other investment-related resources. How-

ever, many of these resources are geared towards investors with intermediate or advanced

experience. For someone just starting out, this level of information can be particularly

overwhelming and unsuitable, as it often presupposes a level of knowledge and experience

that the novice simply does not possess. Thus, aspiring investors find themselves at a dis-

advantage, where the abundance of online information, far from being a help, can become a

significant obstacle to acquiring a fundamental and practical understanding of investments.

Figure 3.2 [28], shows the user interface of the Binance trading platform, one of the world’s

most prominent cryptocurrency exchanges. At first glance, the complexity of the environ-

ment is evident: real-time price charts, order books, and a variety of options for executing

buy and sell trades. While for an investor with intermediate or advanced experience, this

screen may represent a window to market opportunities and a tool for implementing sophis-

ticated trading strategies, for a beginner it can be an overwhelming and confusing scenario.
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Figure 3.2: Binance platform market.

The amount of information and tools available on a trading platform like this requires

considerable knowledge to be navigated and used effectively. Advanced charts, moving

averages, and volume metrics are essential for conducting technical analysis, but under-

standing their meaning and knowing how to act accordingly is a skill that develops over

time and experience.

For an individual taking their first steps in the world of cryptocurrency investments, inter-

faces like the one seen in the image can represent a significant barrier. Data overload can

lead to hasty decision-making or, at the other extreme, inaction for fear of making mistakes.

The Need for Professional Advice in Investments

The existence of the stockbroker profession is a testament to the inherent complexity of

the investment world. These professionals, trained and with the relevant education, offer

legal and specialized guidance to those looking to invest. However, their services entail

an additional cost, which can be discouraging for those considering entering the invest-
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ment world for the first time. The absence of proper guidance poses a significant dilemma:

without expert advice, it is difficult for a beginner to determine whether their investment

of time and money will be profitable or, conversely, end in losses. This risk often inclines

novice investors towards more stable and secure investment options, such as bank savings

accounts that offer annual interest. These institutions are generally perceived as safe and

reliable for money management.

Risk of Scams in the Investment Environment

As mentioned before, seeking information about investments leads interested parties into

a vast universe of data. However, there’s an additional risk that accompanies this search:

the exposure to potential scams. Content personalization on social media and other online

platforms, like YouTube, often leads to recommendations of videos and groups related to

investments. But the reliability of these resources is uncertain. During research in this

field, a trend is observed: the frequent appearance of promotional videos where individuals

claim to have foolproof methods for making significant profits. These claims are common

strategies to lure people into Telegram or Discord groups. However, these groups may be

the setting for various scams. A common tactic observed is the request for payment of a

monthly subscription to access a “private group”, where supposedly the “real” buy and

sell predictions are shared. The validity and effectiveness of these predictions are highly

questionable, and often, participants end up not only risking their initial investment but

also incurring additional costs for the subscription.

Furthermore, participation in these groups can expose individuals to other risks. For ex-

ample, unauthorized access to personal and financial information, making them vulnerable

to other types of fraud and cyber attacks. This aspect of online investments represents

a significant danger, especially for those who lack the experience to distinguish between

legitimate advice and fraudulent schemes.

Figure 3.3 displays a variety of content appearing on YouTube when searching how to invest

in Bitcoin. The titles suggest investment guides and strategies, and the thumbnails often
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show figures of potential earnings and promises of financial success. While educational

content can be extremely valuable for beginners, the platform is also filled with mislead-

ing offers that prey on the inexperience and high expectations of new investors. Videos

promising high returns for minimal investments, or those showcasing portfolio balances

with exorbitant figures, can be signs of unethical marketing tactics or even direct scams.

The challenge for novice users lies in their ability to discern between legitimate educators

and malicious actors. There is no simple method to verify the truthfulness of the claims

made in these videos, increasing the likelihood of well-intentioned individuals falling into

costly traps.

Figure 3.3: Information available on YouTube youtube.com.
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The proliferation of self-proclaimed advisors and financial “gurus” on platforms like YouTube

raises serious concerns. Many of these content creators use the promise of quick riches to

attract subscribers to paid services, such as trading signal groups on messaging platforms,

where the legitimacy and effectiveness of the recommendations provided are questionable.

Some might even be involved in “pump and dump” schemes, where they artificially inflate

the value of lesser-known assets to then sell them at a higher price at the expense of their

followers.

Additional Factor of Uncertainty in Cryptocurrencies

In the realm of cryptocurrencies, investors face an additional risk: the constant emergence

of new digital currencies. These new coins often enter the market touted as the next big

revolution, with promises of being the “new Bitcoin”. These appealing claims, devoid of

real guarantees, lure investors seeking quick and lucrative opportunities.

However, the reality behind many of these new cryptocurrencies is concerning. It is com-

mon for these coins to not achieve the promised success or, in some cases, disappear from

the market altogether. This type of failure leads investors to face significant losses. The

volatility and lack of regulation in the cryptocurrency market exacerbate this issue, mak-

ing investment in emerging cryptocurrencies especially risky. This scenario underscores the

importance of diligence and skepticism when considering investing in new cryptocurrencies.

The absence of a stable regulatory framework and the propensity for exaggerated promises

make investing in cryptocurrencies a particularly unstable ground prone to speculation.

This work unfolds in two main phases. The first involves evaluating the models described

above to determine their ability to make meaningful predictions in the specific areas men-

tioned. The second phase focuses on analyzing the profitability of the most effective meth-

ods identified in the first phase, aiming to determine their potential to generate economic

benefits.
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3.2 Phase 1, Univariable Algorithm Design

In this study, a comparative analysis was conducted using the previously mentioned mod-

els, evaluating their predictive capabilities in real-world scenarios. For the experiment, two

main groups were established: univariable and exogenous. The goal was to determine if

the models improve their performance with the inclusion of more or fewer variables. This

methodology was applied to both stocks and cryptocurrencies.

For the stock analysis, the models were evaluated in a univariable manner and with ex-

ogenous variables. In the univariable scenario, the Holt-Winter, LSTM, SARIMA, and

Prophet models were used. Due to the absence of exogenous variables, the SARIMAX

model was not included. In the scenario with exogenous variables, the mentioned models

were applied, adding SARIMAX in place of SARIMA. This resulted in a total of 8 different

scenarios to evaluate the effectiveness of the models in each case.

The procedure for cryptocurrencies was identical, implying a minimum of 16 testing en-

vironments in total, not including the internal variations of some models. For the cryp-

tocurrency analysis, Bitcoin was selected due to its stability and prominence in the market

over the years, making it a good indicator of additional security. As for stocks, Amazon’s

shares were chosen due to their relevance in the market.

3.2.1 DataFrame, Stocks

In the initial phase of the study, the dataset with which all models will work was down-

loaded. It is important that it be the same for all to evaluate their performance under

equal conditions.

Importing Libraries and Initial Setup

The importation of libraries in Python was proceeded with. The libraries used were:

• NumPy and Pandas: NumPy provides support for arrays and matrices, along with

a collection of mathematical functions to operate with these objects, while Pandas
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offers data structures and tools for the efficient manipulation of datasets, including

DataFrames, which serve for the handling of time series and tabular data.

• yfinance: This library was used to obtain real-time financial data from Yahoo Fi-

nance. It is a tool that allows access to a vast amount of financial information,

including historical stock prices, transaction volume, dividend data, among others.

• Matplotlib.pyplot: Imported for data visualization. This tool was mainly used

to visualize the differences between the predicted data and the real data from the

dataset.

• Warnings: Used to control the display of warnings in Python. This is particularly

useful to avoid the output of warning messages that can be irrelevant or confusing

during code execution, thus allowing a clearer presentation of the analysis results.

Downloading and Initial Setup of Financial Data with yfinance

Once the working environment with the relevant libraries was established, the data col-

lection stage was proceeded with. Using yfinance, the stock information of Amazon was

downloaded.

• Selection of the Period and Frequency of the Data: A time range was specified

from May 13, 2022, to May 14, 2023, providing a complete year of data. Additionally,

a daily interval (1d) was chosen, indicating that data are collected for each trading

day within this period.

• Data Adjustments: This adjustment ensures that the stock price data are adjusted

for dividends and stock splits, thus offering a more accurate and realistic view of the

market value of the stocks over time.

Processing and Cleaning of the Downloaded Data

After downloading Amazon’s stock data, the next step was the processing and cleaning of

these data to prepare them for analysis. The key steps in this process were:
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1. Creation and Modification of the Data Structure:

• A copy of the downloaded data was made to ensure the integrity of the original

data.

• A “Price” column was added, which is a copy of the “Close” column. This col-

umn represents the adjusted closing price of Amazon’s stocks, a crucial indicator

in financial analysis.

• The date was set as the index of the DataFrame, which facilitates later opera-

tions, such as reordering or filtering based on dates.

2. Cleaning and Organizing the Data:

• Unnecessary columns were removed. This action simplifies the DataFrame,

keeping only the essential data for the proposed analysis, in this case, the ad-

justed closing price of the stocks.

• The frequency of the DataFrame was adjusted to business days, a common

practice in the analysis of financial time series, as the stock market does not

operate on weekends or holidays.

• The “forward fill” method was used to fill in missing values. This is particularly

useful in time series where it is reasonable to assume that the value of a non-

working day will be similar to that of the last business day.

3. Exporting Processed Data:

• Finally, the processed and cleaned data were saved in a CSV file. This step

allows documenting the work done and facilitating access to the data in later

stages of the analysis or for use in other environments or applications.

Data Visualization and Exploratory Analysis

Once the data were processed and cleaned, the next step in the study was data visualization.

In this case, the focus was on visualizing the price of Amazon’s stocks over time.
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• Using matplotlib.pyplot, a line chart was generated to visualize the evolution of

Amazon’s stock price over time. This provides a direct graphical representation of

how the stock price has fluctuated during the studied period.

• The chart was configured with an appropriate size for clear and detailed visualiza-

tion, and a legend was included to facilitate the identification of the represented data.

3.2.2 DataFrame, Cryptocurrencies

Importing Libraries and Initial Setup

1. Binance Client:

• from binance.client import Client, the Binance Client provides the nec-

essary methods to interact with the Binance API. Through this connection,

financial data are obtained, in this case, for the cryptocurrency Bitcoin.

