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Resumen
Recientemente, los nanomateriales multicomponentes basados en TiO2 (TiO2-MCNM) han ganado gran interés
entre los materiales fotocatalíticos. Por lo tanto, estudios teóricos y computacionales son cruciales para comprender
los mecanismos implicados. En este trabajo, se analiza la estructura electrónica y propiedades de adsorción de
clústeres multicomponentes de metales nobles y su interacción con la superficie Anatase TiO2(101) combinando
métodos ab initio de Density Functional Theory (DFT) y de Density-Functional Tight-Binding (DFTB). Se simulan
sistemas con clústeres monocomponentes y multicomponentes de metales nobles (Au, Ag, Pd, Pt) en diferentes
composiciones atómicas. También incluyendo el efecto de una vacante superficial de oxígeno. Dentro del marco
DFT se emplearon funcionales metal-GGA SCAN y r2S CAN junto un funcional de densidad no local de van der
Waals rVV10. La limitación de la subestimación de la brecha de banda en DFT se abordó utilizando la corrección
Hubbard-U (DFT+U, enfoque de Dudarev). En DFTB, se empleó la parametrización semiempírica GFN1-xBT. Los
cálculos DFTB muestran que la combinación de metales da lugar a energías de adsorción sinérgicas. Todos los
clústeres estudiados se adsorben mediante quimisorción, y los sistemas que presentan las energías de adsorción más
elevadas son los soportados sobre anatasa oxígeno defectuosa. El clúster de Ag se adsorbe más fuertemente a la
superficie que el de Pt. Los resultados DFT indican las funciones de trabajo más alta y más baja para los clústeres
Au8Pd3 y Au2Pt2Ag2Pd2, respectivamente. La transición de banda de semiconductor a metálico sigue la secuencia:
Au8 > Au8Pd3 > Pd11 > Au2Pt2Ag2Pd2.

Palabras Clave: Teoría Funcional de la Densidad, Método de Enlace Fuerte, Anatasa, Adsorción, clústeres
multicomponentes.
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Abstract
Recently, TiO2-based Multicomponent Nanomaterials (TiO2-MCNMs) have gained significant interest as photo-
catalytic materials. Therefore, theoretical and computational studies of the energetic descriptors are crucial to
understanding the mechanisms involved. In the present work, we analyzed the electronic structure and adsorption
properties of selected noble metal multicomponent clusters and their interaction with Anatase TiO2(101) surface
by using a cutting-edge combination of ab initio Density Functional Theory (DFT) and Density-Functional Tight-
Binding (DFTB) methods. Systems with single and multicomponent clusters of noble metals (Au, Ag, Pd, Pt) at
different atomic compositions are considered. The effect of an oxygen surface vacancy was also included. The DFT
calculations employed state-of-the-art functionals like metal-GGA SCAN and r2S CAN combined with a non-local
van der Waals density functional rVV10 that accounts for dispersion interactions. Moreover, the known limitation
of the band gap underestimation in DFT was addressed using the Hubbard-U correction (DFT+U, within Dudarev’s
approach). For DFTB implementation, a semi-empirical GFN1-xBT parametrization was employed. DFTB cal-
culations show that combining metals results in synergistic adsorption energies. All studied clusters are adsorbed
via chemisorption, with the systems exhibiting the highest adsorption energies being those supported on oxygen-
defective anatase. The Ag cluster binds more tightly to the surface than the Pt cluster, reducing desorption. DFT
results indicate the highest and lowest work functions for the Au8Pd3 and Au2Pt2Ag2Pd2 clusters, respectively. The
band gap transition from semiconductor to metallic follows the sequence: Au8 > Au8Pd3 > Pd11 > Au2Pt2Ag2Pd2.

Keywords: Density Functional Theory, Density Functional Tight Binding, Anatase, Adsorption, multicomponent
clusters.
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Chapter 1

Introduction

Over recent decades, TiO2-based materials have been the subject of great attention in materials engineering. This
growing interest is driven by their ability to efficiently catalyze a variety of reactions under light irradiation, their
chemical stability and recoverability7, which make them the suitable candidates for applications in advanced envi-
ronmental technology and energy-related areas, including water splitting for hydrogen production8, photocatalytic
CO2 conversion into added-value fuels9, Advanced Oxidation Processes (AOPs) for wastewater treatment10, gas
sensing11, solar cells12 and more.

Extensive research, from both experimental and computational approaches, has been conducted on Bare TiO2

particularly focusing on Anatase and other relevant polymorphs such as Brookite and Rutile13,14. These studies
have provided valuable information on their physical and chemical properties, revealing key features such as crystal
structure, electronic configuration, optical responses, and surface reactivity15,16. Based on the evidence from
theoretical and chemisorption investigations, it is generally accepted that TiO2 anatase shows higher photocatalytic
activity. From the description of the electronic properties of anatase, this can be explained mainly by its classification
as an indirect energy gap semiconductor and by the presence of a lighter effective mass compared to the other
polymorphs already mentioned. This suggests a longer charge carrier lifetime and a faster migration of photogenerated
electrons and holes to the catalyst’s surface17,18. However, few studies have reported that brookite outperforms the
photocatalytic efficiency of anatase and rutile in heterogeneous photocatalytic systems. Still, it has received less
interest given the complex synthesis procedure, and the difficulty of obtaining single-phase brookite19.

The surface plays a key role in the charge carrier transfer and adsorption processes for photocatalytic reactions.
Therefore, the choice of the crystalline facet of the exposed surface and its reactivity/affinity with the specific
molecule involved will affect the overall performance of the catalyst. Anatase TiO2 crystals are typically dominated
by (101) facets, which have been reported as the most thermodynamically stable, exhibiting lower surface energy
compared to other low-index facets20,21. In particular, it has been observed that the photocatalytic activity for the
degradation of Rhodamine B (RhB) in the liquid phase is higher for Anatase TiO2 (101) with respect to the (010)
surface. Similarly, in the gaseous phase, the photoreduction of CO2 to CH4 is enhanced when exposed to (101)
surface compared to (001)22.

1



2 1.1. PROBLEM STATEMENT

The main drawbacks of unmodified TiO2 as a photocatalyst are the fast recombination of electron-hole pairs
and its wide band gap ( 3.2 eV for Anatase according to experimental data3), which limits the available active
charge carriers for chemical transformations and restricts the activation region to the ultraviolet (UV) light spectrum,
preventing full exploitation of the solar radiation spectrum. To overcome these shortcomings, several modification
strategies have been implemented23, including (i) metal and non-metal doping24,25, (ii) co-catalyst loading26, (iii)
heterojunction formation27, (iv) dye-sensitization28, and (v) introduction of point defects (e.g. titanium or oxygen
vacancies)29.

Thereby, surface-modified TiO2-based nano-photocatalysts, belonging to the category of second-generation
nanoparticles30,31, have proven to be promising materials with unique physicochemical features and efficient reactivity
under visible light (λ > 400nm) in both gas and liquid phases.

In advanced nanomaterials, the introduction of multicomponent nanomaterials (MCNMs) represents a ground-
breaking frontier to be explored. These materials are hybrid structures composed of two or more functional nanoscale
components of different compositions that can exhibit improved properties compared to their single-component
counterparts. TiO2-based multicomponent nanomaterials are showing promising results, especially in improving
photocatalytic performance, surpassing the capabilities of traditional unmodified TiO2. This is achieved by tuning
the electronic properties through synergistic effects from including other catalytically active species32,33. However,
the range of possible compositional combinations is nearly unlimited, making evaluating their efficacy by experi-
mental testing impractical. To address this challenge, the use of computational tools emerges as a valuable strategy
for optimizing the preliminary design of these materials; techniques such as ab initio modelling34 and machine
learning algorithms35 have the ability to provide crucial insights for informed decision-making in the development
of advanced materials.

Density Functional Theory (DFT) is a first-principles method based on quantum mechanics that has demon-
strated high accuracy in predicting atomistic-level properties such as electronic structure, energetics, and structural
information, with significant advantages in terms of computational speed36. Its widespread use in the scientific
literature37 highlights the role of DFT as a key tool to address open questions in the research of novel complex
materials, particularly those in the unexplored field of MCNMs.

1.1 Problem Statement
Developing advanced materials is essential for improving sustainable environmental and energy technologies. One
of the most promising transition metal oxides for designing next-generation photocatalysts is TiO2

38. Although
TiO2 modified with single-metal nanomaterials (NMs) has achieved great photocatalytic performance, they may
have some drawbacks in terms of chemical and thermal stability39. Therefore, the transition to TiO2 modified with
hybrids of equal or more than 2 types of metals has attracted great attention as an attempt to explore novel approaches
to obtain high-performance materials.

Given their synergistic nature, TiO2-based multicomponent nanomaterials face several interesting challenges,
with many possibilities to be explored. Among them, the investigation of TiO2 surface-modified with noble metal
multicomponent nanoclusters (Au, Ag, Pt, Pd) could serve as a starting point to delve into systems with a higher
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degree of complexity than those already studied. Understanding the electronic structure and adsorption properties
through computational approaches is desirable for the preliminary design of these materials, allowing the screening
of a wide variety of potential combinations that would be unfeasible using experimental methods alone. However,
detailed studies on the combined effect of noble metals on the energetic properties and their interaction with Anatase
TiO2 (101) surface are currently lacking, hindering a deeper understanding of the fundamental mechanisms governing
its catalytic behavior. In addition, it is not well understood how oxygen vacancies may influence the multicomponent
cluster morphology and the overall electronic structure.

Consequently, the existing gap in the literature suggests the need to employ state-of-the-art computational methods
to provide insights into synergistic effects in TiO2-based multicomponent nanomaterials.

1.2 General and Specific Objectives
The present study aims to conduct ab initio calculations using density-functional theory (DFT) to investigate the
structural and electronic properties of selected mono-, bi-, tri-, and tetra- metallic nanoclusters supported on both
stoichiometric and oxygen-defective Anatase TiO2 (101) surface. To fulfill this goal, the following specific objectives
will be addressed:

• Describe the theoretical basis of DFT, covering the fundamentals of the meta-GGA functionals r2SCAN and
SCAN.

• Perform geometry relaxations on bulk Anatase TiO2 and model the (101) c(4 × 2) supercell considering
Hubbard U corrections.

• Optimize cluster@Anatase TiO2(101) systems using density functional tight-binding (DFTB).

• Compute the proposed systems’ electronic structure considering stoichiometric and oxygen-defective Anatase
TiO2(101) surfaces.

• Analyze the adsorption properties of each configuration and assess the influence of noble metals on the overall
energetic properties.

• Calculate the vacuum potential and work function of selected systems employing DFT.



Chapter 2

Theoretical Background

The following chapter introduces the fundamental concepts of quantum mechanics that will serve as the basis for a
deeper understanding of the formalisms underlying the first-principles methods used in this research.

2.1 Many-body Schrödinger Equation
Solid materials, at the atomic scale, can be thought of as a collection of electrons and nuclei interacting with each
other to form the crystal structure, and it is widely recognized that many of their intrinsic macroscopic properties are
governed by their electronic structure40.

When restricted to stationary electronic states in a non-relativistic frame, it is necessary to consider the time-
independent Schrödinger equation to provide a quantum description of the system41:

Ĥψ = Eψ (2.1)

In this equation, Ĥ represents the Hamiltonian operator that includes the information of both Kinetic (T̂ ) and
Potential (V̂) contributions, and E is the energy eigenvalue associated to the wavefunction ψ that depends on the
particle position.

Assuming a system with N electrons and M nuclei, the coordinates will be r1, r2, ...rN and R1,R2, ...RM , respec-
tively. Since the many-body wave function Ψ is defined in terms of the positions of the electrons and the nuclei, it
can be written as

Ψ = Ψ(r1, r2, ...rN ; R1,R2, ...,RM) (2.2)

Therefore, the equation (2.1) can now be expressed as

ĤΨ = (T̂ + V̂)Ψ = EtotΨ (2.3)
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where Etot is the system’s total energy. The kinetic energy T̂ is described by the contribution of the kinetic energy
of the electrons T̂e and the nuclei T̂n:

T̂ = T̂e + T̂n = −

N∑
i=1

ℏ2

2me
▽2

i −

M∑
I=1

ℏ2

2MI
▽2

I (2.4)

In this expression, me is the electron mass, MI is the mass of the I-th nuclei, and ▽2 stands for the Laplacian operator
acting with respect to each particle. For instance, if the Laplace operator is acting on the coordinates of the i-th
particle, we have:

▽2
i =

∂2

∂x2
i

+
∂2

∂y2
i

+
∂2

∂z2
i

(2.5)

Given that we are dealing with electrically charged particles, electrostatic or Coulombic interactions must be
taken into account when defining the total potential energy V̂:

1. Electron-electron repulsive interaction, V̂(e-e)

V̂(e−e) =
1
2

∑
i, j

e2

4πϵ0

1
|ri − r j|

(2.6)

2. Electron-nuclei attractive interaction, V̂(e-n)

V̂(e−n) = −
∑
i,I

e2

4πϵ0

ZI

|ri − RI |
(2.7)

3. Nuclei-nuclei repulsive interaction, V̂(n-n)

V̂(n−n) =
1
2

∑
I,J

e2

4πϵ0

ZIZJ

|RI − RJ |
(2.8)

where e is the electron charge, ϵ0 is the vacuum permittivity, and ZI(J) accounts for the atomic number of the
I-th (J-th ) nuclei.

