
UNIVERSIDAD DE INVESTIGACIÓN DE
TECNOLOGÍA EXPERIMENTAL YACHAY

Escuela de Ciencias Matemáticas y Computacionales

TÍTULO: A Framework for Web Application
Development in Smart Campus Environments

Trabajo de integración curricular presentado como requisito para la
obtención del t́ıtulo de Ingeniero en Tecnoloǵıas de la Información

Autor:

Arévalo Torres Carlos Andrés

Tutor:

Iza Paredes Cristhian René, PhD.

Urcuqúı, Agosto de 2024

Autoŕıa

Yo, Carlos Andrés Arévalo Torres, con cédula de identidad 0706497443, declaro que las
ideas, juicios, valoraciones, interpretaciones, consultas bibliográficas, definiciones y concep-
tualizaciones expuestas en el presente trabajo; aśı cómo, los procedimientos y herramientas
utilizadas en la investigación, son de absoluta responsabilidad de el/la autor/a del trabajo
de integración curricular. Aśı mismo, me acojo a los reglamentos internos de la Universidad
de Investigación de Tecnoloǵıa Experimental Yachay.

Urcuqúı, Agosto de 2024.

Carlos Andrés Arévalo Torres
CI: 0706497443

Autorización de publicación

Yo, Carlos Andrés Arévalo Torres, con cédula de identidad 0706497443, cedo a la Uni-
versidad de Investigación de Tecnoloǵıa Experimental Yachay, los derechos de publicación
de la presente obra, sin que deba haber un reconocimiento económico por este concepto.
Declaro además que el texto del presente trabajo de titulación no podrá ser cedido a
ninguna empresa editorial para su publicación u otros fines, sin contar previamente con la
autorización escrita de la Universidad.

Asimismo, autorizo a la Universidad que realice la digitalización y publicación de este
trabajo de integración curricular en el repositorio virtual, de conformidad a lo dispuesto
en el Art. 144 de la Ley Orgánica de Educación

Urcuqúı, Agosto de 2024.

Carlos Andrés Arévalo Torres
CI: 0706497443

Dedication

This work is dedicated to my family, whose support and love have been my guiding light.
To my mother, for instilling in me the value of perseverance and to my brother for his
endless encouragement. To my friends: Juan, Samantha, Maithé, Joel, Julio, Harvey,

Cristhian, Ricardo, Danny, Franz, Lis, Mariu, Anthony, Emilio, Milena, Juanito,
Gustavo, Jeff, Manuel, Iván, Mabelen and any who made part of this adventure into

science and tech during university. Also, an exclusive dedication to my best friend Kary:
thank you for everything. This achievement represents the collective dreams and

sacrifices of my family, a chapter of our shared journey towards growth and excellence
where I made unforgettable friends.

Carlos Andrés Arévalo Torres

iii

Acknowledgment

I extend my sincerest gratitude to all those who have contributed to the process of this
thesis. I thank my academic advisor, whose guidance have been indispensable in my
research. My appreciation also goes to my teachers and peers for their encouragement
along the career. Special thanks to Yachay Tech staff who allows me to apply part of my
thesis work inside the university community, without IT Department and volunteer tutors
for the proof-of-concept application, the pilot project couldn’t be possible. Your collective
support and wisdom were important to me.

Carlos Andrés Arévalo Torres

iv

Resumen
En los últimos años, se ha observado un cambio notable en el panorama educativo, que
ha evolucionado de los campus digitales tradicionales a sofisticados ecosistemas de cam-
pus inteligentes. Esta evolución subraya la necesidad cŕıtica de aprovechar las tecnoloǵıas
avanzadas para optimizar la eficiencia operativa y la prestación de servicios dentro de
las instituciones académicas. A pesar de los avances realizados por Ecuador en el fort-
alecimiento de su infraestructura de tecnoloǵıa educativa, el establecimiento de campus
inteligentes aún se encuentra en su fase incipiente, lo que requiere esfuerzos concertados
para alinearse con las tendencias educativas globales. Esta investigación se esfuerza por
explorar el ámbito de las tecnoloǵıas relevantes para entornos de campus inteligentes, con
un énfasis espećıfico en el diseño de un marco integral personalizado. El marco previsto
pretende actuar como catalizador de la innovación y la excelencia operativa, impulsando
aśı la evolución de los campus inteligentes y contribuyendo a una transformación más am-
plia de la educación superior. Un elemento central de este esfuerzo es la resolución de
desaf́ıos pertinentes, como la escalabilidad, la participación del usuario y la integración
perfecta con los marcos existentes. Los objetivos descritos abarcan una revisión exhaus-
tiva de la literatura, el desarrollo de un modelo arquitectónico sólido, la creación de una
aplicación web diseñada espećıficamente para abordar las necesidades de tutoŕıa de los
estudiantes, la integración de capacidades sofisticadas de análisis de datos y el diseño de
una interfaz de usuario intuitiva guiada por principios de diseño centrados en el usuario.
Al perseguir diligentemente estos objetivos, la investigación busca mejorar la eficiencia, la
accesibilidad y la satisfacción del usuario dentro del entorno universitario, sentando una
base sólida para la realización de un entorno de campus inteligente, sofisticado y adaptable.

Palabras clave: campus inteligente, desarrollo web moderno, framework web

v

Abstract

In recent years, a notable shift has been observed in the educational landscape, evolving
from traditional digital campuses to sophisticated ecosystems of smart campuses. This
evolution underscores the critical need to leverage advanced technologies to optimize oper-
ational efficiency and service delivery within academic institutions. Despite strides made
by Ecuador in fortifying its educational technology infrastructure, the establishment of
smart campuses remains in its nascent phase, necessitating concerted efforts to align with
global educational trends. This research endeavors to explore the realm of technologies rel-
evant to smart campus environments, with a specific emphasis on devising a comprehensive
framework tailored. The envisioned framework aims to act as a catalyst for innovation and
operational excellence, thereby driving the evolution of smart campuses and contributing
to the broader transformation of higher education. Central to this endeavor is the resolu-
tion of pertinent challenges such as scalability, user engagement, and seamless integration
with existing frameworks. The outlined objectives encompass an exhaustive literature re-
view, the development of a robust architectural blueprint, the creation of a purpose-built
web application addressing student tutoring needs, the integration of sophisticated data
analytics capabilities, and the design of an intuitive user interface guided by user-centric
design principles. By diligently pursuing these objectives, the research seeks to enhance
efficiency, accessibility, and user satisfaction within the university milieu, laying a solid
foundation for the realization of a sophisticated and adaptive smart campus environment.

Keywords: smart campus, modern web development, web framework

vi

Contents

Dedication iii

Acknowledgment iv

Resumen v

Abstract vi

Contents vii

List of Tables xi

List of Figures xii

1 Introduction 1
1.1 Background . 1
1.2 Problem statement . 2
1.3 Objectives . 2

1.3.1 General Objective . 2
1.3.2 Specific Objectives . 3

2 Theoretical Framework 4
2.1 Smart Campus Conceptualization . 4

2.1.1 Defining Smart Campuses . 5
2.1.2 Smart Campus Ecosystem . 5
2.1.3 Smart Campus Benefits . 6

2.2 Core principles of Web Applications . 7
2.2.1 Client-Server Architecture . 7
2.2.2 Front-End concepts . 8

vii

2.2.3 Back-End concepts . 8
2.2.4 Database Management . 8

2.3 User-Centered Design . 9
2.3.1 User-Centered Design Concepts . 9
2.3.2 UCD Process . 10
2.3.3 UCD in the Educational Context 11

2.4 Data Integration and Analytics . 11
2.4.1 Data Integration Strategies . 11
2.4.2 Data-Driven Decision-Making . 12

2.5 Agile Methodologies . 12

3 State of the Art 14
3.1 Smart Campus Initiatives . 14
3.2 Smart Campus - Technologies & Services 15
3.3 Smart Campus Enablers . 17
3.4 Smart Campus Framework . 18

3.4.1 Smart Infrastructure Layer . 19
3.4.2 Data Management and Analytics Layer 19
3.4.3 Application Layer . 19
3.4.4 User Layer . 20
3.4.5 Security and Privacy Layer . 20
3.4.6 Sustainability and Energy Efficiency Layer 21
3.4.7 Governance and Policy Layer . 21

4 Methodology 23
4.1 Designing the Framework for Web Application Development on Smart Campus 23

4.1.1 Key Elements of the Framework . 24
4.1.2 Alignment with the Smart Campus Framework 25

4.2 Application Component . 26
4.2.1 Sensors Layer . 26
4.2.2 Storage Layer . 27
4.2.3 Server Layer . 27
4.2.4 End-User Layer . 28

4.3 User-Centered Design Component . 29
4.3.1 Engaging with Stakeholders . 29
4.3.2 Usability Testing . 29
4.3.3 Iterative Design . 30
4.3.4 Empathy in Design . 30
4.3.5 Accessibility Standards . 30
4.3.6 Feedback Loops . 30

viii

4.4 Data Component . 31
4.4.1 Data Integration . 31
4.4.2 Data Analytics . 31
4.4.3 Data Security . 32

4.5 Agile Methodology . 33
4.6 Front-end Technologies . 34

4.6.1 React . 34
4.6.2 Typescript . 34
4.6.3 Next.js . 35

4.7 Back-end Technologies . 35
4.7.1 tRPC . 35
4.7.2 MySQL . 36
4.7.3 PrismaORM . 37

4.8 Additional tools . 38
4.8.1 Git & GitHub . 38
4.8.2 v0 . 40
4.8.3 Vercel . 41
4.8.4 NextAuth . 41

5 Results and Discussion 43
5.1 Requirements Gathering . 43

5.1.1 Stakeholder Analysis . 44
5.1.2 Functional Requirements . 45
5.1.3 Non-functional requirements . 45

5.2 Design and Development . 46
5.2.1 Use Case Diagram . 47
5.2.2 System Architecture . 49
5.2.3 Database Schema . 51

5.3 Alignment with the Proposed Web Application Development Framework . 51
5.3.1 User-Centered Design . 51
5.3.2 Scalable Architecture . 52
5.3.3 Data Integration and Analytics . 52
5.3.4 Security and Privacy . 52
5.3.5 Responsive and Agile Methodologies 52

5.4 Application Metrics . 52
5.4.1 Performance Metrics . 53
5.4.2 Accessibility Metrics . 54
5.4.3 Best Practices Metrics . 55
5.4.4 Comparison of Application Versions Lighthouse Results 57

5.5 Alignment with Smart Campus Framework 59

ix

5.5.1 Smart Infrastructure Layer . 60
5.5.2 Data Management and Analytics Layer 61
5.5.3 Application Layer . 61
5.5.4 User Layer . 61
5.5.5 Security and Privacy Layer . 61
5.5.6 Sustainability and Energy Efficiency Layer 62
5.5.7 Governance and Policy Layer . 62

6 Conclusions 63
6.1 Conclusions . 63
6.2 Future Work . 64

Bibliography 66

A User Interface Captures 77

B Application database schema 82

x

List of Tables

4.1 Core Features of Next.js . 36
4.2 Core Features of Git . 39
4.3 Core Features of GitHub . 39

5.1 Stakeholder Analysis for Peer-Tutoring Web Application 44
5.2 Functional Requirements for Peer-Tutoring Web Application 45
5.3 Non-Functional Requirements for Peer-Tutoring Web Application 46
5.4 Key performance indicators weight for overall performance score calculation 53
5.5 Accessibility audits from Lighthouse evaluation 55
5.6 Best Practices audits from Lighthouse evaluation 56

xi

List of Figures

2.1 Client-Server architecture lifecycle. 7

3.1 Main enablers of a Smart Campus proposed by [1] 17
3.2 Smart Campus Framework . 18

4.1 Web Application Development Framework for Smart Campus Environments 24

5.1 Proof-of-concept use case diagram. 47
5.2 Proof-of-concept application architecture. 49
5.3 Lighthouse results of proof-of-concept application: Tuto-U 57
5.4 Lighthouse results of older version of peer-tutoring application: OrientaYT 58
5.5 Proof-of-concept application in Smart Campus Framework. 60

A.1 Initial view of the application. 77
A.2 Login view. 78
A.3 Assignments view. 79
A.4 Session requests view. 80
A.5 Rating and feedback system. 81

B.1 Proof-of-concept application database schema. 83

xii

Chapter 1

Introduction

1.1 Background
With the rapid advancement of information technology, universities worldwide are continu-
ally evolving their management strategies to enhance operational efficiency. One significant
transformation observed in recent years is the transition from traditional digital campuses
to intelligent campus environments [2]. This shift underscores the importance of leveraging
cutting-edge technologies to optimize campus operations and services. While the concept
of digital campuses has played a crucial role in enhancing information management within
educational institutions, the emergence of smart campuses represents a new frontier in
campus development. In Ecuador, the evolution towards smart campuses is still in its
nascent stages, reflecting the country’s ongoing efforts to bolster its educational technol-
ogy infrastructure. In tandem with global trends, Ecuador has made significant strides
in enhancing its education technology landscape, particularly with the adoption of cloud
computing, big data, and artificial intelligence. However, there remains a pressing need
to accelerate the development of smart campuses to align with the evolving educational
landscape.