• The initial setup with API keys is performed here, ensuring the necessary au-

thentication and authorization to access Binance’s data.

2. Matplotlib.pyplot:

• import matplotlib.pyplot as plt, Matplotlib is a Python data visualization

library. It is primarily used to create static, animated, and interactive charts

and diagrams.

3. NumPy and Pandas:

• import numpy as np, NumPy is a library for scientific computing in Python,

providing array objects and tools to work with them.

• import pandas as pd, Pandas is a library providing high-performance, easy-

to-use data structures, and data analysis tools.
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Downloading and Initial Setup of Financial Data with Binance

Downloading Historical Data

• The Binance library is used to obtain historical prices of Bitcoin in USD.

• Several parameters are required:

– symbol

– time interval

– time period

Initial Data Transformation

The data obtained from Binance are returned in the form of a list of lists, where each

sublist contains data for a specific interval. These raw data are converted into a Pandas

DataFrame to facilitate manipulation and analysis. The initial DataFrame contains several

columns with different pieces of information.

Initial Structuring and Cleaning

The obtained DataFrame contains multiple columns. For this analysis, the relevant columns

are the timestamp and the closing price.

• A new DataFrame is created, extracting the timestamp column and the closing price

column.

Index and Data Type Configuration

In the DataFrame, the date and time column is set as the index. This is important for time

series operations, as it allows easier handling of data based on timestamps. Furthermore,

it ensures that the price data are of floating type to allow subsequent numerical calculations.
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Data Visualization

Pandas’ plot method, which is integrated with Matplotlib, is used to create a line chart of

Bitcoin’s closing prices. This line chart represents the closing prices of Bitcoin over time,

with the date and time on the X-axis and the price on the Y-axis.

3.2.3 Holt-Winter

Importing Libraries and Initial Setup

For the development of this project, the libraries Matplotlib, Numpy, and Pandas have

been used, which were previously described.

Definition of Key Functions

In the analysis process, the following essential functions were defined:

• load data: This function handles the efficient loading of time series data from CSV

files. It uses the Pandas library to read the file, assigning the “Date” column as the

index.

• split data: A function designed to split the dataset into two segments: training and

testing. It establishes the proportion of the dataset allocated to training, allowing a

balance between model learning and accuracy validation.

• plot forecast: A tool used for the effective visualization of the predictive model’s

results. This function plots the real data from the test set parallel to the model’s

predictions, facilitating a direct and effective visual comparison of the model’s per-

formance.

Application of Exponential Smoothing in Time Series Modeling

In this section, the Holt-Winters method was implemented to adjust the model to the

trends and seasonal patterns identified in the training dataset part. This method allows for
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considering both trends and seasonalities that can be of an additive or multiplicative nature.

This duality in the model’s characteristics generates a total of four possible combinations:

1. Additive trend and additive seasonality.

2. Additive trend and multiplicative seasonality.

3. Multiplicative trend and additive seasonality.

4. Multiplicative trend and multiplicative seasonality.

Each of these combinations was exhaustively evaluated to determine the model’s perfor-

mance in different contexts and settings. This approach allows us not only to better

understand the intrinsic characteristics of the analyzed time series but also to optimize the

accuracy and efficacy of the model under various data conditions.

Parameter Configuration in the Exponential Smoothing Model

The effectiveness of the exponential smoothing model largely depends on the proper setting

of three fundamental parameters: trend, seasonality, and seasonal periods.

• Number of Seasonal Periods: This parameter is crucial for understanding the

frequency with which the seasonal pattern repeats in the data. The choice of the

number of seasonal periods is based on the size of the database. For a database of

size X, up to X/2 seasonal periods are explored. This approach allows a broad explo-

ration of possible seasonal configurations without exceeding half the total size of the

database, maintaining a balance between detecting seasonal patterns and preventing

overfitting..

• Tests with Different Configurations of Seasonal Periods: For each of the up

to X/2 possible values of the seasonal period, the model is configured and evaluated

in the four combinations of trend and seasonality (additive or multiplicative), men-

tioned above. This approach ensures the model’s performance is examined across a

wide range of possible scenarios..
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Forecasting and Application of the Time Series Model

Once the training process of the model with the training dataset is completed, the fore-

casting phase proceeds, applying the model to the test set.

• Application to Test Data: The trained model is employed to make forecasts on

the test data set. This step represents a test simulating a real prediction situation,

where the model must operate with data not used in its training..

• Visual Comparison with Real Data: The effectiveness of these forecasts can be

more clearly appreciated through visual comparison. Charts are prepared where the

model’s predictions are superimposed with the real values from the test set. This

comparative visualization not only facilitates the immediate evaluation of the model’s

performance but also provides a deeper understanding of the areas where the model

performs well and those where it might need adjustments or improvements.

Summary and Evaluation of the Holt-Winters Model

The Holt-Winters model was subjected to thorough analysis and testing, considering the

four possible combinations of trend and seasonality for each of the potential values of the

seasonal periods. The procedure and variants applied are detailed as follows:

• Tests with Combinations of Trend and Seasonality: For each possible value

of the seasonal periods, tests were conducted with the four combinations of trend

(additive or multiplicative) and seasonality (additive or multiplicative). Then, for a

database size X, the Holt-Winters model was evaluated in 4(X/2) different predic-

tion outcomes. This allowed a broad and detailed comparison with the real values,

ensuring a comprehensive evaluation of the model in different scenarios.

• Introduction of Data Scaling in Holt-Winters: In addition, a variant of the

Holt-Winters model was carried out, incorporating data scaling into the procedure.

This adaptation allowed generating an additional set of simulations, doubling the

number of scenarios tested. With this modification, 8(X/2) different simulations us-
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ing the Holt-Winters model were conducted..

3.2.4 LSTM

Library Import

The code implements the Pandas and Matplotlib libraries, which have already been de-

scribed previously. Additionally, the following are incorporated:

• Keras: A high-level API for building and training neural network models. In this

code, Keras is used to design and train the LSTM model (https://keras.io/api/).

• Scikit-learn: Although its application in this context is not directly related to neu-

ral network modeling, the Scikit-learn library contributes through the MinMaxScaler

tool. This tool is used for data normalization (https://scikit-learn.org/stable/).

Data Preparation and Handling

The methods used to load, split, and scale the data before feeding it into the LSTM model.

• Data Loading: The function is responsible for loading data from a CSV file using

pandas. The index is set to the “Date” column, and it is converted into a datetime

object to facilitate temporal analysis.

• Data Splitting: Once the data is loaded, the function divides it into training and

testing sets. The training set is used to teach the model the dependencies in the

data, while the testing set is used to evaluate its performance.

• Data Scaling: The function implements Scikit-learn’s MinMaxScaler to scale the

data so that all values fall within a defined range. Since input values that are too

large can create difficulties in neural network learning, causing instabilities or slow

convergence.
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Generation of Time Series and Data Preparation for LSTM

This section of the code focuses on two key aspects: the generation of time series and the

proper preparation of data for use in the LSTM model.

Time Series Generation with TimeseriesGenerator: Keras’TimeseriesGenerator is

implemented. This tool adapts the scaled data into a format compatible with the LSTM

model. The TimeseriesGenerator takes the input data and reorganizes it into a set of se-

quences. Each sequence is composed of groups of consecutive data points, providing the

necessary structure for the LSTM model to learn and understand the temporal dependen-

cies between these points.

Generator Configuration: Parameters such as the number of inputs are defined, which

determines how many previous time steps will be used to predict the next time point. The

choice of this parameter dictates the amount of historical information the model analyzes

in each iteration. Additionally, the batch size is set.

Construction and Configuration of the LSTM Model

• LSTM Model Architecture: We use Keras’ Sequential class to construct the

model, allowing us to stack the layers in a sequential and organized manner. The

architecture includes several LSTM layers, each carefully configured to fulfill a specific

function within the model.

• LSTM Layer Configuration and Regularization: Each LSTM layer in the

model is configured with a specific number of units, defining the dimension of the

output space. Additionally, L1 and L2 regularizers are applied to control overfitting.

Regularization helps improve the model’s generalization by penalizing large weights

in the network.

• Dropout and LeakyReLU Layers: To further strengthen the model against over-

fitting, Dropout layers are integrated after each LSTM layer. These Dropout layers

randomly “turn off” a set of neurons during training, contributing to the model’s

robustness. Moreover, the LeakyReLU activation function is implemented, known
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for its effectiveness in allowing the model to learn complex non-linear relationships

in the data.

• Model Compilation: Finally, the model is compiled with the Nadam optimizer

and a mean squared error (MSE) loss function. The Nadam optimizer is a variant

of the Adam optimizer, known for its effectiveness in training neural networks, and

MSE is a common measure for evaluating performance in regression tasks.

Analysis of LSTM Model Hyperparameters and Search for Optimal Architec-
ture

The process of selecting and tuning hyperparameters in an LSTM model is a complex

task that significantly impacts the model’s performance. The task involves defining and

experimenting with several key hyperparameters of the LSTM architecture, whose pos-

sible combinations and adjustments are vast and must be meticulously tailored to the

particularities of the time series under study. These hyperparameters include:

1. Layers and Neurons

• Number of LSTM Layers: The number of layers in an LSTM model deter-

mines the network’s depth. A deeper network, with multiple LSTM layers, has

a greater capacity to learn complex patterns and long-term relationships in the

data. However, increasing the number of layers also poses certain challenges. A

deeper model may be more difficult to train and more prone to overfitting, espe-

cially if the amount of data available for training is limited. Additionally, more

complex models require more computational resources and time for training.

• Number of Neurons per Layer: The number of neurons in an LSTM layer

defines the dimension of the output space of that layer. In other words, it deter-

mines how much information the layer can process at each time step. A higher

number of neurons allows the model to capture and retain more information

about the data. However, as with the number of layers, an excess of neurons

can lead to an overfitted model that does not generalize well to new data. Ad-

ditionally, a higher number of neurons increases the computational complexity
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of the model.

2. Dropout

• Functioning of Dropout: The use of Dropout technique in an LSTM model is

a key strategy to combat overfitting, especially relevant in deep neural networks.