Then, using equations (2.6), (2.7) and (2.8), we can obtain the overall expression for the potential energy V̂ as follows

V̂ = V̂(e−e) + V̂(e−n) + V̂(n−n) =
1
2

∑
i, j

e2

4πϵ0

1
|ri − r j|

−
∑
i,I

e2

4πϵ0

ZI

|ri − RI |
+

1
2

∑
I,J

e2

4πϵ0

ZIZJ

|RI − RJ |
(2.9)

Finally, by replacing equations (2.4) and (2.9) in (2.3), the complete description of the many-body Schrödinger
equation is obtained:

− N∑
i

ℏ2

2me
▽2

i −

M∑
I

ℏ2

2MI
▽2

I +
1
2

∑
i, j

e2

4πϵ0

1
|ri − r j|

−
∑
i,I

e2

4πϵ0

ZI

|ri − RI |
+

1
2

∑
I,J

e2

4πϵ0

ZIZJ

|RI − RJ |

Ψ = EtotΨ (2.10)
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The equation (2.10) contains fundamental physical constants and nearly all the information needed to analyze
systems in equilibrium from a first principle approach, but a rigorous description would incorporate more complex
considerations such as time dependence, external electromagnetic field interactions, and relativistic corrections42.
In addition, it is important to note that analytically solving the many-body Schrödinger equation becomes computa-
tionally demanding as the size of the system increases; this is commonly referred to as the "exponential wall" since
the number of possible configurations, and hence matrix operations, grows exponentially with the increase in the
number of electrons involved43.

Attempts to overcome this challenge have resulted in several approaches to solve the equation (2.10), such as
the mean-field approximation, the Hartree-Fock (HF) method, and the Born-Oppenheimer (BO) approximation, the
latter being one of the most important approximations within the condensed matter field.

2.2 The Born-Oppenheimer (BO) approximation
The basic assumption of the Born-Oppenheimer approximation, also known as the adiabatic approximation, is that
nuclear and electronic motion can be treated as independent mathematical problems on the time scale44. This is
based on the fact that, given the considerable ratio of atomic to electron mass MI/me (104 to 105 times larger mass
in most atoms), electrons move significantly faster than nuclei and, as a result, any shift in nuclear position causes
electrons to adjust instantaneously45. In this context, atoms can be pictured as a collection of nuclei moving on a
potential energy surface, which is dictated by the influence of the electrons in a certain eigenstate46.

It is assumed that the electrons remain in their lowest energy configuration and that the positions of the nuclei
are ’fixed’ (nearly stationary due to the uncertainty principle). Thus, the adiabatic potential energy surface of the
atom will be given by the ground state energy, which is a function of the positions of the nuclei, E(R1,R2, ...,RM).

The total wavefunction can be decoupled as the product of the electron-only wavefunctionΨR and the nuclear-only
wavefunction χ, such that:

Ψ(r1, ..., rN ; R1, ...,RM) = ΨR(r1, ..., rN)χ(R1, ...,RM) (2.11)

For further discussion regarding the main features of the standard BO approximation, please refer to47.
At this point, it is possible to obtain the many-body Schrödinger equation for the nuclei only, but to facilitate

manipulation of the expressions, it is convenient to rewrite the equation (2.10) in terms of atomic units.
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2.2.1 Atomic Units

In the Hamiltonian definition of the many-body Schrödinger equation, fundamental physical constants that are
independent of the material under consideration are included. Specifically48,

ℏ = 1.054571817 · 10−34J · s,

me = 9.109383701 · 10−31kg,

mp = 1.672621923 · 10−27kg,

e = 1.602176634 · 10−19C,

ϵ0 = 8.854187812 · 10−12F/m.

(2.12)

To estimate the natural unit of energy, let us consider the hydrogen atom in its ground state, as described in ref.42;
the distance between the electron and the nucleus given by the Bohr radius a0 ≃ 0.529 Å, the angular momentum
ℏ = meva0, and the electron-proton pair’s Coulomb energy using Hartree is EHa =

e2

4πϵ0a0
. In addition, the kinetic

energy in terms of EHa is defined as:

1
2

mev2 =
1
2

EHa (2.13)

And,

EHa =
e2

4πϵ0a0
= mev2 =

ℏ2

mea2
0

(2.14)

Hence, using results from (2.14) and dividing equation (2.10) by EHa, the following simplification can be
obtained:

− N∑
i

1
2

a2
0▽

2
i −

M∑
I

1
2

a2
0

MI/me
▽2

I +
1
2

∑
i, j

a0

|ri − r j|
−

∑
i,I

ZI
a0

|ri − RI |
+

1
2

∑
I,J

a0
ZIZJ

|RI − RJ |

Ψ = Etot

EHa
Ψ (2.15)

To further simplify the equation, it is advantageous to express the physical constants in terms of Hartree atomic
units49. In this convention, the set of base units defined by the reduced Planck constant ℏ, the unit length a0, the unit
charge e, and the unit mass me, takes the value of 1. Consequently, the Hartree energy EHa from the equation (2.14)
is also set to one. In this way, equation (2.15) results as:− N∑

i

▽2
i

2
−

M∑
I

▽2
I

2MI
+

1
2

∑
i, j

1
|ri − r j|

−
∑
i,I

ZI

|ri − RI |
+

1
2

∑
I,J

ZIZJ

|RI − RJ |

Ψ = EtotΨ (2.16)

Referring back to the BO approximation postulate mentioned earlier in this section, it is appropriate to assume
that when it comes to the study of solids, the heaviness keeps the nuclei in fixed positions50. Consequently, treating
the MI as ∞ implies disregarding the kinetic energy of the nuclei. For further simplification, we can introduce the
E term, where the repulsion between nuclei is considered a constant:
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E = Etot −
1
2

∑
I,J

ZIZJ

|RI − RJ |
(2.17)

Similarly, the attractive electron-nucleus interaction is parameterized as a function only of the electron coordinates,

Vn(r) = −
∑

I

ZI

|ri − RI |
(2.18)

Then, equation (2.16) is written as follows:− N∑
i

▽2
i

2
+

1
2

∑
i, j

1
|ri − r j|

+
∑

i

Vn(ri;R)

ΨR = ERΨR (2.19)

Note that the subscript R denotes the dependence on the nuclear coordinate set. Equations (2.11) and (2.19) are
replaced into (2.16), yielding,

ERΨRχ +

− N∑
i

▽2
i

2MI
+

1
2

∑
i, j

ZI

|RI − R j|

ΨRχ = EtotΨRχ (2.20)

Furthermore, by multiplying by Ψ∗R, integrating over the electronic coordinates, and normalizing to unity, the whole
equation then results in: − N∑

i

▽2
i

2MI
+

1
2

∑
i, j

ZI

|RI − R j|
+ ER

 χ = Etotχ (2.21)

In this way, the unfolding of the electronic and nuclear dynamics from the general quantum mechanical description
of equation (2.16) is represented by expressions (2.19) and (2.21).

2.3 Foundations of Density Functional Theory (DFT)
Solving the many-body Schrödinger equation is a challenging task; therefore, using specific approximation schemes
is advisable. Even if a simplification is achieved using these assumptions, the problem is still mathematically too
complex as we are working with 3N Cartesian coordinates51.

Density Functional Theory (DFT) offers an alternate formalism for handling the many-electron problem. This
approach emerged between 1964 and 1965 from the pioneering contributions of Hohenberg, Kohn, and Sham52,53. It
is based on calculating the ground state energy of a quantum system as a function of the electron density distribution
in space n(r) rather than explicitly dealing with the observable many-electron wave function Ψ. The core of DFT is
based on two fundamental theorems: the Hohenberg-Kohn theorem and the Kohn-Sham equations, which we will
discuss in more detail in this section.
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2.3.1 Thomas-Fermi Theory

This semi-classical model (1927) is considered the predecessor of DFT, as it proposed the first idea of electron gas54.
In this framework, it was established that the kinetic energy is conveniently denoted as a functional of the local
density for N electrons.

For the scenario of a homogeneous electron gas with non-interacting electrons under a constant electrostatic
potential, the average kinetic energy is defined55:

Ek(n) =
3

10
(3π2)2/3n2/3 (2.22)

When electrons are subjected to slightly fluctuating external potential vext, i.e., varying slowly in space, the approxi-
mate value of their kinetic energy density at a point r is:

Ek[n(r)] ≈
∫

n(r)Ek(r)d3r =
3

10
(3π2)2/3

∫
n5/3(r)d3r (2.23)

For the Coulomb energy, the approximation leads to,

Ec[n(r)] =
∫

n(r)vext(r)d3r +
1
2

∫ ∫
n(r)n(r′)
|r − r′|

d3rd3r′ (2.24)

where the first term represents the electron-nuclei attractive energy and the second is the electron-electron repulsive
energy. Hence, the total energy can be written using the Thomas-Fermi functional in the following way:

ET−F[n(r)] = Ek[n(r)] + Ec[n(r)] (2.25)

The equilibrium ground state can be obtained by minimizing the equation (2.25) with the normalization constraint
that conserves the number of electrons in the system56,∫

n(r)d3r = N (2.26)

As a result, the Thomas-Fermi equation is derived:

1
2

(3π2)2/3n2/3(r) + vext(r) +
∫

n(r′)
|r − r′|

d3r′ = µ (2.27)

In which µ is the Lagrange multiplier introduced to satisfy condition (2.26). Then, the implicit equation for density
is,

ρ =
1

3π2 23/2
(
µ − vext(r) −

∫
n(r′)
|r − r′|

d3r′
)3/2

(2.28)

It is worth mentioning that due to the non-rigorous treatment of the kinetic energy and the absence of explicit
terms for exchange-correlation effects, it fails to capture all quantum effects fully and to provide reliable electronic
descriptions. Despite its limitations, it is considered an excellent first approximation that laid the groundwork for
the transition to more sophisticated and accurate theories57.
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2.3.2 Hohenberg-Kohn (HK) Theorem

In 1964, Hohenberg and Kohn established two remarkable principles related to existence theorems, which laid the
foundations of modern DFT58. Briefly, the key insight of the HK theorem is that the ground-state energy is a function
of the electron density, where the ground-state wave function and the ground-state electron density are injectively
related,

E = F[n(r)] (2.29)

The following three premises serve as the basis for the justification of this theorem42:

1. The external potential is solely determined by the electron density in the ground state, n(r)→ Vext.

2. For a given external potential, there is a unique associated many-electron wavefunction, Vext → Ψ.

3. The system’s overall energy is a function of the wavefunction, Ψ→ E.

Consequently, the arguments above suggest that the electron density dictates the total energy,n→ Vext → Ψ→ E.

2.3.2.1 First Hohenberg-Kohn Theorem

The first theorem holds that the ground state density of a system of N electrons uniquely determines all the properties
of an electronic system, such as the number of electrons, the external potential, the Hamiltonian, and thus the
properties of the ground state59.

The theorem is proved as suggested in reference60. Let us start by assuming that the Hamiltonian Ĥ has a
non-degenerate ground state wavefunction Ψ with its corresponding external potential vext(r), ground state density
n(r), and kinetic T̂ and electron interaction Û energy operators. The corresponding energy of the ground state equals,

E = ⟨Ψ|Ĥ|Ψ⟩ =
∫

vext(r)n(r)d3r + ⟨Ψ|(T̂ + Û)|Ψ⟩ (2.30)

Let us now consider a different potential v′ext that leads to the same electron density n(r) as vext but differs from
it by a factor greater than a constant, such that v′ext , vext + const.The energy of the ground state is,

E′ = ⟨Ψ′|Ĥ′|Ψ′⟩ =
∫

v′ext(r)n(r)d3r + ⟨Ψ′|(T̂ + Û)|Ψ′⟩ (2.31)

Based on the Rayleigh-Ritz variational principle for energy61, we get the inequality:

E < ⟨Ψ′|Ĥ|Ψ′⟩ =
∫

vext(r)n(r)d3r + ⟨Ψ′|(T̂ + Û)|Ψ′⟩

= E′ +
∫

(vext(r) − v′ext(r))n(r)d3r
(2.32)

Likewise, given that we have not explicitly guaranteed the non-degeneracy for Ψ′, we have :

E′ ≤ ⟨Ψ|Ĥ′|Ψ⟩ = E +
∫

(v′ext(r) − vext(r))n(r)d3r (2.33)
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Adding equations (2.32) and (2.33) results in a contradiction,

E + E′ < E + E′ (2.34)

The first HK theorem is then proved by applying reductio ad absurdum, invalidating our initial assumption that the
same electron density can be obtained from two different external potentials.

2.3.2.2 Second Hohenberg-Kohn Theorem

According to the second HK Theorem, the ground-state energy functional F[n(r)], which can be obtained variation-
ally, determines the ground-state density n(r). By minimizing the total energy, this density corresponds to the exact
electron distribution of the system1. It is possible to write the energy functional as60,

E[n] = FHK[n] +
∫

n(r)vext(r)d3r (2.35)

Where,
FHK[n] = ⟨Ψ[n]|(T̂ + Û)|Ψ[n]⟩ (2.36)

FHK[n] is a universal functional of n-representable densities (same form for all Coulombic systems), and the factors
that determine it are the kinetic and electron-electron interaction operators rather than the external potential.

To illustrate how a functional changes with a slight variation, the functional derivative is presented:

δF =
∫ (

δF
δn(r)

)
δn(r)d3r (2.37)

By considering the Lagrangian multiplier for particle conservation from the constraint (2.26), energy minimization
can be obtained using the variational principle:

δ

{
E[n] − µ

[∫
n(r)d3r − N

]}
= 0 (2.38)

Yielding the Euler-Lagrange equation for the density,

δE[n]
δn(r)

= vext(r) +
δFHK[n]
δn[r]

= µ (2.39)

Even though FHK[n(r)] has a formal definition found in equation (2.36), the explicit density-dependent functional
form is unknown and needs to be estimated. Equation (2.39) can be satisfied by an approximate FHK[n(r)], so the
corresponding solutions are estimates of the actual density of the system. Thus, the accuracy will depend on the
functional used55.

2.3.3 Kohn-Sham Equations

Practical implementations of the Hohenberg-Kohn principles were made possible by the Kohn-Sham (KS) approach.
This implementation assumes that the kinetic energy can be mapped as a function of single-particle orbitals. Suppose



12 2.3. FOUNDATIONS OF DENSITY FUNCTIONAL THEORY (DFT)

the interacting electron system described previously is considered an auxiliary system of independent electrons with
the same ground-state charge density as the real interacting electron system. In that case, the system can be simplified
considerably62. Since KS-DFT is generally more accurate than orbital-free DFT, it is regarded as one of the most
widespread electronic structure approximations63.

