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Abstract

Nowadays, mathematics and statistics are everywhere and are very important to
improve the performance of a company or industry. For example, in basketball
industry, professional teams, especially in the NBA use mathematics and statistics to
improve the player’s performance and to win games through the study of free throws.
Why study free throws? Statistical studies indicate that the number of points obtained
in games through free throws is between 20-25% of the total points in a game. It
means that the team that will win will be the team that has the highest probability in
order to obtain a successful free throw. Therefore, we propose a mathematical model
without interaction the board in 2D that which allows us to improve the probability to
obtain a successful shot in a player through the analytical, numerical, probabilistic,
and statistical study of the optimal release angle and release velocity. Since we are
not robots to throw exactly with the angle and velocity that give us. We will find the
maximum error allowed in release angle and velocity in order to continue having a
successful shot. We use MATLAB software to solve the equations, and problems of
univariate and multivariate optimization to obtain the solutions about the heights of
Shaq 2.16 m and Kev 1.83 m (author). In addition, we will include Monte Carlo
simulations to find the zone of success with the greatest probability of each throw and
thus validate our model. Finally, we will our conclusions through a comparative
analysis between simulated data and real data using a multiple regression model.

Key Words:

Free throws, release angle, release velocity, maximum error allowed, univariate
optimization, multivariate optimization, Monte Carlo simulations, multiple regression
model.




Resumen

Hoy en dia, las matemaéticas y las estadisticas estan en todas partes y son muy
importantes para mejorar el rendimiento de una empresa o industria. Por ejemplo, en la
industria del baloncesto, los equipos profesionales, especialmente en la NBA, usan las
matematicas y las estadisticas para mejorar el rendimiento del jugador y ganar juegos
a través del estudio de tiros libres. (Por qué estudiar tiros libres? Los estudios
estadisticos indican que el numero de puntos obtenidos en juegos a través de tiros libres
es entre 20-25% del total de puntos en un juego. Significa que el equipo que ganara
sera el equipo que tenga la mayor probabilidad de obtener un tiro libre exitoso. Por lo
tanto, proponemos un modelo matematico sin interaccion del tablero en 2D que nos
permita mejorar la probabilidad de obtener un disparo exitoso en un jugador a traves
del estudio analitico, numérico, probabilistico y estadistico del &ngulo de liberacion y
la velocidad de liberacion éptima. Ya que no somos robots para lanzar exactamente con
el angulo y la velocidad que nos dan. Encontraremos el error maximo permitido en el
angulo de liberacion y la velocidad para continuar teniendo un lanzamiento exitoso.
Utilizamos el software MATLAB para resolver las ecuaciones y los problemas de
optimizacion univariada y multivariada para obtener soluciones sobre las alturas de
Shag 2.16 m y Kev 1.83 m (autor). Ademas, incluiremos simulaciones de Monte Carlo
para encontrar la zona de éxito con la mayor probabilidad de cada lanzamiento y asi
validar nuestro modelo. Finalmente, sacaremos nuestras conclusiones a través de un
analisis comparativo entre datos simulados y datos reales utilizando un modelo de
regresion multiple.

Palabras clave:
Tiros libres, angulo de liberacion, velocidad de liberacion, error maximo permitido,

optimizacion univariante, optimizacién multivariante, simulaciones de Monte Carlo,
modelo de regresién mdaltiple.
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1 Introduction

Basketball is one of the most famous sports in the world, it is better paid than many other sports and one of the
most played. Basketball has millions of fans around the world. Apparently, basketball and mathematics seem to
have little in common. While basketball is a hugely popular sport in the world, mathematics have a considerably
smaller number of followers. Showing how math is used in basketball is a great way to make children and youth
more passionate with angles and statistics while helping them to realize how important mathematics are in
everyday life. If we analyze a little further these two concepts, there is much math in basketball than we think.
For instance, in free throws, mathematics are used to improve player’s performance, considering that, many
basketball games are won or lost on the free throw line. Studies [1] indicate that the number of points obtained
in matches through free throws is between 20-25% of the total scored in a game. It means that, if a match is
constantly tied, the match will be defined by the team that has the most success in their free throws. Now,
if we take as example the statistics of the famous basketball player Shaquille O’Neal, in the 2004-2005 season,
he reached a free throw percentage of 53 % in the qualifying phase, and in the direct elimination (Playoffs) he
reduced his percentage to 45% in free throws. For this reason, there is a famous saying (Hack-a-Shaq) that is
referred to make an intentional foul to players bad at free throws. It is often seen in the last few minutes of the
Professional Basketball League game that the team with lower scores may use Hack-a-Shaq against the player
in the other team who are bad at free throws, so the team with lower scores will greatly increase the chance to
win. Hack-a-Shaq is often used in NBA games to turn the match, but if every basketball player’s free throw
skill is good, then the Hack-a-Shaq will automatically collapse. Then, if every player can do both successful free
throws, it will greatly increase the chance of the team to win. Free throw shootings are therefore very crucial
in games, so it is necessary to apply math studies and hard training to improve basketball player’s free throw
skills as well as consistency and hit rate. Since throwing consistently could be an important part of the game,
most players perform training with throwing exercises to develop a consistent shooting technique. Initially, the
player must focus on understanding the best throw conditions, that is, at what angle and velocity should the
ball be thrown and where should it be aimed? For example, the release height of the ball influences the optimal
release angle having an effect also in where to aim. Due to a large number of factors involved, a great many
free throws must be studied to obtain an entire understanding of the optimal release conditions.

Studying the optimal release conditions through systematic experimentation with players can result ex-
tremely time-consuming. Therefore, an important alternative is to investigate the optimal release conditions
through computer simulations, in which many throws are investigated in a reduced time besides the analytical
study of it. From a mathematical viewpoint, basketball is a game of trajectories. These trajectories are unique
in the sense that the ball’s motion does not differ much when it is flying through the air, but then rapidly
changes when the ball collides with the hoop or the backboard. So, in this project we are going to carry out
a study of several mathematical models in basketball free throws, through computational simulations to find,
depending on the height of the player, which is the best release angle and release velocity for a successful throw.

Several studies about free throw shooting were developed by different researchers. Shibukawa [2] who
analyzed the angle and velocity of release for free throw, suggested that the release angle of a successful free
throw was 52-55°. Brancazio, [3], describes an analytical method and states that if a free throw shooting is
made with the minimum energy required, the player will have the best control and, therefore, the best chance of
success. In other words, he emphasizes the importance of throwing the ball with the minimum possible velocity,
which allows a smoother throw. In addition, he argues that the angle of 49° is the one that gives the highest
probability of a successful free throw based on the allowable margin of error for both the velocity and the release
angle. The optimal trajectory of the free throw is developed by Hamilton and Reinschmidt [4] who studied
free throws as a function of angle, velocity and, spin at release. They predict that a release angle of 59° with
7.26 m/s and a high backspin has an optimal trajectory. Tran and Silverberg [5] studied a three dimensional
numerical method to determine the math behind the optimal free throw and extended their results to bank
throws (reflected from backboard) [6]. Since a free throw takes about 1 second for a ball to reach the basket,
they found that about 3 hertz of backspin from the instant the ball leaves the player’s hands to when it reaches
the basket, is the best amount. Moreover, they argued that a 52° release angle allowed a great possibility for a
successful free throw. In that angle, the release velocity is the lowest, and the probability of the throw being
successful is the greatest. On the other hand, Gablonsky and Lang [7] studied a two dimensional analytic and
numerical model. They started by proposing a model with ideal conditions in which they assumed that the best
release angle is the one that achieves enter right through the center of the ring. This model assumes the player
has consistency in his release velocity, that is, there is no expected error in the release velocity; however, it is
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not consistent in its release angle, that is, there is an expected error for each release angle. Then, to find the
best angle, only the expected angle error is maximized and with that angle, its velocity is found so that the ball
enters through the center of the ring. Then, they noticed that in order to define optimal release conditions, has
to be maximized the expected error in angle and velocity. Therefore, they proposed another model, based on
the best trajectory with the use of a multiobjective optimization in which the best trajectory is one that puts
five times as much emphasis on the error in velocity as on the error in angle. Finally, they found that the best
angles were from 52° to 56° and the best velocities from 6.64 m/s to 7.34 m/s for heights from 1.52 m to 2.21
m. Barzykina [8] suggested that the optimal throwing conditions are determined numerically by maximizing
the expected number of successful throws given the error pattern inherent to the player. Moreover, his analysis
is supported by Monte Carlo simulations and a series of free throws.

Therefore, the main objective of a basketball game is to win the game by getting as many baskets as possible,
either free throw of 2 or 3-points throws. So, for the coaches it is very important to make their players take
advantage of every opportunity they have to make a basket and over all, not missing the free throws that are
one of the most important strategies to win, since these are the ones that most occur during a game allowing
the team to beat matches and even championships. During free throws, points are scored by shooting the ball
through a horizontal hoop, elevated 3.05 meters from the ground. The release conditions: velocity, angle, and
height, have been considered the principal factors determining the outcome of a basketball throw. Therefore,
the question of many basketball coaches is what is the best free throw shooting? That is, what is the best angle
and release velocity that a player of a certain height must have to score a basket? The main aspects to solve
these questions are the analytical, numerical, probabilistic and statistical methods involved in the mathematical
study of free throws with interaction with and without the board in 2D and 3D. We will focus on a 2D model
proposed by Gablonsky and Lang [7], in which we will follow their methods to obtain our optimal release
angle and velocity. We use MATLAB software to solve the equations and obtain the solutions, as well as for
developing our own codes to find optimal release angles and velocities. In addition, we will use the methodology
by Barzykina [8] to include Monte Carlo simulations to simulate the normal bi-variate random variable that
will allow us to simulate millions of free throws given a target point (optimal release angle and release velocity),
in which we will verify the number of successful throws obtained for each simulation of different targets which
allows to find the zone of success with the greatest probability of each target and thus validate that our throw
is in the greatest zone of success. Finally, we will apply this last methodology to validate a mathematical model
with real data from a semiprofessional basketball team of Ecuador, combining the methods and analysis from
Gablonsky and Lang[7] through a comparative analysis between simulated data and real data using a multiple
regression model with the help of R software.

The rest of the work has been organized into 6 sections. Section 2 introduces classic mathematical concepts
that are necessary for the resolution of the model as, uniobjective and multiobjective Optimization using a
computer algebra system’s routine, Markov chain, Monte Carlo simulation to reproduce a million shot free throw,
and multiple regression model to analyze real data obtained from a semi-professional basketball team. In section
3, the mathematical and numerical analysis of the model is performed using the methodology of Gablonsky and
Lang [7] divided into three cases, which consist mainly of studying the projectile motion equations for a free
throw, finding a feasible throwing range depending on the height of the player and find the allowed errors for
both the angle and velocity of release. In section 4 a probabilistic analysis is performed by using the Barzykina
methodology [8] to validate our model of best free-throw. In section 5 we will study a statistical analysis where
we make a comparative analysis between simulated data from section 3 vs real data using a multiple regression
model for basketball free throws. Finally, in section 6 we present some conclusions and recommendations.

2 Preliminaries

In this section, we will introduce classical mathematical concepts that will be necessary for the resolution of the
model.

2.1 Numerical Optimization with MATLAB

In this subsection we will study the Optimization problem with the Toolbox of MATLAB, apply the different
methods of optimization functions without constrains for one and several variables.

From a mathematical perspective, optimization tries to find the maximum and minimum of a function that
depends on one or more variables.
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2.1.1 Minimization of a Function

We are going to enunciate some definitions and theorems of Mathews’s and Fink’s [9] book for the optimization
problem.

Definition 2.1.1 (Local Extremum). The function f is said to have a local minimum value at x = p, if
there exists an open interval I containing p so that f(p) < f(x) for all z € I. Similarly, f is said to have a local
maximum value at « = p if f(z) < f(p) for all x € I. If f has either a local minimum or maximum value at
x = p, it is said to have a local extremum at z = p.

Definition 2.1.2 (Increasing and Decreasing). Assume that f(z) is defined on the interval I.
(i) If 1 < a9 implies that f(z1) < f(z2) for all x1,z2 € I, then f is said to be increasing on I.
(ii) If 21 < xo implies that f(x1) > f(x2) for all x1,z9 € I, then f is said to be decreasing on I.
Theorem 2.1.1. Suppose that f(z) is continuous on I = [a,b] and is differentiable on (a,b).
(i) If f'(z) > 0 for all z € (a,b), then f(x) is increasing on I.
(i) If f'(z) < 0 for all z € (a,b), then f(x) is decreasing on I.

Theorem 2.1.2. Assume that f(z) is defined on I = [a,b] and has a local extremum at an interior point
€ (a,b). If f(z) is differentiable at « = p, then f’(p) = 0.

Theorem 2.1.3 (First Derivative Test). Assume that f(z) is continuous on I = [a,b]. Furthermore, suppose
that f/(z) is defined for all z € (a,b), except possibly at x = p.

(i) If f'(z) <0 on (a,p) and f'(x) > 0 on (p,b), then f(p) is a local minimum.
(ii) If f'(x) > 0 on (a,p) and f'(z) < 0 on (p,b), then f(p) is a local maximum.

Theorem 2.1.4 (Second Derivative Test). Assume that f is continuous on [a,b] and f’ and f” are defined on
(a,b). Also, suppose that p € (a,b) is a critical point where f'(p) = 0.

(i) If f’(p) > 0, then f(p) is a local minimum of f.
(ii) If f"(p) < 0, then f(p) is a local maximum of f.

(iii) If f”(p) = 0, then nothing can be affirmed.

2.1.2 Golden Ratio Search and Parabolic Interpolation

Another method for finding the minimum of f(z) is to evaluate the function many times and search for a
local minimum. To reduce the number of function evaluations, it is important to have a good strategy for
determining where f(x) is evaluated. The most efficient methods are called the golden ratio search and
parabolic interpolation. See [10] for more details about the algorithms.

Golden-Section Search

e Pick two initial guesses, x; and x,,, that bracket one local extremum of f(x).

1+v5
5.

Choose two interior points x; and x5 according to the golden ratio ¢ =

d=(¢p—1)(xy — 1),
1 =2 +d,

To = X, — d.

Evaluate the function at x; and .

If f(z1) < f(x2), x2 becomes the new lower limit and x; becomes the new z2 (see Figure 1).

If f(z2) < f(x1), x1 becomes the new upper limit and x5 becomes the new x;. (see Figure 1).
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e The benefit of using golden ratio is that we do not need to recalculate all the function values in the next
iteration.

e In any case, only one new interior point is needed and the function is only evaluated one more time.

flx)t Extremum f(z) T
Eliminate (maximum)

]V

xy T2 X1 Ty,

S 4

XY ——— g —> 1

A
S8

Tu Oldfﬁcz oﬁi T

Figure 1: Golden-Section search.

Parabolic Interpolation. Another algorithm uses parabolic interpolation of three points (see Figure 2) to
estimate optimum location. The location of the maximum/minimum of a parabola defined as the interpolation
of three points (z1, 2 and z3) is

1 (xg — xl)z[f($2) — f(3)] — (22 — 933)2[f(1‘2) — f(=z1)]

Ty = T2 — =

2 (w2 —2)[f(22) = flas)] — (z2 — x3)[f(22) — f(z1)]

The new point z4 and the two surrounding it (either z; and x2 or z2 and z3) are used for the next iteration
of the algorithm. See [10] for more details about the algorithm.