Dropout works by randomly “deactivating” a set of neurons during training. It

randomly zeroes out the output of certain neurons in a layer with a predefined

probability. This means each neuron has a specific probability of being tem-

porarily “removed” from the model at each training step. This randomness

prevents the model from becoming too dependent on any set of neurons, thus

encouraging the model to learn more robust and generalizable representations.

• Choice of Dropout Rate: The dropout rate is a hyperparameter that deter-

mines the probability of a neuron being deactivated. A higher rate means more

neurons will be randomly deactivated. Choosing this rate is a balancing act;

a rate too high can prevent the model from effectively learning from the data,

while a rate too low might be insufficient to prevent overfitting. In practice,

dropout rates commonly used range between 0.2 and 0.5, but the optimal rate

may vary depending on the specific problem and model architecture.

3. L1 and L2 Regularization

• Principles of L1 and L2 Regularization: L1 regularization (also known as

Lasso regularization) and L2 regularization (or Ridge regularization) are two

common methods to impose constraints on the network weights. L1 regulariza-

tion penalizes the absolute sum of the weights, while L2 penalizes the sum of the

squares of the weights. These penalties are added to the model’s loss function

during training.

• Effects of L1 Regularization: L1 regularization tends to produce models

with sparser weights, with many weights close to zero. This effect can be useful
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for models where feature selection is important, as it can help identify and

discard less relevant or noisy inputs.

• Effects of L2 Regularization: L2 regularization is effective at handling over-

fitting in models with a large number of parameters, as common in LSTM net-

works. By penalizing large weights, it prevents the model from becoming overly

complex by giving too much importance to particular features of the training

data.

• Selection and Tuning of Regularization Coefficients: Choosing the right

coefficients for L1 and L2 regularization is a fine-tuning process. Coefficients

too high can lead to an underfitted model, which fails to learn adequately from

the training data. On the other hand, coefficients too low may be insufficient to

prevent overfitting. The choice of these values often requires experimentation

and can benefit from techniques like cross-validation to find an appropriate bal-

ance.

4. Batch Size and Number of Epochs

• Batch Size: The batch size refers to the number of training samples used in a

single iteration of the learning process..

• Impact on Learning: A larger batch provides a more accurate gradient esti-

mate but also requires more memory and can be more computationally costly.

Conversely, a smaller batch offers a less accurate gradient estimate, which can

lead to more “noisy” or fluctuating learning but often allows for faster conver-

gence and can offer natural regularization due to its stochastic nature.

• Selection of Batch Size: Choosing the batch size is a balance between com-

putational efficiency and gradient accuracy. A batch size too small can make

the training unstable, while too large a size can make the training slower and

possibly less capable of finding global optima.

• Number of Epochs: An epoch is a complete pass through the entire training

dataset.
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• Importance in Training: The number of epochs determines how many times

the model will see the training data. A higher number of epochs may allow the

model to learn more from the data but also increases the risk of overfitting.

• Adjustment of the Number of Epochs: Selecting the number of epochs

often involves finding a point where the model has learned sufficiently from the

data but has not begun to overfit.

Training

1. Model Initialization: Before training, the LSTM model is initialized with the

defined architecture. This stage sets the foundation for how the model will process

and learn from the data.

2. Configuration of the Time Series Generator: The use of TimeseriesGenerator

ensures that the data input into the model is structured in a way that respects

temporal sequentiality. This is crucial for the LSTM model to understand and learn

the temporal dependencies in the data.

3. Training Iterations (Epochs): Each epoch represents a complete pass through

the dataset. In each epoch, the model adjusts its internal parameters (weights) to

minimize the loss function.

4. Optimization and Weight Adjustment: Using the Nadam optimizer, the model

adjusts its weights to reduce the error between its predictions and the actual values.

This is a gradual and iterative process, where the model seeks to find the optimal set

of weights that minimizes the loss function..

Prediction and Visualization of Results

After training, the next phase in the analysis involves generating predictions and their

comparative visualization with the actual data.

1. Generation of Predictions:
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• Prediction Mechanism: The function is responsible for generating forecasts

using the trained model. This process involves feeding the model with a dataset

(in this case, the most recent from the training set) and using the model to

predict the next point in the time series.

• Preparation of Input Data: To make predictions, a batch of initial data

corresponding to the last points of the training set is selected. These data are

used as a starting point for future predictions, and the model uses them to make

a step-by-step projection forward.

2. Visualization of Results:

• Comparison with Real Data: Once predictions are generated, these fore-

casted values are visualized alongside the actual data from the test set. This

visualization is essential for assessing the accuracy of the model, allowing a di-

rect comparison between what the model predicted and what actually occurred.

This presents the results obtained from the trained LSTM model. It’s important to note

that each hyperparameter can assume a variety of values, thus creating a broad spectrum

of possible combinations. Each combination results in different performances and demands

different levels of computational resources. Due to limitations in available computational

capacity, only a restricted subset of these combinations was explored.

3.2.5 Prophet

Libraries Used

The libraries used are Pandas, Numpy, Matplotlib, and Scikit-learn, which have been

previously explained. In addition to:

• Prophet: Developed by Facebook, this library is specifically designed for forecast-

ing time series data. Prophet stands out for its ability to handle different types of

seasonal trends and for its ease of use compared to other time series methods.
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Data Splitting

The second stage of the process involves splitting the loaded data into training and testing

sets.

• Data Loading: Using Pandas, the data is read from a CSV file into a dataframe.

• Data Division: The dataset is divided into two parts:

1. Training Set: Comprising the initial 80% of the data, this set is used to train

the forecast model.

2. Test Set: Comprising the remaining 20%, this set is used to evaluate the ac-

curacy of the model.

Training Data Preprocessing

• Data Normalization: Using Scikit-learn’s MinMaxScaler, this technique adjusts

the data values so that they are within a specific range, which is important for the

performance and stability of the forecast model.

• Data Restructuring for Prophet: The same function also adapts the dataframe

to meet the requirements of the Prophet model. The columns are renamed to “ds”

and “y”, standard formats that Prophet uses to identify the time variables (“ds”)

and the target variable to forecast (“y”).

• Removal of Unnecessary Columns: Finally, the original “Date” and “Price”

columns are removed from the dataframe to avoid duplications and maintain the

clarity of the dataset..

Creation and Tuning of the Forecast Model

Once the data is preprocessed, the next step is the creation and tuning of the forecast

model.
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Using Prophet: Prophet, a library designed for time series forecasts, is employed. The

Prophet model is initialized with specific configurations, such as the seasonality mode,

which can be “additive” or “multiplicative”. For the initial evaluation, the additive ap-

proach was chosen. Additionally, the change scale is adjusted, which regulates the model’s

flexibility in detecting changes in the data trend.

Seasonality and Holidays Configuration: The model is enriched with custom season-

ality and holidays. For instance, a seasonality for “business days” with a specific period

and a Fourier order is added, and US holidays are integrated. These settings allow the

model to capture specific patterns related to workdays and holidays, thus improving the

accuracy of the forecast.

Model Fitting: The model is trained with the training dataset.

Making Forecasts with the Model

After fitting the model, the next step is generating forecasts..

Generating Future Dates: A future dataframe containing the future dates for which

the forecast is desired is created. The number of periods and the frequency of these dates

are specified according to the forecasting needs.

Prediction with the Trained Model: Using the trained Prophet model, the forecast is

made for the generated future dates. Prophet provides a range of predictions, including the

main estimate, and the lower and upper confidence intervals, which serve to understand

the uncertainty associated with the predictions.

Inverse Transformation and Comparison with the Test Dataset

Inverse Transformation: Using MinMaxScaler, the forecasted values are rescaled to

their original range.

Comparison with Test Data: The transformed forecasted values are integrated into

the test dataset. This integration allows a direct comparison between the forecasts and

the real values of the test set, providing a clear measure of the model’s accuracy.
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Visualization of Forecasts and Real Data: The function is employed to visualize the

forecasts alongside the real data.

Repeating the Process with a Multiplicative Model

The forecasting cycle is completed by repeating the modeling and forecasting process using

a multiplicative approach for seasonality and then visualizing the final results.

3.2.6 SARIMA

Library Imports

The libraries used include Matplotlib, NumPy, Pandas, and Sklearn, which were previously

explained. Additionally:

• Statsmodels.tsa.statespace.sarimax: This is the central library for constructing

the SARIMA model. It provides the necessary tools to fit the model to time series

data, allowing the incorporation of seasonal and non-seasonal components into the

model.

Data Loading and Preprocessing

• Data Loading: Using Pandas, the function reads a CSV file, assigning the date

column as the index.

• Training and Test Set Split: The time series is divided into two segments, train-

ing and test. This division is done to evaluate the predictive capacity of the model.

This approach allows for the validation of the model’s efficacy on unseen data during

training.

SARIMA Model Construction

Hyperparameter Selection: The SARIMA model is characterized by its set of hyperpa-

rameters, denoted in the notation (p, d, q) x (P, D, Q, s). Here, p represents the number

Information Technology Engineer 75 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

of autoregressive terms, d the degree of differentiation, and q the number of moving aver-

age terms for the model’s non-seasonal component. Similarly, P, D, Q refer to the same

concepts but applied to the seasonal component, and s indicates the seasonality period.

Model Initialization: Using the statsmodels.tsa.statespace.sarimax library, the SARIMA

model is initialized with the selected hyperparameters. This initialization prepares the

model to be fitted to the data, setting the foundation for analysis and prediction.

Training and Predictions with the SARIMA Model

Model Training: The SARIMA model, already configured with the appropriate hyper-

parameters, is trained using the scaled time series data from the training set. During this

phase, the model learns the dependencies and underlying patterns in the historical data.

This learning involves adjusting the model’s coefficients to minimize the error between the

predictions and the actual values.

Making Predictions: With the trained model, predictions are made on the test set.

This phase involves using the model to predict future values, extending from the end of

the training set to the end of the test set. The predictions are generated based on the

patterns learned during training, and their accuracy is a key indicator of the model’s

effectiveness.

Model Performance Evaluation: The model’s efficacy is assessed by comparing the

generated predictions with the actual values of the test set. This evaluation is performed

using the Root Mean Square Error (RMSE), which provides a quantitative estimate of the

error in the predictions. Additionally, a graphical representation contrasts the predicted

values with the real ones, thus facilitating a direct visual understanding of the model’s

accuracy.