The density is computed from a single Slater determinant of the non-interacting system, and an approximation
to the kinetic energy of the actual interacting system is evaluated from the spin orbitals of this determinant similarly
as the kinetic energy is computed in wave function theory64.

Functional FHK[n(r)] can be split into65,66,

FHK[n(r)] = Ts[n(r)] + EH[n(r)] + EXC[n(r)] (2.40)

involving Ts[n] as the kinetic energy of non-interacting electrons, the classic electrostatic Hartree energy EH[n], and
the exchange-correlation energy EXC[n]. The Hartree term is given by,

EH =
1
2

∫ ∫
n(r)n(r′)
|r − r′|

d3rd3r′ (2.41)

The existence of an effective external Kohn-Sham potential vKS (r) is then introduced,

vKS (r) = vext(r) + vH(r) + vXC(r) (2.42)

The Coulomb repulsion between the defined electron and the overall electron density is expressed by the Hartree
potential vH(r),

vH(r) =
δEH[n]
δn(r)

=

∫
n(r′)
|r − r′|

d3r′ (2.43)

and the exchange-correlation potential, which accounts for quantum effects in the interacting electron system:

vXC(r) =
δEXC[n]
δn(r)

(2.44)

The interaction problem is thus reduced to a system of coupled equations known as the Kohn-Sham equations, which
are similar to the Schrödinger equation but only for one electron.[

−
▽2

2
+ vext(r) + vH(r) + vXC(r)

]
ϕi(r) = εiϕi(r) (2.45)

where εi are the Lagrange multipliers or "eigenvalues", and ϕi(r) are the single-electron wavefunctions or "orbitals".
The equation (2.45) must produce the exact density of the ground state, which is built as follows:

n(r) =
N∑
i

|ϕi(r)|2 (2.46)

Furthermore, one can rewrite the total energy functional of the equation 2.35 in its ground state as42,

E[n] =
∫

n(r)vext(r)d3r −
∑

i

∫
ϕ∗i (r)

▽2

2
ϕi(r)d3r +

1
2

∫ ∫
n(r)n(r′)
|r − r′|

d3rd3r′ + EXC[n] (2.47)
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At this point, a self-consistency loop is encountered when trying to find a solution to the equation (2.45): the
Hartree potential, which depends on the electron density, must be defined to solve the KS equations. The electron
density is known to depend on the Kohn-Sham orbitals, so the KS equations must be solved to determine these wave
functions. This problem is usually approached iteratively. A schematic representation of this algorithm is displayed
in Fig. (2.1).

Figure 2.1: Self-consistent iterative method for solving KS equations. Adapted from Ref.1

2.3.4 Exchange-Correlation Functionals

As discussed above, to solve the Kohn-Sham equations, it is necessary to identify the exchange-correlation functional
EXC[n], whose exact form is unknown but can be approximated. It represents the system’s energy that decreases
due to the electrons avoiding each other as they pass through the density due to the Pauli principle and Coulomb
repulsion67.

Since this term is approximated in the Kohn-Sham equation, the reliability of electrical and structural properties
predictions will depend on its accuracy68. Many exchange-correlation functionals have been developed and are
available in the literature. According to Takao Tsuneda, exchange-correlation functionals can be systematically
formulated based on the following criteria69:

(i) Meet the fundamental physical requirements of each energy component, e.g., coordinate scaling conditions.
(ii) Provide reliable reproductions of reactions and quantum properties of a broad spectrum of molecular systems.
(iii) Employ as a minimum number of parameters as possible.
(iv) Avoid unnecessary artificial terms added to fulfill particular physical properties.
(v) Being able to incorporate physical corrections without modifying parameters or involving additional opera-

tions.
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The density functional approximations for EXC[n] can also be ordered hierarchically, as presented in the Jacob’s
Ladder proposed by Perdew70. EXC[n] in its most basic form may be expressed as:

EXC[n ↑, n ↓] =
∫

n(r)εXC([n ↑, n ↓]; r)d3r (2.48)

where εXC is the exchange-correlation energy per electron. The complexity depends on the "ingredient" on which
the εXC . As shown in Table (2.1), the functionals are ordered in ascending order from the Hartree approximation
(EXC[n] = 0) to high chemical precision.

Increasingly complex
ingredients

Chemical Accuracy Functional

Unoccupied ϕi(r) Runge 5: Generalized RPA ‡ B2PLYP,...
EHF

X Runge 4: Hybrid-GGA, Hybrid meta-GGA B3LYP, HSE06,...
τ(r)/▽2n(r) Runge 3: meta-GGA SCAN, mPWB95, ...
▽n(r) Runge 2: GGA PBE, BLYP, ...
n(r) Runge 1: LDA SPWL, VWN, ...

Hartree-Fock Theory

Table 2.1: “Jacob’s ladder” for exchange-correlation functionals adapted from4,5

2.3.4.1 The Local Density Approximation (LDA)

This non-empirical approximation is considered the simplest and earliest functional (excluding the Hartree VXC = 0),
in which the local exchange-correlation energy density of an inhomogeneous system is approximated as that of
a homogeneous electron gas with the same density at that point in space72. The exchange-correlation functional
depends only on the value of the density n(r) and takes the form:

ELDA
XC [n(r)] =

∫
n(r)εuni f

XC (n(r))d3r

=

∫
n(r)[εX(n(r)) + εC(n(r))]d3r

(2.49)

with the exchange-correlation energy per electron in a homogeneous electron gas being ε
uni f
XC (n). The exchange

energy is determined by the LDA exchange hole, resulting in:

ELDA
X [n(r)] = −

3
4

(
3
π

)1/3 ∫
n4/3(r)d3r (2.50)

‡In most of the literature, the representations of the first four rungs are consistent; however, there is no clear consensus on the fifth rung.
Some works include either RPA (random phase approximation) or DHA (double hybrid approximation), while few include both 71. This choice
can be attributed to the research approach and system-specific factors.
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The main drawback of LDA is that, in most solids, the density is not uniform and does not vary slowly. Therefore,
it does not provide an accurate description of the electron interaction since it tends to overestimate ELDA

X [n(r)] and
binding forces, as well as giving an error of the order of ∼ 1eV for the molecular atomization energies62. However,
its formal applicability seems particularly suitable for systems similar to the homogeneous electron gas, such as
simple metals and covalent systems.

2.3.4.2 The Generalized Gradient Approximation (GGA)

This semi-local approximation, where in addition to the local electron density, the local gradient of the electron
density |▽n(r)| is considered, has a higher accuracy compared to LDA due to a better description of the exchange
energy and the corrected cohesive energies73. The general form of the exchange-correlation functional is74:

EGGA
XC [n(r)] =

∫
n(r)εGGA

XC (n(r), |▽n(r)|)d3r (2.51)

Equation (2.51) can likewise be expressed based on LDA :

EGGA
XC [n(r), s] =

∫
n(r)εLDA

XC (n(r))F(s)d3r (2.52)

An enhancement factor F(s) is included, which also depends on both electron density and gradient, with s defined
as66,

s = C
|▽n(r)|
n4/3(r)

(2.53)

where C represents a constant containing the Fermi wavevector kF(r).
Among GGA’s limitations is the loss of some XC hole features in strongly correlated systems, such as transition

metal oxides. In addition, the calculation of the band gap is inaccurate.
Many GGA functionals have been developed for specific isolated systems, but a well-known one is the Perdew-

Burke-Ernzerhof (PBE)75.PBE is a non-empirical functional that is an improved and simplified version of the PW91
GGA functional; however, it tends to overestimate the computed volumes.

2.3.4.3 Meta-Generalized Gradient Approximation (meta-GGA)

The meta-GGA method is a semi-local approximation of the orbitals and a non-local functional of density, which
involves the incorporation of the Laplacian of electron density ▽2n(r) and the orbital kinetic energy density τ(r)76.
The meta-GGA is described as follows,

Emeta−GGA
XC [n(r)] =

∫
n(r)εmeta−GGA

XC (n(r), |▽n(r)|,▽2n(r))d3r

=

∫
n(r)εmeta−GGA

XC (n(r), |▽n(r)|, τ(r))d3r
(2.54)

and the occupied orbital-dependent kinetic energy density τ(r),

τσ =
1
2

occup∑
i

|▽ψiσ(r)|2 (2.55)
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The Strongly Constrained and Appropriately Normed (SCAN) functional
The non-empirical semilocal SCAN functional has demonstrated superiority over most gradient-corrected functionals
in calculating lattice parameters, formation enthalpy, weak interaction binding energies, transition pressures, and
atomization energies77. It is suitable for systems with non-covalent bonds with an incorporated dispersion term but
fails when computing magnetic moments on alloys and surfaces, as they are overestimated78.

This functional was the first published meta-GGA to obey all 17 known exact constraints, which are listed in
Table (2.2):

SCAN Constraints
(i) Negativity

(ii) Spin-scaling
(iii) Uniform density scaling

(iv) 4th-order gradient expansion
(v) Non-uniform density scaling

Exchange

(vi) Tight bound for 2 n(r)
(vii) Nonpositivity

(viii) 2nd-order gradient expansion
(ix) Uniform density scaling to high density
(x) Uniform density scaling to low density

(xi) Zero-correlation energy for 1-e spin-polarized energy

Correlation

(xii) Non-uniform density scaling
(xiii) Size extensivity

(xiv) Lieb-Oxford bound
(xv) Weak spin polarization in the low density

(xvi) Static linear response of the uniform electron gas
Exchange-Correlation

(xvii) Lieb-Oxford bound for 2n(r)

Table 2.2: List of the 17 SCAN exact constraints arranged by novelty. Adapted from6

.

For van der Waals interactions, SCAN can capture the intermediate part but not include the long-range part. This
limitation could be overcome by combining it with the revised nonlocal correlation functional Vydrov-van Voorhis
(rVV10)79, potentially improving the physisorption and chemisorption binding energies.

The Regularized-Restored SCAN (r2SCAN) functional
To overcome numerical instabilities, improve convergence, and promote the generation of reliable ultrasmooth
pseudopotentials, the regularized SCAN functional (rSCAN) was proposed. Although its performance was still
similar to SCAN, rSCAN introduced two regularizations in the iso-orbital indicator (which is a crucial function to
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satisfy the exact constraints), violating several of them80.
The introduction of the new r2SCAN functional made it possible to satisfy almost all SCAN constraints†.

This functional maintains the accuracy of SCAN and the grid density stability of rSCAN, with noticeably faster
convergence at a lower computational cost81.

2.3.4.4 Hybrid Functionals

Hybrid functionals partially incorporate nonlocal Hartree-Fock (HF) exchange with local/semi-local DFT exchange,
such as the GGA or meta-GGA type, as the main component. This idea is supported by the fact that HF does not
consider the effects of electron dynamic correlation. On the contrary, DFT has difficulties concerning self-interaction
and strongly correlated systems, so it seems a convenient alternative to couple both approaches66.

Becke first successfully applied this method under the name "half-and-half" theory82. Given any DFT functional,
the hybrid energy related to a mixing coefficient (α) can be expressed as83:

EXC = EDFT
XC + α(EHF

X − EDFT
X ) (2.56)

Constant α represents the amount of Hartree Fock replacement in the system. Commonly, a good choice of mixing
coefficient is ∼ α = 0.25 for most molecules84,85. It should be noted that considering the exact HF exchange
information makes it a computationally more expensive problem, limiting its applicability on a large scale.

An example of this approximation type is the application of B3LYP, which has become one of the most explored
and used functionals in computational chemistry. This scheme includes the exact Hartree–Fock exchange with
gradient-corrected correlation terms.The exchange-correlation energy functional is given by86:

EB3LYP
XC = ELS DA

XC + a0(EHF
X − ELS DA

X ) + aX∆EB88
X + aC∆EPW91

C (2.57)

Where the semi empirical coefficients are a0 = 0.2, ax = 0.72, and ax = 0.81. Here, ELS DA
XC is the local spin

density approximation exchange-correlation functional, EHF
X is the Hartree–Fock exact exchange functional, ∆EB88

X

is the Becke’s gradient correction to the LSDA exchange, and ∆EPW91
C is the Perdew-Wang gradient correction for

correlation. On solids and surfaces, it has been shown to yield band gaps, binding energies, and magnetic moments
in good agreement with experimentally reported values87. However, there is a notable shortcoming in describing
atomization energies for extended systems, especially in d-metals88.

2.4 Hubbard-corrected DFT (DFT + U)
One strategy to correct on-site Coulomb repulsions between electrons is the implementation of the semi-empirical
DFT+U (here we consider Dudarev’s approach89), which adds a Hubbard-type Coulomb repulsion. The Hubbard
parameter U, i.e., the energy cost caused by placing two electrons in the same location, is defined as90:

U = E(dn+1) + E(dn−1) + 2E(dn) (2.58)
†However, it does not recover the slowly varying fourth order density-gradient expansion constraint, listed as (iv) in Table (2.2).
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Electrons located in the d and f orbitals are susceptible to strong quasi-atomic interactions, and the strength of these
interactions can be described by Ue f f = U − J, where J is the in situ exchange parameter. The goal of DFT+U is to
provide a corrected description of the ground state of these correlated systems.

In particular, the LDA+U method is extensively employed in transition metal oxides and sulfides91. It describes
the valence electrons similarly to LDA but applies the corrective functional on the strongly correlated d and f
electrons. The total system energy accounts for the addition of the standard LDA functional, the Hubbard functional,
and a "double-counting" term Edc treated as a mean-field approximation,

ELDA+U[n(r)] = ELDA[n(r)] + EHUB[{nIσ
mm′ }] − Edc[{nIσ}], (2.59)

where nIσ
mm′ is the localized orbital occupancy number, I is the atomic site index, m is the state index, and σ is the

spin.
DFT+U has been shown to reliably predict intermolecular interactions, band gaps, formation energies, and other

physical properties, including magnetic and structural features92.

2.5 Density functional Tight Binding (DFTB)
Despite the promising results obtained with DFT, faster and less computationally demanding tools are needed to study
larger and more complex systems, such as biomolecules. Density Functional Tight Binding (DFTB) is a DFT-based
approximation scheme involving derivations from second-order Taylor series expansions of the total Kohn-Sham
energy.