Parabolic
approximation
of maximum

True maximum

J@) Truefunction\‘\

Parabolic
function

Xy Xy Xy X3 X

Figure 2: Parabolic Interpolation

2.1.3 The function fminbnd

Problems of optimization function without constrains for one variable, are formulated mathematically in the
following way:

min f(z) such that 21 <z < 9,
T

where, z, x1 and x5 are finite scalars, and f(z) is a function that returns a scalar [11].

This function looks to find the variable z, in the real domain, that minimizes the function f. That is, that
the value of the function evaluated in x is the minimum value that can reach f in the region defined by the
“limits” imposed on .
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MATLAB has a built-in function, fminbnd, which combines the golden-section search and the parabolic
interpolation. It finds the minimum of a function of one variable on a fixed interval, and have the following
syntax:

x = fminbnd(Q fun, x1, 2, options).

This function returns the solution to the variable x, which is defined by fun. In the optimization functions,
the name of the function is preceded by Q.

Note that the solution is the scalar that minimizes the value of the function f, and the parameters x; and
9 define the search region of the solution. In the defined parameter options. The parameters can be specified
both of the algorithm and of execution of the function. If it is not used, since these parameters have default
values, you can put [-] in its place, or simply skip it.

[z, fval] = fminbnd(Q fun, z1, x2, options).

In this case, also in fval, the value of the function f is returned evaluated in the solution x.

2.1.4 The function fminsearch

Another method for finding the minimum of f(x) but in this case with several variables is the Nelder-Mead
Method.

A simplex method for finding a local minimum of a function of several variables has been devised by Nelder
and Mead (1965). For two variables, a simplex is a triangle, and the method is a pattern search that compares
function values at the three vertices of a triangle. The worst vertex, where f(z,y) is largest, is rejected and
replaced with a new vertex. A new triangle is formed and the search is continued. The process generates a
sequence of triangles (which might have different shapes), for which the function values at the vertices get smaller
and smaller. The size of the triangles is reduced and the coordinates of the minimum point are found. The
algorithm is stated using the term simplex (a generalized triangle in N dimensions) and will find the minimum
of a function of N variables. It is effective and computationally compact [9].

So, the problem of optimization function without constrains for several variables, is formulated mathemati-
cally in the following way:

min f(x),

where f(z) is a function that returns a scalar, and z is a vector or a matrix [11].

This function seeks to find the vector x, whose components belong to the real domain, which minimizes the
function f. That is, the value of the function evaluated in = is the minimum value f can reach . This type of
problem is usually called Nonlinear Optimization without restrictions and can be solved using the Nelder-Mead
method [11].

MATLAB has a built-in function, fminsearch, which uses the Nelder-Mead simplex algorithm as described
in Lagarias [12]. This is a direct search method that does not use numerical or analytic gradients. Therefore,
this function fminsearch can be used to determine the minimum or maximum of a multidimensional function
and have the following syntax:

x = fminsearch(Qfun, zg, options).

The function fminsearch finds the value of the variables x that minimize the function described in fun,
starting with the initial value specified in z.

2.2 Monte Carlo simulations

Monte Carlo simulation is a technique used to understand the impact and uncertainty in probability models.
The precision of the simulation depends on the precision of the model. We can say that, simulating aims to
duplicate characteristics and behaviors own of a real system [13]. As an example we can estimate the value of
m = 3.141592 . .., using a Monte Carlo method. This methods consists of drawing a square with an inner circle.
We then generate a large number of random points within the square and count how many fall in the enclosed
circle.
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Figure 3: illustration of the Monte Carlo method used to calculate ¢. Red points are bounded by a circle of
radius % and blue points are outside the circle and within the unit square.

e The area of the circle is wr2.

e The area of the square is width? = (2r)? = 4r2.

If we divide the area of the circle, by the area of the square we get 7.

The same ratio can be used between the number of points within the square and the number of points
within the circle.

e Hence we can use the following formula to estimate 7,

number of points in the circle
T=4x

total numbers of points

As another example, if we assume that the probability to see the number of faces in a coin toss experiment
is unknown, we can perform the experiment of throwing the coin n times and to approximate the probability
of faces p(C) that appear as

Number of faces observed

p(C)

= Number of times the experiment was ezecuted

Nevertheless, for many practical problems, it is not possible to determine probabilities by running exper-
iments a large number of times. With today’s computer processing capabilities, it just needs a high-level
language, which can generate random numbers, to deal with these problems.

Monte Carlo methods are a class of computational algorithms that can be applied to a wide range of prob-
lems, and are based on random repeated sampling and provide generally approximate solutions, they are used
in cases where analytical or numerical solutions do not exist or are too difficult to implement.

In this work, ball launches will be simulated considering the angles and velocities to validate a mathematical
model that represents in a reliable way the reality of a basketball game. The methodology allows to introduce
new variables, to vary their values, to analyze the consequences of these modifications, with the objective to
make optimal decisions.

e Advantages

— It is a direct and flexible method.
— There are many programs and languages (Matlab, R, Phyton, etc) designed to simulate.

— When the mathematical model is very complicated, the simulation allows obtaining an approximation.
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— The simulation allows formulating extreme conditions with the launches.
— Simulation does not intervene in the real world, it allows experimentation.

— Simulation allows solving problems that have no analytical solution.

e Disadvantages

— A good simulation can be complicated when there are a large number of variables.
— Simulation does not generate optimal global solutions.

— It does not provide the decision to be made if it does not solve the problem by means of an approxi-
mation for initial conditions.

— Each simulation is unique, and chance intervenes.

Monte Carlo methods generally follow the following steps:
e Determine the statistical properties of the possible entries.
e Generate many observations of possible entries that follow the properties noted above.

e Perform a deterministic calculation with these data sets.

Statistically analyze the results.

1
e The error in the results generally decreases as ——.

VN

2.2.1 Monte Carlo Integration

The basic idea of the Monte Carlo (MC) method is to write the integral desired as an expected value with
respect to some distribution of probability. Suppose that we want to calculate the integral of some smoothed
function in a known range (a,b), that is:

b
I= / g(0)d6. (1)
The integral given in (1), can be written as:

b
1= / (b—a)gw)ﬁde:m,b) [(b— a)g(8)] .

where U(a,b) is a random variable whose distribution is uniform at (a,b).
The method of the moments is an estimator of this quantity, that is,

L1
I1=- b— 0;),
- ;:1( a)g(6;)
where 61, ...,0, is a random sampling selected from a uniform distribution over (a,b).

Algorithm: Monte Carlo.

1. Are generated 01, ...,0, ~ Ul(a,b).
2. It is calculated g(601),...,9(0n).
3. It is estimated g = 2 37" | g(6;).

4. Tt is approximated I = (b—a)g.
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A generalization can be obtained clearly. Let

1= Eplg(9)],

be the expected value of g(8) with respect to a probability density function p(#). The algorithm is similar to
the previous one, only sampling modifications are made in step [1]; that is, there are generated 61, ...,0, ~ p(-)
instead of a uniform and the rest is the same. The multivariate extension is based on the following;:

by by
1:/ / 9(0)d6,

F= 2900,

=1

and the Monte Carlo estimator is:

where 61, ...,0, is a random sample selected from the uniform distribution over (ai,b1) x ... X (ap,bp).

2.2.2 Monte Carlo method with importance sampling

Monte Carlo method with importance sampling is a technique developed to reduce the variance estimator.
Consider explicitly that the integral I of interest is the expected value of a given function g with respect to a

p.d.f. p(-):
_ _ p(z)
1/9(17)?(5”)5150/g(ﬂf)mh(x)d%

where h(z) is a positive function for all z, p(z) > 0 and [ h(z)dz = 1. An alternative method to the moments
one is the following, let:

where
w(z;) = p(z;)/h(z;) and z; ~h(z), i=1,...,n,
h is the importance function, and
= 1
Var (I) = —/ [9(z)w(z) — 1]2 h(z)dz.

These methods can be used to solve some Bayesian inference problems, such as when you want to evaluate
E [g(8)|z].

Algorithm: Monte Carlo with importance sampling.

1. Tt is generated 64, ..., 60, from p(f|x) or from h(9).

2. It is calculated:

9(0:) P(0;]z)

gi=g9(0;) or g = 1(0;) )

3. It is obtained the estimator:

Blg(0)) = 1 >

Mathematician 11 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

2.2.3 Estimation of errors

Given any arbitrary probability distribution and provided that a random variable can be sampled appropriately
from the distribution (i.e., z ~ f(z)) Monte Carlo simulations can be used:

e To determine the properties of the distribution (such as media, fashion, variance, quantiles).

e To determine the confidence intervals, that is:
p(r > a) = / f(z)dz.

e To determine the composition of the functions of the random variables, that is,
p(z), p(h(x)), h(z) = 2°, p(z) = cos(x) — sin(z), ...

For example, assume you have N that follow a normal probability model x; ~ N(0,0), i =1,...,N, and
you want to determine the uncertainty about the mean. The estimator of the mean is

1 N
ﬂ:j:N;xw

and its uncertainty is

Algorithm: the Monte Carlo algorithm for this problem will be:

Step 1: to generate a set of IV random variables

y; ~ N(0,0), i=1,...,N.

Step 2: to calculate the mean of the sample
N
1
Y= N Zl Yi-
i=

Step 3: to repeat M times Step 1 and Step 2.

Step 4: to calculate the uncertainty of the mean 65 , such that

1 N 2
&;:Mflz(gj_g) )
j=1
where
1N
Z):MZ?J"
j=1
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2.2.4 Bivariate Normal Distribution

In order to perform the Monte Carlo simulation we need to simulate a random variable, in our case it is the
Bivariate Normal. Let z1, 22 ~ N(0, 1), which we will use to build a general Bivariate Normal Distribution

o= e -t 8]

We want to transform these unit normal distribution to have the following arbitrary parameters : pg,,
,U”Uo 7000701)0?p' Let)

0o =09, Z1 + 116, (2)
Vo =0, {PZ1 +4/1- Pzzz} + pv, - (3)

Marginals: first, lets examine the marginal distributions of 8y and Vj.

0o = 00,21 + o,

= a9, N(0,1) + g,
N(pgy,03,)- (4)
Vo = oy, [ﬂZ1 + ﬂ%} + v,

= ov, [PN(0,1) + VT = PN (0,1)] + v,

= ovy [N(0,p%) + N (0,1 = p)+] + v,

= oy, N(0,1) + py,

= N (v, 02,)- (5)

Covariance and correlation: second, we can find Cov(6y, V) and p(6g, Vp).

Cov(6y,Vp) = E :(90 — E(8o)) (Vo — E(Vo))}

=F (00021 +Mt90 - Meo) (UVO [le + V 1- p2Z2:| +:U’V0 - /’LVO)‘|

=E (09021) (JVO {le +V1 _p2ZZ] +/1‘V0)
= O’gOO'VOE |:pZ12 =+ 1/ 1-— ,022122]

= 0g,0v,pE [Zﬂ

= 0000V, Ps

and

Cov(by, V¢
p(6o, Vo) _Covtbo, Vo) =p
O'QOUVO

Consequently, if we want to generate a Bi-variate Normal random variable with 68g ~ N (ug,) and Vo ~
N(pv,, 0‘2/0) where the correlation of 6y and Vj is p we can generate two independent unit normals Z; and Zs
and use the transformation:
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0o =00, 21 + 16, (6)
Vo =ov, {pZ1 +v1- 02] + L - (7)

General Bivariate Normal- Density (Matrix Notation): we can find the density from using matrix
notation,

flz) = %(det 2) " Peap [—;(z — )Rz - u)] :

where

co (), = (M), wo( B Prow)
z2)’ 1A% ’ PO6,0V, Ty,

We can confirm our results by checking the value of (detX)'/2 and (z — )T~ (z — p) for the bivariate
case:

(det X) 7% =(03, 0%, — pog,ot,)
_ 1
_UGOUVU(l - P2)1/2 .

Recall for a 2 x 2 matrix,

fa b I A R A S | d b
A_(c d)’ A _detA<—C a)_ad—bc<—c a)'

Then,

1 21 — 4 o; - -
T-1 1= 1o, 6 PIOIVo ) (21— Ko
z— X)) = e ’

( H) ( :u) 0300‘2/0(1 _ p2) (22 — ,uVo> <p0’900'\/0 0'\2/0 22 — vy,

T
_ 1 0\2/0 (Zl - :u‘9o) — PO6OV, (’22 - :U‘VU) 21 — Moo
03 0%, (1= p?) \ —poe,0v, (21 — po,) + 05 (22 — 1y Zy — [y,

1
= m(agfo(m - Meo)z —2p0g,0v, (21 — oo ) (22 — bvgy) + 030(22 - MVO)Q)
007 Vo
_ 1 [z pen)® _2p(21—ﬂeo)(22—ﬂvo) L (2o w)?
1 — p2 O.gl) O-QOUVO 0‘2/0

2.3 Regression analysis model

The regression aims to determine a simple mathematical function that describes the behavior of a variable given
the values of one variable or several variables, we will focus on the book of Seber and Lee [14] to define each of
these.

2.3.1 Simple linear regression
Let’s assume a model in the form:
yi=PBo+Prrit+e 5 i=1,...,n,

where
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e y,; : r.v. that represents the i-th observation of the response variable, of the predictive variable X.
e 3= (po, p1) is a vectors of parameters.

e 1, : represents a independent variable or covariable.

e ¢;: unobservable random error associated with y;.

Example 2.3.1. The budget of a university whose variation can be predicted by the explanatory variable
number of students. In the term of the random error it can be included, the effect of the number of professors,
the number of laboratories, the available surface of facilities, the number of administrative personnel, etc.

Least Squares Estimation : let L =X, + o} [yz — (Bo + ﬂlxi))]Q, minimizing L we have:

o =701z, and B = S(géy)7
where
1.z = Zin
2. §=2L,

3. 52 = Ziloza),

x n

2 _ TP (wi—9)?
4. 82 = Zm)?

5. Szy — Z?(wi—i)(yi—@)'

Estimated regression line

gi=Bo+Biwxi  or  gi=y+ Bi(xi —T).
where
. 31: the variation that occurs in ¢ for each unit of increase in x.

Linear correlation coefficient (is a measure of the linear association of the variables x and y)

S(x,y)

1<r<l1.
5.5, <r<

T =

e If r = -1 then there is a negative relationship between x and y.
e If r = 1 then there is a positive relationship between x and y.
e If r = 0 then there is no linear relationship between x and y.

Analysis of Variance
If yj; are estimators of y; then,

vi — ¥ = (i — ¥s) + (s — 9)-

Basic equation of the analysis of variance

Z(yz -9)? = Z(yz — )% + Z(ﬁz -9)%
This equation may also be written as:
SST = SSE+ SSM,

where SS is notation for sum of squares and T, M and E are notations for total, model and error,
respectively.
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ANOVA TABLE
Source of Variation | Sum of Squares | Degrees of Freedom | Mean Square F
- — —— — MSM
Regression SSM = > (y; — ;Ay)2 1 MSM —SEEM e
Error SSE = > (y; — 4:) n-2 MSE= @
Total SST = > (y; — y)? n-1 MST= 225

Table 1: ANOVA for simple regression.