This research endeavors to address this gap by presenting an in-depth exploration of
the technologies relevant to smart campus environments. By analyzing the specific require-
ments and challenges faced in Ecuador’s educational context, this study aims to design a
comprehensive framework for a web application tailored to the needs of smart campuses.
Through this framework, the aim is to catalyze the advancement of smart campuses in
Ecuador, fostering innovation, efficiency, and effectiveness in educational management and
service delivery. By harnessing the potential of emerging technologies, such as web appli-
cations, this research seeks to contribute to the ongoing transformation of higher education
institutions into dynamic, technology-driven hubs of learning and innovation.

1

1.2 Problem statement
The development of web applications tailored for smart campuses faces several obstacles
that hinder their ability to enhance the educational environment. One significant challenge
revolves around scalability [3], as these applications must be capable of accommodating
increasing user demands as the campus population grows. Ensuring that the infrastructure
can handle surges in usage without compromising performance is essential for delivering a
seamless user experience and maintaining operational efficiency. Another critical concern is
cybersecurity. With the proliferation of sensitive data stored within smart campus systems,
protecting against cyber threats is paramount. Any breach in security could lead to the
compromise of personal and confidential information, posing significant risks to students,
faculty, and administrative staff [4]. Therefore, robust measures must be implemented to
safeguard data integrity and maintain user trust in the system. Capturing the attention
and engagement of users is also a key challenge in the development of web applications for
smart campuses. User-friendly and accessible designs are crucial for encouraging adoption
and ensuring that users can navigate the system effortlessly. Interfaces should be intuitive
and responsive, catering to diverse user needs and preferences. Failure to prioritize usabil-
ity could result in decreased user satisfaction and hinder the overall effectiveness of the
application. Additionally, seamless integration with existing campus frameworks presents
a formidable obstacle. Smart campuses often rely on a complex network of interconnected
systems and infrastructure. Ensuring compatibility and interoperability between new web
applications and legacy systems is essential for minimizing disruption and maximizing
efficiency. Any discrepancies or inconsistencies in integration could lead to operational
inefficiencies and hinder the realization of a truly integrated smart campus environment.

Addressing these challenges is essential for creating a digital environment that meets the
evolving needs of students, faculty, and administration. By overcoming obstacles related
to scalability, cybersecurity, usability, and integration, developers can lay the foundation
for a truly smart campus that enhances learning outcomes, fosters innovation

1.3 Objectives

1.3.1 General Objective
Develop an integrated framework for web application development optimized for smart
campuses, emphasizing scalable architecture, user-friendly interfaces, and data analytics
capabilities to enhance efficiency, accessibility, and user experience within university envi-
ronments.

2

1.3.2 Specific Objectives
1. Conduct a comprehensive literature review on the topic of smart campuses to analyze

existing research, identify key trends, and gain insights into the current state of
knowledge in this field.

2. Develop an scalable architecture as a framework for web application development that
supports the dynamic and diverse needs of smart campuses, emphasizing adaptability
and user experience.

3. Develop a web application aimed at facilitating student-to-student tutoring requests,
utilizing the Smart Campus model to enhance accessibility, efficiency, and user ex-
perience in managing tutoring services within the university environment, serving as
a proof of concept for the proposed framework.

4. Design a data integration component for the proposed framework aimed at enhancing
data analytical capabilities to enable data-driven decision-making processes.

5. Design a user interface for the web application that is attractive and accessible, lever-
aging user-centered design principles to foster positive interactions and satisfaction
among students, faculty, and administrative staff.

3

Chapter 2

Theoretical Framework

In recent years, the concept of a smart campus has emerged as transformative in educational
environments. As technology permeates our lives, institutions drive digital innovations to
create interconnected ecosystems known as smart campuses. This chapter delves into smart
campus conceptualization, exploring defining characteristics. It addresses core principles
of web applications, including client-server architecture and database management. Addi-
tionally, it emphasizes user-centered design’s importance in crafting user-friendly interfaces,
and agile methodologies’ benefits in software development within smart campuses.

2.1 Smart Campus Conceptualization
Since modern technology such as computers and the internet has flooded our society, the
digital era has brought us concepts like “digital literacy” as a guide to survive in this
technological world [5], along with various studies on the imminent changes at that time
and how to adapt to them in various areas such as marketing [6], teaching methods [7],
or even the way governments operate [8]. The word “smart” has become a popular term
in recent decades, as seen in smartphones where a device has evolved from being simply
for calls and messages to having added functionalities. Another example is smart bulbs
with more features than just turning on and off. The “smart” concept has also extended
to interconnected ecosystems much larger than a single device, such as smart cities and
smart houses. In this section, we will direct our focus towards one particular ecosystem:
the smart campus.

4

2.1.1 Defining Smart Campuses
Numerous researchers have contributed to the study of smart campuses, offering various
viewpoints and definitions [9, 10, 11, 12, 13, 2, 14]. Generally, the idea of a smart campus
is approached from two main angles: a focus on technology and a broader perspective
influenced by smart city concepts. The technology-centered approach emphasizes how
technologies like the Internet of Things (IoT) and Information and Communication Tech-
nologies (ICT) play vital roles in modernizing institutional services [9, 10, 11, 12]. On
the other hand, some scholars view smart campuses through the lens of smart city prin-
ciples, aiming to enhance various aspects of campus life, including economy, governance,
and quality of life, through advanced technologies. For example, Paola et al. (2019) in [13]
describe a Smart Campus as a digitally enhanced environment where sensors are widely
deployed to respond dynamically to users’ activities and environmental changes. This vi-
sion includes integrating information systems, digital connectivity, and potentially digital
interfaces to improve the overall campus experience. It highlights the transformative po-
tential of technology in creating more adaptable and intelligent educational environments.
In another study, Chagnon-Lessard et al. (2021) [2] suggest that smart campuses serve
as ideal settings for innovation and technological experimentation due to their strategic
position at the intersection of research and innovation. Educational institutions like uni-
versities and colleges, being hubs of research and technological advancement, play critical
roles in developing and implementing intelligent systems. However, they must navigate the
unique complexities of campus environments, considering diverse occupants and specialized
infrastructure such as laboratories [14]. This requires adopting tailored smart solutions to
address the specific needs of advanced educational settings effectively.

2.1.2 Smart Campus Ecosystem
The concept of a smart campus extends beyond mere technological application within an
academic setting; it encapsulates a dynamic and interconnected ecosystem that converges
various technological and human elements to enhance overall efficiency, sustainability, and
user experience [14]. At the core of the smart campus ecosystem lies a robust technolog-
ical infrastructure. This infrastructure encompasses a network of interconnected sensors,
devices, and systems that collect and disseminate data. These data sources range from en-
vironmental sensors monitoring air quality and energy consumption to smart devices used
by students and faculty. The integration of this diverse technological landscape forms the
foundation for creating intelligent applications that respond to the needs of the campus
community [15]. The smart campus operates as a networked environment where seamless
interconnectivity and data flow are essential. Information generated by various sensors and
devices should be efficiently transmitted and processed to derive meaningful insights [3].
This interconnectedness facilitates real-time decision-making, resource optimization, and
the creation of personalized experiences [16]. Given these dynamics, exploring the flow of

5

data within the smart campus ecosystem becomes imperative for crafting web applications
that leverage this information effectively.

2.1.3 Smart Campus Benefits
The adoption of smart campus environments brings a range of advantages that extend
beyond the traditional functions of academic institutions. These benefits can be grouped
into various key areas, highlighting the transformative influence of infusing technology into
the educational landscape.

1. Streamlined Operational Efficiency: Smart campuses harness technology to sim-
plify administrative tasks, optimize resource distribution, and automate routine func-
tions. This leads to improved operational efficiency, enabling educational institutions
to allocate resources more efficiently and focus on core educational goals [17].

2. Sustainability and Environmental Impact: The inclusion of environmental sen-
sors and sustainable practices in the smart campus ecosystem contributes to a more
eco-conscious and sustainable atmosphere. Through real-time monitoring of energy
usage, waste management, and resource utilization, smart campuses can minimize
their environmental impact and endorse environmentally responsible practices [18].

3. Enhanced User Experience: The user experience in a smart campus is signifi-
cantly enriched through tailored services and seamless interactions. Smart applica-
tions designed for students, faculty, and staff enhance communication, accessibility,
and overall satisfaction, fostering a positive academic environment [14].

4. Data-Driven Decision Making: The wealth of data generated by sensors and
devices within the smart campus provides valuable insights for informed decision-
making. Institutions can analyze patterns, recognize trends, and make informed
choices to enhance the overall effectiveness of educational processes and administra-
tive strategies [16].

5. Collaborative Learning and Research: Smart campuses promote collaborative
learning environments by providing tools and platforms that facilitate smooth com-
munication and knowledge sharing. This interconnected ecosystem encourages inter-
disciplinary research and collaborative initiatives, nurturing a culture of innovation
within academic communities [19].

6. Adaptability to Technological Advances: A smart campus is inherently adapt-
able to technological advancements, ensuring that the educational environment stays
at the forefront of innovation. This adaptability allows institutions to integrate
emerging technologies and stay current with the evolving needs of the academic
community and industry [20].

6

The achievement of these benefits depends on the comprehensive and well-coordinated
integration of technology, human factors, and data-driven insights within the smart campus
ecosystem. As we delve deeper into the theoretical framework, it becomes evident that
these advantages provide the basis for developing web applications specifically designed to
meet the unique needs of a smart campus environment.

2.2 Core principles of Web Applications
The development of web applications relies on foundational architectural principles and
user-centered design approaches to create intuitive and efficient digital experiences. In this
section, we explore key concepts related to the client-server architecture, front-end and
back-end development, database management, and user-centered design (UCD). Under-
standing these concepts is essential for designing and implementing effective web applica-
tions that meet user needs and enhance overall usability and satisfaction.

2.2.1 Client-Server Architecture

Client Server

Initialization

HTML

HTTP Request

HTMLPage
Reload

Figure 2.1: Client-Server architecture lifecycle.

The client-server architecture is fundamental to web applications, facilitating communi-
cation between multiple clients (typically users’ devices with web browsers) and a central

7

server (see Figure 2.1). The server serves as the host, processor, and deliverer of web
applications to clients, handling requests, executing back-end logic, and managing data
storage and retrieval. In contrast, the client, often a web browser, sends requests to the
server, receives responses, and presents them to the user. This communication occurs
over HTTP/HTTPS protocols, with clients utilizing HTTP methods (GET, POST, PUT,
DELETE) to interact with the server. Notably, each interaction between client and server
is stateless, meaning the server does not retain client state between requests. However,
technologies such as cookies, session storage, and databases are employed to maintain
statefulness as needed. Additionally, scalability is a crucial consideration in web appli-
cation development. Techniques like load balancing, caching, and distributed database
systems are implemented to optimize performance and ensure scalability, accommodating
varying levels of user demand effectively.

2.2.2 Front-End concepts
Front-end development centers on creating the user interface and experience of web appli-
cations. It encompasses everything users interact with directly in their web browsers. The
primary languages used in front-end development are HTML for structure, CSS for styling,
and JavaScript for functionality. Frameworks like React, Angular, and Vue.js significantly
enhance development efficiency and user experience [21]. Additionally, Responsive Design
ensures web applications work seamlessly across various devices and screen sizes, utilizing
fluid grids, flexible images, and CSS media queries [22].

2.2.3 Back-End concepts
Back-end development focuses on the server, database, and application logic. It involves us-
ing server-side programming languages such as Python, Ruby, Node.js, or Java, and frame-
works like Django, Rails, or Express. The back-end is responsible for managing database
interactions, developing APIs, user authentication, and executing server-side logic. Mod-
ern approaches like microservices architecture and RESTful APIs are widely adopted for
building scalable and maintainable back-end systems. Furthermore, back-end develop-
ment must prioritize security measures, including data protection, secure API endpoints,
and mitigating common threats like SQL injection and cross-site scripting [23].

2.2.4 Database Management
Database management encompasses the processes of storing, retrieving, updating, and
managing data. Commonly used databases include relational databases such as MySQL
and PostgreSQL, and non-relational databases like MongoDB. Key concepts in this field in-
clude database design, normalization, and SQL for relational databases. NoSQL databases

8

provide flexibility for specific types of data and use cases. Ensuring data integrity, im-
plementing robust security measures, maintaining regular backups, and optimizing query
performance are essential components of effective database management [24].

2.3 User-Centered Design
User-Centered Design (UCD) is a set of principles that place users at the center of the design
process. These principles were first established through research on Human-Computer
Interaction in 1987, emphasizing the importance of considering the needs, preferences, and
limitations of end-users when creating products that are usable and accessible to as many
people as possible [25].

2.3.1 User-Centered Design Concepts
UCD interaction can take many forms; some approaches involve regular user consultations
to understand their needs and apply their suggestions during crucial phases such as re-
quirements collection and usability testing [26]. Norman later explained that the utility
and comprehensibility of products are achieved when users understand what actions to take
and can comprehend what is happening [27]. Essentially, the core of user-centered design
is tailoring products to meet user expectations and needs, ensuring an intuitive experi-
ence where users can comprehend and perform necessary actions effectively. According to
Norman, understanding and usability are key to the success of user-centered design, ensur-
ing the product not only fulfills required functions but also facilitates interaction without
causing confusion.