Before describing the core of DFTB, it is useful to understand the framework of the Tight-Binding (TB) theories.
The main TB model, also known as Linear Combination of Atomic Orbitals (LCAO), states that delocalized Bloch-
type functions can be represented by a linear combination of isolated atomic orbitals93. The following expression
defines the TB Hamiltonian in its general matrix form94,

Haµ,bβ = ⟨ϕaµ|Ĥ|ϕbβ⟩ (2.60)

where (a, b) represents the atomic labels, (µ, β) the valence orbitals and ϕaµ the single atomic function. The
single electron effective energy levels of the valence orbitals are represented by the diagonal elements Haµ,aµ; the
nondiagonal elements Haµ,bβ, or hopping integrals, are the descriptors of electron delocalization, whereas the intersite
nondiagonal elements are usually zero:

Haµ,aµ = ⟨ϕaµ| −
▽

2
+ V̂ |ϕaµ⟩ = εaµ

Haµ,bβ = ⟨ϕaµ| −
▽

2
+ V̂ |ϕbβ⟩

(2.61)

The total TB energy includes a short-range repulsion term of the ionic core Vrep(R) and an exchange-correlation
contribution G[n(r)]. It is summarized in an expression consistent with the DFT approach:

E[n(r)] = Vrep(R) +
∑

k

nkεk +G[n(r)] (2.62)
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In current DFTB models, the electron density n(r) is expanded around a superposed initial density n0(r) perturbed
by a fluctuation,

n(r) = n0(r) + δn(r) (2.63)

The total energy functional expanded to second order under this approach results in94:

E[n(r)] = E[n0(r)] +
∫

δE[n(r)]
δn(r)

∣∣∣∣
n0
δn(r) +

1
2

∫ ∫
δ2E[n(r)]
δn(r)δn(r′)

∣∣∣∣
n0
δn(r)δn(r′) + ... (2.64)

Based on the approach outlined above, the DFTB has implemented three main versions95,96:

1. DFTB1: It is a non-self-consistent model that takes into account the first 2 terms of the equation (2.64). It has
a convenient applicability for systems with small charge transfer.

2. DFTB2: It is a self-consistent model that approximates the first 3 terms of the equation (2.64), and assumes
the density fluctuation as the superposition of the neutral density contributions of the atoms. It is suitable for
molecules with partial charge transfer.

3. DFTB3: Similar to DFTB2 but includes third-order expansion, which can substantially improve the description
of charged molecules.

2.6 Vienna ab initio Simulation Package (VASP)
Among the best-known ab initio DFT computational simulation tools are the Vienna ab initio Simulation Package
(VASP), which was parallelized mainly by Georg Kresse and co-developed with other collaborators from code
written by Mike Payne.

This package uses plane wave basis sets and the projector augmented wave (PAW) or ultrasoft pseudopotentials to
calculate electron-ion interactions, either by KS equations in the DFT framework or from a hybrid approach. Some of
the remarkable features of VASP are that it (i) offers an efficient alternative to reduce orthonormalization operations
via iterative diagonalization, (ii) it calculates the electronic ground state after each full cycle of self-consistent field
(SCF) iterations accurately, (iii) describes the electron-ion interaction using pseudopotentials, and (iv) it improves
energy conservation along the molecular trajectory97,98.

2.6.1 Plane-waves basis set

The basis set VASP uses for expanding KS orbitals and electronic charge densities is conformed by plane waves.
Bloch’s theorem99 states that the Coulomb potential in a crystalline solid is periodic and that the wave function is
the product of the plane wave and a function unk(r) sharing the same lattice periodicity,

ψnk(r) = eikrunk(r) (2.65)
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where k is the wave vector in the first Brillouin zone and is determined by the unit cell. The KS orbitals are expressed
as100,101:

ψnk(r) =
1
√
Ω

∑
G

CGnkei(G+k)r (2.66)

In this equation, the expansion coefficients are CGnk, G are the reciprocal lattice vectors, and Ω is the volume of the
primitive cell given by:

Ω = a1 · (a2 × a3) (2.67)

The density can also be defined in terms of plane waves:

n(r) =
∑

G

nGeiG·r (2.68)

The expansion is restricted to a condition that establishes that only reciprocal vectors whose energy is less than a
given cutoff energy are included in the basis set,

1
2
|G + k|2 < Ecut (2.69)

Some advantages conferred by using plane waves are the straightforward momentum space representation, conver-
gence control based on cutoff energy, and, unlike localized bases, basis set overlap errors can be prevented102.

2.6.2 Pseudopotentials

Plane-wave expansion could achieve convergence if the nodal feature of the valence orbitals is removed, which can
be done by including a pseudopotential. The pseudopotential introduces a softer, effective potential that replaces the
strong potential exerted by bound and core electrons on the valence electrons103. The plausibility of this proposition
is based on the fact that in most atoms, the chemical bonds are dictated by the valence electrons since the contribution
of the electrons in the core is usually negligible104.

Let now consider the wavefunction of an electron in the valence shell45:

|ψv⟩ = |ψps⟩ −
∑

i

|ψci⟩⟨ψci |ψps⟩ (2.70)

where |ψci⟩, |ψv⟩ and |ψps⟩ are the core, true valence, and pseudo wave functions, respectively. Considering the form
of the KS equation (2.45) we have, [

−
▽2

2
+ ve f f

]
|ψv⟩ = εv|ψv⟩,[

−
▽2

2
+ vps

]
|ψps⟩ = εv|ψps⟩

(2.71)

The pseudopotential obtained is then a nonlocal energy-dependent potential and is defined as:

vps = ve f f (r) +
∑

i

(εv − εci )|ψci⟩⟨ψci | (2.72)
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Pseudopotentials can be classified into: (i) norm-conserving105, and (ii) Vanderbilt ultrasoft106. The second group
encompasses pseudopotentials that do not consider the norm-conserving condition, which implies that the charge in
the core is not equal to that of the wave function of all electrons. Therefore, fewer plane waves are needed for the
approximation.

2.6.3 The Projector Augmented-Wave (PAW) Method

This method generalizes the concepts of pseudopotentials and augmented linear plane waves and is used to avoid the
development of nonlinear kernel corrections. This approach was first introduced by Bloch107,108 and further refined
by Kresse109. It involves a linear transformation of the pseudopotential to the all-electron wave function:102:

|ψAE⟩ = |ψps⟩ +
∑

i

(ϕAE
i − ϕ

ps
i )⟨pps

i |ψps⟩ (2.73)

The partial waves of all electrons ϕAE
i are obtained from a non-spin-polarized reference atom. In contrast, the

pseudopotential partial waves ϕps
i are equivalent to the partial waves of all electrons outside the radius of the core.

On the other hand, the projector functions pi represent linear combinations of intermediate functions and are dual to
the partial waves,

⟨pps
i |ϕ

ps
j ⟩ = δi j (2.74)

This process can be considered an all-electron treatment in which the core states of the atoms are frozen.
Although, in theory, a reliable transformation requires an infinite number of projectors and partial waves, for
practical applications, up to two projector functions for each angular momentum channel are adequate110.

2.6.3.1 PAW vs. Ultrasoft pseudopotentials (US-PP)

DFT implementations to treat core electrons have been performed, commonly adopting either the PAW approach
or ultrasoft pseudopotentials (US-PP). The latter, which was first proposed by Vanderbilt106, relaxes the norm-
conserving condition and treats the electron density as a soft contribution given by the squared moduli of the wave
functions to describe the valence electrons, and a hard part involving the angular momentum projector and the
magnification functions that account for electrons located close to the nucleus111. The construction of smooth
pseudo-wavefunctions allows the reduction of the cutoff energy and the number of plane waves needed to describe
the wave function, which helps to gain computational efficiency.

The PAW method has proved to be more accurate than SS-PP in some scenarios, such as strong magnetic
moment transition metals and alkali and alkali-earth metals, where particular effects within the core region must be
considered. This can be attributed to the need for using a smaller radial cutoff. However, SS-PP yields accurate
results for p-elements and most non-magnetic transition metals.
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2.7 DFTB+ Code
DFTB+ is an open-source quantum mechanics simulation code that uses a localized basis set of atomic orbitals to
calculate electronic structure and molecular geometry112. In general, electronic parameterization in DFTB+ involves
determining atomic densities and basis functions and calculating Hamiltonian and overlap matrix elements.

DFTB+ relies on DFTB- and xTB- approaches and extensions, such as long-range corrected functionals for
excited states and steady-state electron transport simulations. In general terms, the xTB methods are an extended
version of the tight binding methods. The xTB Hamiltonian is constructed on a partially polarized basis set that
includes the coordination number dependence. This extension achieves a good ratio between performance and
computational cost. For a broader view of the improvements of this theory, please refer to Ref113.



Chapter 3

Methodology

This section provides information on the computational tools used in this research work and how the proposed
systems’ main energy descriptors are calculated. It is divided into the following 2 main methodologies: DFT
and DFTB, with their implementation computational software, which are VASP and DFTB+, respectively. The
outlined procedures range from the modeling of multicomponent nanoclusters supported on Anatase TiO2(101)
(A-TiO2(101)), including the relaxation of these structures, to the establishment of their characteristic electronic
structure.

3.1 Input Structures
As a well-studied material, the A-TiO2 unit cell is available in several online databases. The construction of the final
surface of this work is performed starting from the unit cell extracted from the Materials Project114, shown in Fig.
(3.1).

Figure 3.1: Input crystal structures: a) primitive cell, and b) unit cell of a body-centered tetragonal (BCT) A-TiO2

(space group I41/amd). Visualization was performed using VESTA software2.

23
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3.2 VASP computational implementation

3.2.1 Optimal Parameters for Bulk A-TiO2

Convergence tests are performed on the original structure to determine the optimal parameters. The files needed for
these simulations are INCAR, POSCAR, KPOINTS, and POTCAR. This section will implement DFT calculations
using 2 different meta-GGA functionals: SCAN and r2SCAN, combined with the nonlocal rVV10 van der Waals
functional.

3.2.1.1 Cut-off Energy (Ecut)

As discussed in Section (2.6.1) and since VASP is a package based on the plane-wave basis set, it is necessary
to determine the cutoff energy to ensure the completeness of this set, an accurate electronic description of the
system and also to optimize the simulation in terms of computational cost. The cut-off energy convergence test was
conducted using SCAN+rVV10 functional. From Fig. 3.2, we have that the appropriate Ecut is 700 eV since the
desired convergence in total energy of 1meV/atom is achieved at this value. This convergence threshold was set
following previous DFT studies of A-TiO2 (101)115,116, which is usually associated with the value of energy changes
in structural phase transformations of titanium dioxide117. The electronic properties of the system may not be fully
captured by the plane-wave basis set at 400 eV, leading to a lower energy state with an energy difference of more
than 3 meV compared to the cutoff energy at 450 eV. The energy begins to converge to a stable value as it approaches
700 eV, as the more complete basis set allows a more accurate representation of the electron density, especially near
the atomic core.

Figure 3.2: Cut off energy convergence test computed with SCAN+rVV10 functional for 400 ≤ Ecut(eV) ≤ 900.
Convergence within 1meV/atom is reached at Ecut = 700.
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3.2.1.2 K-points Sampling

The k-points selection within the Brillouin zone is given by the Γ centered Monkhorst-Pack grid approach118.The
k-point density ∆k indicates the number of k points per unit length in the reciprocal space. The convergence test was
calculated with the SCAN+rVV10 functional so that the total energy of the k-point density changes is <1meV. As
noticed in Fig. 3.3, in the range of k-point densities 0.033 ≤ ∆k (Å−1)≤ 0.044 the total energy remains stable within
1 meV/atom. Choosing a k-point density of ∆k= 0.040 Å−1 for the bulk A-TiO2 (equivalent to 7x7x9 k-point mesh)
provides a finer mesh that could potentially lead to more accurate results that are convergent within the criterion while
maintaining computational efficiency. The k-point meshes for the subsequent construction of A-TiO2(101)-(1 × 1)
and A-TiO2(101)-c(4 × 2) supercell are chosen to ensure the same accuracy.

Figure 3.3: k-point convergence test computed with SCAN+rVV10 functional for 0.033 ≤ ∆k (Å−1)≤ 0.044. Chosen
k-point density was ∆k = 0.040 Å−1.

3.2.1.3 Birch-Murnaghan Equation of State

The third-order Birch-Murnaghan (EOS) equation of state119 is useful for determining the optimal structural param-
eters of the system under consideration. By varying the volumes, the total energy for each scenario is calculated and
the resulting points are adjusted to the following equation:

E(V) = E0 +
9V0B0
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]2 [

6 − 4
(V0

V

)2/3] , (3.1)

where information can be extracted, such as the optimum volume V0 (which is the minimum of the fitted equation),
the bulk modulus B0, and the B′0 is the first derivative of the bulk modulus with respect to pressure at T=0K. This
provides insight into how the material behaves under compression and expansion.

Fig. 3.4 shows the energy values obtained by calculations using the SCAN+rVV10 functional for volumes from
64 to 73 Å3 and their respective fit. This functional yielded the following parameters: V0 =68.21 Å3, B0 =189.96
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GPa, and B′0 =2.31 . Similarly, for the fit depicted in Fig. 3.5, which used the r2SCAN+rVV10 data, we obtained
V0 =68.56 Å3, B0 =187.76 GPa, and B′0 =2.36.

Figure 3.4: Birch-Murnaghan EOS for the mass of A-TiO2: the solid line is equation (3.1) fitted from data calculated
with the SCAN+rVV10 functional.

Figure 3.5: Birch-Murnaghan EOS for the mass of A-TiO2: the solid line is equation (3.1) fitted from data calculated
with the r2SCAN+rVV10 functional.



CHAPTER 3. METHODOLOGY 27

3.2.2 Hubbard U correction

This work uses the simplified rotationally invariant DFT+U, also known as the Dudarev approach. The DFT+U
variant type can be selected by modifying the LDAUTYPE variable in the INCAR file (LDAUTYPE=2, in this case).