SARIMA Model Hyperparameters

The SARIMA model is characterized by two sets of hyperparameters: order and sea-

sonal order.

1. order (p, d, q):
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• p is the number of autoregressive terms. It indicates how many past values of

the series are used to predict the current value.

• d is the degree of differentiation. It represents the number of times the data are

differentiated to achieve stationarity.

• q is the number of moving average terms. It refers to the number of forecast

error terms used in the model.

2. seasonal order (P, D, Q, s):

• P, D, Q are analogous to p, d, q, but applied to the seasonal component of the

series.

• s is the seasonality period.

3. Hyperparameter Search: Each hyperparameter in the model can take on a variety

of values, and the combination of these values results in different model performances.

Therefore, an exhaustive search technique known as “grid search” was implemented

to explore all possible combinations of hyperparameters. However, this approach

carries a high computational cost. Due to this limitation, the number of values each

hyperparameter could take was restricted, in order to make the search more manage-

able and efficient.

3.3 Phase 1, Exogenous Algorithm Design

To develop simulations incorporating exogenous variables, it was necessary first to deter-

mine which exogenous variables would be used. In the context of stocks, the S&P 500

index values and the values of a relevant company in the same market sector were chosen,

selecting Microsoft for this purpose. This resulted in the creation of three distinct datasets

to work with. Each set includes Amazon’s stock prices combined with the S&P 500 data,

Microsoft’s stock values, or a combination of both.

Consequently, the simulation environment for stocks is segmented into three main cate-

gories. In each category, the SARIMAX, Prophet, LSTM, and Holt-Winter models were
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evaluated. Due to the incorporation of exogenous variables, the implementation of the

SARIMA model was discarded. Each model was tested in the three main groups, resulting

in a total of 12 distinct simulations, not counting the internal variations of each model.

In developing simulations focused on Bitcoin’s price, the price of Ethereum, another cryp-

tocurrency of similar relevance and presence in the market, as well as Bitcoin’s own trans-

action volume, were selected as exogenous variables. This choice led to the creation of

three different scenarios for testing: the analysis of Bitcoin’s price in combination with its

own transaction volume, the price of Ethereum, or the joint inclusion of both exogenous

variables.

In each of these scenarios, the SARIMAX, Prophet, LSTM, and Holt-Winter models were

applied. This resulted in a total of 12 different simulations for this section, not including

the internal variations of each model. Therefore, in the entire segment dedicated to the im-

plementation of exogenous variables, a minimum of 24 distinct simulations were carried out.

3.3.1 Creation of DataFrames, Stocks

Importing Libraries and Initial Setup

In this section, the focus is on preparing the programming environment for data analysis.

As in the univariate analysis, essential libraries for data handling and visualization are

imported. The libraries used are:

• yfinance: Allows downloading financial data directly from Yahoo Finance.

• warnings: Used to suppress warnings that may arise during code execution.

• matplotlib.pyplot: Provides functions for data visualization.

• pandas: Essential for data manipulation and analysis.
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Downloading and Initial Setup of Financial Data with yfinance

In this phase, yfinance is used to download data from three different sources, each cor-

responding to a specific entity in the stock market. Unlike the univariate analysis that

focused solely on Amazon, this multidimensional approach facilitates a deeper compara-

tive analysis.

1. Setting Dates: An identical date range is defined for all downloads, ensuring con-

sistency in the temporal comparison among the different datasets.

2. Downloading Data:

• Amazon: Represents the data of Amazon.

• Microsoft: Reflects the data of Microsoft.

• S&P 500 Index: Represents the S&P 500 stock market index, providing an

overall perspective of the performance of the US stock market, including a va-

riety of sectors.

3. Interval Setting and Automatic Adjustment: A daily interval is set, and auto-

matic adjustment is activated for all downloads. This ensures that stock prices are

adjusted for dividends and splits, providing accurate and relevant data for financial

analysis.

Processing and Cleaning of Downloaded Data

After downloading the data, the next step is their processing and cleaning. This stage is

handled more complexly compared to the univariate analysis, due to the variety of data

sources. The specific steps are:

1. Creation of Individual DataFrames: For each dataset (Amazon, Microsoft, and

S&P 500), a separate DataFrame is created. This facilitates individualized handling

of each data series, allowing for specific adjustments and transformations.

2. Selection and Renaming of Columns: From each DataFrame, only the “Close”

column, representing the stock’s closing price, is selected. This column is renamed
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to reflect its source. This step is similar to the univariate analysis but repeated for

each data source.

3. Frequency Setting and Filling Missing Data: Each DataFrame is set to have a

business frequency, and missing data are filled using the “forward fill” method. This

ensures that the DataFrames have a coherent and complete temporal structure.

Data Visualization

The final phase of the analysis is data visualization and exploratory analysis. Compared

to the univariate analysis, this stage is more revealing due to the inclusion of multiple data

series. The specific steps in this section are:

1. Combining DataFrames: Before visualization, the individual DataFrames of Ama-

zon, Microsoft, and the S&P 500 are combined into a single DataFrame.

2. Visualization Setup: matplotlib.pyplot is used to create a graph with three differ-

ent Y-axes, each representing one of the series. This allows visualizing and comparing

the price trends of the stocks on the same graph but with scales that can be inde-

pendent, highlighting the differences and similarities among them.

3. Graph Customization:

• A distinct color is assigned to each data series for easy differentiation.

• Labels for the axes and the title are added, improving the clarity and under-

standing of the graph.

• Legends are strategically placed to identify each data series without obstructing

the visualization.

Through this approach, we manage to form the dataset necessary to conduct simulations,

simultaneously incorporating the main variable along with the two exogenous variables.

However, in cases where only one of the two exogenous variables is required, the procedure

is slightly adjusted. In these situations, we follow a similar process, but with one key

difference: we concatenate exclusively the specific exogenous variable we wish to use.
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3.3.2 Creation of DataFrames, Cryptocurrency

Importing Libraries and Initial Setup

In this first stage of the analysis, the necessary libraries are imported, and the initial setup

is performed, similar to the process carried out in the univariate analysis. The imported

libraries include:

• Binance Client: Provides the necessary functions to interact with the Binance API

and perform financial data downloads.

• matplotlib.pyplot: Imported for data visualization, allowing the creation of charts

for exploratory analysis.

• numpy: Provides support for mathematical operations and array handling.

• pandas: Essential for the manipulation and analysis of structured data.

Downloading and Initial Setup of Financial Data with yfinance

In this section, the process differs significantly from the univariate analysis. While the

previous analysis focused solely on Bitcoin data, here the spectrum is broadened to include

two key cryptocurrencies: Bitcoin and Ethereum. The specific steps are:

• Selection of Cryptocurrency Symbols: Symbols for Bitcoin and Ethereum are

defined, setting the stage for a parallel download of data for both coins..

• Retrieval of Historical Data: Through the Binance API, historical data for both

cryptocurrencies are obtained. The query is configured to retrieve the last 1000 data

points.

• Conversion of Data to DataFrames: The downloaded data for each cryptocur-

rency is converted into Pandas DataFrames, which is essential for subsequent pro-

cessing and analysis.
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Processing and Cleaning of Downloaded Data

Here, the processing and cleaning of the data are performed for two different cryptocur-

rencies (Bitcoin and Ethereum). The key steps are:

• Creation of Separate DataFrames: This process involves the creation and han-

dling of two separate DataFrames, one for each cryptocurrency.

• Date Adjustment and Data Selection: For each DataFrame, the time column

is converted to a standard date and time format and set as the index. Additionally,

relevant columns are selected and renamed. In the case of Bitcoin, an additional

column for trading volume is added.

• Combination of DataFrames: Subsequently, the Bitcoin and Ethereum DataFrames

are combined into a single DataFrame.

Data Visualization

In this case, the focus extends to include the comparative visualization of two distinct

cryptocurrencies. The key steps are:

• Data Preparation for Visualization: Since the combined DataFrame now in-

cludes data from Bitcoin and Ethereum, the data are prepared for visualization that

can reflect the differences and similarities between both cryptocurrencies. This in-

volves adjusting the chart settings to accommodate multiple time series.

• Use of Subplots for Comparison: Subplots in matplotlib.pyplot are used to

create separate but coherent charts for each cryptocurrency. For a direct visual

comparison between Bitcoin and Ethereum, allowing to observe price trends and

volume in parallel.

• Customization and Detail in Visualization: Each subplot is customized with

distinct labels and colors for each cryptocurrency. Titles and legends are added to

provide context and facilitate the understanding of the visualized data.
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This process results in the creation of a dataset, where the price of Bitcoin, its trading

volume, and the price of Ethereum are evaluated together. To generate the other two

datasets, in which only one of the exogenous variables is incorporated, an analogous pro-

cedure is followed. The main difference lies in omitting the steps related to the inclusion

of the unwanted exogenous variable.

3.3.3 Holt-Winter

For the analysis with the Holt-Winters model, we employed various Python libraries,

each with a specific role in the process, similar to the Univariable section. We use mat-

plotlib.pyplot for data visualization and Pandas for efficient data handling and manipula-

tion.

The procedure begins with reading a CSV file, which is transformed into a Pandas DataFrame.

Once the data is in DataFrame format, a crucial aspect is the proper configuration of the

index to reflect the nature of the time series. This is achieved by setting a business day

frequency on the index.

Data Division

After loading the data, the next step is to divide the dataset into two distinct segments:

the training set and the test set.

The training set is used to fit the model, allowing it to learn the trends and patterns in-

herent in the data. On the other hand, the test set, consisting of data not seen by the

model during the training phase, is used to evaluate its performance and predictive accu-

racy. Maintaining the logic of the univariate section, this data division ensures that the

Holt-Winters model is trained and evaluated effectively.
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Modeling and Prediction

Following a methodology similar to the univariate version, we fit the Holt-Winter model

to the time series.

During the model fitting, there is the flexibility to specify whether the trend and season-

ality should be treated as additive or multiplicative. The ability to experiment with both

options allows finding the most suitable combination for our specific case, giving an equal

number of combinations to the Univariable case. Parallel to exponential smoothing, a lin-

ear regression is implemented on the exogenous variables.