Two key practices associated with UCD are:

• Usability Testing: In line with the UCD model, usability testing involves real
users actively participating in evaluating a developing system or product to ensure
it meets defined usability criteria. According to Dumas and Redish (1993), usability
testing is a systematic method for observing users as they interact with a product
[28]. This process collects detailed information on how users perceive the ease or
difficulty of the product, providing valuable feedback on the user experience. This
feedback allows for iterative adjustments and continuous improvements in design to
optimize usability and ensure effective and satisfactory interaction with the system.

• Participatory Design: Unlike usability testing, participatory design involves user
involvement from the initial design stages to final implementation. It is crucial to
integrate employees’ skills and experiences into the organizational development and
execution of computer systems and related tasks [29]. Participatory Design (PD)
seeks to continuously incorporate the user’s perspective, fostering co-creation and

9

shared decision-making. PD researchers explore the conditions that promote active
user participation in the design and implementation of computer systems in the
workplace [30].

2.3.2 UCD Process
According to Keinonen (2008), UCD processes focus on users throughout the planning,
design, and development of a product [31]. UCD can be divided into several stages to meet
the needs and constraints of end-users. According to Preece et al. (2002) as cited in [26],
there are seven phases that encompass the design and development cycle of a product:

• Background Interviews and Questionnaires: Conducted in the early stages of
the design project to gather data on user needs and expectations. This involves eval-
uating design alternatives, prototypes, and the final artifact before its development.

• Sequence of Work Interviews and Questionnaires: Applied in the initial phase
of the design cycle to gather fundamental data on the sequence of tasks that users
will perform.

• Focus Groups: Convene a diverse range of stakeholders to discuss issues and re-
quirements associated with the design. This methodology is implemented early in the
design cycle to capture a variety of perspectives and opinions, enriching the creative
process.

• On-site Observation: Involves observing the use of the product or system in its
actual environment to gain a deep understanding of the context in which users will
interact with the designed artifact. Detailed data on environmental factors, phys-
ical conditions, and relevant elements influencing usability and user experience are
collected during this stage.

• Role Playing, Walkthroughs, and Simulations: Conducted both at the begin-
ning and midpoint of the design cycle, this involves designers and users participating
in simulated usage scenarios, interacting with prototypes or specifically designed sce-
narios.

• Usability Testing: A crucial phase in the design cycle, located in the final stage,
where quantitative data is collected. This process focuses on evaluating measurable
usability criteria, providing objective information on the performance and effective-
ness of the designed artifact.

• Interviews and Questionnaires: Takes place in the final stage, where qualita-
tive data is collected. This process focuses on obtaining detailed information about

10

user satisfaction with the designed artifact, seeking a deep understanding of their
perceptions, opinions, and experiences.

Each of these stages is essential for creating a product that truly meets user needs and
expectations. By systematically involving users throughout the design and development
process, UCD ensures that the final product is both functional and user-friendly. This
iterative approach allows designers to identify and address potential issues early, making
necessary adjustments based on user feedback. As a result, the end product not only
achieves its intended purpose but also provides a positive and intuitive user experience,
ultimately leading to higher user satisfaction and adoption rates.

2.3.3 UCD in the Educational Context
The implementation of emerging technologies in education was a prominent topic during
the 1990s. However, the implications of UCD in educational contexts were explored as
early as 1996, emphasizing the importance of UCD in hypertext and hypermedia for learn-
ing [32]. The application of instructional design strategies for students is analogous to
user-centered approaches aimed at creating interfaces. Therefore, applying UCD in edu-
cation recognizes the importance of considering the student as the primary user, allowing
for continuous improvement in the quality of instruction through adaptation and attention
to the individual needs of students [33]. In the educational context, UCD involves care-
fully considering the individual characteristics of students, such as their level of cognitive
development, maturity, age, skills, limitations, interests, opinions, and knowledge.

2.4 Data Integration and Analytics

2.4.1 Data Integration Strategies
Data integration aims to combine data from diverse sources to create a unified, compre-
hensive view. This process often involves the use of Extract, Transform, Load (ETL)
methodologies [34], where data is extracted from various sources, transformed for consis-
tency, and then loaded into a central repository like a data warehouse [35]. Middleware
solutions such as Enterprise Service Buses (ESB) [36] facilitate seamless communication
and data exchange between different systems. In the era of service-oriented architectures,
API-based integration has become particularly useful, offering a flexible and scalable way
to connect disparate software components [37]. Additionally, data virtualization techniques
[38] provide real-time or near-real-time views of data from multiple sources without requir-
ing physical integration. A variant of this, data federation [39], creates a virtual database
for integrated access and manipulation of data, enabling a consolidated view across an
organization.

11

2.4.2 Data-Driven Decision-Making
Data-driven decision-making focuses on basing decisions on data analysis rather than solely
on intuition. This process begins with the collection and management of relevant data from
various sources [40]. The core of this approach is the rigorous analysis and interpretation
of this data, utilizing statistical tools to derive actionable insights. These insights are then
communicated through intuitive reporting and visualization tools like dashboards, which
guide decision-making processes [41]. Predictive analytics [42], using advanced algorithms
and machine learning, is increasingly employed to anticipate future trends and behav-
iors. This approach is dynamic, with a continuous feedback loop that updates and refines
strategies based on new data and insights, thereby enhancing the overall decision-making
process.

2.5 Agile Methodologies
Agile methodologies are a set of principles and practices for software development that
prioritize flexibility, collaboration, customer feedback, and rapid iteration. Originating
from the Agile Manifesto in 2001 [43], these methodologies prioritize direct communica-
tion over documentation, working software over comprehensive documentation, customer
collaboration over contract negotiation, and responding to change over following a plan.
Empirical studies [44, 45] support the effectiveness of Agile methodologies in improving
project success rates, team productivity, and customer satisfaction. Key principles of Agile
include customer satisfaction through early and continuous delivery, welcoming changing
requirements, frequent delivery of working software, close daily cooperation between busi-
ness people and developers, building projects around motivated individuals, face-to-face
conversation as the best form of communication, working software as the primary measure
of progress, sustainable development pace, continuous attention to technical excellence,
simplicity, and self-organizing teams [46]. Two popular Agile methodologies are:

• Scrum: A prominent Agile framework, Scrum is structured around fixed-length it-
erations called Sprints, typically lasting two to four weeks. It emphasizes teamwork,
accountability, and iterative progress towards a well-defined goal. Scrum roles in-
clude the Product Owner, Scrum Master, and Development Team, each with specific
responsibilities to ensure efficient project progression [47].

• Kanban: Another Agile approach, Kanban, focuses on visualizing the workflow and
limiting work-in-progress to enhance efficiency. It involves using a Kanban board,
where tasks are moved from “To Do” to “Done”, providing a transparent overview of
the project’s current state. This method is particularly useful for managing ongoing
projects with continuously changing or emerging requirements [48].

12

While both Scrum and Kanban are Agile methodologies and share common principles
like flexibility, adaptability, and continuous improvement, they differ in structure and focus.
Scrum is more structured, with defined roles and time-boxed sprints, making it ideal for
projects requiring rigorous management and where changes are less frequent during each
sprint. Kanban, on the other hand, offers more flexibility in terms of workflow management.
It is suitable for projects with continuous changes or maintenance tasks, as it allows for a
more fluid task management without the confines of fixed sprints. This flexibility makes
Kanban a better choice for projects with evolving or unpredictable requirements, while
Scrum is more suited for projects where goals and deliverables can be clearly defined in
stages. Agile methodologies are particularly relevant in dynamic project environments like
those encountered in smart campus development, where requirements can change rapidly
and involvement of various stakeholders is crucial for the project’s success.

Overall, this theoretical framework provides a comprehensive understanding of smart
campuses, web application development principles, and agile methodologies, laying the
groundwork for the subsequent chapters’ practical implementations and case studies.

13

Chapter 3

State of the Art

This chapter offers a comprehensive overview of the current landscape in the field of smart
campuses. It begins with an exploration of various initiatives, including Smart Campus
Technologies & Services, detailing their approaches and applications. It also presents a
detailed examination of a Smart Campus Framework based on the findings of literature,
highlighting the main enablers and technological frameworks necessary for this transition.
The insights provided in this chapter set the stage for the development of a comprehensive
web development framework tailored for smart campus environments.

3.1 Smart Campus Initiatives
In exploring the potential of IoT for creating intelligent environments in educational set-
tings, the authors in [49] presents his Smart Campus, a case study in the University of
Bologna (Italy) demonstrating the integration of sensor networks and data visualization
in a university campus. This system comprises a sensor infrastructure for real-time data
collection and a web-based application for interactive data engagement. The involvement
of 135 students in its evaluation revealed a significant interest in contributing to the sys-
tem’s development, highlighting the feasibility and appeal of IoT in enhancing interactive
and participatory educational environments. This study underlines the transformative im-
pact of IoT in making educational spaces more responsive and student-centered, pointing
towards a future of increased student involvement in shaping their learning environments.

In [50], Verstaevel et. al, (2017) describe the implementation of the Smart Campus
technique at the University of Toulouse III Paul Sabatier, turning it into an “in vivo” incu-
bator for Smart and Sustainable Cities. The neOCampus operation, initiated in 2013, aims
to transform the university into an experimental environment for improvements in quality
of life, reduction of ecological footprint, and efficiency in operating costs. The application
of interdisciplinary initiatives is highlighted, such as an open data platform, ecocitizenship

14

projects to raise awareness about the ecological footprint, and the optimization of energy
consumption in classrooms through machine learning systems. Additionally, biodiversity is
addressed through a participatory application that identifies and locates fauna and flora on
campus, facilitating data collection to study the impact of human activities during the ur-
banization process. These projects demonstrate the need for interdisciplinary collaboration
to address the challenges and opportunities associated with Smart Cities.

The UMS HopIn! application [51] represents an initiative towards the implementation
of a smart campus at the University of Malaysia Sabah (UMS), specifically in Borneo.
Designed as a real-time bus tracking system, it consists of two mobile applications, UMS
HopIn! and UMS HopIn! Driver, along with the web application UMS HopIn! Admin.
This application aims to address the issue of bus schedule reliability through effective
tracking, allowing students to be aware of real-time bus locations and estimated arrival
times. User experience evaluation using the MeCUE technique reveals that the application
meets expectations and receives a good UX rating, supporting the development of future
smart campus initiatives. Feedback received reinforces the utility and usability of the
application, positioning it as an effective tool to enhance campus life and support upcoming
smart campus initiatives.

3.2 Smart Campus - Technologies & Services
According to Yang et al. (2018) [52], with the rise and rapid development of cloud comput-
ing, big data, and IoT, advanced ICT has gradually been integrated into the education sec-
tor, leading to constant improvement in university informatization levels. In this scenario,
literature indicates that universities worldwide are implementing smart campus concepts
into their academic environments, promoting direct changes in the quality of life of stu-
dents, researchers, staff, visitors, passersby, and other professionals involved in university
management.

In their systematic review [53], Zhang et al. analyze the evolving landscape of smart
campus technologies and applications, emphasizing the need for an updated examination
in light of recent advancements and the impacts of the COVID-19 pandemic. This article
stands out for its comprehensive analysis of current smart campus initiatives, categorizing
them across various domains to identify prevailing research trends. Significantly, the study
adopts a human-centered approach, aligning with the core principle of smart campus de-
velopment, which prioritizes the needs and interests of stakeholders. The authors present
a detailed case study to assess how well current research aligns with these human-centered
objectives. This review is crucial in understanding the heightened importance of smart
campuses, especially their role in offering remote, personalized, and ubiquitous services
during challenging times. It provides a contemporary snapshot of the field, highlighting
the integration of cutting-edge information and communication technologies to augment
the efficiency and effectiveness of educational services. Some examples of useful web sys-

15

tems on Smart Campus context are:

• Learning Management System (LMS): Web services can be integrated for man-
aging course content, facilitating online learning, tracking student progress, and en-
hancing teacher-student interaction [54, 55, 56].

• Campus Navigation and Maps: Implementing services like Google Maps API
for campus navigation helps students and visitors find their way around the campus,
including buildings, departments, and amenities [57, 58].

• Library Management System: Integrating a web-based library management sys-
tem enables efficient tracking of books, digital resources, and other materials, facili-
tating online reservations, renewals, and automated notifications [59, 60, 61, 62, 63].

• Student Information System (SIS): This service manages student data, including
admissions, enrollment, grades, and schedules. Integrating an SIS helps streamline
administrative tasks [64, 65].

• Campus Safety and Security Services: Implementing web services for campus
safety, like emergency notification systems [66] and mobile safety apps [67], can en-
hance security and provide quick access to emergency assistance.

• Transportation Services: Integrating real-time information about campus shut-
tles [68], public transit [69], and parking availability [57].

• Sustainability and Energy Management: Web services for monitoring and
managing energy usage and sustainability initiatives on campus [70, 71].

• Career Services and Internship Portals: Platforms connecting students with
job opportunities, internships, and career advice [72].