The Hubbard correction parameter "U" is calculated using various Coulomb corrections. Here, we tested U=0
to 7 in steps of 0.5 and performed VASP calculations for systems under those conditions. The band gap information
is then extracted, and a relationship is established between the U vs. band gap data. These values are validated
against the available experimental value, which, as mentioned before, is ∼ 3.2 eV, and the extrapolated value closest
to it will be the correction. Fig. 3.6 shows the values obtained from the calculation using SCAN+rVV10, while
Fig. 3.7 represents the r2SCAN data. The suitable corrections found are US CAN = 5.3 eV and Ur2S CAN = 5.15 eV,
respectively.

To the best of our knowledge, no available works have employed SCAN or r2SCAN functionals with U-correction
to reproduce the electronic properties of TiO2 in its Anatase phase. However, using a SCAN+U framework has been
explored for Rutile-TiO2. In this study120, an optimal value of U = 2.5 eV yielded a bandgap of 2.06 eV, closer to
the experimental data of 3 eV than the uncorrected DFT-SCAN. Although this approximation still underestimates
the bandgap, it is shown that U correction can improve the accuracy in calculating the ground state energies of 3d
oxides when using meta-GGA functionals.

Figure 3.6: Hubbard correction vs Band Gap for U=1-7 using SCAN+rVV10 functional. The dashed red line
indicates the experimental band gap for A-TiO2

3.
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Figure 3.7: Hubbard correction vs Band Gap for U=1-7 using r2SCAN+rVV10 functional. The dashed red line
indicates the experimental band gap for A-TiO2

3.

The structural parameters extracted from the Birch-Murnaghan EOS are also reported for each case in Tables
(3.1) and (3.2),

U (eV) V0(Å3) B0(GPa) B′0 Band Gap (eV)

0 68.21 189.96 2.31 2.46
1 68.85 188.12 2.50 2.55
2 69.50 186.54 2.38 2.73
3 70.16 185.14 2.28 2.85
4 70.82 184.34 2.27 2.97
5 71.49 183.50 2.11 3.15

5.3 69.71 191.41 2.48 3.18
6 72.15 181.28 2.34 3.30
7 72.83 180.08 2.28 3.49

Table 3.1: Optimal Volume (V0),Bulk Modulus (B0), and Band Gap for A-TiO2 with Hubbard correction U=1-7
using SCAN+rVV10 functional.
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U (eV) V0(Å3) B0(GPa) B′0 Band Gap (eV)

0 68.56 187.76 2.36 2.49
1 69.20 185.33 2.37 2.59
2 69.84 183.58 2.47 2.72
3 70.49 182.46 2.44 2.89
4 71.16 180.92 2.43 3.05
5 71.83 179.75 2.40 3.18

5.15 71.92 179.04 2.49 3.21
6 72.50 177.82 2.43 3.34
7 73.17 176.65 2.48 3.53

Table 3.2: Optimal Volume (V0),Bulk Modulus (B0), and Band Gap for A-TiO2 with Hubbard correction U=1-7
using r2SCAN+rVV10 functional.

3.2.3 A-TiO2(101)-c(4 × 2) supercell

Once the cell primitive is optimized and relaxed by the corresponding Hubbard correction value, this result can be
used to cleave a plane with orientation (101). The surface was modeled using three O-Ti-O layers and introducing
a vacuum of 20Å perpendicular to the plane for subsequent cluster placement and to avoid interactions between
periodic images. The procedure is illustrated in Fig. 3.8.

Figure 3.8: Modeling procedure for A-TiO2(101). It starts with a) a fully relaxed primitive cell, followed by b)
imposition of the (101) plane. Next, a-c) slab model of the A-TiO2(101) surface with a vacuum of 20Å is constructed.

The optimal computed lattice parameters for bulk A-TiO2 are a=b=3.82 Å, c=9.55 Å for SCAN+U, and a=b=3.86
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Å, c=9.64 Å for r2SCAN+U. Geometry relaxation of the slab A-TiO2(101)-(1 × 1) and the supercell A-TiO2(101)-
c(4 × 2) is conducted with a k-point mesh of 2x7x1 and 2x2x1, respectively. The bottom layer (32 O and 16 Ti) is
kept fixed to emulate the stability of the bulk structure.

The supercell is generated from the relaxed structure A-TiO2(101)-c(1x1) with optimal lattice parameters of
a=10.39 Å, b=3.86 Å and c=29.56 Å. A-TiO2(101) supercell is proposed to be c(4 × 2) since the surface size is
appropriate to ensure minimal image interaction between the clusters. The notation c(4 × 2) implies that a supercell
is being generated that is four times as large along one lattice vector and twice as large along the other. For a better
understanding, the construction of this supercell is schematized in Fig. 3.9,

Figure 3.9: a) Original A-TiO2(101)-(1 × 1) unit cell, b) replicate unit cell twice in x direction and four-times in
y-axis to obtain a c(4 × 2) supercell, c) solid blue line refers to the c(4 × 2) supercell used in this work.

The total system is made up of 144 atoms (96 O and 48 Ti).The optimal parameters estimated with r2SCAN for
this supercell were a=b=12.94 Å and c=29.56 Å .

It should be noted that the k-point grid for each k-point density was calculated based on the lattice parameters
and the reciprocal lattice vectors of each model. The k-point grids were selected based on the convergence test
performed in section (3.2.1.2), where it was determined that a k-point density of 0.040 Å−1 was sufficient for accurate
calculations for all structures. The k-point grids were adjusted to reflect periodicity and symmetry for the bulk, slab,
and supercell models of A-TiO2. The 2x7x1 grid is appropriate for the slab as it reflects the change in periodicity
in the in-plane directions compared to the slab while minimizing sampling to a single k-point along the z-axis due
to vacuum. The c(4x2) supercell exhibits extended periodicity in the x-y plane, and the 2x2x1 grid is suitable for
capturing its extended periodicity and reduced symmetry.

3.3 DFTB+ computational implementation
The construction of the supercell follows a procedure similar to that described in Section 3.2.3 but using the DFTB
approach instead of DFT. In this sense, a semiempirical method and a localized atomic orbital basis set are taken into
consideration. The software employed is DFTB+ Version 24.1, and the required INPUT file is "d f tb_in.hsd" which
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provides blocks of information about geometry, atom constraints during dynamics, and the Hamiltonian model to be
used.

First, a geometry and lattice relaxation is performed with a 2x2x1 k-point mesh and making use of a GFN1-xBT
functional121 with a self-consistent tolerance of 10−6 Eh. Like the structures computed with VASP, the last surface
layer is immobilized. The total system is made up of 144 atoms (96 O and 48 Ti). Following this relaxation, a 6x6x1
k-point grid is used to calculate the electronic structure.

The resulting optimal parameters for A-TiO2(101)-c(4 × 2) were a=b=13.29 Å and c=30 Å. The converged
structure is shown in Fig. 3.10

Figure 3.10: Supercell A-TiO2(101)-c(4 × 2) relaxed by the GFN1-xTB method from a) Top view of its outermost
layer, and b) Side view. The atoms selected in yellow (bottom O-Ti-O layer) indicate that they are fixed, similar to
the case of the structure calculated by DFT.

3.4 Oxygen defective A-TiO2(101) surface
Oxygen vacancies are known to contribute more to the band gap tuning compared to interstitial Ti. Furthermore,
it is shown that the surface oxygen vacancy is energetically more favorable than the incorporation of a subsurface
vacancy115. Thus, an oxygen surface vacancy (VO−sur) is introduced to analyze the defect-induced properties on the
A-TiO2(101) surface in the presence of a metallic cluster. The relaxation is performed after removing one binding
oxygen and simultaneously adding the metallic cluster to the surface. This strategy allows the system to adapt to
the combined conditions imposed by both the cluster and the presence of the vacancy. The position selected for the
vacancy is depicted in Fig. 3.11, and it will remain the same for all calculated systems.
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Figure 3.11: Introduction of the surface oxygen vacancy in the A-TiO2(101)-c(4× 2). The label VO−sur indicates the
position of the vacancy.

3.5 Cluster@A-TiO2(101) construction
An initial truncated pyramid-type cluster composed of 8 gold atoms (Au8) was constructed following the procedure
of Mikołajczyk et al.115, and subsequently geometrically optimized already supported on A-TiO2(101)-c(4×2). This
geometry was chosen because it is the most stable compared to other configurations, such as wall-like or flat. The
design of this cluster was also inspired by the results of previous studies122, which highlighted that systems derived
from this configuration are realistic and thermodynamically stable. Briefly, to build an Au cluster with this geometry,
a face-centered cubic lattice (FCC), characteristic of gold atoms, is considered. Then, starting from a square base
and following the arrangement of the atoms based on available STM information123, the structure is built layer by
layer, reducing the number of atoms in the second layer (3 atoms) compared to the base layer (5 atoms) to achieve
the pyramidal arrangement. The height is defined with two layers, adjusting the position of the atoms to ensure the
desired shape and truncation at the top. The resulting structure (see Fig. 3.12) was chosen as the initial configuration
of all clusters. Thus, the Au8 cluster serves as a "template" for systematically exploring clusters of different noble
metals and the number of component atoms.

Figure 3.12: Structural convergence achieved for the Au8 cluster, viewed from different coordinate planes.



CHAPTER 3. METHODOLOGY 33

One single cluster is placed on the Anatase surface. It is worth mentioning that, for all systems, the clusters
occupy the same position during the generation of the initial geometry before relaxation, i.e., the clusters have a
common placement position. When considering VO−sur, a cluster atom must be intentionally placed near the vacancy
site as a strategy to try to achieve faster geometric convergence.

3.6 Density of States (DOS) and Partial Density of States (PDOS)
Density of states (DOS) is one of the essential tools of DFT to understand the electronic structure of a material. It
shows the distribution of electrons along the energy spectrum by quantifying the energy states available in the system
that can be occupied by electrons. In the DFT framework, the DOS can be obtained by integrating the electron
density in k-space; this is by sampling the Brillouin zone along a given k-grid, which involves solving the Kohn-Sham
equations to determine the energy eigenvalues at each k-point, for subsequent integration of the electronic states at
each energy level1. The DOS is a descriptor that quantifies the number of electronic states in the energy domain;
it takes into account the total contribution of the atoms and orbitals of the system and provides useful insights into
the nature of electronic transitions, the existence of a band gap, the identification of valence and conduction bands,
among others. The peaks indicate regions with high density of accessible energy levels and the fermi level, where
the electrons are probable to be found at 0K, is often located at zero energy.

Similarly, the Partial Density of States (PDOS) accounts for the contribution of individual atoms to the DOS. It
helps to determine the role of specific elements in the overall electronic properties of the system. To calculate the
PDOS in VASP, the tetrahedral method with Blöchl corrections is used (ISMEAR=-5), and the energy is divided into
5001 intervals (NEDOS=5001). In addition, the parameter LORBIT=11 is set to decompose the projected DOS. In
the case of DFTB+, the Pro jectS tates option of the Analysis block is modified by specifying each atom species
within the Region segment.

3.7 Adsorption energies ∆EAds

In this study, we will estimate the adsorption energy by directly calculating the difference between the energy of the
cluster/surface system (Etot), the energy of the bare TiO2 slab (ETiO2 ), and the energy of the gas-phase metal cluster
(ECn ).The adsorption energy of a cluster on a surface defined by Vittadini124 is given by an expression dependent on
the energy of the isolated gas-phase adsorbate:

∆EAds = −Etot + ECn + ETiO2 (3.2)

and similarly, the cohesion energy,

∆ECoh = Etot −
[
ETiO2 + n1EM1 + n2EM2 + ... + niEMi

]
(3.3)

where EMi represents the energy of a single isolated metal atom and ni is the number of atoms of each metal (Mi) in
the cluster.
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3.8 Work function
The energy needed to remove an electron from a solid is known as the work function (ϕ), a fundamental surface
feature. It is defined as the difference between the vacuum potential and the fermi level:

ϕ = Evac − E f ermi (3.4)

Here, we will estimate the work function of four selected systems of cluster@A-TiO2(101)-c(4×2) + VO−sur computed
with VASP, where the cluster can be of one of the following configurations: Au8, Au2Pt2Ag2Pd2, Pd11, or Au8Pd3.
This is done by setting the LVTOT= TRUE tag in the INCAR file and post-processing with the python MacroDensity
package125. VASP provides an output file, "LOCPOT", which contains the local electronic potential (eV), which
will be transformed into a planar-averaged potential along the vector z.
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Results & Discussion

The results are mainly based on the PDOS description of the proposed systems. Most systems are calculated with
DFTB, but some configurations are implemented within the DFT approach to exemplify the usefulness of meta-GGA
functionals. For convenience, the projected density of states is presented as a function of the energy shifted from the
Fermi level; in this way, the valence and conduction levels are located relative to the Fermi level.

The obtained energetic parameters are compared to account for the contribution of each species to the overall
electronic structure. In addition, the impact of oxygen vacancies on cluster adsorption and band gap formation is
discussed. Finally, the work function is determined for the systems calculated with VASP.

4.1 Bulk Anatase-TiO2

Bulk Anatase-TiO2 (A-TiO2) was computed with DFT functionals (SCAN and r2S CAN), and via DFTB (GFN1-
xBT).

Figure 4.1: Bulk unit cell of Anatase TiO2 after relaxation using SCAN+rVV10+U functional.

35
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The optimal lattice parameters and band gap obtained with each functional are detailed in Table 4.1. It is observed
that the value of the Hubbard parameter can vary significantly depending on the exchange-correlation functional
employed in DFT. Comparative studies can be found in the literature to evaluate the effect of different functionals
in predicting the electronic properties of A-TiO2 when the U-correction is applied. For instance, to achieve a
comparable band gap prediction using the PBE+U and Perdew-Wang 91 (PW91)+U methods, a difference of 1.8 eV
in the applied corrections was required, i.e. U=5.8eV for PBE and U=4 for PW91.