Coefficient of determination

It is the statistic that represents the proportion of variation explained by the regression.
o If R? = 0, then SSM = 0. So the model does not explain anything about y since z.

o If R? =1, then SSM= SST. Then y depends on .

e A value of R? close to 0, lowers the explanatory capacity of the line.

e A value of R? next to 1 increases the explanatory capacity of the line.

The hypothesis regression test

{Hoiﬂlz(l
leﬂl#O.

Setting a level of significance «, it is rejected Ho if Fezp > Fo1,n—2-

2.3.2 Multiple linear regression

The r.v. y is related with k explanatory variables x1,--- , g,

y = Bo+ P11+ Box2 + ... + Brxi + €.

The parameters Bg, 51, ... B; are estimated for least squares. For n observations it can be written:

1 = Bo + Biz1n + Baiz + ...+ BrTak + €1,

Yn = Bo + B1Zn1 + BoTna + ...+ BrTnk + €n.

In matrix notation

Y = X8 +e¢,
where,
1z T1g
1 x91 Tok Bo €1 Y1
X = 1 ) 5 = ) €= : ’ Y = .
. Bk €n Yn
1 =z, : Tnk

The coefficients vector 3 is estimated by least squares by:
B=(X'X)"1Xty.

The resulting regression adjusted equation is:
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Analysis of Variance

Basic equation of the analysis of variance

Z(yi -9 = Z(yi — )% + Z(l]z‘ - 9)%
This equation may also be written as:

SST = SSE+ SSM,

where SS is notation for sum of squares and T, M and E are notations for total, model and error,
respectively.

ANOVA TABLE
Source of Variation Sum of Squares Degrees of Freedom | Mean Square F
i _ | — S8M MSM
Regression SSM = B'X'Y" — L (3 y:)* k MSM = =222 b
Error SSE = Y'Y — B! X'Y n-k-1 MSE= _22F_
Total SST =YY — (3 u:)? n-1

Table 2: ANOVA for multiple regression.

Multiple Determination Coefficient

SSM SSE
2 = — = 1 _—— < 2 < 1.
R SST SST’ 0=k <

Represents the proportion of variation of y explained by the regression.

e If R? = 0 then, SSM=0. Then, the model does not explain anything about the variation of y from its
linear relationship with x1, ..., zg.

e If R? =1, then, SSM= SST. Then, all the variation of y is explained by the terms present in the model.
e A value of R? close to 1. Then, a greater amount of total variation is explained by the regression model.

Adjusted coefficient of determination

>t
52 o n—k—1
F=1-va
n—1
€ = Yi — Yi-
The hypothesis regression test
Hy:p1=p=...=0,=0,
Hy:8; #0 forsome j=1,... k.

Setting a level of significance a, it is rejected Hy if Fezp > Fo 1 n—2-
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2.4 Model of basketball free throw

The problem of a free throw is considered to be a special case of two-dimensional motion also known as projectile
motion due to the position from which the projectile leaves is not at the same level that the one has it to reach
(ring). Since we ignore the air resistance, the projectile follows a curved trajectory shaping to a parabola.
The fate of a free throw depends on the casting conditions, the height of the player, the throwing velocity the
throwing angle and the condition of 3 hertz of backspin equivalent to three revolutions in the air, from the
instant the ball leaves the player’s hands to when it reaches the ring, studied by Tran and Silverberg [6]. So, our
question is, what is the optimal angle 6y and velocity V|, for throwing a ball? Since the player never throws the
ball in the same way, because we are not robots, the answer to the question that will be to find the trajectory
(Vo,80) with the highest error allowed. That is, we will find the angle and velocity which allows greater error
with respect to Vy and 6y and continue having a successful release.

To address the problem of finding an optimum release angle and velocity for the ball to enter the basket
under ideal conditions, we are required to take several steps and make several assumptions in each of the cases
of our model.

Assumptions:

1. Allow only trajectories that go straight to the ring.

2. Ignore air resistance.

3. Ignore any spin that the ball may have.

4. Assume the player always throws in a straight line, this makes the model bi-dimensional.
5. There is no error in velocity release.

6. The best trajectory is when the ball enter through the center of the ring.

7. The player is 2,16 to Shaq and 1.83 to Kev (Author) meters high.

Together with well established assumptions, there are several constants (see Figure 4) given to help finding and
relating the release angle and release velocity:

h=Hs— H,

4.10 m
Hs = 3.048 m

Figure 4: the mathematical variables and constants related in the free throw.
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1. Rim diameter (Dr): 0.457 m.

Ball diameter (Db): 0.244 m.

The horizontal distance from the player position to the center of the ring (I): 4.10 m.
Height of player (H;): 2.16 m.

Vertical position of center of the ball at release (Hz): Hy * 1.25 m.

Vertical position of the ring (Hjz): 3.048 m.

Vertical distance traversed (h): Hz — Hs.

© N o W

Acceleration due to gravity (g): -9.81 .

The trajectory of the ball can be defined through the study of the following set of equations: let Vj) be the
initial release velocity and 6 be the release angle.

Horizontal motion: given a time ¢ > 0, the horizontal position of the ball at time t is
x(t) = Vocos(0o)t. (8)

Vertical motion: assuming the origin is located at the release point of the ball (see Figure 4), the vertical
position of the ball at time t is

y(t) = Vosin(B0)t + 3ot* (9)

We will develop the mathematical model, reviewing articles mainly from Gablonsky and Lang [7], Silverberg
and his contributors [5, 6], and Barzykina [8]; verifying in detail their calculations and developing numerical
simulations. Through the reading process, we will find out other criteria to improve the current results. In
addition, we want to optimize some calculations and propose some other methodologies to accurate the optimal
interval of free throw shootings. We will perform a numerical analysis in the MATLAB software to reproduce
the results obtained in the literature and to compare among them. During the first part, we will work on a
2D model proposed by Gablonsky and Lang [7] in which we will study and provide more details to the used
methodology. Then, we will find a proper range of angles for the ball reaching the ring without exceeding it
and satisfying the model conditions. Also, we will propose new criteria to obtain the range that 6y can take for
the “angles of the front of the ring” as they are named in the article. In addition, we will use the Barzykina [8]
methodology to validate the model by Monte Carlo simulations with the multivariate normal distribution and
obtain simulated data. After completing the 2D model, we will make a pilot experiment in a semiprofessional
basketball team in Ecuador to obtain real data, to finally make a comparative analysis between simulated data
and real data using a multiple regression model for basketball free throws. For future work we would like, to
adapt the 2D strategy to a 3D model by removing some restrictions such as the ball going straight to the center
of the ring, and allowing the ball hitting the board.

2.4.1 General Objective
To determine the optimal angle and velocity in free throw shooting in a pilot experiment on a semiprofessional
basketball team in Ecuador.
2.4.2 Specific Objectives
1. To understand the mathematical aspects of a free throw shooting in basketball in two dimensions.
2. To find the optimal region of angles and velocities where the throws are successful.
3. To validate the theoretical model using Monte Carlo simulations.
4. To use MATLAB to determine the optimal solutions and to compare by means of graphics.
5

. To use R software to make a comparative analysis between simulated data and real data using a multiple
regression model for basketball free throw.
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3 Mathematical and numerical analysis of the model

The modeling process typically begins with the construction of very simple cases which are easy to solve. Then,
the cases are refined to make them more realistic, which in turn requires the introduction of more mathematics
in order to solve them. Finally, the model should be refined enough to describe reality as closely as possible
while still being solvable. We will see this refinement process in action as we go through the modeling procedure.
In this section, we are going to discuss three cases for the development of our model of basketball free throws.
For all three cases, we must take into account the assumptions and constants that were defined in section 2.4.
Our model has excluded air resistance due to free throws are characterized by low velocity and short-time travel.
Hamilton and Reinschmidt [4] performed a qualitative study of the inclusion of air resistance and proposed that
any derived optimal release angles would be lower by approximately 2 degrees. For the first case, we will assume
that the players keep consistent only their release velocity but not their release angle. This will be enough to
find an angle 6y that allows throwing with higher or lower angles to this and still have a successful throw, that
is to find the angle with the highest error allowed. For the second case, we divided it into two parts. In the
first part, we will stop considering assumption 6, which now will allow the ball entering by any position of the
ring, then we will find the optimal release angle in a similar way to the first case. In the second part, we will
stop considering assumptions 6 and also 5, which means that we must find the error allowed for the release
velocity since this will no longer be consistent. Finally, in the third case, we will find the best trajectory by
making a relationship between the percentages of error allowed between velocity and the release angle through
a multiobjective optimization with heuristic criterion.

3.1 First Case

When we see basketball players throw free throws, we notice that sometimes they make small mistakes in the
throws and they are still successful, this is due to each player has an amount of error allowed to get successful
throws. This amount of error will depend on the initial angle at which the ball was thrown and its release
velocity.

3.1.1 Problem definition

For the first case of our model, we will consider that the player is not consistent in his throwing angle but
is consistent with its release velocity; this means that the player will only have an error in his release angle.
Therefore, we will begin by defining the problem in the following way: given the height of a certain basketball
player, what is the best angle for the player to throw the free throw by having a fixed release velocity?

3.1.2 Mathematical Analysis.

Now, we consider a special case of two-dimensional motion also known as projectile motion. Since we ignore
the air resistance, projectiles follow a curved trajectory shaping a parabola. So, our question is, what is the
optimal angle 6y for shooting a ball? Moreover, we know that the optimal angle 8y for reaching the maximum
horizontal distance, with a minimum velocity, is 45°. This is due to ground-to-ground projectile motion i.e. a
projectile launched from the origin returns to the same horizontal level. In basketball, the shooting problem
is that the beginning level is different from the final level. Therefore, the optimal angle in basketball shooting
problem is different from the optimal angle in ground-to-ground projectile motion.

The trajectory of the ball can be defined by equations (8) and (9): let V be the initial release velocity and
0y be the release angle. Then the horizontal Vi and vertical Vi, components of the velocity are

Vi = Vocos(6y),
Vv = Vpsin(6y).
Horizontal motion: given a time ¢ > 0, the horizontal position of the ball at time t is

l‘(t) = VHt,
x(t) = Vpcos(0o)t. (10)
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Vertical motion: assuming the origin is located at the release point of the ball (see Figure 4), the vertical
position of the ball at time t is

1
y(t) = Vvt + Sgt*,

1
y(t) = Vosin(fo)t + égtz, (11)

where ¢ is such that 0 < ¢ < 7T and T is the time for the ball reaching the center of the ring. Note that we are
considering the gravity, g, to be negative. Evaluating at t =T

x(T) =1 = Vycos(0o)T, (12)
1
y(T) = h = Visin(6y)T + igTQ. (13)
By, (12) we have
l

T = s (14)

In order to find the initial velocity V for the ball goes through the center of the ring, given an initial angle,
and an explicit relation between Vj and 6y, we replace (14) in (13) to get

Vosin(6p)l 1 gl?
h= +x

Vocos(Bp) 2 VZcos?(0o)
gl?

1

We solve for Vj,

1 gl?
h — t&n(o) = 54‘/020082(90)’
g- 12 2.2
=1 -tan(ge)) ~ o eos (bo):
! —g
— . ].
Vo 008(90)\/2(l-tan(90) s (15)

We note that (15) is real valued for [ - tan(6yp — h) > 0. Therefore, the release angle, fy, is such that
tan~1 (1) < 0, < 90°.

We stress the right choice of 6y so that the ball at least reaches and also does not pass the ring. This will be
important for the numerical methods used to find solutions later in this work. Then, to determine the adequate
range of angles, we need to study the methods to obtain the maximum height and maximum horizontal distance
as follow.

For the maximum height of the ball, first let us find the time when the ball reaches its maximum height.
Let Vj be a given velocity such that there exists 6, with vertical motion (11) at time t. Then,

1
y(t) = Vosin(fa)t + igt2. (16)
Since, the velocity is the first derivative of the position,
y'(t) = Vosin(ba) + gt.

If t = tya0, the time when the ball reaches its maximum height before descending, then y’(¢) = 0. Namely,

_ Vosin(fa)
i (17)

tmaa:
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Since Y(tmaz) is the maximum height position of the ball, by replacing (17) into (16)

Y(tmaz) = Vosin(ba) <V052n(0°‘)> 4 9 <V02$an(90‘)> ,

g 2 g
2VZsin?(0s)  Visin?(0.)
=— +
29 29
—VZsin?(0,)
= — % 18

Finally, we will discard the angles such that the maximum height (18) is below h, because for those angles
the ring will not be reached. That is,

B ViZsin?(0,)
29

2
sin(f,) < _Vig
V Y

0, <arcsin, [ —

< h.

Since g < 0 :

o <arcsin,|———. (19)
0

In the same way, to find the maximum horizontal distance, we consider the corresponding time ¢4z, by
making y = 0 in (11). Let Vp be a given velocity such that there exists 85 with vertical motion (11) at time t.
Then,

1
0= Vpsin(0)t + §gt2

1
= t(Vosin(p) + 5 9t),

2
where we discard the trivial case t=0. Then ¢t = —M, and we get
2Vpsin(0
b = _M_ (20)
g

Since z(tmaz) is the maximum horizontal distance of the ball, by replacing (20) into (10)

OV i
Tmaz = Vocos(03) (—W)
B 2ViZcos(0p) sin(0s)

- p . (21)

Now, we are going to discard the angles such that the maximum horizontal distance (21) is below [, because
with those angles the position of the ring will not be reached.

B Vi# sin(205) -
g

l.
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Since g < 0 :
sin(2603) < Ly
B V02
. 1.
arcsin [ 4]
9 0
B < 9
arcsin [—Z'—Z]
95 < 9 9 (22)

arcsin [_Vl;g]
0 <90° — ————= or 05<%

We consider the solution 83 < 90° —
0y is such that

———9%< because it takes values greater or equal than 0. Therefore,

. l.g
—9ah arcsin {——2}
0y € | arcsin Vig,QOO - % (23)
0

3.1.3 Derivation of an equation for the new horizontal position of the ball as it comes back down
to the basket height

From the modeled equations of motion, we will now find the equations that allow us to find the amount of error
allowed for an initial angle 6y (where the ball passes through the center of the ring) and still have a successful
shoot. We know that the release angle could have an error and still the ball enter the ring.

Keeping the initial velocity fixed (the player has a consistent release velocity V), allowing the release angle
to vary (the player has error in his release angle ) and replacing [ by z in (14), we have that

1
h =Vysin(6o)T + §gT2

_Vosin(fo)z 1 ga?
~ Vocos(fp) 2 ViEcos2(6y)

ga?

3 Vicos?(0o)’

=tan(p)x

which implies

9

S —— tan(6y) — h = 0. 24
%26082(90)I + xtan(6y) 0 (24)

Solvin for z,

—tan(bp) + \/tan2 (60) — 72v§gc(c,;£()90)

29 ’
2VZcos?(6o)

Tr =

2gh
_ —Vatan(o)oost(0y) |, VEeost (B tan?(00) + ritis

B 9 9

_ —Vsin(by)cos(bo) L Vor/VZsin2(0p)cos?(0p) + 2ghcos?(0o)
) g

~ —Visin(6y)cos(bo) n Vocos(00)/VZsin2(0o) + 2gh
) g
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we take the sign —, because the gravity g is negative, and we want the greater distance x,

\% 05
. beos(05)
-9
In the equation (25), 6§ corresponds to a higher or lower release angle due to player error than the ideal
initial angle 8y where the ball passes through the center of the ring (see Figure 5).