• IoT Integration for Smart Facilities: Using web services to integrate IoT de-
vices for smart lighting [73], body temperature control [74], or any environmental
monitoring [75] in campus buildings.

Finally, Msitah Mausa et al. [76] state that smart campuses consist of environments
capable of providing efficient technologies and infrastructures in service delivery to enhance
and support the teaching process, research, and student experience. For Lam-for [77], it is
a new paradigm of thought within a holistic environment, encompassing at least, but not
limited to various aspects of artificial intelligence [78], such as e-learning, social networks,
and communications for collaboration in both academic and administrative work, sustain-
ability, and ICT, with intelligent sensor management systems, medical care, smart building
management, with automated security control and transparent governance of campuses.
The conceptual approach of smart campuses considers that the spaces or territories on

16

which university campuses are located are managed as cities, requiring effective manage-
ment models, from secure database sources that facilitate decision-making by managers,
and especially, in the case of public universities, transparency becomes one of the elements
that configure public governance [79, 80] or university governance [81, 82].

3.3 Smart Campus Enablers
Based on the findings of Vian Ahmed, Karam Abu Alnaaj, and Sara Saboor presented in
their comprehensive literature review on Smart Campus criteria in [1], their research, which
focuses on the transformation of traditional campuses into Smart Campuses, outlines the
main enablers and technological frameworks necessary for this transition.

Smart
Campus

Smart
Facilities
Services

Smart
Classrooms

Smart
Transportation

Energy
Management

Smart
E-Card

Security &
Safety

Optimization
& Analytics
Data Center

Adaptative
Learning

- E-Wallet
- Records all Personal Data

- Access to Facilities (Dorm, library, labs)
- Attendance and Administrative usage

- Virtual Reality
- Remote Digital Learning

- Interactive Cloud Sharing Platform
- Collaborative Research

- Building Energy
Management System

- Sustainable Energy Sources
- Smart Street Lights

- House Management System
- Energy Trading System

- Adaptive & Customized Learning
- Optional Supplementary Courses

- Computerized Adaptive Testing (CAT)

- Smart Administration / Registration and Tracking
- Facility Management Smart System

- Private Campus Social Network

- Operations Optimization
- Data Storage

- Research Center

- Smart Safety and
Security Systems
- Surveillance

- Tracking

- Smart Parking
- Fleet Tracking

- Intelligent Signage
- In-Campus Navigation

Figure 3.1: Main enablers of a Smart Campus proposed by [1]

17

Figure 3.1 illustrates the conceptual model of the main enablers for a Smart Campus,
designed to integrate advanced technologies and data-driven strategies to enhance the
educational environment. This model emphasizes the interaction between various smart
components, creating an efficient, sustainable, and user-friendly campus experience.

3.4 Smart Campus Framework
From literature review, a Smart Campus Framework can be defined and its illustrated
in Figure 3.2. This framework consists in various layers that integrate technology, data,
applications, and policies to create an intelligent and efficient campus environment. This
section introduces the general architecture of the Smart Campus Framework, detailing its
various layers and their respective components. Each layer plays an important role in
transforming a traditional campus into a smart one.

G
ov

er
na

nc
e

an
d

P
ol

ic
y

La
ye

r

S
ec

ur
ity

 a
nd

 P
riv

ac
y

La
ye

r

S
us

ta
in

ab
ili

ty
 a

nd
 E

ne
rg

y
E

ffi
ce

nc
y

La
ye

r

Smart Infrastructure Layer

Smart Campus Framework

Data Management and Analytics Layer

Application Layer

User Layer

Figure 3.2: Smart Campus Framework

18

3.4.1 Smart Infrastructure Layer
The Smart Infrastructure Layer forms the basis of the Smart Campus framework, ensuring
robust connectivity, efficient data management, and the integration of IoT devices.

• Network Infrastructure: A reliable and high-speed network infrastructure is es-
sential for supporting the vast array of connected devices and systems within a smart
campus [83]. This includes wired and wireless networks, ensuring seamless connec-
tivity and data transfer across the campus.

• IoT Devices: Deployment of IoT devices across the campus to monitor and man-
age environmental conditions, energy consumption, and security. IoT significantly
improves the efficiency of campus operations [16] by providing granular data and
enabling automated responses to changing conditions.

• Data Centers and Cloud Services: These provide the necessary computational
power and storage to handle the vast amounts of data generated by IoT devices and
smart campus applications. Priorizing cloud services also enhance scalability and
flexibility [84].

3.4.2 Data Management and Analytics Layer
This layer focuses on the processes involved in handling and finding insights from the data
collected by IoT devices and other sources.

• Data Collection: Collecting data from various sources, including IoT devices, user
interactions, and administrative systems, provides a view of campus operations and
user behavior.

• Data Processing: Once collected, data must be processed to remove redundancies,
correct errors, and structure it for analysis. Advanced data processing techniques
ensure that data is clean, accurate, and ready for analysis.

• Analytics and Insights: Using big data analytics [85] and machine learning [86, 87]
to retrieve actionable insights from collected data. These insights can helps in data-
driven decision-making, optimize operations, and enhance the user experience.

3.4.3 Application Layer
The Application Layer focuses on the various applications and services deployed within a
smart campus to enhance academic, administrative, and campus life experiences. Appli-
cations and services can be defined in three categories:

19

• Academic and Administrative Applications: These include Learning Manage-
ment Systems (LMS), Student Information Systems (SIS), and other tools that sup-
port educational and administrative processes are fundamental to the smart campus
ecosystem .

• Campus Services: Applications that manage campus services such as transporta-
tion, safety, and facility management fall under this category. These services enhance
the efficiency and effectiveness of campus operations.

• Campus Life Applications: Applications focused on improving the overall cam-
pus experience for students, faculty, and staff. This includes services for campus
navigation, event management, and community building.

A more detailed review of this services was developed in section 3.2.

3.4.4 User Layer
The User Layer focuses on the different stakeholders within a smart campus and creating
user-centered services and interfaces that enhance their overall campus experience

• Students: Smart campus systems provide students with tools and services to en-
hance their learning experiences and campus life, including access to educational
resources, campus services, and community engagement platforms.

• Faculty and Staff: Faculty and staff benefit from smart campus systems through
the integration of administrative processes, access to teaching resources, and tools
for collaboration and communication.

• Visitors and Guests: Smart campus systems also fulfils the needs of visitors and
guests, providing them with information, navigation assistance, and access to public
campus services.

• Stakeholders Engagement: Effective engagement strategies such as continuous
feedback mechanisms [88] and community awareness [49, 52] ensure that all stake-
holders are involved in the development and implementation of smart campus initia-
tives, promoting a collaborative and inclusive environment.

3.4.5 Security and Privacy Layer
This layer ensures the protection of data, systems and physical assets on campus.

20

• Cybersecurity Measures: Robust cybersecurity measures protect the campus net-
work and data from unauthorized access, cyberattacks, and breaches. This includes
firewalls [4], intrusion detection systems [89], and regular security audits.

• Data Privacy: Ensuring the privacy of personal and sensitive data is fundamental.
Accordance with data protection regulations and implementing privacy policies are
essential for maintaining trust and legal compliance [90].

• Physical Security: Physical security measures such as surveillance cameras system
[91], access control systems [92], and emergency response systems [93, 94] ensure the
safety and security of the campus community.

3.4.6 Sustainability and Energy Efficiency Layer
This layer focuses on integrating sustainable practices and energy-efficient technologies on
the campus.

• Renewable Energy Sources: Incorporating renewable energy sources such as solar
panels and wind turbines [95] reduces the campus’s carbon footprint and promotes
sustainability.

• Energy Management Systems: Advanced energy management systems [94, 96]
monitor and control energy usage across the campus, ensuring efficient and sustain-
able operations.

• Sustainable Practices: Encouraging sustainable practices across campus opera-
tions, including waste reduction, recycling, and sustainable transportation options.

3.4.7 Governance and Policy Layer
The Governance and Policy Layer provides the strategic direction and management re-
quired to implement and sustain the smart campus initiatives.

• Strategic Planning: Developing a strategic plan that outlines the vision, goals, and
objectives for the smart campus initiatives. This includes setting clear objectives,
timelines, and performance metrics [20].

• Policy Development: Developing policies that support the adoption and use of
smart technologies inside the campus. This includes policies on data management,
privacy, security, and sustainability.

21

• Management and Coordination: Effective management and coordination of
smart campus projects require collaboration among various stakeholders, clear com-
munication channels, and efficient project management practices.

The Smart Campus Framework layers are designed to work together in a cohesive
and interconnected manner. The vertical layers (Governance and Policy, Security and
Privacy, and Sustainability and Energy Efficiency) provide essential oversight and support
that ensure the robust functioning of the horizontal layers (Smart Infrastructure, Data
Management and Analytics, Application, and User). After and exhaustive review on smart
campus state of the art, the central problem of this research is posed in the following
form: How can a framework for web application development be designed and implemented
to optimize functionality and user experience in smart campus environments? In this
sense, this research aims to conduct a comprehensive analysis of existing web application
development methodologies and technologies, considering the specific needs and challenges
of smart campus environments. By identifying best practices and innovative approaches,
this research seeks to pave the way for the effective implementation of intelligent tools in the
daily lives of universities, ultimately enhancing the quality and functionality of education
in these settings. Additionally the proposed framework aims to solve the gap on defining a
clear, modern and generalized framework for delivering web applications for smart campus
environments.

22

Chapter 4

Methodology

This chapter introduces the Framework Development section, which provides a compre-
hensive guide to designing and implementing a web application development framework for
smart campuses. The methodology is structured into several key components that collec-
tively ensure a comprehensive and effective approach to web application development. The
chapter also discusses front-end, back-end technologies and additional development tools,
providing an in-depth look at the technologies and their roles in building a scalable and
efficient web application. This comprehensive approach ensures that the application aligns
with the proposed objectives of creating intelligent and responsive campus ecosystems.

4.1 Designing the Framework for Web Application
Development on Smart Campus

The development of a web application focused on a Smart Campus environment requires
a comprehensive and well-structured framework. This section outlines the design of such
a framework, incorporating principles and components necessary to support the dynamic
and multifaceted needs of a smart campus. The architecture for this framework is illus-
trated in Fig. 4.1. This framework incorporates various technological and methodological
components that are essential for creating a robust, scalable, and user-friendly application
and is structured into a tri-component architecture: application, data and user-centered
design.

23

S
en

so
rs

 L
ay

er

S
to

ra
ge

 L
ay

er

S
er

ve
r

La
ye

r

E
nd

-U
se

r
La

ye
r

Application Component

User Centered
Design Component

Data Component
(Integration,

Analytics & Security)
A

Agile
Methodology

Figure 4.1: Web Application Development Framework for Smart Campus Environments

The framework development process began with a thorough review of the Smart Cam-
pus Framework, which consists of multiple layers, including Smart Infrastructure, Data
Management and Analytics, Application, User, Security and Privacy, Sustainability and
Energy Efficiency, and Governance and Policy. By understanding the interrelations among
these layers, the web application framework was designed to seamlessly integrate with the
overarching smart campus infrastructure.

4.1.1 Key Elements of the Framework
The essential components that form part of the proposed web application development
framework for smart campus environments are:

1. Application Component: This component includes the core functionalities of the
web application, structured into four layers:

24

• Sensors Layer: Integrates with IoT devices to gather real-time data from the
campus environment.

• Storage Layer: Handles the storage of data collected from various sources,
ensuring efficient data management.

• Server Layer: Manages the server-side logic and processes, facilitating smooth
operations and data flow.

• End-User Layer: Focuses on delivering an intuitive and user-friendly interface
for the end-users, including students, faculty, and staff.

2. Agile Methodology: Central to the framework, agile methodologies are employed
to facilitate iterative development, continuous feedback, and rapid adaptation to
changing requirements.

3. User-Centered Design Component: Emphasizes the importance of designing the
application with the user in mind, ensuring that the interface is accessible, intuitive,
and meets the diverse needs of all campus stakeholders.

4. Data Component (Integration, Analytics & Security): This component is
responsible for integrating various data sources, performing analytics to derive ac-
tionable insights, and ensuring the security of data throughout its lifecycle.

4.1.2 Alignment with the Smart Campus Framework
How the proposed web application development framework aligns with the existing Smart
Campus Framework:

• Smart Infrastructure Layer: The Sensors Layer and Storage Layer of the ap-
plication component directly align with the Smart Infrastructure Layer by ensuring
robust connectivity, efficient data management, and the integration of IoT devices.

• Data Management and Analytics Layer: The Data Component of the frame-
work focuses on data integration, analytics, and security, mirroring the functions of
the Data Management and Analytics Layer in the Smart Campus Framework.

• Application Layer: The server and end-user layers within the Application Com-
ponent correspond to the Application Layer of the Smart Campus Framework, en-
hancing academic, administrative, and campus life experiences through various ap-
plications and services.

• User Layer: The User-Centered Design Component aligns with the User Layer,
focusing on creating user-centered services and interfaces that enhance the overall
campus experience.

25

• Security and Privacy Layer: The emphasis on security within the Data Com-
ponent ensures alignment with the Security and Privacy Layer, protecting data and
systems on campus.