In addition, González Ramirez126 evaluated several exchange-correlation functionals, including LDA, PBE,
PW91 and PBE revised for solids (PBEsol) with the same Hubbard correction of 4.2 eV for titanium, and found
that PBEsol+U provided more accurate predictions in terms of lattice constants and bond lengths. The band gap
prediction accuracy was also observed following the trend PBE+U=PBEsol+U > PW91+U > LDA+U.

Table 4.1: Crystallographic and electronic structure data for Bulk Anatase TiO2. In this table, a, b, and c are the
lattice parameters, and Ebg indicates the computed band gap. The angles of the unit cell are α = β = γ = 90◦.

Bulk Anatase TiO2

Functional U correction (eV) a=b (Å) c (Å) Volume(Å3) Ebg(eV) Source
SCAN+rVV10+U U=0 3.79 9.52 136.75 2.53 This work

U=5.3 3.82 9.55 139.36 3.12 This work
r2SCAN+rVV10+U U=0 3.78 9.57 136.74 2.45 This work

U=5.15 3.86 9.64 143.63 3.14 This work
PBE+U U=5.8 3.88 9.77 2.79 127

U=4.2 3.83 9.63 2.00 128

U=4.2 3.83 9.76 2.51 126

U=9 3.80 9.81 141.70 3.35 129

U=2.5 3.83 9.70 2.29 130

PBEsol+U U=5.97 3.83 9.66 141.95 2.91 131

U=8.5 3.87 9.76 3.17 132

U=4.2 3.80 9.64 2.51 126

PW91+U U=4 3.88 9.64 2.70 133

U=4.2 3.82 9.71 2.49 126

LDA+U U=4.2 3.77 9.52 2.44 126

GFN1-xBT - 3.47 10.79 129.95 2.49 This work
Experimental - 3.79 9.51 136.28 3.20 3,134

The values of the U corrections implemented in this work are consistent with those intervals evaluated in the
literature. In particular, the r2SCAN+rVV10+U (U=5.15 eV) functional showed one of the closest approximations
to the experimental band gap underestimating it by 1.88%. Still, the results of SCAN+rVV10+U (U=5.3 eV) are also
comparable with a deviation of 2.5%. As for the lattice constants, both functionals show a slight overestimation,
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but SCAN+rVV10 gives a closer approximation both with and without correction. When the correction is not
applied, i.e., U=0 eV, the values are more accurate than when applied, i.e., U=5.3 eV. This suggests that for A-TiO2,
the Hubbard correction is more crucial in predicting the electronic properties, whereas its impact on the structural
properties is relatively less pronounced.

The Ti-O bond lengths (dTi−O) for A-TiO2 were also determined. Consider that the number in parentheses refers
to the equivalent bonds within the unit cell. Within the DFT framework, using SCAN+rVV10+U (U=5.3 eV), the
bond lengths were dTi−O = 1.95 Å (4), 1.99 Å (2). For r2SCAN+rVV10+U (U=5.15 eV), the obtained lengths were
dTi−O = 1.97 Å (4), 2.01 Å (2). On the other hand, employing the DFTB approach, GFN1-xBT yielded bond lengths
of dTi−O = 1.79 Å (4), 2.24 Å (2). According to calculations performed using local density approximation (LDA)
and Perdew-Wang (PW91) functionals135, the resulting bond lengths are dTi−O(LDA) = 1.90 Å (4), 1.96 Å (2), and
dTi−O(PW91) = 1.93 Å (4) , 1.99 Å (2), respectively. Comparatively, the meta-GGA SCAN functional reproduced the
bond lengths reported by both LDA and PW91 with better agreement.

Fig. 4.2 illustrates the PDOS for Bulk A-TiO2 computed with SCAN+rVV10+U, revealing this material’s
semiconductor nature. The upper part of the valence band is predominantly influenced by the oxygen from the
O − py,z,x orbitals with minor Ti 3d states contribution near the Fermi level. In contrast, the lower part of the
conduction band presents a strong presence of Ti-dxy,xz,yz,x2−y2,z2 at ∼ 3.15 eV, which facilitates the electron mobility.
From Crystal Field Theory, it is known that the d orbitals of a transition metal oxide, such as TiO2 under an octahedral
arrangement, can be split into two sets with different energies. In this sense, the conduction band is divided in the
t2g (dxy, dxz, dyz) and the eg level (dx2 − y2, dz2)136.The orbital contributions of eg together with O p form the σ
bonding in the low energy region of the valence band, while t2g form π bonds with O p states in the middle region
of the valence band. The orbital resolved density of states for SCAN and r2SCAN is fully described in Appendix A.

The meta-GGA functionals employed in this study yielded band gap values consistent with each other and
provided a very similar description of the electronic structure in both the valence and conduction bands. However,
the intensity of the main peak in terms of states per eV of the conduction part presented in the case of SCAN is less
than the one shown with r2SCAN functional (Fig.4.3).

On the other hand, the PDOS of the bulk calculated with GFN1-xTB (Fig. 4.4) showed its main peak in the valence
part at ∼ -1.20 eV, while in the conduction part, it located at ∼ 1.3 eV. The band gap was underestimated by around
0.7 eV compared to the experimental value in Table 4.1. The DFTB+ framework provides a less detailed electronic
description than the DFT functionals. However, it yields reasonable results that can offer important information for a
preliminary description of the relative changes in the electronic structure across various configurations. In addition,
it requires reduced computational resources and shorter computational time, which makes it suitable for studying
our targeted systems.
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Figure 4.2: Partial Density of States (PDOS) of Bulk Anatase TiO2 after relaxation using SCAN+rVV10+U
functional.

Figure 4.3: Partial Density of States (PDOS) of Bulk Anatase TiO2 after relaxation using r2SCAN+rVV10+U
functional.
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Figure 4.4: Partial Density of States (PDOS) of Bulk Anatase TiO2 after relaxation using GFN1-xBT functional.

4.2 DFTB+ simulations

4.2.1 Pristine A-TiO2(101)-c(4 × 2)

Resulting optimized structure for A-TiO2(101)-c(4 × 2) is shown in Fig. (4.5). The equilibrium lattice parameters
were a=b=13.29 Å and c=30 Å. Fermi level is found at EF =-10.61 eV, and the computed total energy of the system
is Etot=-14130.77 eV. It is inferred that the major contribution in the valence band is given by the 2p states of the
oxygen atoms, while in the conduction band, the key role is played by the 3d states of the Ti atoms. The band gap for
the A-TiO2 (101) surface resulted in Ebg = 1.75 eV, which is . As discussed earlier, A-TiO2 is a partially covalent
semiconductor that generally contains dangling bonds associated with under-coordinated Ti atoms when presented
on surfaces. These dangling bonds are the unpaired bonds that result from the unsatisfied valence of an atom and
produce charge carrier trapping, thus making the band gap of the A-TiO2 (101) slab smaller in comparison to the
bulk A-TiO2 (Ebg = 2.49 eV). In this scenario, the presence of surface states introduces shoulders at the edge of
the conduction band minimum and shifts it to ∼ 0.5 eV. In contrast, the position of the valence band edge does not
undergo a significant shift.
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(a)

(b)

Figure 4.5: (a) Top view of the outermost layer and side view of the fully relaxed supercell. (b) Partial Density of
States (PDOS) of pristine A-TiO2(101)-c(4 × 2) using xBT method.

4.2.2 Oxygen defective A-TiO2(101)-c(4 × 2)

Similar to the pristine system, the titanium atoms make the main contributions to the conduction band. Fermi level is
found at EF =-10.37 eV, and the computed total energy of the system is Etot=-14002.11 eV. As expected, the energy
value is higher than the non-defective surface, potentially signifying a less stable configuration. This indicates that
the formation of an oxygen vacancy is energetically costly. Moreover, introducing the oxygen vacancy probably
causes slight local lattice distortions, which propagate to the surrounding structure and can be observed through
changes in the Ti-O bond lengths near the defect. In the pristine A-TiO2 (101) the shortest distance is dTi−O = 1.69
Å, whereas in the oxygen defective A-TiO2(101) it is reduced to dTi−O = 1.67 Å.
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Removing an oxygen atom induces a slight shift of the energy peaks and the appearance of new states near the
Fermi level, suggesting trap states. The Ti atoms experience an induced charge due to the vacancy, which generates
the states near the conduction band, known as localized states. These states are around ∼ 0.45 eV below the fermi
level. The oxygen vacancy broke the octahedral arrangement, in which the Ti atom is surrounded by six O atoms and
thus gives rise to two fourfolding coordinated Ti atoms. This results in dangling bonds and induces the Ti species to
reduce from Ti4+ to Ti3+. Consequently, an increase in electron concentration in the system leads to electronic states
within the band gap. The band gap for this configuration is ∼ 1.70 eV, which is slightly lower than that obtained for
stoichiometric anatase.

(a)

(b)

Figure 4.6: (a) Top view of the outermost layer and side view of the fully relaxed supercell. (b) Partial Density of
States (PDOS) of oxygen defective A-TiO2(101)-c(4 × 2) using xBT method. The dashed blue line indicates the
introduction of new localized states close to the Fermi level.



42 4.2. DFTB+ SIMULATIONS

4.2.3 Single-Metal nanoclusters@A-TiO2(101)

The system in Fig. (4.7) takes into account a cluster of 8 gold atoms supported on A-TiO2(101), which was allowed
to relax until convergence in the global system was reached.The distance of the closest Au to Ti atom is dAu−Ti =2.57
Å, and to an O atom dAu−O =2.23 Å. In addition, we have observed some structural changes on the surface as there
is a shortening of the Ti-O bond length to dTi−O = 1.67 Å (reference Ti-O bond in the subsurface) compared to that
present on the pristine undoped surface. The cluster atoms adopt an almost flat central pentagonal arrangement with
a shortest Au-Au bond of dAu−Au = 2.56 Å.

(a)

(b)

Figure 4.7: (a) Top view of the outermost layer and side view of the optimized geometry. (b) Partial Density of
States (PDOS) of Au8 cluster supported on stoichiometric A-TiO2(101)-c(4 × 2).

The presence of gold atoms and the contribution of their electron transfer tune the electronic behavior within the
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forbidden energy range. It should be noted that the effect of single Au atoms on A-TiO2(101) is well known in the
literature, in which the contribution of the 5d states of Au generates the creation of new energetic states within the band
gap137. Since we are studying a cluster composed of multiple gold atoms, we can infer that introducing additional
atoms into the system could form more pronounced and complex electronic states than those from individual Au
atoms. The cluster-surface system presents a higher number of interactions among the gold atoms themselves and
with the Ti and O atoms, creating a larger number of defect states with a more delocalized nature. This cluster size
could show slight localized surface plasmon resonance effects however, as this is a size-dependent phenomenon, in
general, Au8 is not large enough (around 0.8 nm) to show strong and well-defined plasmonic effects, as it has been
shown that a threshold of around 2 nm is required for gold clusters138. The greatest contribution of gold is in the
valence part, but still, the contribution of the O 2p states is much higher. Fermi level is found at EF =-10.26 eV, and
the computed total energy of the system is Etot=-15009.41 eV. The highest density of these new states is found near
the valence band edge, and the closest states to the fermi level are located at -0.27 eV and 0.27 eV. Regardless of
the localized states, the band gap energy is Ebg =1.06 eV. The valence band edge is at -0.45 eV, and the conduction
band edge is at 0.61 eV. Regarding the adsorption mechanism, two phenomena are physisorption and chemisorption.
Physisorption is governed by weak Van der Waals forces, while chemisorption requires higher adsorption energy
since it involves the establishment of new chemical bonds. In this work, we assume that chemisorption occurs
when Eads > 0.5 eV139. According to our calculations, Au8 is adsorbed by chemisorption. More information about
energetic parameters can be found in Table 4.2.

Similarly, other noble metals (Ag, Pd, and Pt) were used for cluster construction to compare their influence on
generating excited states. As seen in Fig 4.8, the Ag8 cluster adopted a planar geometry anchored to the surface. The
longest distance of the Ag-Ag atoms is dAg−Ag = 8.16 Å. It was observed that Ag atoms prefer to bind to surface
oxygen (dAg−O = 2.21 Å) rather than bind to other Ag ( dAg−Ag = 2.73 Å) or Ti cations (dAg−Ti =2.64 Å). New
localized states appeared within the band gap after introducing the Ag cluster. The state closest to the fermi level is
found at -0.64 eV. The Fermi level is within the conduction band, suggesting metallic behavior of the Ag8 system.
The valence band edge is at -1.53 eV, and the conduction band edge is at -0.32 eV. Most of the Ag contribution lies
at the top of the valence band, showing a strong interaction with O atoms. It has been found that Ag8 is adsorbed by
chemisorption.

On the other hand, Pd8 and Pt8 clusters (see Fig. 4.9, Fig. 4.10) adopted the shape of a pentagonal-pyramid
with 2 adjacent atoms forming a flat, tilted layer, and a saddle shape, respectively. It was also observed that Pd
atoms prefer to bind to surface oxygen (dPd−O = 2.27 Å) rather than bind to other Pd (dPd−Pd = 2.49 Å) or Ti cations
(dPd−Ti =2.47 Å). Additionally, the longest distance of the Pd-Pd atoms is dPd−Pd = 6.03 Å, and for Pd-O is dPd−O =

3.69 Å. There is an elongation of the Ti-O bond length to dTi−O = 1.71 Å (reference Ti-O bond in the subsurface
with dTi−O = 1.69 Å). From the PDOS presented in Fig.4.9 (b), it is noticeable that a broad state is created within
the band gap by an increased contribution of Pd. The highest peak of these defective states is located at -0.62 eV.
The contribution of Pd 4d orbitals is extended to the valence band edges, and overlap with possible hybridized states
involving Pd 4d and O 2p orbitals can be observed.