(V(Jsin(eé) + \/V()Qsz'n2 (08) + Qgh) : (25)

' ———
0 front back

X

Figure 5: comparison of the trajectory I (center of the ring), with an z trajectory with error in the release angle
(Vo, 65).-

3.1.4 Derivation of the conditions so that the ball does not hit the front or the back of the ring

We now want to give conditions in order to the ball does not hit the front or the back of the ring:

1. From (25), we can conclude that « + Db/2 is the horizontal distance to the rightmost part of the ball
when the center of the ball is at the level of the basket. Also, I + Dr/2 is the horizontal distance to the
back of the rim. Therefore the criterion for the ball hit the back of the rim and enter as the center of the

ball passes through the basket is:
x <!+ Dr/2—Dbj2. (26)

2. We are going to study the release angle in order to the ball enter just through the front of the ring.

Sa

te 1—-Dr/2 —Vosin(0o)—+/V{ sin(60)2+2gh
Vocos(6p)

| (%cos(ﬂ)t,%sin(@) +1/2gt%)

(I—Dr/2,h) } |
Dr/2

Figure 6: the distance s between the front of the ring and the center of the ball.

Mathematician 24 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

To avoid contact with the front of the rim, the distance s between the rim and the center of the ball must
remain greater than the radius of the ball throughout its trajectory, i.e., for all times ¢ such that 0 <t < T
where T is the time when the center of the ball passes through the ring; (see Figure 6). We are looking
for a t, such that

l—Dr/2 —Vysin(fy) — \/VZsin(6o)2 + 2gh
Vocos (o)’ g

. (27)

In Gablonsky and Lang [7] there is an error about the time suggested to find the angles for the front of
the ring. Using for convenience the square distance to find the distance s, we have the following criterion
for the ball not hitting the front of the ring:

5 = (a:(t) _ (z - ?))2 () —h) > (?)2, (28)

where z(t) and y(¢) are given by (10) and (11) respectively.
(29)
3. The following is our own proposal to find the lowest release angle. Let m be a fixed real number. Then,
it is possible to find two points on the circumference such that the slope of the tangent line at those two

points is equal to m. Let Py one of those two points and D the corresponding direction of the tangent
line. Since Py and D are perpendicular (see Figure 8), the inner product is 0,

()it -

Namely
cos() + msin(f) = 0.

Solving for 6

0, = arccot(—m) + .

Figure 7: two tangent lines on the circumference having a given slope m.
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Figure 8: parabolas describing the ball approaching into the ring.

In order to find the slope, we find the velocity through the first derivative of the distance (z(t),y(t)) :
() Vo cos(6ot)
y'(t)) — \Vosin(fot) + 29t )

(t)
(t)
x'(t) Vo cos(6p)
<y/(t)) (Vo Sin(e()) + gt) ’
(1) =L® _ Vosin() + gt
x'(t) Vo cos(6p)

m(t)

Evaluating at t=0

m(0) =tan(fy),

so the release angle is such that

—g < 0p =arccot(—tan(fp)) < 0.

Then P is given by

p_ %cos(ﬁp)
o —%sin(ﬁp) ’

and if gg is the left extreme point of the ring (which is known), we have

Go = QOI): l_%_POI .
qo, h

Then the time to reach to g is
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On the other hand, by (11), the time to get the ring is given by

~ —Vpsin(6o) — \/ViE sin(69)® + 2gh
p .

ta

Now, the coordinates of the frontal part of the ring are (see Figure 7)

which implies (see Figure 7)

Since we know tq,to, we can compute

.%‘(lfl) :VO COS(eo)tl,
x(fg) :V() COS(eo)tg,

and then
:E(tg - tl) :V() COS(@o)(tQ — tl).

Thus, we obtain a second criterion to ensure the ball does not hit the front of the rim:

D D
I— TT + 7b cos(a) + Vi cos(bp)(ta — t1) < x(t2). (30)

3.1.5 Derivation of the error allowed function for a given initial angle 6, to still have a successful
throw

In order to find the error allowed for a release angle to center of the ring 6y, we set Vy and find the angles 6
through the equation (15), which allows the trajectory (Vp,8p) to pass through the center of the ring. Then,
we calculate release angles higher 8p,;4, > 0y and release angles lower 04, < 0y with the following equations
respectively:

Db—D
vo14 202D, (31)
2
Db
52 — (7)2 = 0 (32)

Now, every (Vo, Onign) or (Vo, 010w ) must comply with the conditions (26) and (28) to satisfy with a successful
throw. After, we find the minimum distance from 6, which will denotes as the error allowed in release angle

6(90) = min{é)high — 90, 90 — Glow}. (33)

Finally, to obtain the best release angle, we need to maximize (33). In order to find the maximum of a
function, we known that the tangent in any maximum will have slope 0, so we look for points where f’(z) = 0.
To check that this is really a maximum, and not a minimum or an inflection point, we could take the second
derivative and confirm that it is negative at the point x. Moreover, the requirement for f to be continuous and
differentiable is important. In this case, we have a non-differential function at the maximum; due to the left-
hand slope is not equal to the right-hand slope, (see Figure 9). This can be explained by recognizing that (33)
contains the min function , which implies nondifferentiability. Then, to find the maximum we use a computer
algebra system optimization routine with the help of MATLAB.
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3.1.6 Presentation of the results.

To show the results obtained in each of the proposed cases, we will consider a comparison study between Shaq
(2.16 m) and myself Kev (1.83 m). The MATLAB codes will employ function initialize see appendix A.1, to
declare all the constants and variables used in the model. Now, to get the best angle 8y for our first case, we
design an algorithm to find the maximum of the function (33) see Appendix A.3:

Shaq’s Height : 2.16 m

4 i Kev’s Height : 1.83 m
! 35 T T T
351 - 1
\ 3l
3L ]
\ 251
251 y \ 1
~ . 2r
s -
> N
® 15t
15+ 1
1f , r
0.5F 1 0.5
0 T L L L L L L L L L 0
39 41 43 45 47 49 51 53 55 57 5960 44
60
(a) Shaq (b) Kev

Figure 9: the error about 6y for which the ball still goes in.

NAME Shaq Kev
Height 2.16 m 1.83 m
ocenter 48.18° 51.11°
Vcenter 6.62 m/S 6.96 m/s

Table 3: the Best Angle for Shaq and Kev.

Interpreting the model, we determine the best shooting angle for Shaq and Kev during their free throws.
That is, assuming that Shaq and Kev are able to consistently control their release velocity, and bearing in
mind that the best free throw is when the ball passes right through the center of the ring. If we analyze these
assumptions, they don’t see to be realistic. The player is likely to make mistakes not only in his release angle
but also in his velocity, and not necessarily the ball must enter the center of the ring to have the best thrown.
We made the assumptions in this model in order to make calculations easier. Therefore, would these be the
best angles for Shaq and Kev? Probably not, especially if they have trouble to release the ball with a consistent
velocity. Furthermore, with these results, it can be seen in Figure 9 that the error allowed of the angle to keep
having a successful throw for Shaq is greater than Kev so the release angle 6, may be related to the height of
the player.

3.2 Second Case.

When modeling, it is normal to make some assumptions, as we did in the first case, that make solutions easier
to find. The more assumptions has the model, becomes less accurate. Since, we found a solution with the first
case, then is usual try to remove as many conditions as possible, usually one at a time, to obtain solutions that
better simulate reality. Following the interpretation of the solution of our first case, the first assumption that we
will remove is the condition that the ball must pass through the center of the hoop, assumption (6) in Section
2.4. By doing so we will have to rederive a more accurate case. The cyclic process of refining and rederiving is
standard in real-life modeling [7].

Mathematician 28 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

3.2.1 Problem definition.

In this second case, we improve our model by removing the assumption that the best throw is one where the ball
goes through the center of the basket. Still keeping the same equations of two-dimensional motion, assuming
that the players have a consistent release velocity and the height of our players Shaq and Kev. Now, we are
going to vary independently the initial velocity V; and the initial angle 8, at the same time . Each pair (Vp,
6o) will give the ball a trajectory that results in a successful throw or failed throw. By independently varying
Vo and 6y, we will construct a feasible region of the trajectories, which is the set of all possible pairs (Vp,09)
that result in a successful free throw using assumptions on allowable trajectories (26) and (28). Then it will be
maximized the error function allowed at the thrown angle (33) in the entire feasible region, not only for the 6
angles that go to the center of the ring.

3.2.2 Numerical Analysis and presentations of the results.

In order to construct a feasible region of our second model, we need to consider the solutions for the ball
enter into the ring following the boundary conditions (31), (32) and the center of the ring condition (15). This
boundaries can be found by writing a program in MATLAB that find the minimum of a uni-variate function.
Our program is feasible_region, see Appendix B.4, which is a program to find the success region of throws
from Shaq or Kev. For this program we need to find the angles and velocities when the ball just skims the front
of the rim, center of the ring and back of the rim. For the front of the rim condition (32), its corrresponding
MATLAB code can be seen in Appendix B.3. For the back and for the center conditions we wrote a MATLAB
program solving (31), see Appendix B.1, and (15), see Appendix B.2.

The green boundary corresponds to solution of (32), the ball skims the front of the rim as it goes in. The
orange boundary corresponds to solutions of (15), the ball passing through the center of the ring. The light
blue boundary corresponds to solution of (31), the ball hitting the back of the rim as it goes in, see Figure 10.
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Figure 10: boundaries of the front, center, and back
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when the ball enters skimming these parts of the ring.
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Now, with the defined ring boundaries, we can find the feasible region for Shaq and Kev.

Feasible Region for Shaq Feasible Region for Kev
T T T 65 T T T T

40 B 40

20 L L L L L L L L 20 L L L L L L L L L
6.5 6.6 6.7 6.8 6.9 7 71 7.2 7.3 7.4 6.9 7 71 7.2 7.3 7.4 7.5 7.6 7.7 78 7.9

vy W
(a) Shaq (b) Kev

Figure 11: feasible range of angles and velocities that result in a successful free throw for a ball release height
of Shaq and Kev.

From Figure 11 it is noticed that the success area of Shaq is bigger than that of Kev’s. Mathematically, this
shows us that the higher the player is, there is a greater area of success, which would mean that Shaq should
have a larger percentage of successful throws. In real life, this is not happening since as we mentioned before,
Shaq has a 53% of success which is a very low percentage. So, what is happening with Shaq throws to not been
successfully? How to suggest what angle and velocity should throw to increase its success rate? These questions
will be answered when we study the error allowed for the angle and velocity of throwing throughout the feasible
region.

Now, locating in the feasible region the previous solution of the first case, see Table 3, the x in the Figure
12, we notice that the requirement to reach the center of the ring would not be necessarily the best for Shaq and
Kev. Since there is much more room to overshoot than to undershoot which would imply that this trajectory
(6o, Vo) would be useful for the player when he missed, missed by overshooting, but for someone who missed
most undershoots is definitely not the best.

Feasible Region for Shaq o Feasible Region for Kev
T T T T T T T T T
——Front

= Center
60 4 60 Back |+
X 0,V

Frant | ]
———Center

Back
50 - X 0pVy | 50

6.5 6.6 6.7 6.8 6.9 7 71 7.2 7.3 7.4 6.9 7 71 7.2 7.3 7.4 7.5 76 7.7 78 7.9
K Vo

(a) Shaq: first case (b) Kev: first case

Figure 12: feasible range of angles and velocities that result in a successful free throw for a ball release height
of Shaq and Kev.
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3.2.3 Constructing the error and percent error in release angle and release velocity.

As we have already noted that the shoot by the center of the ring is not the best option, we let the ball go
through the hoop at any position and maximize again to find the new allowed error in the initial angle. To
create the contour figures see Figure 13, we need to calculate the allowed error in the release angle and release
velocity for a grid 400 x 400 points. So, to find the error allowed in the release angle, we need to fix a vector
of velocities and then find the respective angle from the boundary to the boundary of the feasible region which
satisfies each velocity to obtain a successful shoot. Finally, we find the minimum deviation from each angle in
the same way that in the first case in the function (33), see Appendix B.5.

Kev’s error allowed in angle

Shaq’s error allowed in release angle

6 5
4.5
5
4
3.5
4
I 3
2
2
15
1
1
0.5
0 0
6.6 6.8 7 7.2 7.4 7.6 7.8 6.8 7 7.2 7.4 7.6 7.8
Velocity Velocity
(a) Shaq (b) Kev

’ . Kev’s percent error allowed in angle
Shaq’s percent error allowed in release angle

12 .
60
10 8
55 7
8 6
(]
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< 6
4
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4 3
40 2
2
1
35 0
0 6.8 7 7.2 7.4 7.6 7.8
66 68 7 72 74 76 78 - : 7 - -
Velocity Velocity
(c) Shaq (d) Kev

Figure 13: feasible range of angles and velocities that result in a successful free throw for a ball release height
of Shaq and Kev.

From Figure 13 we can notice that the error allowed for a successful release angle for Shaq 13a is greater
than the error allowed for Kev 13b. This means that the higher the player is, the more mistakes in his release
angle can make and still has a high probability that the release being successful. This allows us to affirm what
was said in the first case “the higher the player, the higher the percentage of a successful throw”.

Once the allowed errors for each release angle have been calculated for it to be successful, we need to
maximize again the feasible region, which is a univariate not differentiable function in order to see what is the
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best angle and the optimal release velocity for the second case. For this, we are going to design a program using
algebra system’s optimization routine (see Appendix B.6) to obtain the point marked with a dot in Figure 14.

Feasible Region for Shaq Feasible Region for Kev

65 T 65 T
—Front
——Center
60 - q 60 Back
« Max A
551 —Front ] 551
——Center
Back
9 50 . Max A 4| [} 501
2 E
< 451 b - 45
40 + B 40
35F 1 35 \
30 . . . \ 30 . . . . .
6.4 6.6 6.8 7 7.2 7.4 6.8 7 7.2 7.4 7.6 7.8 8
Velocity Velocity
(a) Shaq (b) Kev

Figure 14: the feasible region for our second case with location of suggested optimal trajectorie for Shaq and
Kev.

NAME Shaq Kev
Height 2.16 m 1.83m
Ocenter 48.19° 51.12°
Vcenter 6.69 m/S 7.038 m/s

Table 4: optimal release angle and velocity from Shaq’s and Kev’s second case.

From Figure 13 and Figure 14, the solution of Shaq and Kev is closely symmetric around the optimal release
angle of the first case, located in the farthest red area. So if we do not require the ball to go through the center
of the ring, any trajectories that is made with a velocity between about 6.60 m/s and 6.70 m/s for Shaq and
between about 6.93 m/s and 7.1 m/s will lie in the farthest red region that allows the maximum error in the
release angle.

Now, to find the allowed error in the velocity, we create a program (see Appendix B.7) where we need to fix
an interval of angles and then find the respective velocity that satisfies each angle from boundary to boundary
which allows us to obtain a success throw, then we find the minimum deviation from each velocity which satisfies
the condition to be a success throw.
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Figure 15: the feasible region of angles and velocities that result in a successful free throw for a ball release
height of Shaq and Kev.