• Sustainability and Energy Efficiency Layer: By promoting efficient data man-
agement and operations, the framework indirectly supports the Sustainability and
Energy Efficiency Layer.

By integrating these considerations, the Web Application Development Framework pro-
vides a comprehensive blueprint for developing web applications that not only enhance
operational efficiency and service delivery within a smart campus but also foster a secure,
sustainable, and user-centric environment.

This structured approach ensures that the developed web application is well-equipped
to handle the complexities of smart campus ecosystems, driving innovation and excellence
in educational management and student engagement. Each of the three main components:
Application Component, User-Centered Design Component, and Data Component (Inte-
gration, Analytics & Security) will be detailed in the following sections.

4.2 Application Component
The Application Component is a central element of the Web Application Development
Framework for Smart Campus Environments. It is designed to encompass the core func-
tionalities and services of the web application, ensuring a seamless and efficient user ex-
perience. This component is structured into four interconnected layers: Sensors Layer,
Storage Layer, Server Layer, and End-User Layer. Each layer plays a critical role in the
overall functionality and performance of the web application.

4.2.1 Sensors Layer
The Sensors Layer acts as the foundation of the framework, capturing real-time data from
various IoT devices spread across the campus. These devices include environmental sensors,
motion detectors, and smart meters, which provide continuous streams of data, enabling
dynamic interactions and responses within the smart campus.

• Integration with IoT Devices: The framework supports the integration of a wide
range of IoT devices, ensuring comprehensive data collection from different sources.

• Data Collection and Transmission: Sensors continuously collect data and trans-
mit it to the central storage system for processing and analysis.

• Real-Time Monitoring: Enables real-time monitoring of campus conditions, en-
hancing operational efficiency and responsiveness.

26

Key technologies and protocols commonly used in this layer include:

• IoT Devices: Sensors for environmental monitoring, energy usage, or motion de-
tection.

• Data Acquisition: Protocols like MQTT (Message Queuing Telemetry Transport),
a lightweight messaging protocol for small sensors and mobile devices, optimized for
high-latency or unreliable networks.

4.2.2 Storage Layer
The Storage Layer is responsible for efficiently managing the data collected from the sensors
or user interactions. This layer utilizes advanced storage solutions to ensure data integrity,
security, and accessibility, facilitating seamless data retrieval and manipulation.

• Data Management: Implements robust data management practices to handle large
volumes of data from various sources.

• Data Security: Ensures the security and integrity of stored data through encryp-
tion, access controls, and regular backups.

Technologies and methodologies commonly used include:

• Cloud Storage Solutions: Services like AWS S3, Google Cloud Storage, and Azure
Blob Storage provide scalable storage options.

• Database Systems: Utilizes advanced database systems, such as SQL (e.g., MySQL,
PostgreSQL) and NoSQL (e.g., MongoDB, Cassandra) databases, to store and man-
age structured and unstructured data.

• Data Warehousing Solutions: Amazon Redshift or Google BigQuery for aggre-
gating and analyzing large datasets.

4.2.3 Server Layer
The Server Layer serves as the processing core of the framework, where data from the
storage layer is analyzed, processed, and prepared for presentation. This layer employs
robust server-side technologies to handle complex computations, data integration, and
logic processing.

• Server-Side Logic: Handles the core application logic, processing user requests,
executing business rules, and managing data transactions.

27

• APIs and Middleware: Utilizes APIs and middleware to enable seamless commu-
nication between different components of the application.

• Scalability and Performance: Ensures that the server infrastructure can scale to
handle increasing user demands without compromising performance.

Key technologies and practices include:

• Server-Side Frameworks: Utilizing frameworks such as Node.js, Express, and
Next.js to build scalable and efficient server-side applications.

• Microservices Architecture: Implementing microservices to break down the ap-
plication into smaller, manageable services, each responsible for specific functionality.

• Serverless Computing: Implementing serverless platforms like AWS Lambda,
Azure Functions, and Google Cloud Functions to handle backend logic without man-
aging server infrastructure.

• Security: Utilizing authentication and authorization methods based on JWT or
OAuth to ensure secure interactions for users.

• Caching Mechanisms: Tools like Redis or Memcached are used to reduce load
times and server response delays.

4.2.4 End-User Layer
The End-User Layer focuses on delivering an intuitive and user-friendly interface for the
various stakeholders of the smart campus, including students, faculty, staff, and visitors.
This layer ensures that users can easily interact with the application, access services, and
perform their tasks efficiently.

• User Interface Design: Employs user-centered design principles to create an in-
terface that is visually appealing, easy to navigate, and responsive.

• Accessibility: Ensures that the application is accessible to users with diverse needs,
following best practices for accessibility and inclusivity.

• User Engagement: Provides features and functionalities that enhance user engage-
ment, such as personalized dashboards, notifications, and feedback mechanisms.

Technologies and methodologies include:

• User Interface Prototyping Tools: Figma or Sketch for designing and iterating
on UI components.

28

• Front-End Frameworks: Utilizing React.js for building dynamic user interfaces
and Next.js for server-side rendering and static site generation.

• Responsive Design: Ensuring the application is accessible on various devices and
screen sizes using CSS frameworks like Tailwind CSS and Bootstrap.

• Accessibility Standards: Adhering to WCAG (Web Content Accessibility Guide-
lines) to make the application accessible to users with disabilities.

The Application Component integrates various layers to provide a cohesive and efficient
application. By effectively managing data collection, storage, processing, and user interac-
tion, this component ensures that the web application meets the needs of a smart campus
environment, driving operational efficiency and enhancing the user experience. The subse-
quent sections will detail the User-Centered Design Component and the Data Component
(Integration, Analytics & Security), further elaborating on the comprehensive framework
for developing web applications in smart campus environments.

4.3 User-Centered Design Component
The User-Centered Design (UCD) Component is a fundamental aspect of the Web Applica-
tion Development Framework for Smart Campus Environments. This component ensures
that the development of applications is intrinsically aligned with the needs, preferences,
and behaviors of its users. The integration of UCD principles throughout the development
lifecycle aims to produce applications that are not only functional and efficient but also
intuitive and universally accessible.

4.3.1 Engaging with Stakeholders
A pivotal aspect of integrating UCD principles is the active engagement with stakeholders,
encompassing not just the end-users but also anyone affected by the application, includ-
ing administrators, support staff, and external partners. This engagement begins with
comprehensive user research to understand the diverse needs and challenges faced by all
stakeholders. Techniques such as interviews, surveys, focus groups, and ethnographic stud-
ies are employed to gather rich insights into the user’s world.

4.3.2 Usability Testing
Usability testing plays a critical role in the UCD process, providing empirical evidence on
how real users interact with the application. This involves observing users as they complete
predefined tasks within the application, identifying any usability issues that arise. The

29

insights gained from usability testing are invaluable for refining the user interface (UI)
and user experience (UX) design, ensuring the application is both intuitive and effective
in meeting user needs.

4.3.3 Iterative Design
The framework adopts an iterative design approach, which is fundamental to UCD. This
process involves the creation of prototypes, ranging from low-fidelity sketches to high-
fidelity interactive models, that are continually tested and refined based on user feedback.
Each iteration seeks to improve the UI/UX based on specific insights gained from user
interactions, making the application more user-friendly and accessible with each cycle.

4.3.4 Empathy in Design
A core tenet of UCD is empathy, the ability to understand and share the feelings of the user.
Design decisions are made with a deep understanding of the users’ emotions, contexts, and
challenges, ensuring that the application is not only easy to use but also resonates with
users on a personal level. Empathy maps and persona creation are tools commonly used
to foster this understanding.

4.3.5 Accessibility Standards
The framework places a strong emphasis on adhering to accessibility standards, ensuring
that applications are usable by people with a wide range of abilities and disabilities. This
commitment to accessibility involves following established guidelines, such as the Web
Content Accessibility Guidelines (WCAG), and conducting accessibility audits to identify
and rectify barriers that could prevent users from fully engaging with the application.

4.3.6 Feedback Loops
Finally, the incorporation of feedback loops is crucial for the continuous improvement of the
application. Feedback from users is actively sought and meticulously analyzed throughout
the development process and beyond. This ongoing dialogue with users ensures that the
application evolves in response to changing user needs and preferences, thereby maintaining
high levels of user satisfaction and engagement.

By embedding UCD principles into its foundation, the smart campus web application
development framework aspires to create applications that are not only technically robust
but also deeply connected to the human experience. This approach ensures that the de-
veloped applications are well-received, widely adopted, and genuinely enhance the campus

30

experience for all users. The subsequent sections will detail the Data Component (Inte-
gration, Analytics & Security), further elaborating on the comprehensive framework for
developing web applications in smart campus environments.

4.4 Data Component
The Data Component includes data integration, analytics, and security, ensuring that the
vast amounts of data generated across the campus ecosystem are seamlessly integrated,
processed, analyzed, and securely managed. This component is divided into three subsec-
tions: Data Integration, Data Analytics, and Data Security.

4.4.1 Data Integration
Data integration aims to combine data from diverse sources to create a unified, compre-
hensive view. This process involves the use of various methodologies and technologies to
ensure that data is consistently and efficiently integrated.

• Seamless Data Integration: The framework ensures that data from various sources,
including academic records, campus facilities, IoT devices, and user interactions, are
integrated in a seamless manner. This involves the establishment of a robust tech-
nical infrastructure that supports the aggregation of real-time and historical data,
ensuring that it can be accessed and processed efficiently. Data integration techniques
such as Extract, Transform, Load (ETL) processes, APIs, and middleware solutions
are employed to facilitate this seamless flow of data across systems.

• ETL Processes: Extract, Transform, Load processes are used to integrate data
from various sources into a unified system.

• API Management: Using API gateways and management tools like AWS API
Gateway, Postman, and Swagger to handle data exchange between components.

• Real-Time Data Processing: Apache Kafka or AWS Kinesis for processing stream-
ing data in real-time.

4.4.2 Data Analytics
Data analytics involves interpreting the integrated data to extract meaningful insights,
which can drive informed decision-making. Advanced analytics tools and methodologies
are utilized to analyze the data, revealing underlying relationships and predicting future
trends.

31

• Advanced Analytics Tools: The framework leverages advanced analytics tools
and methodologies to interpret the integrated data effectively. These tools enable
the extraction of meaningful patterns and trends from the data, providing insights
that can drive informed decision-making. Machine learning algorithms, statistical
models, and data visualization techniques are among the tools utilized to analyze the
data.

• Predictive Modeling for Resource Optimization: One of the key objectives of
incorporating data integration and analytics into the framework is the development
of predictive models that can optimize campus resources and services. By analyzing
patterns in data related to campus operations, energy consumption, space utilization,
and student engagement, predictive models can forecast future demands and trends.
This enables proactive management of resources, improving efficiency and reducing
costs, while enhancing the overall campus experience.

• Facilitating Informed Decision-Making: The integration of comprehensive data
analytics within the framework empowers stakeholders to make informed decisions.
By providing access to real-time insights and predictive analytics, administrators,
faculty, and staff can optimize operations, tailor services to meet the needs of the
campus community, and respond swiftly to emerging challenges.

4.4.3 Data Security
Ensuring the security and privacy of data is fundamental in the smart campus environ-
ment. This subsection focuses on the strategies and technologies employed to protect data
throughout its lifecycle, from collection to processing and storage.

• Data Encryption: All data, whether at rest or in transit, is encrypted using robust
encryption standards. This includes the use of HTTPS to encrypt data transmitted
over the network, ensuring that data in transit between clients and servers is protected
against interception and tampering. This ensures that even if data is intercepted or
accessed by unauthorized entities, it remains unintelligible and secure.

• Access Controls: Implementing strict access controls to ensure that only authorized
personnel can access sensitive data. Role-based access control (RBAC) and multi-
factor authentication (MFA) are utilized to enhance security.

• Data Governance Policies: Establishing comprehensive data governance policies
that define how data is to be handled, stored, and processed. This includes data
quality checks, validation processes, and regular audits to ensure compliance with
security standards.

32

• Monitoring and Incident Response: Continuous monitoring of data systems for
potential security breaches and anomalies. Incident response protocols are established
to swiftly address and mitigate any security incidents.

• Authentication and Authorization: Utilizing authentication and authorization
methods based on JWT (JSON Web Tokens) or OAuth to ensure secure interactions
for users.

• Server-Side Security: Implementing security measures on the server-side, such as
secure server-side frameworks like Node.js, Express, and Next.js, to build scalable
and secure applications.

By integrating data from various sources, employing advanced analytics, and ensuring ro-
bust data security, the Data Component of the framework enhances the ability to derive
actionable insights and maintain the integrity and trustworthiness of the data. The subse-
quent sections will continue to elaborate on the comprehensive framework for developing
web applications in smart campus environments.

4.5 Agile Methodology
Central to this architecture, the application component integrates these layers into a fluid,
agile methodology’s iterative process, highlighting the framework’s adaptability and com-
mitment to continuous refinement. This process not only facilitates application develop-
ment but also aligns with evolving technological and user requirements, maintaining the
applications’ relevance and effectiveness. Core practices include:

• Scrum: For structured development cycles with defined roles and time-boxed sprints.