Finally, the predictions obtained from Holt-Winter are integrated with the results of the

linear regression. This integration of models allows generating adjusted predictions that

are more robust and reliable, taking into account both the internal patterns of the time

series and the external influences captured by the exogenous variables.

Results Visualization

The final stage of the analysis focuses on visualizing the results obtained from the predic-

tive model. Charts are used to represent both the predictions generated by the model and

the actual data, thus facilitating an immediate visual comparison between the two.

3.3.4 LSTM

Diferences in Data Preparing

One of the notable differences between the current approach and the methodology de-

scribed in the univariable section lies in the treatment of the time index. In this new

approach, the time series index is set to the first column. Additionally, a differentiated

strategy is implemented in the scaling of the data, using multiple scalers for different time

series. Each series is independently scaled using MinMaxScaler.
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The inclusion of additional data further highlights the evolution of this model’s approach.

The incorporation of this additional series brings a richer and more diverse dimension of

analysis, allowing not only a deeper understanding of the main time series but also offering

the possibility to explore more complex correlations and patterns within a broader market

context.

Model Architecture and Training

LaThe architecture in essence is equal to the Univariable section. However, unlike the

univariable section, where the analysis focused on a single time series, the second code

introduces an advanced approach that integrates exogenous variables into the model. This

multidimensional approach allows the model to capture more complex interactions and

hidden patterns in the data, offering a richer and more nuanced analysis. In preparing the

data for training, multiple time series are combined into a single dataset. This integration

of exogenous variables is key to building a model that not only predicts based on past

values of a time series but also considers the influence of other relevant series. By doing

so, the model can learn how movements in one time series may be related to or influenced

by fluctuations in others.

During the training of the model, these exogenous variables are presented to the LSTM

model as additional features along with the main time series. It allows the model to learn

from a broader spectrum of information, potentially leading to more accurate predictions

and a better understanding of market dynamics.

Generating Predictions with Exogenous Variables

The generation of predictions represents a significant improvement over the univariable ap-

proach, thanks to the inclusion of exogenous variables. This section of the code addresses

how these additional variables are used to enrich the prediction process. The prediction is

based on the last available data sequence, which includes not only the past values of the

main time series but also the additional series.
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Visualization of Results with Exogenous Variables

The final stage of the analysis is the visualization of the results, to graphically show the

model’s predictions compared to the actual values of the time series.

3.3.5 Prophet

The same procedure as in the Univariable section is maintained, but with the following

differences:

Improvement of the Prophet Forecast Model with Exogenous Variables

The function now accepts an additional argument, exogenous features, which is a list of the

names of the columns in the DataFrame that represent these variables. We use Prophet’s

add regressor function to add each of these variables to the model. This approach allows

the model to not only consider internal patterns of the time series but also adapt to exter-

nal influences.

3.3.6 SARIMAX

Most of this section is the same as SARIMA explained previously, but with the following

differences.

To integrate the exogenous variables into the SARIMAX model, a specific methodology

was employed within the code. The syntax of the SARIMAX function in Python was

adjusted to include these external data, taking into account aspects such as seasonality

and potential correlation with the dependent variable. The integration of these exogenous

variables is expected to improve the model’s accuracy, allowing a better understanding of

the factors influencing Amazon’s price.
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Technical Implementation of the SARIMAX Model:

To implement the SARIMAX model in Python, it is done using the statsmodels library.

The key syntax used is as follows:

model = SARIMAX(x, exog, order = order, seasonal order)

• x: represents the main time series

• exog: introduces the exogenous variables.

• The parameters order and seasonal order are used to define the structure of the

ARIMA and SARIMA model, respectively.

• order: This argument receives a tuple of three elements (p, d, q), where “p” is

the number of autoregressive terms, “d” is the number of differentiations needed to

stationarize the series, and “q” is the number of moving average terms.

• seasonal order: Similarly, this four-element tuple (P, D, Q, s) defines the seasonal

part of the model, where “P”, “D”, and “Q” represent the seasonal equivalents of

“p”, “d”, and “q”, and “s” is the periodicity of seasonality.

As in the Univariable section (SARIMA), this model also presents a wide variety of possible

combinations for each hyperparameter. Given this diversity, an exhaustive search strategy,

known as “grid search”, is implemented to identify the most optimal model. This method-

ology allows systematically exploring various combinations of hyperparameters, with the

goal of finding the configuration that provides the best results in terms of performance and

accuracy of the model.

3.4 Phase 2, Evolution and Analysis of the Best Mod-
els

The results primarily highlighted three models: LSTM, Holt-Winter, and SARIMAX.

Given this evidence, it was decided to proceed with additional experimentations that mimic
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conditions closer to a real market situation. To this end, different data sets were employed

to simulate various market phases. Based on the findings from the initial tests, adjustments

were made to the models to refine specific aspects of the predictions, such as the size of

the data sets used. However, in the case of the LSTM model, computational limitations

prevented an exhaustive exploration of its potential. Despite this, it’s important to note

that LSTM showed a significant margin for improvement regarding the obtained results,

although reaching its maximum performance requires considerably more advanced compu-

tational resources.

Based on previous experimentations, it was decided to develop four different versions for

stock predictions. This decision was made after analyzing data sets of different sizes,

ranging from one year to four years. Each version included the analysis of four distinct

scenarios: one with two exogenous variables, two with only one of the exogenous variables,

and another univariate. In each scenario, the SARIMAX and Holt-Winter methods were

applied, except in the univariate scenario where SARIMAX was not evaluated due to

the absence of exogenous variables. Additionally, within each method, two variants of

SARIMAX and Holt-Winter were developed, differentiated by the length of the predictions.

Therefore, for stocks, a total of 4 versions were created, each with 4 scenarios. Each scenario

employed the Holt-Winter and SARIMAX methods, with the exception of the univariate

one. Furthermore, within each method, two variants were considered. This resulted in a

total of 56 different simulations in the context of stock prediction.

In the context of cryptocurrencies, the decision was made not to implement the four dif-

ferent versions that were initially used for stocks. This resulted in a total of 14 distinct

simulations for cryptocurrencies.

Once the predictions were obtained through these models, a detailed analysis of them was

conducted. This analysis involved identifying specific points to perform buying and selling

operations based on the predictions. Subsequently, these buying and selling points were

placed within the timeline of the real market values of cryptocurrencies. This allowed ac-

curately marking the moments of purchase and sale according to the predictions. Finally,
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an evaluation of the profitability of the models was carried out, analyzing the financial

performance of the identified buying and selling points.
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Chapter 4

Results and Discussion

In this section, we will discuss the most notable results obtained. Although the Prophet

and SARIMA models showed acceptable performance, they did not reach the level of effec-

tiveness required to be considered in this analysis. Therefore, due to their lesser relevance

compared to other models that did achieve viable results, they will not be included in this

discussion. This allows focusing on those models that met the minimum criteria of viability

and that are more promising for future experimentation.

Accordingly, this section will primarily focus on the Holt-Winter and SARIMAX models.

Regarding the LSTM model, its potential to generate superior results is acknowledged.

However, due to computational limitations, it was not possible to obtain sufficiently rele-

vant results to develop a deeper exploration of this model..

4.1 Phase 1 Results

This section presents the results obtained from the first detailed analysis in the method-

ology. This analysis focused on comparing the predictions generated by the models with

the actual values. The main objective was to evaluate the accuracy and effectiveness of

the models in projecting data, providing an initial insight into their performance.
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4.1.1 Datasets

As described in the methodology, the downloaded data sets were graphically represented to

facilitate the visualization and analysis of the gathered information. During the examina-

tion of the exogenous variables, it was observed that the behavior of Microsoft’s stocks and

Ethereum shows a notable similarity to that of Amazon’s stocks and Bitcoin, respectively,

see Figures 4.1 and 4.2. This trend remained constant over long periods.

This similarity suggests a possible strong correlation between the prices of Amazon and

Microsoft stocks, indicating that a movement in the price of one of these stocks could

predict a similar movement in the other, although it is worth noting that they operate

in different price ranges. In the case of Ethereum and Bitcoin, an even more marked

correlation was found, with very similar patterns in the various data sets. However, as in

the previous case, these two cryptocurrencies operate at different price scales.

Figure 4.1: Amazon and Microsoft Dataset.
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Figure 4.2: Bitcoin and Ethereum Dataset.

4.1.2 Holt-Winter, Univariable

As mentioned earlier, a total of 8(x/2) different simulations were conducted. In this sec-

tion, selected results from all these simulations will be presented, focusing specifically on

those considered most relevant. This selection aims to highlight the most significant and

representative findings from the set of simulations conducted.

The analysis of the three graphs 4.3, 4.4 y 4.5 reveals that the proposed model manages

to approximate the general trend of the actual Bitcoin prices. Although there are specific

deviations between the predicted and real values, the model reasonably reflects both the

direction and scale of the price changes. This level of similarity indicates that the model

has potential to be applied in predicting the price of Bitcoin, which could be useful for

informing buying and selling decisions. However, it is important to recognize and consider

the observed error margins when applying these predictions in a real investment context.
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Cryptocurrency

Figure 4.3: Bitcoin Prediction 1.

Figure 4.4: Bitcoin Prediction 2.

Information Technology Engineer 94 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

Figure 4.5: Bitcoin Prediction 3.

Stocks

The graphs 4.6, 4.7 and 4.8 demonstrate the comparison between the actual stock prices

and their corresponding predictions over the period from March to April 2023. It is ob-

served that the predictions follow a trend parallel to the actual evolution of the prices,

although with some discrepancies in specific values. The general trend indicates that the

model can detect the market movement direction but also highlights the existence of error

margins that must be considered.
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Figure 4.6: Amazon Prediction 1.

Figure 4.7: Amazon Prediction 2.
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Figure 4.8: Amazon Prediction 3.

4.1.3 Holt-Winter, Exogenas

As detailed in the methodology section, two exogenous variables were incorporated into

the analysis, leading to the creation of three different scenarios. In the first and second

scenarios, only one of the exogenous variables was used, while in the third scenario, both

were employed simultaneously. This approach is similar to the one used in the univariable

analysis, where each scenario presents the same number of possible internal combinations.

For effective comparison, we selected the two most significant results from each scenario.

This selection highlights not only the differences between the individual scenarios but also

the variations compared to the univariable analysis.