Figure 15 shows the maximum allowable error and the percentage of error allowed in the release velocity. It
is clear that these graphics are not symmetrical and seems to favor larger launch angles, and we note again that
Shaq has a higher percentage of error allowed in the release velocity than Kev’s but this time their differences
are very similar. In addition, we can observe that the error allowed in the release angle are greater than the
error in the release velocity. Therefore, we conclude that it is more important to use the right velocity when
compare to the right angle [7].

3.3 Third case

Summarizing so far, in our model we have studied the release angle error that goes toward the center of the ring
and at any position of the ring in the feasible region. Up to this point, the two cases have excluded the error
in release velocity to facilitate computations. Besides, it is known that we are going to make errors during the
release for both the velocity and the angle, so it was also found the error and percentage of error allowed for
the release velocity.

To answer the question of what is the best free throw, we really need to consider both the release angle and
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release velocity simultaneously to make it more realistic. This is because the trajectory that maximizes the
allowed error in the release angle is also the trajectory that allows no error in the release velocity. Similarly, the
trajectory that maximizes the allowed error in the release velocity is also the trajectory that allows no error in
the release angle. So we were right to be unsatisfied with the optimal angle 6y and velocity Vj from the first
case, especially if our player makes errors in his initial velocity as well as in his initial angle when throwing.
Therefore, to be more accurate in the analysis, we use numerical methods to construct regions of percent error
in both angle and velocity.

3.3.1 Problem definition

In this third case, we will study how to optimize the allowed error of release angle and release velocity simul-
taneously in order to find our best release angle and velocity while obtaining a large percentage of success in
each free throw. How do we find the optimal solution when we have two different measures that we want to
minimize, and the two of them oppose each other? Problems of this type are called multiobjective optimization
problems (see section 2.1). To solve the multiobjective problem we consider the weights for each objective and
optimize a weighted combination of objectives using the methodology of Gablonsky and Lang [7].

3.3.2 Numerical Analysis and presentations of the results

To solve the weighted error between the angle and the release velocity we will combine the two weighted
objectives with a heuristic argument that will be made by taking the minimum of the percent error in angle
plus five times the percent error in velocity. This means that we are going to focus five times more in the release
velocity than the release angle, this is because there is less error allowed in the release velocity than the angle,
as we saw in Figures 13 and 15. Also, this argument may solve why Shaq has not a better chance of having
successful free throws. We can see the code in Appendix C.1.

Shaq’s weighted error Kev’s weighted error

0.5

6.6 6.8 7 7.2 7.4 7.6 7.8 6.8 7 7.2 7.4 7.6 7.8
Velocity Velocity
(a) Shaq (b) Kev

Figure 16: the weighted error for Shaq and Kev.

To find the optimum of the weighted error function for Shaq and Kev (see Figure 16) we note that this
combined function is not differentiable, what leads us to apply algebra system’s optimization routine again for
the multivariate case.
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Feasible Region for Kev
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Figure 17: the weighted error for Shaq and Kev.

The optimum angle and velocity for this case are marked in Figure 17 with a red 4. Formulating the
combined objective function for a multiobjective optimization allows us to control its behavior. For example, if
a player has variation in their velocity in each throw, a greater weight can be placed in the velocity than in the
angle. By minimizing the percentage of error in the angle and five times the percentage of error in the velocity,
we find an optimum angle and velocity of release for Shaq and Kev (see Table 5)

NAME Shaq Kev
Height 2.16 m 1.83m
Ocenter 52.37° 54.59°
V::enter 6.69 m/s 7.02 m/s

Table 5: optimal release angle and velocity from Shaq’s and Kev’s to obtain a higher probability of successful
throws.

We notice that both the release angle and the release velocity are important to accurately control the success
of our free throw. Moreover, it is clear that the optimal trajectory should be decided player by player according
to whether the player consistently has more trouble controlling his initial velocity or his initial angle. For
example, if the player is worried about the consistency of his release angle than the consistency of his release
velocity, then less weight should be placed on error in velocity as compared to error in angle. Therefore, we
emphasize that the previous result of the third case is for us the best of the previous cases for Shaq, Kev and
for any player of whom it is known, his height, release angle consistency and release velocity consistency.

To finish the model, we will make a table with the optimal angles, velocities and their respective allowed
errors for both the angle and velocity for players of different heights:
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Height | Release angle | Release velocity | Error allowed 6, | Error allowed Vj
1.52 m 56.54° 7.34 m/s 2.08° 0.0538 m/s
1.55 m 56.47° 7.32 m/s 2.09° 0.0542 m/s
1.57 m 56.34° 7.29 m/s 2.11° 0.0547 m/s
1.60 m 56.14° 7.26 m/s 2.13° 0.0551 m/s
1.70 m 55.45° 7.16 m/s 2.20° 0.0568 m/s
1.73 m 55.28° 7.13 m/s 2.22° 0.0573 m/s
1.75 m 55.11° 7.10 m/s 2.24° 0.0577 m/s
1.83 m 54.60° 7.02 m/s 2.29° 0.0590 m/s
213 m 52.54° 6.71 m/s 2.50° 0.0640 m/s
2.16 m 52.37° 6.69 m/s 2.52° 0.0644 m/s
2.18 m 52.20° 6.66 m/s 2.54° 0.0648 m/s
221 m 52.02° 6.64 m/s 2.55° 0.0652 m/s

Table 6: the optimum trajectories for players of various heights.

3.4 Summary

Summing up our model, we have worked with the angles and release velocities with different initial conditions
in order to answer the question “What is the best angle to shoot a free throw?” We have seen that defining
what we mean by best, really depends upon the player and both in its height and in its consistent velocity and
release angle. In general, we have reached the following conclusions:

1. The taller you are, the better free throw shooter you should be. This is because taller players have more
room to make errors in both release angle and release velocity and still have the ball go in the basket
as we saw in the feasible region, see Figure 12, and Table 6. Therefore, tall players who are poor free
throw shooters either are shooting at the wrong angle or more likely are inconsistent in their release angle,
release velocity, or both.

2. The shorter you are, the larger the release angle should be. This makes sense physically, as shorter players
have more vertical distance to cover when shooting. It is good to see that our model confirms this (see
Table 6).

3. The shorter you are, the closer to the back of the rim you should aim. That is for the trajectories that
allow for maximum error pass somewhere between the center of the basket and the back ring. This can
be noticed through the location of the optimal solution in the feasible region.

4. Tt is more important to use the right velocity as compared to the right angle, as we can saw in the error
allowed for the release angle and the release velocity (see Figures 13, and 15)

4 Probabilistic Analysis

With the optimal free throw solution for Shaq and Kev, how can we verify that this solution is ensuring a
high probability of success in their throws? Since we do not have the presence of Shaq to test throws, the
most convenient thing is to perform computational simulations of free throws which allow us to observe each
trajectory (Vp, 6p) in the feasible region to verify if it is a successful throw or not.

4.1 Problem definition

For this analysis, we will perform Monte Carlo simulations to reproduce the free-throw throws for Shaq and
Kev. Then, we will start from the probability distribution of angles and velocities, that is, when the ball is
released with certain target values 6y and V. In our case, these will be the angles and optimal velocities in our
third case (see Table 5). It must be emphasized that the obtained throw values may be different but they will
always be dominated by the probability distribution centered around (6, Vp).
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4.2 Numerical Analysis and presentations of the results

In order to perform the Monte Carlo simulation we need to simulate a random variable, in our case it is the
Normal Bivariate in which we will consider that the release angle and velocity are dependent, that is, they will
have a correlation p = 1 and will be characterized by standard deviations oy and oy respectively.

Consequently, if we want to generate a Bi-variate Normal random variable with 68y ~ N (ug,) and Vy ~
N(pv,, 0‘2/0) where the correlation of 6y and V; is p we can generate two independent unit normals Z; and Z,
and use the Bi-dimensional transformation (see section 2.2.4 ) :

90 20'9021 +,U’90a
Vo =ov, {921 +v1- P2] + pvy-

Then in a Monte Carlo simulation, a million of different release conditions are generated for a given target
pair (6o, Vi), using MATLAB built-in normal random number generator. It is checked whether generated (6, V)
values would result in successful throws (would hit feasible region) and the total probability of success counted
as a fraction of successful realizations. The code in MATLAB can be seen in Appendix D.1

Monte Carlo simulation procedure

Monte Carlo simulation procedure
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Figure 18: Monte Carlo simulation procedure in a feasible range of velocities and angles.
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From the Figure 18 we see that our trajectory (Vp, 6p) obtained in the third case (see Table 5) for both Shaq
and Kev is satisfactory and verifies our model to get the higher percentage of success in free throws in each
thrown. It can be observed that Shaq obtains fewer failures than Kev, this is due to the height of Shaq is greater
than Kev’s, this implies that he will span a larger area of the feasible region and a higher percentage of error
allowed in the angle and velocity (see Figure 16). In addition, it is observed that the bell of the bivariate normal
distribution is flattened in the direction to the optimal solution due to the correlation of almost 1 between the
angle and velocity.

Now, to verify with Monte Carlo that, in fact, our best angle and velocity are the one with the highest
probability of success we designed a program (see Appendix D.2). There, we centered our target (Vp,0y) in each
part of the feasible region to obtain the probabilities of success in each one and thus check if it is the one that
contains the highest probability of success for Shaq and Kev (see Table 5).

Score probability distribution

Angle

6.6 6.8 7 7.2 7.4 7.6 7.8 6.8 7 7.2 7.4 7.6 7.8
Velocity Velocity
(a) Shaq (b) Kev

Figure 19: contour plot of score probability distribution as a function of target release angle 6y and target
release velocity Vj.

From Figure 19 we notice that our optimum result coincides with the area of high probability of successful
throw for both Shaq and Kev. Which allows us to show that our mathematical model is good.

5 Statistical Analysis

This analysis aims to study a multiple regression model (see subsection 2.3) for successful and failed basketball
free throws to validate the following conclusions of previous cases with simulated data. First, the taller you
are, the better free throw shooter you should be, this is due to taller players have more room to make errors in
both release angle and velocity. Second, the shorter you are, the larger the release angle should be. Third, the
shorter you are, the closer to the back of the rim you should aim. Besides, it is much more important to use the
right velocity as compared to the right angle. Finally, another objective is to perform an actual and adequate
statistical study using the R software in order to improve and obtain an optimal mathematical model.

5.1 Problem definition

The variables analyzed for this model are the release angle 6, release velocity Vj, the height of the player H
and the horizontal distance x when the center of the ball goes through the ring. Different data were collected
by recording a video in slow-motion from an experiment performed on 9 semi-professional basketball players
with a repetition of 10 free-throws per player in order to be analyzed later in R software.
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5.2 Methods

To obtain the real data, 9 men served as subjects for this study, all of whom had been a member of a basketball
college team. The skills of each player were similar to the others, due to the sample of players was taken from
the two teams that always reach the finals in the basketball championships organized by Yachay Tech University.
All subjects were right-handed. Their heights were between 1.58 - 1.90 meters. Each player threw 10 times.

Films records were taken by 1080 pixels to 120 frames per second in an iPhone’s slow-motion camera which
was located 5 m from the left side of the subject in the same position as the free throw line. We collected
variables like the release velocity V;, the release angle 6, the horizontal distance of the trajectory z given by
(25) and by separating into two groups the variables that result in a successful throw or failure.

To analyze the trajectory characteristics of the basketball it was necessary to know the location of the ball
center. The velocity was found by using the displacement of the ball center, the elapsed time between frames,
and the equation of motion (10). The angle of the trajectory was the angle formed by the horizontal 2(t) and
the position of the release (see Figure 4). These data were supplied to an R program to obtain the appropriate
mathematical results. It was made an analysis of multiple regression techniques and analysis of variance with
its respective verification of the assumptions.

5.3 Presentation of the results

To begin our comparative analysis between simulated data and real data using a multiple regression model for
basketball free throws, we conducted a separate analysis from the players who had success and failure in their
throws. We can see in the Appendix E in Figure 28a and Figure 28b the means of each player about their
release angle and release velocity in addition to the number of successes that the player had in his throws.

We used the multiple regression analysis in the data of successes and failures since it allowed us to describe
the behavior of the response variable given the values of the explanatory variables

y = Bo+ Bix1 + Paxa + - - + Brxi + €. (34)
The parameters By, 81, -+ , Oi are estimated by least square. In matrix notation we have :
Y =XB+e¢. (35)

Then, for the selection of the best model, we consider as a response variable to the horizontal distance that
the ball traveled until reaching the basket, and the coefficient of determination. The coefficient of determination
is the statistic that represents the proportion of variation explained by the regression. A value of R near 0 implies
the model does not explain anything about the variation of y with the relation with x1, - - - xx, a value close to
1 means the greater amount of total variation is explained by the regression model. In the case of successful
throws of all players we have the following model:

Y = Bo + Bix1 + Bowa + +B1177 + &, (36)
where,

e Y = horizontal distance.

e 11 = height of the player.

e 15 = velocity.

e 22 = square of the height of the player.

To obtain a better model we use a quadratic effect in the height of the player. Next, we have the output
of the summary (36) and the ANOVA of the model in Figures 20 and 21 respectively , where we obtained a
R? = 0.9151; that is, approximately 92% of variation in horizontal distance can be explained by our model (36).
Moreover, all of explanatory variables were significants.
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call:

Im(formula = ds$hd ~ ds$player + ds$velocity + ds$player2, data = ds,
X = TRUE)

Residuals:

Min 10 Median 30 Max
-0.054903 -0.014945 0.003838 0.016682 0.040043
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -8.1523 1.1878 -6.863 1.19e-08 =*#**
ds$player 6.7835 1.2362 5.488 1.51e-06 *
ds$velocity 0.8451 0.1093 7.733 5.59e-10 ===
ds$player2 -1.8252 0.3649 -5.001 B.03e-06 =***

Signif. codes: 0 “***' 0.001 “**' 0.01 ‘** 0.05 *.” 0.1 * " 1

Residual standard error: 0.02231 on 48 degrees of freedom
Multiple R-squared: 0.9151, Adjusted R-squared: 0.9097
F-statistic: 172.4 on 3 and 48 DF, p-value: < 2.2e-16

Figure 20: output about success free throw model

By (36) and Figure 20 we obtained the following equation of regression :
Y = —8.1523 + 6.7835x1 + 0.8451x5 + —1.8252x7. (37)
The interpretation of this equation is the following

e The estimated mean horizontal distance for someone with height, velocity and height square of 0.

e The slope for height player is the effect of height player on horizontal distance adjusting or controlling
for velocity and height square . We associate an increase of 1 unit in height of player with an increase of
6.7835 in horizontal distance adjusting or controlling for velocity and height player .

e The slope for velocity is the effect of velocity on horizontal distance adjusting for height and height square.
We associate an increase of 1 unit in velocity with an increase of 0.8451 in horizontal distance adjusting
or controlling for height and height square.

e The slope for height square is the quadratic effect of height square on horizontal distance adjusting for
height and velocity. We associate an increase of 1 unit in height square with a decrease of 1.8252 in
horizontal distance adjusting or controlling for height and velocity.