• Kanban: For visualizing workflow and managing work-in-progress to enhance effi-
ciency.

• Continuous Integration/Continuous Deployment (CI/CD): Using tools like
GitHub Actions or Jenkins to automate testing and deployment processes.

Together, these components forge a robust framework designed for the dynamic, in-
terconnected nature of smart campuses. This integrated approach not only addresses
the technical complexities in smart campus ecosystems but also prioritizes a seamless,
user-focused experience, underpinning the framework’s agility and continuous evolution in
response to the changing landscape of campus life and technology.

33

4.6 Front-end Technologies

4.6.1 React
React was selected as a primary technology for building the user interface. We will focus
into the reasons behind choosing React and how it contributed to the development process.

• Component-Based Architecture: React’s core strength lies in its component-
based architecture. This approach allows developers to build encapsulated compo-
nents that manage their state, leading to more manageable and reusable code [97].
For applications, this meant that UI components such as cards, user profiles, and
scheduling interfaces could be developed independently and reused, enhancing devel-
opment efficiency.

• Declarative UI: React makes it straightforward to create interactive UIs. By de-
signing simple views for each state in the application, React efficiently updates and
renders the right components when data changes [98]. This declarative nature sim-
plifies the code and makes it more predictable, a key advantage in developing the
user interfaces for applications

• Performance: React implements a virtual DOM, an in-memory representation of
the real DOM, which allows for optimal updating of the web application’s UI [99].
This results in efficient performance, crucial for real-time responsiveness and smooth
user interactions.

• Strong Community and Ecosystem: React’s widespread adoption and robust
community mean extensive resources, libraries, and tools are available [100]. This
ecosystem was invaluable in addressing various developmental challenges, providing
well-tested libraries and frameworks that could be integrated into projects.

4.6.2 Typescript
Following the decision to utilize React for the frontend development, TypeScript was chosen
as the primary programming language. We will explore the rationale behind selecting
TypeScript and its impact on the development process.

• Enhanced Code Quality and Maintainability: TypeScript, as a statically typed
superset of JavaScript, offers advantages in terms of code quality and maintainability.
Static typing helps in detecting errors early in the development process, which is
crucial for ensuring the robustness of applications [101].

34

• Improved Developer Productivity: TypeScript’s powerful type system, includ-
ing interfaces and generics, enhances developer productivity and collaboration. It
provides better tooling support with autocompletion, type checking, and refactoring
capabilities, which streamline the development process [102].

• Scalability: The applications requirements for scalability in a complex and evolving
smart campus ecosystem made TypeScript an ideal choice. Its ability to handle
large codebases and ensure code consistency across the development team is highly
beneficial.

• Compatibility with React: TypeScript’s compatibility with React significantly
streamlines the development process. It allows for writing safer and more predictable
components, enhancing the overall stability and reliability of the application [103].

4.6.3 Next.js
Next.js [104] is an open-source React full-stack development web framework that enhances
the capabilities of React applications through features like server-side rendering and static
site generation. Known for its efficiency and ease of use, Next.js is a popular choice
for developers building modern web applications. We dive into the core features of this
framework in the Table 4.1.

4.7 Back-end Technologies

4.7.1 tRPC
tRPC [105] is a framework designed for building and consuming fully typesafe APIs in
TypeScript without relying on schemas or code generation. It is particularly beneficial for
full-stack TypeScript developers, providing a streamlined process for creating APIs that
are typesafe and efficient. tRPC’s main advantage lies in its ability to unify backend and
frontend type definitions, ensuring type safety across the entire stack. This is accomplished
by linking the backend typing to the client typing via an internal routing component
[106], which allows for real-time validation of code during creation, a significant shift from
traditional compiling or code generation stages.

In tRPC, the first step in implementation is defining a router, which exposes endpoints
to the frontend and enables type safety. Procedures within tRPC function similarly to
REST endpoints, representing the operations for data queries and mutations. tRPC also
supports the creation of separate routers for different sets of functions, which can be merged
into a single router core, allowing for complex data retrieval and manipulation.

35

Table 4.1: Core Features of Next.js

Feature Category Details
Server-Side Rendering
(SSR)

Enables rendering pages on the server, which improves
performance, SEO, and user experience.

Static Site Generation
(SSG)

Supports pre-rendering pages at build time, ideal for
pages with infrequent updates.

Incremental Static Regener-
ation (ISR)

Combines SSG benefits with on-demand rendering, al-
lowing post-deployment content updates.

API Routes Facilitates creation of API endpoints within the appli-
cation, aiding in full-stack development.

CSS and Sass Support Offers built-in support for CSS and Sass, including com-
patibility with CSS-in-JS libraries.

Fast Refresh Provides instant feedback on React component edits, en-
hancing the developer experience.

File-system Routing Utilizes a file-system-based routing mechanism, with au-
tomatic routing based on ‘pages‘ directory.

Image Optimization The Image component automatically optimizes images.
TypeScript Support Includes out-of-the-box support for TypeScript, en-

abling type-checking benefits.

One of the key benefits of tRPC is its framework agnosticism, making it adaptable to
various backend frameworks. This flexibility is achieved through API Handlers or adapters
that convert requests from different frameworks into a format that tRPC can process.
Furthermore, tRPC is relatively lightweight and does not require extensive setup like some
other frameworks, such as GraphQL, making it an attractive option for projects where
typescript-centric development are suitable.

Overall, tRPC offers a compelling solution for TypeScript developers looking for a
simple yet powerful tool to ensure type safety and efficient API development, especially in
scenarios where both client and server implementations are part of the same project.

4.7.2 MySQL
In the proposed framework for web applications development in smart campus environ-
ments, MySQL was selected as the database management system. This subsection discusses

36

the reasons behind choosing MySQL and its relevance in the framework’s architecture.

• Reliability and Maturity: MySQL is renowned for its reliability and maturity as
a database solution. Its stability and robustness are essential in managing complex
data relationships and sensitive information within a smart campus environment.

• Scalability and Performance: MySQL’s scalability ensures that the database
can grow in line with the increasing demands of a smart campus application. It
offers high-performance capabilities, vital for handling multiple transactions and user
interactions efficiently.

• Flexibility and Compatibility: The flexibility of MySQL, especially its compati-
bility with various programming languages and platforms, makes it a versatile choice.
This compatibility is crucial for seamless integration with diverse technologies typi-
cally used in smart campus applications.

• Community Support and Resources: The extensive community support and
documentation available for MySQL provide invaluable resources for development,
troubleshooting, and optimization, aiding in the efficient implementation of database
solutions in a smart campus context.

The selection of MySQL as the database management system is a fundamental aspect of
the proposed framework for web applications in smart campus environments. Its reliability,
scalability, flexibility, and extensive community support make it an excellent choice for
robust data management in such settings. These characteristics of MySQL align well
with the objectives of creating efficient, scalable, and secure web applications for smart
campuses.

4.7.3 PrismaORM
Prisma [107] is an open-source Object Relational Mapping (ORM) tool that simplifies
database operations for developers by providing an easy-to-use API to interact with databases.
It supports various database engines, including PostgreSQL, MySQL, SQLite, SQL Server,
and MongoDB, among others. Prisma is known for its focus on developer productivity,
safety, and ease of use.

Prisma offers the generation of a type-safe client, derived from the schema definitions.
This approach guarantees the validation of database queries at the compile stage, signifi-
cantly diminishing the potential for runtime errors and elevating the overall quality of the
code. Additionally, Prisma introduces a sophisticated query engine capable of converting
high-level operations into optimized database queries. This functionality enables devel-
opers to execute complex queries with relative ease, addressing a critical need within the
development community.

37

Prisma also simplifies database migration and management through Prisma Migrate,
which automates the creation and execution of database migrations following schema al-
terations. This method provides a structured and declarative strategy for database version
control and modification application.

Prisma’s adaptability is evident in its support for multiple database systems, ensuring
its applicability across a diverse range of projects and technological requirements. Addi-
tionally, it offers introspection capabilities, allowing for the seamless integration of Prisma
into existing databases and facilitating its adoption in projects with legacy systems.

The advantages of utilizing Prisma are multiple. It significantly boosts developer pro-
ductivity by simplifying database operations and reducing development timeframes. The
type-safe nature of the Prisma Client minimizes errors commonly associated with database
interactions, while the framework’s intuitive API and extensive documentation make it ac-
cessible to developers of varying skill levels. Lastly, Prisma’s efficient query engine and
multi-database support render it an ideal choice for applications at any scale, from nascent
startups to expansive enterprise systems.

4.8 Additional tools

4.8.1 Git & GitHub
Git and GitHub are foundational tools in modern software development. Git, a distributed
version control system, enables developers to track changes in code efficiently. GitHub,
meanwhile, extends Git’s capabilities with web-based hosting and collaboration features.
For a comprehensive understanding, refer to Chacon and Straub’s ”Pro Git” book for Git
[108] and the official GitHub Documentation [109].

38

Table 4.2: Core Features of Git

Feature Details
Distributed Version Control Unlike centralized version control systems, Git gives ev-

ery developer a local copy of the entire development his-
tory, enhancing speed and flexibility.

Branching and Merging Git’s branching model allows multiple developers to
work on different features simultaneously without inter-
fering with each other. Merging brings these branches
together into a single unified history.

Data Integrity Git is designed to ensure the integrity of source code.
Each file and commit is checksummed, and the repos-
itory’s history is stored such that it’s impossible to
change without being detected.

Table 4.3: Core Features of GitHub

Feature Details
Repository Hosting GitHub hosts millions of Git repositories, making it easy

for teams to store and manage their codebases.
Pull Requests and Code Re-
view

GitHub’s pull request system streamlines code review.
Developers can discuss changes, request improvements,
and push follow-up commits before changes are merged
into the main branch.

Issue Tracking GitHub provides issue tracking tools that allow teams to
organize tasks, enhancements, and bugs associated with
their projects.

GitHub Actions This CI/CD feature automates workflows, allowing au-
tomatic build, test, and deployment processes based on
repository events.

GitHub stands as a important tool in the area of software development, offering inte-
gration with a wide range of development tools. It is compatible with various Integrated

39

Development Environments (IDEs), project management tools, and Continuous Integra-
tion/Continuous Deployment (CI/CD) pipelines. This integration significantly enhances
the development workflow process for developers. Furthermore, GitHub plays a vital role
in the open-source community. It serves as a central platform for open-source projects, cre-
ating an active community where developers from around the globe can easily contribute to
public repositories. This fosters collaboration and innovation in the software development
field.

In addition to its integration capabilities, GitHub places a strong emphasis on security
and access control. The platform provides robust access control mechanisms for reposito-
ries, empowering repository owners to meticulously manage who has the ability to read
and contribute to the codebase. This feature is crucial for maintaining the integrity and
confidentiality of the code. Additionally, GitHub is equipped with various security features
designed to safeguard the code. These features include security advisories and automated
vulnerability scanning, which play a critical role in identifying and addressing potential
security threats. This comprehensive approach to security ensures that the code hosted on
GitHub remains secure and reliable.

To sum, Git and GitHub provides robust tools for version control and collaboration as
seen in Table 4.2 and 4.3. Git’s distributed nature and powerful branching capabilities,
combined with GitHub’s hosting, collaboration features, and community ecosystem, make
them indispensable for both individual developers and large teams.

4.8.2 v0
v0 by Vercel is an innovative generative UI tool that has been gaining attention in the web
development community. As of November 2023, it’s in private beta, but access is available
through a waitlist. The tool is designed to streamline the UI generation process using
artificial intelligence. A comprehensive review of v0 based on the available information in
Vercel’s announcement [110] describe some features like:

• Generative UI Creation: v0 allows you to quickly generate UIs by simply typing
in text prompts. For example, entering ”user profile” generates several UI options
based on that prompt.

• Integration with React and Tailwind CSS: The tool generates code that inte-
grates well with React and Tailwind CSS, making it easy to incorporate into existing
projects.

• Shadcn UI Compatibility: v0 assumes the use of Shadcn UI, a collection of
reusable components, enhancing its usability and customizability in projects.

• Iterative Development You can iterate on the initial UIs using prompts, creating
skeletons that are easy to modify and extend.

40

4.8.3 Vercel
Vercel is a cloud platform for web applications that provides developers with the tools
needed to build, deploy, and scale modern web applications. It integrates with frontend
frameworks like React, Next.js, and others, offering a robust and efficient environment
for deploying web applications. Some key features that made us to choose Vercel as our
hosting provider are:

• Automatic Deployments: Vercel provides a deployment process where every push
to the repository triggers an automatic build and deployment, ensuring the availabil-
ity of the latest version of the application.

• Serverless Functions: Allows developers to write server-side code that executes
without managing server infrastructure. These functions can be used for handling
API requests, form submissions, and other backend logic.

• Integration with Next.js: As the creators of Next.js, Vercel offers optimized sup-
port for this framework, including features like static site generation (SSG) and
server-side rendering (SSR), making it an ideal choice for Next.js applications.

• Analytics and Monitoring: Vercel provides built-in analytics to monitor the per-
formance and usage of applications, offering insights that can help optimize the user
experience.