A similar scenario is presented in the case of Pt8. The Pt atoms tend to approach the surface oxygens (dPt−O =

2.14 Å) rather than prefer other Pt (dPt−Pt = 2.42 Å) or Ti cations (dPt−Ti =2.59 Å). The longest distance between
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Pt-Pt atoms is dPt−Pt = 5.60 Å, and for Pt-O is dPt−O = 4.49 Å. The Pt8@A-TiO2(101) system (Fig.4.10 (b)) also
presents a broad energy level within the band gap due to the Pt contribution, and extends it to the valence band edge.
A considerable presence of states located at the conduction band edge is observed, with a higher contribution of
noble metals with respect to the Pd8 system. This can be related to the structural findings discussed above, in which
it was found that the metal-oxygen bonding distance was smaller in the case of platinum compared to the other metals
studied, suggesting that the Pt orbitals found along the valence and conduction band hybridize effectively with O 2p
orbitals promoting covalent bonding. The closest localized state to the fermi level is located at -0.24 eV.

(a)

(b)

Figure 4.8: (a) Top view of the outermost layer and side view of the optimized geometry. (b) Partial Density of
States (PDOS) of Ag8 cluster supported on stoichiometric A-TiO2(101)-c(4 × 2).
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(a)

(b)

Figure 4.9: (a) Top view of the outermost layer and side view of the optimized geometry. (b) Partial Density of
States (PDOS) of Pd8 cluster supported on stoichiometric A-TiO2(101)-c(4 × 2).

The order of adsorption energy for the clusters considering a pristine substrate from highest to lowest is: Ag
(∆EAds =15.29 eV) > Pd (∆EAds =13.49 eV) > Au (∆EAds =12.53 eV) > Pt (∆EAds =3.93 eV). This indicates that
the Ag cluster is much more tightly bound to the surface, making it less likely to desorb than the Pt cluster. The
Pd8 and Pt8 clusters are also adsorbed by chemisorption. As for the electronic contributions, the Ag cluster behaves
similarly to the Au cluster within the band gap by creating localized energy levels. However, when introducing Ag
atoms, the new energy levels become visible at both the valence and conduction band edge, in contrast to the Au
cluster system, which mainly affects the valence band edge. The Pd cluster has the largest contribution compared to
the others in the excited states. The magnitude of the localized states in the Pd system could indicate that the charge
carrier trapping is higher in this system compared to clusters based on the other noble metals. The contribution of
the Pt atoms in the lower part of the valence band suggests that electrons are available for conduction.
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(a)

(b)

Figure 4.10: (a) Top view of the outermost layer and side view of the optimized geometry. (b) Partial Density of
States (PDOS) of Pt8 cluster supported on stoichiometric A-TiO2(101)-c(4 × 2).

4.2.4 Single-Metal nanoclusters@A-TiO2(101)+VO−sur

For the Au8 system supported on defective oxygen A-TiO2 (101), the shortest distance of the Au atom to surface
oxygen is dAu−O = 2.23 Å, resulting in the same value as the Au8 cluster on the stoichiometric surface. The
metal-metal shortest bond is dAu−Au = 2.60 Å, while the longest distance between Au-Au atoms is dAu−Au = 8.84 Å.
The metal-Ti shortest bond is dAu−Ti = 2.49 Å. There is an elongation of the Ti-O bond length to dTi−O = 1.71 Å
(reference Ti-O bond in the subsurface near to the oxygen vacancy with dTi−O = 1.67 Å). In general, the Au8 cluster
adopts a planar shape, and one of the gold atoms sits near the vacancy, affecting the distribution of nearby atoms by
causing them to disperse more than on the stoichiometric surface.

The band gap is Ebg =0.98 eV (without considering the new states), which is narrower than the one calculated for
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the case of gold supported on non-defective anatase. The valence band edge is at -0.82 eV, and the conduction band
edge is at 0.16 eV. The highest density of these new states is found near the valence band edge, and the states located
within the band gap appear below the fermi level and are located at -0.36 eV and -0.70 eV. This system exhibits
higher adsorption energy than Au8 supported on anatase without oxygen vacancy.

(a)

(b)

Figure 4.11: (a) Top view of the outermost layer and side view of the optimized geometry. (b) Partial Density of
States (PDOS) of Au8 cluster supported on oxygen defective A-TiO2(101)-c(4 × 2).

For the Ag8 cluster supported on defective anatase, the shortest Ag-O bond length is dAg−O= 2.29 Å, and the
metal-Ti distance is dAg−Ti= 2.53 Å, with the Ag-Ti distance being shorter when an oxygen vacancy is introduced.
The Ag atoms are strongly bonded to neighboring oxygen atoms. The metal-metal shortest bond is dAg−Ag = 2.79 Å,
while the longest distance is dAg−Ag = 10.41 Å. There is a slight elongation of the Ti-O bond length to dTi−O = 1.68
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Å (reference Ti-O bond in the subsurface near to the oxygen vacancy with dTi−O = 1.67 Å). One Ag atom is located
near the vacancy while neighboring Ag atoms appear to scatter in the same direction. The result is a disordered
configuration with more pronounced displacement in the z direction, compared to the nearly flat cluster observed on
the non-defective system. In addition, the vacancy exerts a force on the adjacent Ti atoms, causing them to move
downward.

The closest state near the fermi level is visibly broader than the one presented in Fig. 4.8. This new energy
level appears as an independent and more pronounced state, not a contribution to the conduction band. The valence
band edge is at -1.79 eV and presents a considerable sharp peak of Ag contribution. In addition, the bottom of the
conduction is located at -0.20 eV; this is shifted to the left by ∼ 0.12 eV compared to the Ag cluster supported on the
defect-free surface. The closest localized state near the fermi level is at -0.34 eV.

(a)

(b)

Figure 4.12: (a) Top view of the outermost layer and side view of the optimized geometry. (b) Partial Density of
States (PDOS) of Ag8 cluster supported on oxygen defective A-TiO2(101)-c(4 × 2).
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In Pd8 system, the shortest Pd-O bond length is dPd−O= 2.27 Å while the largest distance is dPd−O= 4.37 Å, the
latter being larger than in the case of the stoichiometric surface.The metal-metal distance is dPd−Pd= 2.56 Å , whereas
the longest distance between Pd-Pd atoms is dPd−Pd = 5.50 Å. The metal-Ti distance is dPd−Ti= 2.46 Å. There is
a slight elongation of the Ti-O bond length to dTi−O = 1.68 Å (reference Ti-O bond in the subsurface near to the
oxygen vacancy with dTi−O = 1.67 Å). The cluster results in a shape similar to that described for the non-defective
surface but with greater height and a steeper slope due to the local charge imbalance in the crystal lattice caused by
the missing oxygen. Upon introducing Pd atoms, a defect state emerges within the band gap, and additional states
appear in the valence band, although not as close to the edge as non-defective anatase. The contribution of Pd within
the band gap is broader, but the intensity of the highest peak is less pronounced.

(a)

(b)

Figure 4.13: (a) Top view of the outermost layer and side view of the optimized geometry. (b) Partial Density of
States (PDOS) of Pd8 cluster supported on oxygen defective A-TiO2(101)-c(4 × 2).
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In Pt8 system, the shortest Pt-O bond length is dPt−O= 2.52 Å. The metal-metal distance is dPt−Pt= 2.41 Å ,
whereas the longest distance between Pt-Pt atoms is dPt−Pt = 6.59 Å. The metal-Ti distance is dPt−Ti= 2.61 Å. There
is an elongation of the Ti-O bond length to dTi−O = 1.71 Å (reference Ti-O bond in the subsurface near to the oxygen
vacancy with dTi−O = 1.67 Å). The morphology of the cluster is more ordered and resembles a flat hexagonal
configuration. Although flat, the cluster is tilted, with the lower part near the vacancy and showing a greater height
farther away from the vacancy. The defective states within the band gap present less defined peaks, while their
contribution near the valence band edge shows a similar intensity to that of the non-defective system. In addition,
Pt has a minor contribution near the conduction band edge. The closest sharp localized state to the fermi level is at
-0.81 eV.

(a)

(b)

Figure 4.14: (a) Top view of the outermost layer and side view of the optimized geometry. (b) Partial Density of
States (PDOS) of Pt8 cluster supported on oxygen defective A-TiO2(101)-c(4 × 2).
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The order of adsorption energy for the clusters considering an oxygen defective surface, from highest to lowest,
is Ag (∆EAds =16.54 eV) > Pd (∆EAds =14.84 eV) > Au (∆EAds =14.40 eV) > Pt (∆EAds =6.06 eV). The single
metal clusters supported on A-TiO2(101) with an oxygen vacancy showed higher adsorption energy than the ones
obtained for stoichiometric anatase. Adsorption is more stable because oxygen vacancies create localized sites with
better electrical interactions and charge imbalances that attract the adsorbate. In contrast, the stoichiometric surface
offers fewer reactive sites and weaker interactions due to its well-coordinated structure, which reduces adsorption
energies.In both scenarios, the order of the adsorption energies of the metal groups remains constant; thus, the
presence of an oxygen vacancy increases the binding but does not change the relative interaction strengths between
the different metals. This result can be validated by comparing the contributions of each metal near the valence band
edge, where the Ag cluster has the largest contribution and the Pt cluster the smallest.

4.2.5 Multicomponent nanoclusters@Anatase TiO2(101)

The bimetallic system in Fig. 4.15 presents an interesting geometry where the Ag tries to enclose the Pd atoms
with a "snail" pattern. The shortest metal-O bond distances are dAg−O =2.24 Å and dPd−O =2.47 Å. The Pd atom
is preferentially located near the oxygen vacancy, a fact that can be corroborated by comparing the bond distances
Ag-O and Pd-O calculated for single metal groups, which are dPd−O =2.27 Å and dAg−O =2.29 Å, respectively. Since
the Pd-O bond length is shorter, oxygen forms stronger bonds with Pd atoms compared to Ag atoms, so Pd is more
likely to position itself towards the vacancy, where it can maximize its bonding with the surrounding oxygen atoms
and, in turn, stabilize the local environment. The states in the band gap are characterized by a high contribution of
Pd; the upper part of the valence band is governed by Ag atoms, while the conduction band is mainly Ti atoms. The
second bimetallic system shown in Fig. 4.16 exhibits an upward-pointing configuration. It combines the pyramidal
structure characteristic of the single Pd cluster with the tilted planar arrangement typical of the Pt cluster. The
shortest metal-O bond distances are dPt−O =2.17 Å and dPd−O =2.17 Å. Similarly, the Pd atom is preferentially
located near the oxygen vacancy. The presence of Pd predominantly influences states located within the band gap,
although Pt states also contribute. In particular, Pt’s contribution is higher than Pd states near the valence band edge.

In the Au2Ag2Pd2 trimetallic system from Fig. 4.17, two atoms of Ag, one of Pd and one of Au form the base,
which takes the shape of a trapezoid, with a gold atom located at the top of the cluster. The shortest metal-O bond
distances are dAu−O =2.82 Å, dAg−O =2.11 Å and dPd−O =2.44 Å. Interestingly, the Au atom is preferentially located
near the oxygen vacancy. The presence of Pd predominantly influences the states within the band gap, although Au
and Ag states also contribute. However, near the valence band edge, the contribution of gold is greater, and in the
-2eV to -3eV range, there is a strong presence of Ag states. The Pd2Pt2Ag2 cluster (Fig.4.18) displays a U-shaped
flat morphology oriented downward. The shortest metal-O bond distances are dPt−O =2.82 Å, dAg−O =2.11 Å and
dPd−O =2.44 Å. The Pd atom is preferentially located near the oxygen vacancy. The states within the band gap,
which are sharper compared to the other trimetallic clusters, are mainly influenced by the presence of Pd, with Pt
exhibiting a comparable density of states in this region, while Ag makes a minor contribution. Near the valence
band edge, the contribution of Ag is greater and in the -2eV to -3eV range.

In the Au2Pt2Ag2Pd2 tetrametallic cluster (Fig.4.19), one atom of each noble metal forms the base, while the
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second layer, composed of the remaining atoms, adopts a larger rhomboidal shape above the base. The shortest
metal-O bond distances are dAu−O =2.85 Å, dPt−O =2.07 Å, dAg−O =2.27 Å and dPd−O =2.35 Å. The Au atom is
preferentially located near the oxygen vacancy. The states within the band gap exhibit their highest peak at -0.54 eV,
primarily influenced by Pd, followed by notable contributions from Pt and Ag. Near the bottom of the valence band
edge, Au has a strong contribution and a presence of Pt states. In the energy range of -2.5 to -3.5 eV, the contribution
from Ag is predominant.

(a)

(b)

Figure 4.15: (a) Top view of the outermost layer and side view of the optimized geometry. (b) Partial Density of
States (PDOS) of bimetallic Pd4Ag4 cluster supported on oxygen defective A-TiO2(101)-c(4 × 2).
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(a)

(b)

Figure 4.16: (a) Top view of the outermost layer and side view of the optimized geometry. (b) Partial Density of
States (PDOS) of bimetallic Pt4Pd4 cluster supported on oxygen defective A-TiO2(101)-c(4 × 2).
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(a)

(b)

Figure 4.17: (a) Top view of the outermost layer and side view of the optimized geometry. (b) Partial Density of
States (PDOS) of trimetallic Au2Ag2Pd2 cluster supported on oxygen defective A-TiO2(101)-c(4 × 2).
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(a)

(b)

Figure 4.18: (a) Top view of the outermost layer and side view of the optimized geometry. (b) Partial Density of
States (PDOS) of trimetallic Pd2Pt2Ag2 cluster supported on oxygen defective A-TiO2(101)-c(4 × 2).
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(a)

(b)

Figure 4.19: (a) Top view of the outermost layer and side view of the optimized geometry. (b) Partial Density of
States (PDOS) of tetra metallic Au2Pt2Ag2Pd2 cluster supported on oxygen defective A-TiO2(101)-c(4 × 2).

The order of adsorption energy for the multicomponent clusters considering an oxygen defective surface, from
highest to lowest is: Au2Pt2Ag2Pd2 (∆EAds =15.79 eV) > Pd4Ag4 (∆EAds =14.39 eV) > Au2Ag2Pd2 (∆EAds =10.89
eV) > Pd2Pt2Ag2 (∆EAds =10.28 eV) > Pt4Pd4 (∆EAds =7.30 eV).