As we can notice the explanatory variable of angle is not considered, because it was not significant, but it
does not necessarily mean that it is not affecting the horizontal distance of the trajectory of the ball, maybe
it could be that the velocity is also taking that behavior of the angle. So far, velocity is more important than
the angle for explaining the horizontal distance of the trajectory of the ball. Moreover, we can notice that the
quadratic effect explain in a better way the model due to the behavior is similar to the arguments of simulated
data. That is, if the height of the player increase the horizontal distance decrease, this means that tall players
make their throws near the front of the ring and that the shorter ones make their throws close to the back of
the ring.

Df Sum Sq Mean Sq F value Pri=F)
ds$player 1 0.19101 0.19101 383.83 < 2e-16 *%=*
ds$velocity 1 0.05385 0.05385 108.22 6.84e-14 ==
ds$player2 1 0.01245 0.01245 25.01 8.03e-06 =*=
Residuals 48 0.02389 0.00050

Signif. codes: 0 ***%" 0.001 *‘**’ 0.01 **' 0.05 *.” 0.1 * " 1

Figure 21: output about the ANOVA

Now, we can check the assumption of multiple linear regression.
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1. Linearity : we check from a scatterplot of the data in figure 22. Since we had negative correlation in
height and positive correlation in velocity and angle then we use this data for a multiple linear regression.

2. Equal Residual Variance :
pattern (so random) we validate this assumption.

0.04

onz

-0.04

-0.08

we check from Figure 23 if the residuals

Residuals vs Fitted

Figure 22: scatterplot of the data
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Since, there is no

3. Normality of residuals: since the closer the residuals are to the fit line, the more normal they are.

We note for this model that the player who throw his balls between 3,990 and 4,210 meters were successful.
The consistency of release velocity allow players to obtain greater success than the consistency of release angle
(see Figure 24). The height had a quadratic effect that allowed improve the model to realistic argument due to
while the height of the player decreases the horizontal distance of the trajectory of the ball increases. Also, it
was appreciated that the shorter the player is, the higher the angle he must throw and finally, the more release
velocity, the greater the horizontal distance the trajectory travels.
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Figure 24: height vs angle and height vs velocity

Velocity

Angle

0.015 m/s

0.268°

Table 7: variance of the model of success throws.

1.90

In the case of the failed throws of all players, we will perform a descriptive statistics analysis due to the data
of the response variable are not continuous in relation to the angle and velocity of thrown as we observed in
the Figure 25. Knowing that we are not going to have observation for the response variable between 3,990 and
4,210 meters. Therefore, to obtain a better model to failures throws, we need to analize two models between
the intervals 3,870 -3.989 and 4,215-4.330 meters.
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Figure 26: height vs angle and height vs velocity

From Figure 25 we check the linearity. Since we have negative correlation in height and positive correlation
in velocity and angle but without information of the horizontal distance between 3,990 and 4,210 meters because
we are in the model of failure throws. We note for this failures case that the player who throw his balls between
3,870 -3.989 and 4,215-4.330 meters make failures. Moreover, the non consistency of release velocity allow players
to obtain greater failures than the non consistency of release angle (see Figure 26). Also, it was appreciated
that the shorter the player is, the higher the angle he must throw and finally, the more release velocity, the
greater the horizontal distance the trajectory travels.

6 Conclusions

This work aimed to find the best release angle and velocity in free throw shooting to obtain a successful
throw. Based on an analytic, numerical, probabilistic and statistical way of studying, mathematically, it can
be concluded that the best trajectory depends upon the player and both in its height and in its consistent in
release velocity and release angle. As a result we have a feasible area of throws where we can obtain the angle
and release velocity depending on the height of a certain player. In addition, during the study we found a
new geometric and numerical criteria to find the angles and velocities for the ball to enter through the front
of the ring. On the other hand, by using Monte Carlo simulations we were able to validate our mathematical
model, simulating thousands of throws with an optimal target of release angles and release velocities that allow
a successful throw probability of almost 100%. Finally, we make a pilot experiment with a semiprofessional
basketball team in Ecuador in order to make a comparative analysis between simulated data en real data using
a multiple regression model for basketball free throw which allowed to affirm the conclusions obtained in our
model with simulated data. For a future work we would like, to adapt the 2D strategy to a 3D model by
removing some assumptions such as the ball going straight to the ring, and allowing the ball hitting the ring
and the board before the ball enters.
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Appendix

A First case codes.

A.1 [Initialize global variables (initialize.m)

% Kevin Chamorro.
% 07/03/2019.

% Yachay Tech University.

SISO VR

% Routine to set the values of all constants.
6 % All values are metric.
7 global Dr Db 1 h g ballstyle rimstyle centerstyle

s Dr = 0.4572; % Rim diameter in meters (1.5 ft)
o Db = 0.24384; % Ball diameter in meters (0.8 ft)
o 1 = 4.1016; % Horizontal distance in meters
11 % (13 ft., 4 in)

12 playerh = 2.159; % Height of player (in meters)
13 releaseh = 1.25xplayerh; % Vertical position of center of
14 % ball at release

15 basketh = 3.048; % Vertical position of the ring
16 % (in meters), 10ft.

17 h = basketh — releaseh; % Vertical distance traversed in
18 % meters

19 % Vertical distance traversed in
20 % meters (1 ft 1.75 in)

21 g = —9.81; % Gravity constant in meters per
22 % second squared (—32 ft (s) (—2))

A.2 Range of angles to the back of the ring

1 % Kevin Chamorro.
2 % 07/03/2019.

3 % Yachay Tech University.
|

5 clear

6 clc

7 initialize

8 v0=T;

9 ep = Dr/2 — Db/2;
10 x=l+ep;

ang:lasin(s[]qrt((—Q*g*h)/(vO”Q))):pi*1/180:(pi*90/180)—asin((—l*g)/(VOA2))*O.5;
angles = ;
result =[];

I S

[

! results =[];
6 for i=1l:length (ang)
7 result =[result ,((—vOxcos(ang(i))/g))*(vO*sin (ang(i))+sqrt(v0~"2xsin(ang(i)) "2+ (2xg*h)))];
8 if result (i) <l+ep && result(i)>l—ep && result (i)>0
9 angles = [angles, ang(i)];
0 results=[results ,result (i)];
21 end
22 end
23 radtodeg(ang) % Proper Range of Angles
24  radtodeg(angles)% Angles that satisfies the conditions
25 results % x new horizontal position due to error in release angle.
A.3 Program to plot errors about 6, (plot_angerror_vopt.m)
1 % Kevin Chamorro.
> % 07/03/2019.
3 % Yachay Tech University .
4
5 % This routine calculates the maximum error to make in the
6 % angle to still make the basket. For each angle theta, we
7 % calculate how much of an error the shooter is allowed to
& % make to still make the basket, assuming he or she shoots

9 % the freethrow with the optimal velocity for the given

10 % angle theta.

11 initDraw ;

12 thetas = [[39:.4:48] [48.15:.001:48.2] [48.6:.4:60]]; %Shaq

15 %thetas = [[44:.4:51.08] [51.10:.001:51.13] [51.14:.4:60]]; %Kev

14 errors = thetas;

15 for i = 1l:length(thetas)

16 errors (i) = calcerrorvopt (thetas(i));
17 end
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maxError = max(errors);
for i=1l:length(errors)
if (errors(i) == maxError)
ang = thetas(i);
end
end
thetaO0=ang;
vO=calcOptv (thetal);
plot (thetas, errors,’.— ")
grid on
ylabel (e (\theta_0)");
xlabel ("\theta_0");

A.3.1 Program to calculate the maximun allowed error in the angle with respect to the back
and front of the rim when the ball is thrown with optimal velocity (calcerrorvopt.m)

% Kevin Chamorro.
% 07/03/2019.
% Yachay Tech University.

function error = calcerrorvopt (theta0)

% Routine to calculate the maximum allowed error in the angle
% with respect to the back of the rim when the ball is thrown
% with optimal velocity .

% First calculate the optimal velocity for this angle.

v0 = calcOptv (theta0);

% Use the general routine to calculate the maximum allowable
% error given an initial velocity , and angle.

y = [thetaO, vO0];

error = —calcerror (y);

A.3.2 Program to calculate the optimal velocity to hit the center of the basket given the initial
angle of 6, (calcOptv.m)

% Kevin Chamorro.
% 07/03/2019.
% Yachay Tech University.

function [ vO , TO | = calcOptv ( thetal ) ;
% Function to ¢ a 1l ¢ ul a t e the optimal v.e 1 o ¢ i t y to h i t the center
% of the basket , given an i n i t i a 1 angle of thetaO.

global Dr Db 1 h g ballstyle rimstyle centerstyle
vO0 =1 /cos ( thetaO xpi /180)* sqrt(—g /(2%( 1 xtan( thetaO xpi/180)—h ) ) ) ;
TO =1 /( cos ( thetaO *pi /180)% vO ) ;

A.3.3 Program to calculate the maximum allowed error in the angle with respect to the back
and front of the rim when the ball is thrown with given velocity (calcerror.m)

% Kevin Chamorro.
% 07/03/2019.
% Yachay Tech University.

function error = calcerror(y)

% Routine to calculate the maximum allowed error in the angle
% with respect to the back and front of the rim when the ball
is thrown with given velocity .

Note that we return the error multiplied by (—1) since we
want to maximize the error, but the optimization methods
wants to minimize.

global Dr Db 1 h g ballstyle rimstyle centerstyle

% Set all variables.
thetad = y(1);
v0 =vy(2);

% Check if the angle is in the valid range, that is, between
% 10 and 85 degrees.

if ((theta0 < 10) || (thetaOd > 85))
sprintf (...
"Angle thetaO0 = %5.2f is either too small or too large.’
,theta0)

error = NaN; % The ball is too far from the back of the
% rim to still be in the rim.
return
end
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% Calculate this value since it is used several times below.
sintheta = sin(thetaOxpi/180);

% Calculate the horizontal position of the ball as it comes
% back down to the basket height.

x = v0 % cos(thetaOxpi/180)/(—g);

x = x*(vOxsintheta + sqrt(vOsxvOsxsinthetasxsintheta+2xgxh));

S

if (x < 1 — Dr/24+Db/2)
sprintf(’The ball does not reach the basket.’)
error = NaN; % The ball is too far from the back of the
% rim to still be in the rim.
return
end
if (x> 1+ Dr/2 — Db/2)
sprintf(’The ball goes too far.’)
error = NaN; % The ball is too close to the back of the
% rim or behind the back of the rim.
return
end

% Check to see if the ball hits the front of the rim. This is
% done by calculating the minimum distance the ball has from
% the front of the rim.
% If this distance is below 0, the ball hits the front rim.
interm = frontfzero (thetal, v0);
if (interm < 0) % The ball hits the front rim.

sprintf(’The ball hits the front of the rim.’)

error = NalN;

return
end
fronterror = calcfronterror (theta0O, v0);
backerror = calcbackerror(theta0, v0);
error = —min(fronterror , backerror);

A.3.4 Program to calculate the minimum distance from the front of the rim for the ball in the
relevant time interval (frontfzero.m)

% Kevin Chamorro.
% 07/03/2019.
% Yachay Tech University.

function y = frontfzero(x,v);
% Function to calculate the minimum distance from the front
% rim in the relevant time interval.
global Dr Db I h g ballstyle rimstyle centerstyle
sintheta = sin (xxpi/180);
% Calculate the relevant time interval.
timeinterval = [(1-Dr/2)/(v*cos(x*pi/180)),—1/g*(vxsintheta 4...
sqrt (vkvxsinthetaxsintheta+2xgxh))];
% If this time interval is not a interval, return a negative
% value. This signals the calling program that the ball either
% goes through the front rim, or never even reaches the front
% rim .
if (timeinterval(l) > timeinterval (2))
y = —1;
return ;
end

% Calculate the minium distance from the front rim in the

% relevant time interval.

[k, y] = fminbnd(@distancefromrim, timeinterval (1),
timeinterval (2), [], v, x);

A.3.5 Program to calculate the distance from the front of the rim for the ball at time t (dis-
tancefromrim.m

% Kevin Chamorro.
% 07/03/2019.
% Yachay Tech University.

function s = distancefromrim (t,v0,theta)

% Calculate the distance from the front of the rim for the ball
% at time t, with initial velocity v, and angle theta. Use this
% distance to calculate how much space is left between the ball
% and the rim. If this function is negative, the ball hits the
% rim. If it is zero, the ball scims the rim for this velocity
% and this release angle at time t.

global Dr Db 1 h g ballstyle rimstyle centerstyle

%global v pos
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[x,y] = position(v0,theta ,t);
% Calculate the position of the center of the ball at time t,

% with initial velocity v and release angle theta.

partl = x —(1 — Dr/2);
part2 =y — h;

s = sqrt(partl.xpartl 4+ part2.xpart2)—Db/2;
% Calculate the distance from the front of the rim.

A.3.6 Program to calculate the position of the ball at time t, thrown with given velocity and
angle (position.m)

% Kevin Chamorro .
% 07/03/2019.
% Yachay Tech University.

function [x,y] = position(v,theta,t);

% Position of the ball at time t, with initial velocity v,
% and angle theta.

global Dr Db I h g ballstyle rimstyle centerstyle

x = vxcos(theta*xpi/180)xt;
y = vxsin(thetasxpi/180)*t + .5xgxt.*xt;

A.3.7 Program to calculate the maximum allowed error in the angle with respect to the front
of the rim when the ball is thrown with given velocity (calcfronterror.m)

% Kevin Chamorro.
% 07/03/2019.
% Yachay Tech University.

function error = calcfronterror (thetald, v0);

% Routine to calculate the maximum allowed error in the angle
% with respect to the front of the rim when the ball is thrown
% with given velocity .

global Dr Db 1 h g ballstyle rimstyle centerstyle

% Calculate the angle when the ball just skims the front rim,
% and still goes in.

ang = fzero(Q(x) frontfzero(x,v0), thetaO);

ang2 = fzero (@Q(x) frontfzero(x,v0), thetaO+1);

% Calculate the error allowed.

error = min(abs(theta0—ang),abs(theta0—ang2));

A.3.8 Program to calculate the maximum allowed error in the angle with respect to the back
of the rim (calcbackerror.m)

% Kevin Chamorro.
% 07/03/2019.
% Yachay Tech University.

function [error, ang] = calcbackerror(theta0, v0);

% Routine to calculate the maximum allowed error in the angle
% with respect to the back of the rim when the ball is thrown
% with given velocity.

global Dr Db I h g ballstyle rimstyle centerstyle

% Find the maximum distance from the back the ball thrown

% with this velocity , and varying angles can have. Note that
% we have to multiply the distance with (—1) to use the Matlab
% fminsearch function to find a maximum.

[ang, val] = fminsearch(Q(x) —distancefromback (v0,x), theta0);

% Negate the valu e to reverse the multiplication with (—1) that
% was necessary to do a maximization.
val = —val;
% If this maximum is small enough, the ball cannnot reach the
% back of the rim. Therefore the error can be infinite.
if (val < 0)
error = NalN;
else
if (val > Dr-Db/2)
error = NalN;
else
% The ball can reach the back of the rim. Find the
% angle when the ball just skims the back of the rim
% by minimizing the negative distance from the rim.
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30 ang = fzero (@Q(x) —distancefromback(v0,x), thetaO);
1 % Calculate the error in angle allowed.
2 error = abs(ang—theta0l);
end
end

A.3.9 Program to calculate the distance from the back of the rim for the ball when its center
is level with the rim (distancefromback.m)

1 % Kevin Chamorro.