Cryptocurrency

As seen in Graphs 4.9, 4.10 and 4.11, the three models demonstrate notable adaptability to

the dataset, showing precision in predicting both the trend and magnitude of Bitcoin prices.

Particularly, Figure 4.9 stands out for its ability to more faithfully replicate the market

trend over the prediction period. On the other hand, Figures 4.10 and 4.11, although

initially close to real values and replicating the general market behavior, tend to deviate
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from these values as the prediction extends, thus increasing the margin of error.

(a) Result 1 (b) Result 2

Figure 4.9: Bitcoin Predictions with Ethereum as an exogenous variable in a and b, but
with different hyperparameters.

(a) Result 1 (b) Result 2

Figure 4.10: Bitcoin Predictions with Volume as an exogenous variable in a and b, but
with different hyperparameters.

(a) Result 1 (b) Result 2

Figure 4.11: Bitcoin Predictions with Volume and Ethereum as exogenous variables in a
and b, but with different hyperparameters.
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Stocks

Figures 4.12, 4.13 and 4.14 provide an interesting insight into the predictive capability of

the models in relation to Amazon’s stock prices. At the start of the prediction period, the

three models demonstrate reasonable competence in capturing market behavior. However,

significant differences are observed as the analysis period extends. In particular, Figure

4.12 appears to have an advantage in terms of predicting price behavior over time, though

the associated margin of error must be considered. This observation suggests that while the

models have some utility in forecasting short-term trends, their capabilities for long-term

forecasts vary, and caution should be exercised when interpreting these results.

(a) Result 1 (b) Result 2

Figure 4.12: Amazon Predictions with Microsoft as an exogenous variable in a and b, but
with different hyperparameters.

(a) Result 1 (b) Result 2

Figure 4.13: Amazon Predictions with S&P500 as an exogenous variable in a and b, but
with different hyperparameters.
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(a) Result 1 (b) Result 2

Figure 4.14: Amazon Predictions with S&P500 and Microsoft as exogenous variables in a
and b, but with different hyperparameters.

4.1.4 SARIMAX

As detailed in the methodology, the SARIMAX model incorporates several hyperparam-

eters, each with a wide range of possible values. This leads to an extensive variety of

potential combinations, thus increasing the demand for computational resources. Given

this requirement, it was decided to limit the selection to a narrower range of possible values

for each hyperparameter. It is important to recognize, therefore, that the results obtained

reflect only a fraction of the full potential and predictive capacity of the SARIMAX model.
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Cryptocurrency

Graphs 4.15 and 4.16 clearly illustrate that the models analyzed exhibit a notable ability

to predict certain sections of the time series. In these specific parts, the models not

only capture the behavior of the series but also its magnitude accurately. However, this

predictive capacity does not uniformly extend across the entire time series. It is important

to note that, compared to other models examined, SARIMAX proves to be superior in

terms of predictive capacity in specific segments of the series.

Figure 4.15: Bitcoin Prediction with Ethereum as an exogenous variable.

Figure 4.16: Bitcoin Prediction with volume as an exogenous variable.
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Stocks

Graphs 4.17, 4.18 and 4.19 from the SARIMAX model did not show outstanding adaptabil-

ity in predicting Amazon’s stocks. However, as mentioned earlier, these results represent

only one facet of SARIMAX’s potential as a predictive tool. Considering its performance

in the cryptocurrency section, it is important to recognize the relevance of the SARIMAX

model in diverse contexts.

Figure 4.17: Amazon Prediction with Ethereum as an exogenous variable.

Figure 4.18: Amazon Prediction with volume as an exogenous variable.
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Figure 4.19: Amazon Prediction with volume and Ethereum as exogenous variables.

4.2 Phase 2 Results

The results obtained in the previous phase led to the decision to continue with experi-

mentation but with a more refined strategy. At this stage, improvements were made to

the proposed models, and a mechanism for simulating buy and sell transactions was in-

tegrated. Thus, the models evolved not only to analyze the time series of Bitcoin prices

and Amazon’s stocks and generate predictions based on these series but also to make in-

formed decisions about the optimal times to buy and sell based on these predictions. This

advanced approach represents a significant step in the practical application of the models

in the context of the financial market.

The experimentations conducted led to the definition of specific ranges for the lengths of

the predictions. These ranges were established with a minimum limit, denoted as C, and

a maximum limit, referred to as Z. The need to establish a minimum limit C arises from

the fact that prediction lengths shorter than this threshold do not provide enough data

to execute buy and sell operations effectively. On the other hand, lengths exceeding the

maximum limit Z tend to introduce an unacceptable level of errors in the predictions. To

determine the optimal buying and selling moments, the model focuses on analyzing the

predictions and establishing the key growth points. In situations where an increase in

values is projected, the model executes the purchase at the predicted minimum value and
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proceeds to sell at the maximum point. A critical aspect of this model is its rule not to

make purchases unless a corresponding sale can be guaranteed within the same time inter-

val. In scenarios where predictions indicate multiple upward and downward fluctuations,

the model adopts a strategy of buying at the lowest values and selling at the highest peaks.

As a result of this methodology, in each of the simulations carried out, the number of buy

transactions could vary from zero to several, depending on the asset analyzed. This is

because the program’s algorithm is designed to identify multiple optimal points within a

single prediction where buys and sells could be beneficial. Therefore, in a given scenario,

the program might decide to execute several buy and sell operations, based on its analysis

of the most auspicious points within the series of predictions.

Consequently, each simulation was evaluated using the following metrics: Good, Bad,

Null, No Purchase, Confidence, Utility, and % Utility. These metrics allow a detailed

understanding of the performance of each simulation:

• Good: Assigned when all buy and sell operations in a prediction result in profits.

• Bad: Assigned when all buy and sell operations in a prediction result in losses.

• Null: Assigned when the buy and sell operations in a prediction result in a combi-

nation of gains and losses.

• No Purchase: Indicates that the model did not find favorable conditions to perform

any buy and sell operation.

• Confidence: Represents the percentage of the totality of buy and sell operations

based on predictions that resulted in profits.

• Utility: Corresponds to the net benefit obtained in the simulations, considering that

each operation was performed at market price.

• % Utility: Indicates the percentage of the net benefit in relation to the total invest-

ment, which allows visualizing what percentage of the capital invested was recovered

as profit.
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Accordingly, this section will be dedicated exclusively to the results obtained in the sim-

ulations, focusing on the specific metrics resulting from each one. The indicators such as

Good, Bad, Null, No Purchase, Confidence, Utility, and % Utility will be examined in

detail, thus providing a comprehensive understanding of the performance of the models in

various simulated scenarios.

The structure of the tables in this analysis is organized around a main title indicating the

model used, accompanied by the variable C or Z that signals the length of the predictions.

Each table consists of eight columns; the first column specifies the implemented method,

while the remaining seven present the metrics that were described previously.

In the case of the Holt-Winter models, four rows corresponding to the Univariable methods

and the three variants with exogenous variables of the asset to be predicted are shown. On

the other hand, the tables corresponding to the SARIMAX model contain only three rows

since this model is not applied in the univariable approach. Each row represents a specific

method, followed by the values corresponding to the mentioned metrics.

These values are the result of simulating each method 100 times. Ten different datasets

were used, and the program made predictions at various points of each set, ensuring that

changes in the length of the training section did not significantly affect the results. In sum-

mary, the tables show the accumulated results of each method after operating 100 times

with 10 different datasets.

4.2.1 Stocks

As detailed in previous sections, four different versions were developed for stock prediction.

Therefore, in the following part, the corresponding tables showing the results of each of

these versions will be presented.

Tables from 4.1 to 4.16 demonstrate a high utility index, which can be significantly at-

tributed to the variability in Amazon’s stock prices. For example, in 2019, the price of an
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Amazon stock was valued at 90 monetary units, while by 2023, this value rose to about 170

units, nearly doubling its value over a four-year period. This notable increase is reflected

in the utility indices reported since the 10 selected data sets span different years. This

time range allows for observing cases where the appreciation in Amazon’s stock value has

had a significant impact on the utility results recorded in the tables.

In version 1, tables 4.1 and 4.2 present the results obtained through the Holt-Winter

methods. In table 4.1, the “Exogenous Microsoft” method stands out as the most effective

according to the first four metrics: “Good”, “Bad”, “Null”, and “No Purchase”. The results

obtained are as follows: 39% of the predictions resulted in net gains, 29% ended in net

losses, 25% in operations that combined gains and losses, and 7% of the predictions did

not lead to any operation.

When evaluating the metrics of “Confidence”, “Utility”, and “% Utility”, we observe that

54.55% of the buy and sell operations resulted in profits. A utility of $53.06 was obtained

in all operations at market prices, representing a return of 47.12% on the investment made.

In table 4.2, the “Exogenous S&P500” method shows remarkable performance, especially

in the “Good” metric, where it surpasses the best method in table 4.1. Although the dif-

ference in the “Bad” metric is only 2 points compared to the highlighted method in table

4.1, the “Confidence” value is higher. However, it is important to highlight that both the

“Utility” and “% Utility” are lower in this method. This is because, although the “Exoge-

nous S&P500” method is more frequently correct than the best method in table 4.1, the

losses incurred in the incorrect predictions are more significant, resulting in lower overall

gains..

This situation highlights the importance of considering the metrics of “Utility” and “%

Utility” in the analysis of the models. These metrics allow a deeper evaluation of the mod-

els, not only in terms of frequency of correct predictions but also in terms of the magnitude

of the gains or losses generated. This facilitates the selection of the most effective model

in general terms.
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Tables 4.3 and 4.4 focus on the analysis of the SARIMAX model. A distinctive feature of

this model, compared to Holt-Winter, is its high value in the “No Purchase” metric. This

indicates that the SARIMAX model tends to make fewer buy operations, suggesting a

more cautious or selective strategy in executing transactions. Despite this lower frequency

in making purchases, it is observed that the “Utility” and “% Utility” of the SARIMAX

model do not differ significantly from those obtained in the Holt-Winter models.

This observation leads to the conclusion that although the SARIMAX model executes a

smaller number of transactions, the operations it performs tend to be safer or more prof-

itable. In other words, the SARIMAX model seems to prioritize the quality of the buy and

sell operations over the quantity, resulting in comparable efficiency in terms of utility and

percentage of utility to the Holt-Winter models.