4.8.4 NextAuth
NextAuth.js is a complete open-source authentication solution for Next.js applications. It
provides a robust and flexible way to add authentication to web applications, supporting
various authentication methods including OAuth, Email/Password, and custom authenti-
cation strategies. Using NextAuth.js provides important benefits to our framework like:

• Easy Integration with Next.js: Designed specifically for Next.js, NextAuth.js
allows and easy setup and configuration in Next.js applications.

• Multiple Authentication Providers: Supports a wide range of providers includ-
ing Google, Facebook, GitHub, and more. This flexibility makes it easy to implement
different authentication methods based on the application’s needs.

• Security: Implements secure practices by default, including secure cookies and token
encryption, ensuring that user data and authentication tokens are handled safely.

• Customization: Highly customizable, allowing developers to define custom authen-
tication flows, adapt session handling, and configure callbacks for additional control
over the authentication process.

41

• Serverless Compatibility: Works with serverless architectures, making it a great
fit for modern web applications that leverage serverless functions for backend logic.

42

Chapter 5

Results and Discussion

This chapter presents the results of the thesis work through the implementation of a proof-
of-concept application, showcasing the practical application of the proposed web applica-
tion development framework within a smart campus environment. The chapter begins with
an overview of the requirements gathering process. Following this, the chapter details the
implementation of the application in alignment with the proposed web application devel-
opment framework and its evaluation metrics. The chapter concludes with an evaluation
of how the proof-of-concept aligns with the Smart Campus Framework, demonstrating
the framework’s effectiveness in enhancing operational efficiency, sustainability, and user
experience. The findings underscore the potential impact and scalability of the proposed
framework, highlighting its capacity to drive innovation and improve campus operations
and user satisfaction.

5.1 Requirements Gathering
This section presents the process of identifying key requirements for a web application
designed to facilitate peer-tutoring on campus. Our focus was on understanding the dual
role of students as both learners and tutors. We emphasized the functional requirements
essential for user registration, session management, and feedback mechanisms, ensuring
these align with the proposed database schema. Additionally, non-functional requirements
like usability, security, and scalability were considered vital for a seamless user experience.
This foundational step was crucial in shaping the application to effectively meet the dy-
namic needs of a smart campus environment, while offering a user-friendly interface for an
efficient knowledge exchange between students.

43

5.1.1 Stakeholder Analysis
In the context of developing a peer-tutoring web application, a comprehensive stakeholder
analysis is critical for ensuring that the platform meets the diverse needs of its user base.
In table 5.1 we explore the various stakeholders involved in the peer-tutoring ecosystem
and their respective requirements and expectations.

Table 5.1: Stakeholder Analysis for Peer-Tutoring Web Application

Stakeholder Description
Students The primary users of the application, students play dual

roles as tutors and tutees. Their needs include easy
navigation for registering as a tutor or tutee, selecting
subjects, scheduling sessions, and providing feedback.
The platform must be intuitive and accommodating to
their academic and scheduling needs.

University Administration As overseers of the campus’s academic and extracurricu-
lar activities, their interest lies in the application’s abil-
ity to enhance the educational experience. They require
robust data reporting tools for tracking usage patterns
and student performance.

IT Department Responsible for the technical implementation and main-
tenance of the application. They are concerned with the
scalability, security, and integration of the platform with
existing campus systems.

Academic Departments Interested in how the application can support their
curriculum and assist students struggling with their
courses. They might require access to data that helps
them understand common tutoring needs in their sub-
jects.

This analysis led to a clear understanding of the varied requirements and constraints
each stakeholder group brought to the project. It enabled the development of a well-
rounded application that not only concerns to the academic and scheduling flexibility
required by students but also aligns with the administrative, technical, and security stan-
dards of the university.

44

5.1.2 Functional Requirements
The functional requirements for the peer-tutoring web application are important in defining
what the system is expected to do. These requirements are specifically designed to solve to
the needs of both tutors and tutees within the smart campus environment. The following
points detail these key requirements in Table 5.2.

Table 5.2: Functional Requirements for Peer-Tutoring Web Application

Requirement Description
User Registration and Role
Management

Users can register and create profiles with academic de-
tails. Automatic assignment of ’student’ role and option
to sign up as tutors.

Subject and Tutor Selection Feature for students to select subjects and match with
available tutors based on preferences.

Scheduling and Session
Management

Students can schedule sessions specifying details; tutors
view and manage requests. System tracks session status.

Feedback and Rating Sys-
tem

Post-session, both parties can rate and comment. Sys-
tem records this for quality control and performance
tracking.

Notification and Communi-
cation

Notification system for session updates and direct com-
munication feature within the platform.

Data Integration and Re-
porting

Integration with campus database and reporting tools
for tracking usage and session statistics.

These functional requirements are essential to ensure that the web application is user-
friendly, efficient, and meets the specific needs of the campus community for peer-tutoring
services. They form the backbone of the system’s operations and user interactions, ensuring
a seamless and productive tutoring experience.

5.1.3 Non-functional requirements
Ensuring the usability, reliability, and effectiveness of the peer-tutoring web application
is part of the Non-functional requirements. These requirements don’t directly impact
the specific activities of the system but rather define the system’s operational qualities
and constraints. In Table 5.3 are the key non-functional requirements identified for this
application:

45

Table 5.3: Non-Functional Requirements for Peer-Tutoring Web Application

Requirement Description
Usability Application should be user-friendly and accessible, with

an intuitive interface suitable for all users.
Performance Capable of handling multiple requests simultaneously

with optimized load times for efficient user experience.
Scalability Must be scalable to accommodate growing user numbers

and data, maintaining functionality under varied loads.
Security Robust security measures for data protection, including

compliance with data protection regulations and campus
policies.

Reliability Minimal downtime, quick recovery from failures, regular
backups, and a robust disaster recovery plan.

Maintainability Designed for easy maintenance and updates, with clear
documentation and modular design for ongoing support.

Integration Seamless integration with existing campus systems and
databases, ensuring compatibility with various plat-
forms and devices.

These non-functional requirements play an important role in ensuring that the peer-
tutoring web application not only meets the immediate needs of its users but also remains
a reliable, secure, and efficient tool in the long term. They form the foundation for a
sustainable and adaptable application that aligns with the dynamic environment of a smart
campus.

5.2 Design and Development
This section analyzes the intricate processes involved in the design and development of
the peer-tutoring web application, tailored for the smart campus environment. This phase
translates the gathered requirements into a tangible and functional system. The section is
structured to provide a comprehensive insight into the journey from conceptualization to
realization of the peer-tutoring web application, highlighting the technical strategies and
design decisions that contributed to its successful deployment in a smart campus setting.

46

5.2.1 Use Case Diagram

Configure
Tutor

Settings
Register

Login

Explore
Courses

Request
Tutoring
Session

View
Tutoring

Requests

View
Sessions
History

Logout

View Profile

Tuto-U App

<<extend>>

View All
Tutoring

Requests

Accept/Reject
Tutoring

Cancel
Requested

Tutoring

Cancel
Accepted
Tutoring

Rate Session

Comment
on Session

<<include>>

<<extend>>

<<include>>

<<include>>

<<include>>

<<include>>

User

User
(as student)

User
(as tutor)

<<extend>>

<<include>>

View
Application

Usage

Add/Remove
Courses Admin

Figure 5.1: Proof-of-concept use case diagram.

The use case diagram is an integral part of the system design process, providing a graphical
representation of the interactions between users (actors) and the system (the peer-tutoring
web application). Fig 5.1 illustrates the various functionalities available to different user
roles and how these roles interact with the system. The key components of the use case
diagram are:

1. Actors:

• Student: Can register, log in, browse tutors, request sessions, provide feedback
to tutors.

47

• Tutor: Inherits Student functionalities and can additionally offer tutoring,
manage session requests, and provide feedback for students.

• Administrator: Manages the system, oversees user activity, and accesses re-
ports.

2. Use Cases:

• User Registration and Login: Users can register and subsequently log in to
access the system.

• Browse Tutors and Request Sessions: Students can browse available tutors
and request tutoring sessions.

• Offer Tutoring Services: Tutors can configure their settings like select which
subjects they can be requested, their availability time or pricing information.

• Manage Session Requests: Tutors can accept, reject, or propose changes to
session requests. Students can cancel the session if necessary.

• Feedback Provision: After a session, both tutors and students can provide
ratings and feedback.

• View Tutoring Sessions History: Allows a user to see a history of all tutoring
sessions they have participated in.

• System Management and Reporting: Administrators can manage the sys-
tem and access comprehensive reports.

3. Relationships and Interactions:

• The diagram illustrates interactions between actors and use cases, such as how
a Student requests a session and how a Tutor responds to it.

• It also shows administrative interactions like view system usage and logs.

48

5.2.2 System Architecture

Powered
by Vercel

Sensors

Storage

Server

End-User

Cloud Services

Web Server

Next.js
Server

Log management

Activity Log

Client Browser

Admin
Dashboard

Web interface

Not sensors
in application

tRPC
API

Prisma
ORM

Vercel Blob Vercel Postgres

Auth.js

Authentication/
Authorization

by

Figure 5.2: Proof-of-concept application architecture.

49

The system architecture (Figure 5.2) of the peer-tutoring app is illustrated across the four
integral layers of the application component from proposed framework, which collectively
contribute to a robust and efficient application ecosystem. This architecture, as seen in
our framework, ensures a seamless flow from data acquisition to user interaction, although
the Sensors layer in our context remains unutilized.

• Sensors Layer: The first layer of the architecture, the ’Sensors Layer’, is concep-
tual within the application. In traditional systems, this layer is bustling with data-
gathering components; however, application’s model currently does not incorporate
physical data collection through sensors. Despite this, the inclusion of this layer in
our structural blueprint allows for scalability and future integration of data-collection
mechanisms if required.

• Storage Layer: Ascending to the ’Storage Layer’, we integrate Vercel Blob Storage,
utilized for managing the vast array of images and media that enrich the user inter-
face. For structured storage, a Vercel Postgres database was created, employed as the
primary database system, ensuring data integrity, security, and accessibility. Prisma
ORM acts as the bridge between Next.js and the database, providing a type-safe
ORM (Object-Relational Mapping) that simplifies the interaction with the database
with high efficiency.

• Server Layer: In the ’Server Layer’, our server-side operations are powered by
Next.js, which brings server-side rendering and static generation capabilities to our
React application. This framework enhances performance and improves SEO by serv-
ing pre-rendered pages to the browser. TypeScript is the chosen language to ensure
type safety and improve the development experience with robust typing. This layer
is optimized for performance through strategic caching, which drastically reduces
load times and server response delays. Additionally, NextAuth manages authentica-
tion and authorization, providing secure access control and user management in the
application.

• End-User Layer: The final tier is the ’End-User Layer’, where the rich web-based
interface crafted in React creates an engaging and interactive experience for the
users. React’s component-based architecture, paired with the power of Next.js for
server rendering, allows for a highly responsive and dynamic user interface. User
interface captures can be seen in Appendix A.

The application is deployed and managed on Vercel, which provides hosting, serverless
functions, and other cloud services. The general application flow can be described as
follows:

• Client Interaction: Users interact with the web interface via their browsers, send-
ing requests to the server.

50

• Server Processing: The Next.js server processes these requests, using NextAuth
for authentication and Prisma ORM for database operations.

• Storage Access: The server interacts with cloud storage services (Vercel Blob and
Vercel Postgres) to fetch or store data as needed.

• Data Transfer: The tRPC API facilitates communication between the client-side
and server-side, ensuring data is transferred securely and efficiently.

• Activity Logging: User activities are logged for monitoring and security purposes
via Vercel dashboard.

5.2.3 Database Schema
The database schema for our smart campus web application plays an important role in
managing and organizing the data effectively. The schema is designed to handle the com-
plexities of a dynamic educational environment, ensuring data integrity, accessibility, and
scalability. This section provides an in-depth look at the database schema, illustrated by
the Entity-Relationship (ER) diagram in Appendix B. The ER diagram visually represents
the relationships between these tables, highlighting the connections and dependencies cru-
cial for maintaining the integrity and functionality of the application. Each relationship in
the diagram is designed to ensure integrity and support the application’s requirements for
data retrieval and manipulation. The schema also supports scalability and performance
optimization. The use of indexing, foreign keys, and normalization principles ensures effi-
cient data management and quick access to relevant information, essential for a responsive
user experience.

5.3 Alignment with the Proposed Web Application
Development Framework

The proof-of-concept application closely follows the framework’s principles, showcasing
several key aspects:

5.3.1 User-Centered Design
The application employs user-centered design principles to ensure accessibility and a seam-
less user experience. This is reflected in the intuitive interface, which allows users to
navigate the system easily, register as tutors or students, schedule sessions, and provide
feedback. The design process involved usability testing and participatory design practices,
engaging real users to gather insights and iteratively refine the interface.

51

5.3.2 Scalable Architecture
The application’s architecture is designed to accommodate the growing needs of a smart
campus. By working with modern web technologies like Next.js, Prisma ORM, and server-
less functions provided by Vercel, the system ensures scalability and performance optimiza-
tion. The architecture includes multiple layers such as the storage, server, and end-user
layers, each contributing to the overall robustness and efficiency of the application.