2 % 07/03/2019.

3 % Yachay Tech University.
A

function dist = distancefromback(v,theta)
6 % Calculate the distance from the back of the rim for the ball
7 % when its center is level with the rim. The ball is assumed to

& % have initial velocity v, and initial angle theta.
10 global Dr Db 1 h g ballstyle rimstyle centerstyle

12 sintheta = sin(thetaxpi/180);
13 sqrtval = vxvxsinthetaxsintheta-+2xgxh;

15 if (sqrtval < 0)
16 dist = —inf;
17 return
18 end
) x = v % cos(thetaxpi/180)/(—g);
x = x*(vssintheta 4+ sqrt(sqrtval));
1 dist = x—14+(Db-Dr)/2;

B Second case codes.

B.1 Criterion back of the ring

% Kevin Chamorro.
% 07/03/2019.

% Yachay Tech University.

SRR VR

clear all

6 clc

7 %Routine to calculate the angles and velocities that allow

8 %to obtain a successful shot in the back boundary of the ring.
o global Dr Db 1 h g ballstyle rimstyle centerstyle

11 initialize
12 numx = 1;
13 numy = 1;
14 printing = 1;

16 drawgraphs = 0;
17 angstart = 34;

15 angend = 64;

19 angsteps = 200;
20
21 plotangstart = 40;
22  plotangend = 58;
23 vstart = 6.5;

1 vend = 7.8;

5 vsteps = 400;

7  mheightstart=playerh ; % Heigh of the player
28  releaseh=1.25%xplayerh;
9 h=basketh—releaseh ;

31 thetarange linspace (angstart ,angend ,angsteps);

32 vrange linspace (vstart ,vend, vsteps);
34

35  vback = thetarange;

36

37 opt = optimset;

38 for i = l:length(thetarange)

39 vback (1) = vbackrim (thetarange (i));
10 end

A1 plot (vback ,thetarange)

B.1.1 Program to calculate the velocity to hit the back of the rim (vbackrim.m)
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% Kevin Chamorro.
% 07/03/2019.
% Yachay Tech University.

function v0 = vbackrim (theta0);

% Function to calculate the optimal velocity to hit the back
% of the basket, given an initial angle of thetaO.

global Dr Db 1 h g ballstyle rimstyle centerstyle

vO = (141 +Dr — Db)/(2*cos(thetaO*pi/180)) = ...
sqrt(g/(h + h — (1 + 1 + Dr — Db)xtan(thetaOxpi/180)));

B.2 Criterion center of the ring

% Kevin Chamorro.
% 07/03/2019.
% Yachay Tech University.

clear all

clc

%Routine to calculate the angles and velocities that allow
%to obtain a successful shot in the center boundary of the ring.
global Dr Db 1 h g ballstyle rimstyle centerstyle
initialize

numx = 1;
numy = 1;
printing = 1;

drawgraphs = 0;
angstart = 34;
angend = 64;
angsteps = 200;

plotangstart = 40;
plotangend =
vstart =
vend
vsteps

S 0 >

mheightstart=playerh ; % Heigh of the player
releaseh=1.25*«playerh;
h=basketh—releaseh ;

thetarange = linspace (angstart ,angend,angsteps);
vrange = linspace (vstart ,vend, vsteps );

vcenter = thetarange;

opt = optimset;
for i = l:length(thetarange)
vcenter (i) = vcenterrim (thetarange(i));
end
plot (vcenter ,thetarange)

B.2.1 Program to calculate the velocity to hit the center of the rim (vcenterrim.m)

% Kevin Chamorro.
% 07/03/2019.
% Yachay Tech University.

function v0 = vcenterrim (theta0);
% Function to calculate the optimal velocity to hit the center
% of the basket, given an initial angle of thetaO.

global Dr Db 1 h g ballstyle rimstyle centerstyle

vO = 1/cos(thetaO*pi/180)x*...
sqrt (g/(2x(h — lxtan(thetaO*pi/180))));

B.3 Criterion front of the ring

% Kevin Chamorro.
% 07/03/2019.
% Yachay Tech University.

clear all

clc

%Routine to calculate the angles and velocities that allow

%to obtain a successful shot in the front boundary of the ring.
global Dr Db 1 h g ballstyle rimstyle centerstyle
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initialize
numx = 1;
numy = 1;
printing = 1;

drawgraphs = 0;
angstart = 34;
angend = 64;
angsteps = 200;

plotangstart = 40;
plotangend = 58;
vstart = 6.5;
vend = 7.8;
vsteps = 400;

mheightstart=playerh ; % Heigh of the player

releaseh=1.25%xplayerh;
h=basketh—releaseh;

thetarange = linspace (angstart ,angend,angsteps);
vrange = linspace (vstart ,vend, vsteps );
vfront = thetarange;

opt = optimset;
for i = l:length(thetarange)

viront (i) = fzero(@frontfzerov, vfrontrim (...

thetarange (i)),
end
plot (vcenter ,thetarange)

opt ,

thetarange (i));

B.3.1 Program to calculate the minimum distance from the front of the rim for the ball in the
relevant time interval (frontfzerov.m)

% Kevin Chamorro.
% 07/03/2019.
% Yachay Tech University.

function y = frontfzerov (v0, theta);

% Routine to be a frontend to minimize the distance from the
% front. If the function returns 0, the ball just

% fron of the rim.

global Dr Db 1 h g ballstyle rimstyle centerstyle

v = v0;
sintheta = sin(thetaxpi/180);
% Calculate the relevant time interval.

skim’s the

timeinterval = [(1-Dr/2)/(v*cos(thetaxpi/180)),—1/gx*...
(vxsintheta+sqrt (vxvssinthetaxsintheta+2xg=h))];

% If this time interval is not a interval,
Q,

return

% value. This signals the calling program that the

% either goes through the front rim, or never even

% the front rim.
if (timeinterval(l) > timeinterval (2))

end
pos = theta;

% Calculate the minimum distance from the front

% relevant time interval.

a negative
ball
reaches

rim in the

[k, y] = fminbnd(@distancefromrim, timeinterval (1),
timeinterval (2), [], v, theta);

B.3.2 Program to calculate the velocity to hit the front of the rim (vfrontrim.m)

% Kevin Chamorro.
% 07/03/2019.
% Yachay Tech University .

function [vup, vdo] = vfrontrim (theta);
% Function to calculate the velocity when

the ball

% the front of the rim with the center of the ball

%

% the center of the ball is exactly level

exactly on top of the front of the rim (vup),

global Dr Db 1 h g ballstyle rimstyle centerstyle

costheta = cos(thetaxpi/180);
tantheta = tan(thetaxpi/180);

vup = (1 + 1 — Dr)/(2*xcostheta) *

hits

and when
with the rim (vdo).
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sqrt(g / (h + h — (1 + 1 — Dr) * tantheta));

vdo = (141 — Dr + Db)/(2+costheta) =

sqrt (g / ( h+h— (1 +1 7Dr + Db) % tantheta));

B.4 Feasible Region

clear all

% Kevin Chamorro .

% 07/03/2019.

% Yachay Tech University .

clc
% Routine to calculate the feasible region with the
%center and back boundary

global Dr Db I h g ballstyle rimstyle centerstyle

initialize
numx = 1;

angstart = 34;
angend = 64;
angsteps = 200;
plotangstart = 40;
plotangend = 58;
vstart = 6.5;
vend = 7.8;
vsteps = 400;

mheightstart=playerh ; % Heigh of the player
releaseh=1.25%xplayerh;
h=basketh—releaseh ;

thetarange linspace (angstart ,angend ,angsteps);

vrange linspace (vstart ,vend, vsteps);
viront = thetarange;
vcenter = thetarange;
vback = thetarange;
opt = optimset;
for i = l:length(thetarange)
viront (i) = fzero(@frontfzerov, vfrontrim (...
thetarange(i)), opt, thetarange(i));
vcenter (i) = vcenterrim (thetarange(i));
vback (i) = vbackrim (thetarange (i));
end

front ,

plot (vfront , thetarange ,vcenter, thetarange, vback,...

thetarange);

B.5 Program to calculate the error allowed angle in the feasible region (error_allowed_angle.1

% Kevin Chamorro.
% 07/03/2019.
% Yachay Tech University .

clear all
clc

%Routine to calculate the error and the percentage of

%allowed for the release angle in a free throw.

global Dr Db I h g ballstyle rimstyle centerstyle

initialize
numx = 1;
numy = 1;
printing = 1;

drawgraphs = 0;
angstart = 34;

error

angend = 64;

angsteps = 400;

plotangstart = 40;

plotangend = 58;

vstart = 6.5;

vend = 7.8;
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25  vsteps = 400;
26
27 thetarange = linspace (angstart ,angend,angsteps);
28 vrange = linspace (vstart ,vend, vsteps);
29
30 ig = 1;
31
32 deltav = zeros(angsteps, vsteps);
33 deltatheta = deltav;
34 thetaper = deltav;
35 vper = deltav;
36 errortotal = deltav;
38 vfront = thetarange;
39 vcenter = thetarange;
40 vback = thetarange;
11
12 opt = optimset;
43 for i = l:length(thetarange)
44 viront (i) = fzero (@frontfzerov, vfrontrim (...
15 thetarange (i)), opt, thetarange(i));
16 vcenter (i) = vcenterrim (thetarange(i));
A7 vback (1) = vbackrim (thetarange (i));
18 end
49 for j = 1:vsteps
50 for i = l:angsteps
51 if ((vfront(i) <= vrange(j)) && ...
52 (vrange(j) <= vback(i)))
53 helpangl = 0;
54 helpang2 = 0;
55 for il = i+1l:angsteps
56 if ((vfront(il) <= vrange(j)) && ...
57 (vrange(j) <= vback(il)))
58
59 helpangl = thetarange(il) —
60 thetarange (i);
61 else
62 break;
63 end
64 end
65 for il = i—-1:—1:1
66 if ((vfront(il) <= vrange(j)) && .
67 (vrange(j) <= vback(il)))
68 helpang2 = thetarange (i) — ...
69 thetarange (il);
70 else
71 break;
72 end
73 end
74 deltatheta(i,j) = min(helpangl, helpang2);
75 thetaper (i,j) = deltatheta(i,j)/...
76 thetarange (1)*100;
77 end
78 end
79 end
80
81 figure (60+(ig — (rem(ig—1,numx*numy)+1))/numx*numy+2)
82 subplot (numx, numy, rem(ig—1, numx*numy)+1)
83 contourf(vrange ,thetarange ,deltatheta ,10)
84 title (’Percent error allowed in angle’);
85 xlabel (" Velocity 7 );
86 ylabel ("Angle’);
87 hh = colorbar;

B.6 Program to plot and calculate the solution for the second case (plot_second_case.m)
1 % Kevin Chamorro.
2 % 07/03/2019.

% Yachay Tech University.

clear all

6 clc

7 %Routine to calculate the error and the percentage of error
8 %allowed for the release angle in a free throw.

9 global Dr Db 1 h g ballstyle rimstyle centerstyle

11 initialize

12 numx = 1;

13 numy = 1;

14 printing = 1;
1
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drawgraphs = 0;

angstart = 34;

3

angend = 64;
angsteps = 400;
plotangstart = 40;
plotangend = 58;
vstart = 6.5;
vend = 7.8;
vsteps = 400;
thetarange = linspace (angstart ,angend, angsteps);
vrange = linspace (vstart ,vend, vsteps);
ig = 1;
deltav = zeros(angsteps, vsteps);
deltatheta = deltav;
thetaper = deltav;
vper = deltav;
errortotal = deltav;
vfront = thetarange;
vcenter = thetarange;
vback = thetarange;
opt = optimset;
for i = l:length(thetarange)
viront (i) = fzero(@frontfzerov , vfrontrim (...
thetarange (i)), opt, thetarange(i));
vcenter (i) = vcenterrim (thetarange(i));
vback (i) = vbackrim (thetarange (i));
end
for j = 1l:vsteps
for i = l:angsteps
if ((vfront(i) <= vrange(j)) && ...
(vrange(j) <= vback(i)))
helpangl = 0;
helpang2 = 0;
for il = i+1l:angsteps
if ((vfront(il) <= vrange(j)) && ...
(vrange(j) <= vback(il)))
helpangl = thetarange(il) —
thetarange (i);
else
break;
end
end
for il = i—-1:—1:1
if ((vfront(il) <= vrange(j)) && .
(vrange(j) <= vback(il)))
helpang2 = thetarange(i) — ...
thetarange (il);
else
break;
end
end
deltatheta(i,j) = min(helpangl, helpang2);
thetaper (i,j) = deltatheta(i,j)/...
thetarange (i)*100;
end
end
end

% Calculate th

e

optimal

velocity

and angle with

% respect to errors in the release angle.

[val, I] = max(thetaper); %max I= indice row value teta
[vall, j] = max(val); % j= column v

pos = [vrange(]j) thetarange(I(j))];

[x, val] = fminsearch(@calcwdiff, pos, optimset, 0,1);

[diff , diffang
soltheta (ig ,:)

)

diffv]

calewdiff(x, 0, 1);
[x —val —diffang —diffv 0 0]

plot (vfront , thetarange ,vcenter,
thetarange ,soltheta (ig,1), soltheta(ig,2),

vdata = axis;

xlabel (’Velocity ");
ylabel (7Angle’);

thetarange , vback,...
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B.7 Program to calculate the error allowed velocity in the feasible region (er-

ror_allowed _velocity.m)

% Kevin Chamorro.
% 07/03/2019.
% Yachay Tech University .

clear all

clc

%Routine to calculate the error and the percentage
%allowed for the release velocity in a free throw.
global Dr Db I h g ballstyle rimstyle centerstyle

initialize
numx = 1;
numy = 1;
printing = 1;

drawgraphs = 0;
angstart = 34;
angend = 64;
angsteps = 400;

plotangstart = 40;
plotangend = 58;
vstart = 6.5;
vend = 7.8;
vsteps = 400;

thetarange inspace (angstart ,angend , angsteps);

1
linspace (vstart ,vend, vsteps );

vrange
ig = 1;
deltav = zeros(angsteps, vsteps);
deltatheta = deltav;
thetaper = deltav;
vper = deltav;
errortotal = deltav;
vfront = thetarange;
vcenter = thetarange;
vback = thetarange;
opt = optimset;
for i = l:length(thetarange)
viront (i) = fzero(@frontfzerov, vfrontrim (...
thetarange(i)), opt, thetarange(i));
vcenter (i) = vcenterrim (thetarange(i));
vback (i) = vbackrim (thetarange (i));
for j = 1:vsteps
deltav (i,j) = min(vrange(j) — viront(
vback (i) — vrange(]
vper (i,j) = deltav (i,j)/vrange(j)=*
end
end

deltav = max(deltav ,0);
vper = max(vper ,0);

of

figure (30+(ig — (rem(ig—1,numx*numy)+1))/numx*numy+2)

subplot (numx, numy, rem(ig—1, numx*numy)+1)
contourf(vrange ,thetarange ,vper,10)

title ("Percent error allowed in velocity ’);
xlabel (" Velocity 7 );

ylabel ("Angle’);

hh = colorbar;

C Third case codes.

C.1 Program to calculate the weighted error allowed angle and velocity (weighted_error.m)

% Kevin Chamorro.
% 07/03/2019.