The detailed analyses performed for tables 4.1 to 4.4 can be similarly applied to versions

2, 3, and 4 of our models. That is, we can compare and evaluate these additional versions

using the same metrics of “Good”, “Bad”, “Null”, “No Purchase”, “Confidence”, “Utility”,

and “% Utility”. This comparison allows understanding how different iterations of the

models affect their performance in terms of frequency and safety in buy and sell operations,

as well as their overall impact on utility and efficiency. By applying the same analytical

approach to versions 2, 3, and 4, we will be able to identify consistent patterns or significant

differences among the versions. This is crucial for determining which versions of the models

are more effective and under which circumstances, providing a deeper understanding of the

robustness and applicability of our models in various market scenarios.
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Version 1

Table 4.1: Results with Holt-Winters Model Z.

Holt-Winters Z
Method Good Bad Null No Purchase Confidence Utility % Utility
Univariate 36 32 24 8 52.12 16,285 38.36%
Exogenous Microsoft 39 29 25 7 54.55 53,06 47.12%
Exogenous S&P500 35 31 24 10 50.63 27,181 36.53%
2 Exogenous 37 27 28 8 53.94 64,417 54.40%

Table 4.2: Results with Holt-Winters Model C.

Holt-Winters C
Method Good Bad Null No Purchase Confidence Utility % Utility
Univariate 49 37 11 3 54.47 -5,236 -11.66%
Exogenous Microsoft 49 32 18 1 57.97 13,264 25.30%
Exogenous S&P500 49 31 19 1 59.12 27,748 30.23%
2 Exogenous 46 31 21 2 56.74 23,275 31.32%

Table 4.3: Results with SARIMAX Model Z.

SARIMAX Z
Method Good Bad Null No Purchase Confidence Utility % Utility
Exogenous Microsoft 15 5 12 68 62.5 28,732 13.04%
Exogenous S&P500 17 8 8 67 62.3 22,625 13.03%
2 Exogenous 11 6 11 72 57.14 19,542 7.98%

Table 4.4: Results with SARIMAX Model C.

SARIMAX C
Method Good Bad Null No Purchase Confidence Utility % Utility
Exogenous Microsoft 22 21 5 52 54.69 -13,733 -14.80%
Exogenous S&P500 33 27 8 32 56.98 2,424 2.24%
2 Exogenous 26 24 8 42 55.26 3,032 -0.43%
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Version 2

Table 4.5: Results with Holt-Winters Model Z.

Holt-Winters Z
Method Good Bad Null No Purchase Confidence Utility % Utility
Univariate 34 24 37 5 54.12 -3,018 19.65%
Exogenous Microsoft 45 23 27 5 59.39 55,522 63.25%
Exogenous S&P500 40 31 28 1 53.63 34,086 56.32%
2 Exogenous 39 28 30 3 56.74 53,424 39.72%

Table 4.6: Results with Holt-Winters Model C.

Holt-Winters C
Method Good Bad Null No Purchase Confidence Utility % Utility
Univariate 46 34 14 6 55.56 27,28 21.80%
Exogenous Microsoft 50 32 13 5 59.66 9,624 8.88%
Exogenous S&P500 43 35 12 10 54.55 5,23 18.77%
2 Exogenous 51 34 12 3 57.14 31,514 36.52%

Table 4.7: Results with SARIMAX Model Z.

SARIMAX Z
Method Good Bad Null No Purchase Confidence Utility % Utility
Exogenous Microsoft 12 7 8 73 58.7 19,269 20.13%
Exogenous S&P500 18 7 9 66 64.29 12,093 29.65%
2 Exogenous 9 9 11 71 52 11,722 12.33%

Table 4.8: Results with SARIMAX Model C.

SARIMAX C
Method Good Bad Null No Purchase Confidence Utility % Utility
Exogenous Microsoft 24 23 11 42 49.33 -90,513 -101.90%
Exogenous S&P500 24 21 13 42 51.35 -8,616 -20.75%
2 Exogenous 31 26 12 31 52.81 5,492 16.03%
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Version 3

Table 4.9: Results with Holt-Winters Model Z.

Holt-Winters Z
Method Good Bad Null No Purchase Confidence Utility % Utility
Univariate 35.29 21.57 37.25 5.88 55.76 59,775 85.53%
Exogenous Microsoft 36.27 27.45 25.49 10.78 57.42 5,75 38.33%
Exogenous S&P500 37.25 26.47 30.39 5.88 55.77 58,503 57.31%
2 Exogenous 33.33 28.43 30.39 7.84 52.94 -2,038 13.40%

Table 4.10: Results with Holt-Winters Model C.

Holt-Winters C
Method Good Bad Null No Purchase Confidence Utility % Utility
Univariate 38.28 40.2 19.61 1.96 50.39 15,917 22.54%
Exogenous Microsoft 39.22 39.22 18.63 2.94 52.27 -4,571 -13.64%
Exogenous S&P500 42.16 37.25 17.65 2.94 53.91 7,41 44.69%
2 Exogenous 49.02 28.43 18.63 3.92 61.07 24,549 30.14%

Table 4.11: Results with SARIMAX Model Z.

SARIMAX Z
Method Good Bad Null No Purchase Confidence Utility % Utility
Exogenous Microsoft 11.76 7.84 8.82 71.57 57.69 6,275 17.26%
Exogenous S&P500 14.71 8.82 6.86 69.61 55.93 26,413 35.02%
2 Exogenous 9.8 10.78 4.9 74.51 42.55 -10,565 -33.09%

Table 4.12: Results with SARIMAX Model C.

SARIMAX C
Method Good Bad Null No Purchase Confidence Utility % Utility
Exogenous Microsoft 23.53 23.53 10.78 42.16 52.56 -21,762 -11.83%
Exogenous S&P500 33.33 24.51 6.86 35.29 55.56 976 9.93%
2 Exogenous 20.59 30.39 12.75 36.27 43.68 -25,736 -13.71%
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Version 4

Table 4.13: Results with Holt-Winters Model Z.

Holt-Winters Z
Method Good Bad Null No Purchase Confidence Utility % Utility
Univariate 38.24 26.47 27.45 7.84 53.76 25,343 60.25%
Exogenous Microsoft 37.25 23.53 37.25 1.96 56.28 27,712 66.01%
Exogenous S&P500 42.16 34.31 20.59 2.94 53.89 11,716 37.38%
2 Exogenous 30.39 35.29 32.35 1.96 48.35 36,094 26.20%

Table 4.14: Results with Holt-Winters Model C.

Holt-Winters C
Method Good Bad Null No Purchase Confidence Utility % Utility
Univariate 38.24 44.12 11.76 5.88 49.22 -26,864 -22.68%
Exogenous Microsoft 40.2 38.24 16.66 4.9 48.41 -11,059 7.22%
Exogenous S&P500 43.14 38.24 9.8 8.82 53.78 -75,683 -74.43%
2 Exogenous 46.08 32.35 17.65 3.92 54.14 10,181 31.80%

Table 4.15: Results with SARIMAX Model Z.

SARIMAX Z
Method Good Bad Null No Purchase Confidence Utility % Utility
Exogenous Microsoft 17.65 8.82 7.84 65.69 66.1 34,352 45.39%
Exogenous S&P500 12.75 13.73 11.76 61.76 46.67 -16,303 -5.10%
2 Exogenous 12.75 7.84 6.86 72.25 54.72 16,511 14.21%

Table 4.16: Results with SARIMAX Model C.

SARIMAX C
Method Good Bad Null No Purchase Confidence Utility % Utility
Exogenous Microsoft 19.61 20.59 16.67 43.14 48.81 3,671 4.17%
Exogenous S&P500 24.51 29.41 10.78 35.29 43.75 -39,293 -44.02%
2 Exogenous 17.65 29.41 14.71 38.24 40 -19,609 -16.80%
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Analysis of Versions 1 to 4

Table 4.17 presents the average of the results obtained in the different parameters of the

Holt-Winters model, with the aim of analyzing which of the three versions showed superior

performance. It is important to highlight that all versions recorded a low percentage in

the “No Purchase” category, suggesting that the Holt-Winters model generally performs

active buying and selling operations.

It is observed that all versions have approximate values of 30 in the “Bad” category, indi-

cating that approximately 30% of the prediction sets result in inevitable losses. A similar

pattern is identified in the “Null” parameter, where the values are predominantly close to

20%, suggesting that 20% of the predictions conclude in operations where gains and losses

are inevitable.

Notably, all versions exhibit a “Confidence” index higher than 52%. This implies that

there is a degree of control in the predictions, dismissing the possibility that the results are

due to chance, similar to flipping a coin. This percentage indicates that more than 52% of

the predictions result in profits.

Finally, in the “% Utility” parameter, with the exception of version 4, all versions exceed

30%. This means that in versions 1 to 3, the Holt-Winters models achieved an average of

30% profitability on the investment made.

Table 4.17: Analysis of Results with Holt-Winters.

Holt-Winters
Versión Good Bad Null No Purchase Confidence Utility % Utility
Versión 1 42.5 31.25 21.25 5 54.94 27.49 31.45%
Versión 2 43.5 30.12 21.62 4.75 56.34 26.70 33.11%
Versión 3 38.85 31.12 24.75 5.26 54.94 20.66 34.78%
Versión 4 34.78 34.06 21.68 4.77 52.22 -0.32 16.47%
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In Table 4.18, the analysis of the average of the different parameters for each version of the

SARIMAX model is presented. One of the most notable findings is the high percentage

recorded in the “No Purchase” category. All values exceed 50%, indicating that in more

than 50% of the predictions, the model opts not to carry out buying or selling operations

of the asset.

Despite the low frequency of transactions, it is observed that in the “Confidence” category,

most versions of the model present values above 50%. This suggests that, although buying

and selling operations are infrequent, when these are performed, more than half turn out

to be correct.

Regarding the “% Utility” parameter, low percentages are registered. This situation seems

to be due to the fact that different implementations of the SARIMAX model yielded very

varied results, generating significant gains in some cases and losses in others. This behavior

of disparate results translates into a lower average utility.