The highest adsorption energy for the tested multicomponent clusters is lower than that of the single metal
clusters. Specifically, the Ag8 cluster exhibits stronger interaction with the surface compared to the Au2Pt2Ag2Pd2
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tetrametallic cluster, despite the presence of Ag atoms in both clusters. This also suggests that multi-metal clusters
can reach high adsorption energies but do not always overcome the strongest single-metal (Ag-Ag) interactions.
Moreover, as in the case of the Pd4Ag4 bimetallic cluster, it is observed that the combination of metals in some
cases can almost equal but not significantly exceed the adsorption energy of the single-metal counterparts (Pd-
∆EAds =14.84 eV, and Ag-∆EAds =16.54 eV). Clusters such as Au2Ag2Pd2 and Pd2Pt2Ag2 resulted in lower values
of adsorption energies compared to their single-metal counterparts, except for the inclusion of Pt. Both trimetallic
clusters display similar values, with only a 0.61 eV difference when substituting Pt with Au. This may be due to the
strong Ag and Au interactions in both scenarios. If the individual metal clusters are compared, the energy difference
is much larger, with Au8 having the highest adsorption energy, 8.34 eV, higher than that of Pt8.

Table 4.2: Energetic properties for cluster@A-TiO2(101)-c(4× 2) systems computed with DFTB xBT Hamiltonian.

System Label Fermi level (eV) Total Energy of
the system (eV)

∆EAds Adsorption
energy on

surface (eV)

∆ECoh Average
Cohesion

energy per
atom (eV)

TiO2 -10.61 -14130.77 - -
TiO2+VO−sur -10.37 -14002.11 - -
TiO2+Au8 -10.26 -15009.41 12.53 -29.23
TiO2+Ag8 -9.1 -14981.55 15.29 -31.53
TiO2+Pd8 -9.39 -15111.35 13.49 -21.24
TiO2+Pt8 -10.13 -15114.06 3.93 -58.33

TiO2+Au8+VO−sur -9.83 -14882.62 14.40 -31.10
TiO2+Ag8+VO−sur -8.92 -14854.14 16.54 -32.78
TiO2+Pd8+VO−sur -9.46 -14984.04 14.84 -22.59
TiO2+Pt8+VO−sur -10.1 -14987.53 6.06 -60.46

TiO2+Pd4Ag4+VO−sur -9.24 -14919.63 14.39 -28.22
TiO2+Pt4Pd4+VO−sur -9.73 -14984.57 7.30 -40.31

TiO2+Au2Ag2Pd2+VO−sur -9.67 -14679.54 10.89 -20.43
TiO2+Pd2Pt2Ag2+VO−sur -9.65 -14706.93 10.28 -28.93

TiO2+Au2Pt2Ag2Pd2+VO−sur -9.67 -14925.16 15.79 -34.81

The contrast shows that multicomponent clusters are more complex than the sum of the contributions of each
single metal. It demonstrates that combining metals can result in adsorption energies that are not additive but
synergistic. In some cases, the presence of Pt apparently decreases the adsorption energy. Table 4.2 summarizes
some relevant parameters of the systems calculated with DFTB. It shows that the energetically most stable system
was loaded with the Pt8 cluster. As for the adsorption energy, single metal cluster systems with an oxygen vacancy
showed increased adsorption energy. In a general trend, we can order the systems according to their adsorption
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energy as follows: single-metallic+oxygen vacancy> tetrametallic> single-metallic> trimetallic> bimetallic.
It also provides information on how the different nature of the clusters causes the Fermi level to shift. Introducing

an oxygen vacancy raises the position of the Fermi level (rightward shift). The presence of a single metal cluster
shows a similar trend, shifting it also to a higher value, with the Ag8 cluster being the system showing the most
significant increase and the Pt8 cluster the smallest. In the case of multicomponent clusters, the Pd4Ag4 bimetallic
system shows a larger shift of the Fermi level, even larger than some single metal clusters (Au, Pd, Pt); here, we
can also observe the synergistic effects of metals, since for this particular example, the Fermi level is larger than
that of Pd alone but smaller than that of Ag alone. Since the Fermi level plays a key role in determining electron
occupancy, these shifts need to be considered; a higher Fermi level could mean improved conductivity and charge
carrier mobility. Thus, the Ag8 cluster could show an increase in the reactivity of the overall system, potentially being
a good candidate not only for catalyzing pollutant degradation reactions but also for stabilizing reaction intermediates
due to its adsorption properties.

4.3 DFT simulations

4.3.1 SCAN functional-based calculations

The PDOS for bare A-TiO2(101)-c(4 × 2) is shown in Fig. 4.20. This surface resulted in a band gap of 3.17 eV,
with the conduction band edge at 2.88 eV. For the Au8 system supported on defective oxygen A-TiO2 (101) (Fig.
4.21), the shortest distance of the Au atom to surface oxygen is dAu−O = 2.09 Å, resulting in a value shorter than that
obtained with the relaxation performed by DFTB. The metal-metal shortest bond is dAu−Au = 2.50 Å, while the longest
distance between Au-Au atoms is dAu−Au = 6.45 Å. The metal-Ti shortest bond is dAu−Ti = 2.50 Å. Considering
the new electronic states within the band gap, the Au8 cluster showed a band gap of 1.08 eV with a semiconductor
behavior. The contribution to the valence band edge is mainly given by Au 5d states, the closest localized state to
the fermi level is located at -0.33 eV, and the conduction band edge is at 0.74 eV. The computed vacuum potential
is shown in Fig. 4.22, resulting in 4.76 eV. The horizontal line represents the Fermi level of the system. The work
function was calculated using the planar average electrostatic potential shown in Fig. 4.22, as explained in the
methodology. In this plot, the highest value in where the potential becomes nearly constant (in the region from
15 Å to 25 Å), represents the vacuum level. The initial oscillations, from 0 to 15 Å, are probably due to surface
effects and interactions between the metallic atoms and the anatase surface. Regions of positive potential represent
areas with low electron density like vacuum or inter-layer regions, whereas negative troughs might correspond to
areas with higher electron density. The gray horizontal line indicates the Fermi level. On the other hand, for the
Au2Pt2Ag2Pd2 tetrametallic cluster (Fig. 4.23), the shortest metal-O bond distances are dAu−O =3.17 Å, dPt−O =2.05
Å, dAg−O =2.22 Å and dPd−O =2.05 Å. The Au atom is preferentially located near the oxygen vacancy. This system
exhibits a metallic nature with localized states at the Fermi level. The major contribution to the defect state at the
Fermi level is given by gold, followed by palladium, silver, and platinum, respectively. The vacuum potential yielded
4.45 eV.
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Figure 4.20: Partial Density of States (PDOS) of A-TiO2(101)-c(4 × 2) computed with SCAN+rVV10+U.

(a) (b)

Figure 4.21: (a) Top view of the outermost layer and side view of the optimized geometry. (b) Partial Density of
States (PDOS) of Au8 cluster supported on oxygen defective A-TiO2(101)-c(4×2) computed with SCAN+rVV10+U.
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Figure 4.22: Planar average potential plot derived from the local potential of the Au8@A-TiO2(101)-c(4×2)+VO−sur

system calculated using SCAN+rVV10+U functional.

(a) (b)

Figure 4.23: (a) Top view of the outermost layer and side view of the optimized geometry. (b) Partial Density of
States (PDOS) of tetrametallic Au2Pt2Ag2Pd2 cluster supported on oxygen defective A-TiO2(101)-c(4×2) computed
with SCAN+rVV10+U.
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Figure 4.24: Planar average potential plot derived from the local potential of the Au2Pt2Ag2Pd2@A-TiO2(101)-
c(4 × 2)+VO−sur system calculated using SCAN+rVV10+U functional.

4.3.2 r2SCAN functional-based calculations

The PDOS for bare A-TiO2(101)-c(4× 2) is shown in Fig. 4.25. This surface resulted in a band gap of 3.23 eV, with
the conduction band edge at 3.29 eV.

The Pd11 cluster (Fig. 4.26) adopted the morphology of a truncated pyramid. The shortest distance of the Pd
atom to surface oxygen is dPd−O = 2.05 Å, resulting in a value shorter than that of Pd8 cluster obtained with DFTB.
The metal-metal shortest bond is dPd−Pd = 2.52 Å, while the longest distance between Pd-Pd atoms is dPd−Pd = 5.39
Å. The metal-Ti shortest bond is dPd−Ti = 2.33 Å. The Pd11 cluster supported on oxygen-defective anatase gave rise
to a narrow band gap of 0.34 eV. The conduction band edge is at 0.17 eV, and the closest localized state near the
Fermi level is at -0.11 eV.

The bimetallic Au8Pd3 cluster (Fig. 4.28) shows a configuration in which the atoms are arranged in a "core-shell
type", with the gold atoms covering the palladium atoms. The shortest metal-O bond distances are dAu−O =2.08 Å
and dPd−O =2.04 Å. The metal-metal shortest bond are dPd−Au = 2.55 Å, dAu−Au = 2.53 Å, and dPd−Pd = 2.57 Å. The
Pd atom is preferentially located near the oxygen vacancy. It resulted in a band gap of 0.59 eV. The major contribution
to the defect state near the fermi level is given by Au orbitals, followed by Pd orbitals. Near the conduction band
edge, there is a higher contribution from palladium, while in the valence region there is a higher contribution from
gold. The bottom of the conduction part is shifted at least ∼ 0.3 eV in comparison to that of the Pd11 cluster.
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Figure 4.25: Partial Density of States (PDOS) of A-TiO2(101)-c(4 × 2) computed with r2SCAN+rVV10+U.

(a) (b)

Figure 4.26: (a) Top view of the outermost layer and side view of the optimized geometry. (b) Partial Density of States
(PDOS) of Pd11 cluster supported on oxygen defective A-TiO2(101)-c(4 × 2) computed with r2SCAN+rVV10+U.
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Figure 4.27: Planar average potential plot derived from the local potential of the Pd11@A-TiO2(101)-c(4×2)+VO−sur

system calculated using r2SCAN+rVV10+U functional.

(a) (b)

Figure 4.28: (a) Top view of the outermost layer and side view of the optimized geometry. (b) Partial Density of States
(PDOS) of Au8Pd3 cluster supported on oxygen defective A-TiO2(101)-c(4×2) computed with r2SCAN+rVV10+U.



64 4.3. DFT SIMULATIONS

Figure 4.29: Planar average potential plot derived from the local potential of the Au8Pd3@A-TiO2(101)-c(4 ×
2)+VO−sur system calculated using r2SCAN+rVV10+U functional.

The results of the electronic properties are summarized in Table 4.3. The Au8Pd3 bimetallic cluster system
achieved the highest work function. In comparison, the lowest work function was obtained with the Au2Pt2Ag2Pd2

tetrametallic cluster system, with a difference of almost 1 eV between them. As for the band gap, the descending
order is (from semiconductor to metallic behavior): Au8> Au8Pd3> Pd11> Au2Pt2Ag2Pd2.

Table 4.3: Energetic properties for cluster@A-TiO2(101)-c(4 × 2) systems computed with DFT
SCAN/r2SCAN+rVV10+U functionals.

System Label Fermi
Level (eV)

Vacuum
Potential (eV)

Work
Function (eV)

Band
Gap (eV)

Au8+TiO2+VO−sur -0.55 4.76 5.31 1.08
Au2Pt2Ag2Pd2+TiO2+VO−sur -0.09 4.45 4.54 metallic

Pd11+TiO2+VO−sur -0.24 4.45 4.70 0.34
Au8Pd3+TiO2+VO−sur -0.7 4.85 5.55 0.59



Chapter 5

Conclusions & Outlook

Using a computational approach, this thesis has studied the interactions of multicomponent nanoclusters of noble
metals (Au, Ag, Pt, and Pd) supported on the surface of anatase TiO2 (101). This work proposed a methodology to
explore new TiO2-based nanomaterials before the experimental phase. Studying the energetics of potential materials
is key for a systematic design; therefore, using computational modeling tools can be consolidated as a great advantage.
Most of the proposed systems turned out to be metallic or with a narrow band gap, except for the Au8 gold cluster
with oxygen vacancy on the anatase surface calculated with SCAN, which resulted in a band gap of 1.08 eV. As for
the approaches considered, the functional with the most advantages is r2SCAN. The computation time was reduced
to a minimum, and the results were comparable to those of SCANs. However, DFTB+ is a great alternative for
structural relaxations that could be combined with the electronic structure calculation provided by DFT for better
results. The implementation of Hubbard correction improved the accuracy of calculations regarding experimentally
available data. It was found that a suitable U correction for SCAN was 5.3 eV, while for r2SCAN was 5.15 eV.

As previously mentioned, individual metal clusters with non-defective anatase configurations yielded lower en-
ergy than those of cluster systems supported on oxygen-defective anatase, which might suggest higher thermodynamic
stability. According to the available literature, the oxygen vacancy site was expected to act as a cluster nucleation
zone. The systems with the highest adsorption energy were those supported on oxygen-defective anatase. Specif-
ically, the Ag8 cluster system had the highest adsorption energy, ∆EAds =16.54 eV, followed by the Au2Pt2Ag2Pd2

tetrametallic cluster system, with ∆EAds = 15.79 eV. These systems could be suitable for catalysis applications, as
they are more likely to improve reaction rates and facilitate the binding of reactants close to the activation sites.
Pd and Au atoms show a pattern of preference for occupying positions associated with the oxygen vacancy in most
systems studied.

These preliminary results represent the first screening of various combinations of TiO2-based materials. They
provide insight into the intricate relationships between the various noble metals and anatase surfaces and lay the
groundwork for further investigation of a wider range of configurations.
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Appendix A

Detailed Orbital-resolved Partial Density of
States
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Figure A.1: Detailed orbital resolved PDOS for Bulk Anatase TiO2 computed with r2SCAN+rVV10+U functional.
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Figure A.2: Detailed orbital resolved PDOS for Bulk Anatase TiO2 computed with SCAN+rVV10+U functional.
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