% Yachay Tech University.

clear all

error

i)
))s
00;

)
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¢ clc

7 %Routine to calculate the weighted error

& %allowed for the release angle in a free throw.
o global Dr Db 1 h g ballstyle rimstyle centerstyle

11 initialize

12 numx = 1;

13 numy = 1;

14 printing = 1;
15 %Grid of angles
16 drawgraphs = 0;
17 angstart = 34;

18 angend = 64;

19 angsteps = 400;

20 %Grid of velocities

21 plotangstart = 40;

22 plotangend = 58;

23  vstart = 6.5;

24  vend = 7.8;

25  vsteps = 400;

26

27 %weights

28 angw = 1;

20 VW = 5; % five times error in velocity

30  solution = 7

31

32

33

34 thetarange = linspace (angstart ,angend,angsteps);

35  vrange = linspace (vstart ,vend, vsteps);

36

37 ig = 1;

38

39 deltav = zeros(angsteps, vsteps);

40 deltatheta = deltav;

41 thetaper = deltav;

42 vper = deltav;

43 errortotal = deltav;

44

45 vfront = thetarange;

46 vcenter = thetarange;

a7 vback = thetarange;

48

49 opt = optimset;

50

51 %Conditions to obtain a successfull throw.

52 for i = l:length(thetarange)

53 viront (i) = fzero(@frontfzerov , vfrontrim (...
54 thetarange (i)), opt, thetarange(i));
55 vcenter (i) = vcenterrim (thetarange(i));

56 vback (i) = vbackrim (thetarange (i));

57 %Deviaiton from given velocities

58

59 for j = 1:vsteps

60 deltav (i,j) = min(vrange(j) — vfront(i),...
61 vback (i) — vrange(j));
62 vper(i,j) = deltav (i,j)/vrange(j)*100;
63 end

64 end

65

66

67

68 deltav = max(deltav ,0);

69 vper = max(vper,0);

70

71 %Deviation from given angles

72 for j = 1l:vsteps

73 for i = l:angsteps

74 if ((vfront(i) <= vrange(j)) && ...
75 (vrange(j) <= vback(i)))

76 helpangl = 0;

77 helpang2 = 0;

78 for il = i+1l:angsteps

79 if ((vfront(il) <= vrange(j)) && ...
80 (vrange(j) <= vback(il)))
81

82 helpangl = thetarange(il) —
83 thetarange (i);
84 else

85 break;

86 end

87 end
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for il = i—-1:—1:1

if ((vfront(il) <= vrange(j)) && .
(vrange(j) <= vback(il)))
helpang2 = thetarange (i) — ...
thetarange (il );
else
break;
end
end
deltatheta(i,j) = min(helpangl, helpang2);
thetaper (i,j) = deltatheta(i,j)/...
thetarange (i)*100;
end
end
%Deviation with weighted error.
for i = l:angsteps
for j = 1l:vsteps
errortotal (i,j) = min(angwxthetaper(i,j) ,...
vwxvper (i,j));
end
end

end

figure (90+(ig — (rem(ig —1,numx*numy)+1))/numx*numy+2)
subplot (numx, numy, rem(ig—1, numx*numy)+1)
contourf(vrange ,thetarange ,errortotal ,10)

title (’Shaq weighted error’);

xlabel (’Velocity ’);

ylabel ("Angle’);

hh=colorbar;

D Probabilistic analysis codes.

D.1 Monte Carlo procedure (montecarlo.m)

% Kevin Chamorro.
% 07/03/2019.
% Yachay Tech University.

clear
clce
initialize

% Program to calculate the simulations of a free throw basketball.

angstart = 34;

angend = 64;

angsteps = 200;

vstart = 6.5;

vend = 7.8;

vsteps = 400;

sol = zeros (1, 7);
soltheta = sol;

solthetavopt = sol;

thetarange = linspace (angstart ,angend,angsteps);
vrange = linspace (vstart ,vend, vsteps );
vfront = thetarange;

vcenter = thetarange;

vback = thetarange;

%Routine to create the feasible region
opt = optimset;
for i = l:length(thetarange)

viront (i) = fzero (@frontfzerov, vfrontrim (...
thetarange (i)), opt, thetarange(i));

vcenter (i) = vcenterrim (thetarange(i));

vback (1) = vbackrim (thetarange (i));

end
%Feasible region
plot (vfront , thetarange ,vcenter, thetarange, vback,...
thetarange)

%Simulations of the trajectories.
%z11l=normrnd (50,20,1,100);

sigmal=sqrt (3.5); mul=52.37; %Optimal angle
zl=normrnd (0,1,1,1000); % 1000 throws
%z22=normrnd (6.5,1,1,100);
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sigma2=sqrt (0.001);mu2=6.69; %Optimal velocity
z2=normrnd (0,1,1,1000);

p=0.95;

vO=[];

vi=[];

successes = [];

failures = [];

for i=1:1:length(zl)
ang=sigmals*zl (i)+mul;
veO=sigma2x(pxzl (i)4+2z2(i)*sqrt(l—p~2))+mu2;
angvO=[ang, ve0];

Y%result =[result ,((veOx*xcos(ang)/—g))*(veOxsin (ang)+sqrt(ve0 " 2*sin (ang) 2+ (2xgxh)))];

throw = success (ang,ve0);
if (throw==0)
failures = [failures ,ang];

v0=[v0,ve0];
% resultf=[resultf  result(i)];

else
successes = [successes ,ang];
vli=[vl,ve0];
Yoresults=[results ,result (i)];

end
end

hold on
%Trajectories

plot (v0, failures , .r’);
plot (vl,successes,’ .b’);
%Target point

plot (mu2,mul, ’.g’)

successes=sort (successes );
vli=sort (vl);

mul=mean(successes );
sigmal=std (successes );
mu2=mean(vl);
sigma2=std (vl);

zv =[];

zthe =[];

for m=1:length(vl)
z1=(vl(m)—mu2)/(sigma2);
zv=[zv,zl];
z2= (successes (m)—mul)/(sigmal);
zthe=[zthe ,2z2];

end

mu=[mul mu2];

sigma=[sigmal "2 pxsigmals*sigma2; pxsigmalsxsigma2 sigma?2"2];

[X1, X2] = meshgrid(successes (1,:)’,v1(1,:)7);
X=[X1(:) X2(:)];

% probability density function.
pdf=mvnpdf ([X1(:) X2(:)] ,mu,sigma);
% comulative distribution function.
cdf=mvncdf(X,mu, sigma ) ;

y=size (X1);

Z=reshape (pdf,y);

figure;

subplot ;

% Probability density function
plot3(X1,X2,Z)

D.2 Contour plot of score probability distribution

% Kevin Chamorro.
% 07/03/2019.
% Yachay Tech University.

clear all
clc

global Dr Db 1 h g ballstyle rimstyle centerstyle
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initialize

angstart = 34;
angend = 64;
angsteps = 100;

plotangstart = 40;

plotangend = 58;

vstart = 6.5;

vend = 7.8;

vsteps = 100;

thetarange = linspace (angstart ,angend, angsteps);
vrange = linspace (vstart ,vend, vsteps);
ig = 1

deltav = zeros(angsteps, vsteps);
deltatheta = deltav;

thetaper = deltav;

vper = deltav;

vfront = thetarange;

vcenter = thetarange;

vback = thetarange;

%Routine to create the feasible region
opt = optimset;
for i = l:length(thetarange)

viront (i) = fzero (@frontfzerov, vfrontrim (...
thetarange(i)), opt, thetarange(i));

vcenter (i) = vcenterrim (thetarange(i));

vback (1) = vbackrim (thetarange (i));

end
%Monte Carlo siumlation procedure

for j = 1l:vsteps
for i = l:angsteps
if ((vfront(i) <= vrange(j)) && ...
(vrange(j) <= vback(i)))

helpangl = thetarange (i);
helpvel = vrange(j);
p(i,j)=montecarlol (helpangl ,h helpvel);

else
p(i,j) = 0;
end
end
end

contourf(vrange ,thetarange ,p,10)

title (’Contour plot of score probability distribution’);
xlabel (" Velocity " );

ylabel ("Angle’);

hh = colorbar;

D.2.1 Program to calculate simulated data with a Monte Carlo simulations (montecarlol.m)

% Kevin Chamorro.
% 07/03/2019.
% Yachay Tech University.

%Program to calculate simulated data with a Monte Carlo simulations

%target point fixed.

function probability= montecarlol (mul,mu2)
initialize

%z11=normrnd (50,20,1,100);

sigmal=sqrt (4) ;

zl=normrnd (0,1,1,100);

%z22=normrnd (6.5,1,1,100);

sigma2=sqrt (0.001);

z2=normrnd (0,1 ,1,100);

successes = [];
failures = [];
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z=[1;

for i=1:1:length(zl)
ang=sigmalx*zl (i)+mul;
veO=sigma2#(pxzl(i)4+2z2(i)*xsqrt(l—p~2))+mu2;
angv0=[ang0,v0];

throw = success (ang,ve0);

if (throw==0)
failures = [failures ,ang];
v0=[v0,ve0];

else
successes = [successes ,ang];
vli=[vl,ve0];

end

end

successes=sort (successes );
vli=sort(vl);

probability= length(successes)/(100);

end

D.2.2 Probability in each point of the feasible region (success.m)

% Kevin Chamorro.
% 07/03/2019.
% Yachay Tech University.

function ring = success(theta0 ,v0)

global Dr Db I h g ballstyle rimstyle centerstyle

% Check if the angle is in the valid range, that is, between
% 10 and 85 degrees.
if ((theta0 < 10) || (thetald > 85))

sprintf (...

"Angle theta0 = %5.2f is either too small or too large.’

,theta0);

ring = 0; % The ball is too far from the back of the

% rim to still be in the rim.

return
end

% Calculate this value since it is used several times below.
sintheta = sin(thetaOxpi/180);

X

Calculate the horizontal position of the ball as it comes
% back down to the basket height.
x vO0 % cos(thetaO*pi/180)/(—g);
x x*(vOxsintheta + sqrt(vOxvOxsinthetaxsintheta+42xgxh));

if (x < 1 — Dr/24Db/2)
sprintf(’The ball does not reach the basket.’);
ring = 0; % The ball is too far from the back of the
% rim to still be in the rim.
return
end
if (x> 1+ Dr/2 — Db/2)
sprintf( 'The ball goes too far.’);
ring = 0; % The ball is too close to the back of the
% rim or behind the back of the rim.
return
end

% Check to see if the ball hits the front of the rim. This is
% done by calculating the minimum distance the ball has from
% the front of the rim.
% 1If this distance is below 0, the ball hits the front rim.
interm = frontfzero (thetal, v0);
if (interm < 0) % The ball hits the front rim.

sprintf(’The ball hits the front of the rim.’);

ring = 0;
return
end
ring = 1;
end
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E Statistical Analysis

Player Release Angle Release Velocity Horizontal Distance
190 53.834 5.907 3.992
190 53.624 6.906 3.991
190 53.545 6.804 3.901
190 53.574 6.801 3.870
1.90 53.714 6.892 3.943
190 53.754 6.959 3.989
190 53513 6.915 3.087
187 54.147 6.992 2.038
187 54128 5993 2037
1.87 53.987 6.998 4.059 Player Release Angle Release Velocity Herizontal Distance
187 53.946 7.000 4.090 1.90 51.148 6.627 3.870
187 53.890 6.089 4.042 1.90 50.874 6.641 3.889
187 54.145 6.980 4.044 1.90 51.974 6.650 3.895
L&7 54017 6.991 4.085 187 51.947 6.674 3.920
187 53.954 5.994 2074 les 50332 7778 2320
187 54.008 5087 4,080 1ss S5.420 7698 2225
158 55.332 7.303 4.201 - & : -
158 55.234 7.293 2174 158 59.934 7.653 4.298
158 55.155 7.278 4181 158 58.765 7.871 4.305
158 55.603 7.289 4.193 1.58 58.021 7.600 4311
164 55 166 7229 4150 1.58 58.239 7.751 4.293
164 54,891 7.237 4.161 1.64 56.954 7.549 4.287
1.64 55.208 7.232 4.174 1.64 58.342 7.443 A4.2659
164 55.002 7.235 2188 164 60.383 7.881 24292
i :‘; zjg;: ;z;i j 123 164 59.096 7.638 4,274
- - - 1.64 58.871 7.701 4.301
168 55 100 7215 4135
168 54712 7.210 4178 164 57.325 7.403 4.310
168 55.108 7.198 2189 1.68 57.324 7.651 4.241
173 54592 7.145 4121 168 59.035 7.829 4.254
173 54.856 7.129 4143 1.68 58.430 7.687 4.260
173 54 989 7138 4157 1.68 57.459 7.478 4.267
173 54.501 7.124 4.168 1.68 53.239 7.788 4277
173 54634 7.132 4138 1.73 56.398 7.270 4,227
175 54,514 7.109 4123 173 55.436 7281 2,240
i :: ::-;’é; ;;;3 jﬁg 173 54.411 7.240 4219
175 54782 7.107 4.153 173 56.857 7.262 4.235
175 54.583 7111 4.143 173 96.231 7292 4.214
179 54.586 7.061 4124 175 55.987 7.213 3.955
1.79 54.342 7.059 4.112 175 36.154 7.290 3.968
179 54.633 7.065 4147 175 57.583 7.189 3.948
179 54 702 7.063 4151 1.75 54.183 7.055 3.979
173 54.603 7.067 4.088 1.75 54,397 7.001 3.960
179 54.659 7.058 2.091 179 55.032 6.841 3.840
179 54.493 7.060 4128 179 53.908 6.778 3.038
183 54.251 7.035 2112 179 i 6739 3928
1.83 54508 7.031 4119 1.3 53.893 6.379 3.971
183 54.310 7.029 4.083 . . . .
15 OREE =033 2105 1.83 53.952 6.818 3.935
183 54.498 7.033 2.108 1.83 53.328 6.650 3.908
1.83 54.602 7.030 4.094 l.83 54.898 6.961 3.945
(a) Table of success throws (b) Table of failure throws
Figure 27: table of throws.
Release Velocity Horizontal B Release Velocity Horizontal
Height (m ) Score Height (m i Score
eht(m) | gle () (mfs) | distance (m) eht(m) | gle () (m/s) | distance (m)
1.58 55.331 7.291 4.187 0.40 1.58 £8.795 7.726 4.309 0.6
1.64 55.067 7.233 4.168 0.40 1.64 58.495 7.603 4289 0.6
1.68 54.557 7.208 4,159 0.50 1.68 58,109 7.695 4,260 0.5
1.73 54,714 7.134 4,147 0.50 1.73 55.875 7.269 4,226 0.5
175 54.660 7.108 4,140 0.50 1.75 55.661 7.150 3.962 0.5
1.79 54,588 7.062 4,120 0.70 1.79 54,772 6.786 3.934 0.3
1.83 54.380 7.032 4,104 0.60 1.83 54.018 6.815 3.927 0.4
1.87 54.025 6.992 4,061 0.90 1.87 51.947 6.674 3.920 0.1
1.90 54.018 6.815 3.953 0.78 1.90 £1.318 5.639 3.885 0.2
(a) Table of success throws mean (b) Table of failure throws mean
Figure 28: table of throws means.
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