Therefore, it can be concluded that the SARIMAX model prioritizes quality over quantity

in buying and selling operations. However, this approach entails less stability, as minor

variations in the model’s configuration can result in significantly different outcomes. This

characteristic underlines the sensitivity of the SARIMAX model to changes in its parame-

ters, which can affect both the effectiveness and consistency of its predictions.

Table 4.18: Analysis of Results with SARIMAX.

SARIMAX
Versión Good Bad Null No Purchase Confidence Utility % Utility
Versión 1 20.66 15.16 8.66 55.5 58.14 10.43 3.51%
Versión 2 19.66 15.5 10.66 54.16 54.74 -8.42 -7.41%
Versión 3 18.95 17.64 8.49 54.90 51.32 -4.06 0.59%
Versión 4 17.48 18.3 11.43 52.72 50 -3.44 -0.35%
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4.2.2 Cryptocurrencies

The values of Bitcoin fluctuate at much higher levels compared to stocks. Due to this,

although the “Utility” values are higher, the “% Utility” is not significantly higher than

what is obtained in the stock section.

Table 4.19 shows that the values in the “Good” category exceed 30, indicating that more

than 30% of the predictions result in buying and selling operations with beneficial outcomes.

Similarly, in the “Bad” category, the values are close to 30, suggesting that approximately

30% of the predictions lead to operations with unfavorable outcomes. The data in the

“Null” parameter show greater variability but remain between 25 and 30. This implies

that a significant proportion of the predictions result in operations where gains and losses

occur. It is noteworthy that in the “No Purchase” category, most of the values are below

10%. This indicates that the Holt-Winters model carries out buying and selling opera-

tions with high frequency. Regarding the “Confidence” parameter, most implementations

exceed 50%, suggesting effective control over the predictions, beyond the random outcome

comparable to flipping a coin. However, it should be mentioned that the performance of

one of the methods does not reach this 50% threshold.

Table 4.20 shows that most of the analyzed methods exceed the value of 40 in the “Good”

parameter. This indicates that approximately 40% of the prediction sets result in buying

and selling operations with net benefits. On the other hand, most methods present values

closer to 30 in the “Bad” category, suggesting that around 30% of the predictions conclude

in inevitable losses.

The values recorded in “Null” are notably low, generally around 10%, indicating that only

10% of the predictions result in a balance between gains and losses. This can be interpreted

as a greater ability of the model to generate predictions that lead to either clearly favorable

or unfavorable outcomes, rather than a neutral balance.

Consistently low values are observed in “No Purchase,” suggesting high activity in terms of
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buying and selling operations by the model. With the exception of one method, the values

in “Confidence” exceed 55%, demonstrating a higher degree of control in the predictions,

with more than 55% of the operations resulting in profits. It is relevant to note that the

same model that does not reach this threshold in “Confidence” is the same one that per-

forms poorly in the previous table, which might indicate its lower reliability compared to

the other analyzed methods.

Table 4.21, focusing on the SARIMAX model, shows low values in the “Good,” “Bad,” and

“Null” categories. This trend is attributed to the high values recorded in “No Purchase,”

indicating the model’s predisposition to refrain from carrying out buying and selling oper-

ations. Despite this tendency towards less transaction activity, the “Confidence” values are

notably high, except in cases where the “No Purchase” parameter is lower. This suggests

that although the model performs buying and selling operations less frequently, more than

50% of these operations are beneficial. Furthermore, it is observed that the “% Utility”

is considerably low, never exceeding 1%. A particularly notable aspect is that the most

effective methods correspond to those where the model performed fewer buying operations.

This suggests that this version of the SARIMAX model achieves more optimal results when

adopting a more conservative approach in its market operations.

Table 4.22 shows greater variability in the first three parameters, though the “No Purchase”

values continue to be predominant. Examining the “Confidence” parameter, it is observed

that most of the values either do not exceed 50% or just equal it. This indicates that

the model does not offer high reliability in guaranteeing a high success rate in buying and

selling operations.
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Table 4.19: Results with Holt-Winters Model Z.

Holt-Winters Z
Method Good Bad Null No Purchase Confidence Utility % Utility
Univariate 36.11 30.56 25 8.33 54.55 1,437.02 5.28%
Exogenous Ethereum 33.33 28.7 30.56 7.41 51.43 1,374.51 4.68%
Exogenous Volume 31.48 31.48 25.93 11.11 47.59 525.68 1.75%
Exogenous with 2 35.19 25.93 29.63 9.26 52.6 866.52 3.05%

Table 4.20: Results with Holt-Winters Model C.

Holt-Winters C
Method Good Bad Null No Purchase Confidence Utility % Utility
Univariate 41.67 30.56 17.59 10.19 55.3 1,413.54 5.06%
Exogenous Ethereum 48.15 33.33 12.04 6.48 57.78 1,354.21 4.45%
Exogenous Volume 37.96 40.74 9.26 12.04 49.18 760.73 2.38%
Exogenous with 2 43.52 34.26 11.11 11.11 55.56 1,158.52 3.92%

Table 4.21: Results with SARIMAX Model Z.

SARIMAX Z
Method Good Bad Null No Purchase Confidence Utility % Utility
Exogenous Crypto 10.19 6.48 6.48 76.85 54.9 158.95 0.53%
Exogenous Volume 22.2 23.15 18.52 36.11 47.83 -581.95 -1.94%
Exogenous with 2 13.89 8.93 9.26 68.52 57.14 249.13 0.85%

Table 4.22: Results with SARIMAX Model C.

SARIMAX C
Method Good Bad Null No Purchase Confidence Utility % Utility
Exogenous Crypto 28.7 21.3 11.11 38.89 56.18 50.03 0.31%
Exogenous Volume 30.56 40.74 3.15 5.56 46.26 247.93 0.79%
Exogenous with 2 21.3 22.22 9.26 47.22 50.67 140.65 0.45%
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4.3 Results of the Updated Version, Phase 3

The results obtained in phases 1 and 2 demonstrate the viability of implementing the

proposed models profitably. Additionally, throughout the development of this document,

further large-scale simulations were conducted. These simulations aimed to theoretically

determine the effectiveness of the models over specific periods.

During the experiments, four different versions were developed to stabilize the models and

achieve more consistent and reliable results. Among these, particularly notable are the

results of two versions.

The first version of the model proved capable of reaching a theoretical utility of 10-16%

over a period of 5-6 months, maintaining a stability of 60%. This means that in 60% of

the occasions the model was applied, results were sufficiently reliable to make investments.

It is important to note that the remaining 40% does not imply errors in the model but

rather that on these occasions, the model did not meet the established minimum prediction

standards, and therefore, no investments were made..

The second version of the model showed a theoretical utility of 5-9% over a period of 3

months, though its stability was considerably lower, at 30%. This implies that in 70% of

the occasions, the model did not recommend making investments because it did not reach

the established minimum prediction standards.
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Chapter 5

Conclusions

This study focused on evaluating the effectiveness of various models for predicting Bitcoin

values and Amazon stocks. The main goal was to offer a viable alternative to address the

challenges faced by individuals interested in entering the world of investments. To achieve

this goal, a methodology was implemented that included the evaluation of several methods:

Holt-Winters, Prophet, LSTM, SARIMA, and SARIMAX. Each of these models was used

to analyze the time series corresponding to Amazon and Bitcoin, aiming to make accurate

predictions about their values.

In this way, the main challenge faced by those interested in entering the investment world

is addressed: preparation and obtaining relevant information. In this context, the imple-

mented models take on the responsibility of studying and analyzing the historical values of

stocks and cryptocurrencies, generating predictions based on this data. This eliminates the

need for investors to have extensive prior knowledge of these assets or advanced training

in probability and investments areas.

Throughout this research, it was observed that the Prophet and SARIMA models were not

suitable for the specific needs of this study. These models yielded results with low accu-

racy, and generally, their predictions proved to be incorrect. This limitation highlights the

importance of selecting the appropriate model for this type of analysis.

As for the LSTM model, notable potential was identified, positioning it as one of the most
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effective and accurate for prediction in this field. However, its main limitation lies in the

high computational demand it requires. Additionally, the vast amount of possible hyper-

parameter combinations, each with a range of different values, significantly increases the

complexity of its implementation. These limitations prevented a deeper exploration of the

LSTM model in this study. Nonetheless, it is crucial not to discard this model, as its

potential for making accurate predictions is considerably high.

Finally, the models that proved to be most satisfactory in terms of results were Holt-

Winters and SARIMAX. These models not only provided valid and reliable predictions

but also, when evaluating their profitability, showed their potential to be effectively prof-

itable in the context of investments. Therefore, Holt-Winters and SARIMAX stand out as

valuable options to consider in making predictions in this field. It is important to highlight

that, although the SARIMAX model also presents a wide range of possible combinations

of hyperparameter values, these do not reach the level of complexity observed in the LSTM

model. This allowed for its more detailed analysis in our research. However, there was

a significant limitation in experimenting with SARIMAX due to the need to restrict the

number of values that each hyperparameter could adopt. Therefore, the positive results

obtained with SARIMAX represent only a fraction of the model’s full potential.

Therefore, this work successfully achieves the proposed objectives, demonstrating the util-

ity and relevance of the studied models in solving the challenges faced by individuals

wishing to enter the world of investments. The results obtained underscore the potential

of these analytical tools to facilitate more informed and strategic investment decisions.

Additionally, although it was not the main focus of this study, a notable relationship was

observed between Amazon and Microsoft stocks, showing similar behavior patterns over

extended periods. Regarding cryptocurrencies, this trend was even more evident between

Bitcoin and Ethereum, which exhibited parallel behaviors over significant periods, which

is particularly notable given the known volatility of these digital currencies.
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5.1 Future Research Directions

The future steps of this study will involve a thorough evaluation of LSTM and SARIMAX

models, leveraging their potential to the fullest by accessing the appropriate computational

resources for their training and analysis. This will be followed by an extended experimen-

tation phase, simulating several months of activity to yield more robust and reliable results

crucial for assessing their practical applicability. Subsequently, models that meet stringent

criteria will be selected for implementation in real market environments with actual mon-

etary investment, mirroring the same time interval used in the experimental phase. This

approach will enable a direct comparison between theoretical outcomes and those actually

obtained, serving as the definitive test of the proposed models’ viability.
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