5.3.3 Data Integration and Analytics
The application integrates various data sources and employs advanced analytics to provide
meaningful insights. This integration is facilitated through APIs that enable the retrieval
and processing of data, supporting informed decision-making processes. The framework’s
emphasis on data-driven approaches is evident in features like real-time session tracking,
user feedback analysis, and performance metrics for tutors and students.

5.3.4 Security and Privacy
Ensuring data security and privacy is a critical component of the framework, and the
application implements robust measures to protect user information. Authentication and
authorization are managed using NextAuth, ensuring secure access control. Additionally,
the system complies with data protection regulations, incorporating encryption and regular
security audits to safeguard sensitive data.

5.3.5 Responsive and Agile Methodologies
The development process followed agile methodologies, allowing for flexibility and rapid
iterations. This approach enabled the team to respond to user feedback promptly and make
necessary adjustments, ensuring that the application remained aligned with user needs and
technological advancements. The use of modern development tools and practices, such as
continuous integration and deployment (CI/CD) pipelines provided bu Vercel ecosystem,
further streamlined the development workflow.

5.4 Application Metrics
In this section, we will discuss the metrics used to evaluate the performance, accessibil-
ity, and best practices of web applications using Lighthouse, a popular open-source tool
developed by Google. Lighthouse provides an in-depth analysis and scoring system across
several categories, including Performance, Accessibility, and Best Practices. The scores
range from 0 to 100, with higher scores indicating better performance.

52

5.4.1 Performance Metrics
Performance metrics assess how quickly a web page loads and becomes interactive. Light-
house measures several key performance indicators:

• First Contentful Paint (FCP): This metric measures the time it takes for the
first piece of content to be rendered on the screen. It is crucial as it gives users the
first visual feedback that the page is loading.

• Largest Contentful Paint (LCP): LCP measures the time it takes for the largest
piece of content (e.g., an image or a large block of text) to be rendered on the screen.
It is a significant indicator of page load performance.

• Total Blocking Time (TBT): This metric evaluates the time during which the
main thread is blocked and unable to respond to user input. It is essential for assessing
how responsive the application is.

• Cumulative Layout Shift (CLS): CLS measures the visual stability of the page
by tracking unexpected layout shifts during the page’s lifecycle. A low CLS score
indicates a more stable and visually appealing user experience.

• Speed Index (CI): This metric measures how quickly the content of a page is
visibly populated. It reflects the user’s experience of how fast the page loads.

Lighthouse aggregates these metrics to calculate an overall performance score. This
score is weighted based on the importance of each metric, reflecting a comprehensive as-
sessment of the application’s performance. The score weights are detailed in Table 5.4.
The complete methodology for each score calculation can be found in the Lighthouse doc-
umentation [111].

Table 5.4: Key performance indicators weight for overall performance score calculation

Performance Indicator Weight
First Contentful Paint 10%
Largest Contentful Paint 25%
Total Blocking Time 30%
Cumulative Layout Shift 25%
Speed Index 10%

53

5.4.2 Accessibility Metrics
Accessibility metrics evaluate how accessible a web application is to users with disabilities.
This includes the use of proper HTML elements, ARIA attributes, and overall adherence
to accessibility standards. Key areas evaluated by Lighthouse include:

• Semantic HTML: Proper use of HTML elements to ensure that the document
structure is logical and meaningful.

• ARIA Roles: Appropriate use of ARIA (Accessible Rich Internet Applications)
roles to enhance the accessibility of dynamic content.

• Color Contrast: Ensuring sufficient contrast between text and background colors
to improve readability for users with visual impairments.

• Keyboard Navigation: Ensuring that all interactive elements are accessible via
keyboard navigation.

Lighthouse calculates the accessibility score by checking each element of the page
against established guidelines (e.g., WCAG). The score is an aggregation of the individual
checks, weighted by their impact on accessibility. The 23 evaluated indicators are shown
in Table 5.5.

54

Table 5.5: Accessibility audits from Lighthouse evaluation

Accessibility Indicators
[aria-*] attributes match their roles
[aria-hidden=”true”] is not present on the document <body>

[role]s have all required [aria-*] attributes
[aria-*] attributes have valid values
[aria-*] attributes are valid and not misspelled
Buttons have an accessible name
Image elements have [alt] attributes
[user-scalable=”no”] is not used in the <meta name=”viewport”> element and the
[maximum-scale] attribute is not less than 5.
ARIA attributes are used as specified for the element’s role
Elements use only permitted ARIA attributes
[role] values are valid
Background and foreground colors have a sufficient contrast ratio
Document has a <title> element
<html> element has a [lang] attribute
<html> element has a valid value for its [lang] attribute
Links have a discernible name
Lists contain only elements and script supporting elements (<script> and
<template>).
No element has a [tabindex] value greater than 0
Touch targets have sufficient size and spacing.
Heading elements appear in a sequentially-descending order
Values assigned to role=”” are valid ARIA roles.
Deprecated ARIA roles were not used
Image elements do not have [alt] attributes that are redundant text.

5.4.3 Best Practices Metrics
Best practices metrics evaluate adherence to web development best practices. This includes
security, performance, and progressive web app (PWA) compliance. Key areas evaluated

55

by Lighthouse include:

• HTTPS: Ensuring that the application is served over HTTPS to protect data in-
tegrity and privacy.

• No Vulnerable Libraries: Checking that the application does not use libraries
with known security vulnerabilities.

• Optimized Images: Ensuring that images are appropriately sized and optimized
for faster load times.

• Efficient Cache Policy: Implementing a proper cache policy to enhance perfor-
mance and reduce load times.

The best practices score is calculated based on the adherence to a set of predefined
guidelines and recommendations. Each guideline is weighted, and the overall score is a
reflection of the application’s compliance with these best practices. The 14 evaluated
indicators are shown in Table 5.6.

Table 5.6: Best Practices audits from Lighthouse evaluation

Best Practices Indicators
Uses HTTPS
Avoids deprecated APIs
Avoids third-party cookies
Allows users to paste into input fields
Avoids requesting the geolocation permission on page load
Avoids requesting the notification permission on page load
Displays images with correct aspect ratio
Serves images with appropriate resolution
Has a <meta name=”viewport”> tag with width or initial-scale
Page has the HTML doctype
Properly defines charset
No browser errors logged to the console
No issues in the Issues panel in Chrome Devtools
Page has valid source maps

56

5.4.4 Comparison of Application Versions Lighthouse Results
The provided screenshots in Figures 5.3 and 5.4 illustrate the results of Lighthouse audits
for two different versions of the web application, showcasing significant advancements and
optimizations in the current version.

Figure 5.3: Lighthouse results of proof-of-concept application: Tuto-U

Fig. 5.3 represents the current application, which achieves perfect scores of 100 in all
three metrics: Performance, Accessibility, and Best Practices. This impressive achievement
reflects the application’s adherence to the proposed framework, which integrates state-of-
the-art technologies and methodologies. The current application utilizes Next.js for server-
side rendering, ensuring fast load times. It is deployed on Vercel, a cloud platform that
offers robust and scalable deployment solutions. The integration of comprehensive data
analytics, user-centered design principles, and seamless data integration further enhances
the application’s performance and user experience.

57

Figure 5.4: Lighthouse results of older version of peer-tutoring application: OrientaYT

In contrast, the Fig. 5.4 represents an older version of the same application. This
version scored 91 in Performance, 85 in Accessibility, and 68 in Best Practices. The older
application architecture consisted of a separate React front-end application and an Express
framework for a Node.js back-end application, both deployed on a physical Windows Server
provided by the TICs Department of Yachay Tech University. This setup, while functional,
did not leverage the full potential of modern web development frameworks and cloud-based
infrastructure.

Key differences between the two versions include:

• Technology Stack: The current application employs Next.js, which offers superior
performance benefits through server-side rendering. The older version used React
for the front end and Express for the back end, without the advanced optimizations
provided by Next.js.

• Deployment: The current application is deployed on Vercel, a cloud platform that
provides seamless deployment, automatic scaling, and global content delivery. The
older version relied on a Windows Server physical infrastructure, which lacked the
flexibility and scalability of a cloud-based solution.

58

• Performance Optimization: The current application benefits from Next.js’s op-
timizations, including faster initial load times and efficient handling of dynamic con-
tent. These enhancements are reflected in the perfect performance score. The older
version, while still performant, could not match the efficiency of Next.js and Vercel.

• Accessibility and Best Practices: The current application’s perfect scores in
Accessibility and Best Practices indicate a thorough implementation of web standards
and guidelines. This includes improved semantic HTML, ARIA roles, color contrast,
and security practices. The older version, with lower scores, highlights areas where
these standards were not fully met, such as less optimal color contrast and security
measures.

In summary, the transition to the proposed framework, including the use of Next.js
and Vercel, has significantly enhanced the web application’s performance, accessibility,
and adherence to best practices. These improvements demonstrate the effectiveness of
modern web development technologies and methodologies in creating high-quality, user-
centric web applications. The comparison underscores the importance of implementing
advanced tools and cloud infrastructure to achieve optimal results in web development.

5.5 Alignment with Smart Campus Framework
This section analyzes the proof-of-concept application based on the Smart Campus Frame-
work outlined in the State of the Art chapter. Each layer of the framework is examined
with specific details from the proof-of-concept application, as illustrated in Figure 5.5.

59

G
ov

er
na

nc
e

an
d

P
ol

ic
y

La
ye

r

S
ec

ur
ity

 a
nd

 P
riv

ac
y

La
ye

r

S
us

ta
in

ab
ili

ty
 a

nd
 E

ne
rg

y
E

ffi
ce

nc
y

La
ye

r
Smart Infrastructure Layer

Proof-of-concept in
Smart Campus Framework

Data Management and Analytics Layer

Application Layer

User Layer

Vercel Blob Vercel Postgres

CI/CD Academic Service

API Analytics Structured DB

Accesibility
Continous
Feedback

Users
Engagement

Serverless
computing

Reduced
Carbon

Footpring

Authentication
Authorization

Middleware

Vercel
Firewall

Strategic
planning

Linkage with
community

HTTPS

Figure 5.5: Proof-of-concept application in Smart Campus Framework.

5.5.1 Smart Infrastructure Layer
The foundation of the proof-of-concept application is built upon robust cloud services,
prioritizing Vercel Postgres for database management and Vercel Blob for storage solutions.
The use of these cloud services ensures scalability and reliability, essential components
of the smart infrastructure layer. Vercel’s infrastructure supports seamless deployment
and high availability, aligning with the framework’s requirement for a robust and flexible
network infrastructure.

60

5.5.2 Data Management and Analytics Layer
Data management in the proof-of-concept application is streamlined using tRPC, which
defines a clear and efficient API. This facilitates future integration with other systems and
enables advanced data analysis. The application data is well-structured in a relational
database, ensuring data integrity and accessibility. Additionally, Vercel’s analytics tools
provide valuable insights into user behavior and system performance, supporting data-
driven decision-making and continuous improvement.

5.5.3 Application Layer
As an academic application, the proof-of-concept fits well within the Application Layer of
the smart campus framework. The use of Vercel enhances the development and deployment
process, allowing for rapid incorporation of new features and functionalities through its
continuous integration and continuous deployment (CI/CD) pipelines. This ensures the
application remains up-to-date and responsive to user needs, fostering a dynamic academic
environment.

5.5.4 User Layer
The user experience is a core focus of the proof-of-concept application, designed with user-
centered design principles. The application optimizes accessibility by adhering to WCAG
guidelines, ensuring it is usable by individuals with diverse abilities. Participatory design
practices were employed to gather continuous feedback from stakeholders, leading to an
interface that meets user expectations and enhances satisfaction. Features such as session
ratings and feedback mechanisms further engage users and promote a collaborative learning
environment.

5.5.5 Security and Privacy Layer
Security and privacy are paramount in the proof-of-concept application, addressed through
the implementation of NextAuth for authentication and authorization. The use of Next.js
Middleware ensures role-based access control and secure redirects. Additionally, Vercel’s
Firewall provides automatic mitigation of DDoS attacks and allows for custom IP blocking
rules, enhancing the overall security posture of the application and protecting user data.
Furthermore, the web application utilizes HTTPS to ensure the confidentiality of user
information during data transmission.

61

5.5.6 Sustainability and Energy Efficiency Layer
The proof-of-concept application makes use of cloud services and serverless computing,
specifically Vercel infrastructure ensures that resources are used optimally which support
efficient use of computational resources [112, 113]. This aligns with the sustainability goals
of the smart campus framework, promoting energy efficiency and reducing the carbon
footprint.

5.5.7 Governance and Policy Layer
The deployment and integration of the proof-of-concept application were guided by strate-
gic planning initiatives, specifically a pilot plan developed as a project of linkage with the
community. This aligns with Yachay Tech University’s goals of community engagement
and social responsibility. The application supports the strategic objectives of the cam-
pus, demonstrating the potential for broader implementation and integration within the
university’s governance framework. By aligning the proof-of-concept application with the
Smart Campus Framework, we ensure that it not only meets current needs but is also
scalable, sustainable, and secure, supporting the continuous evolution of smart campus
environments.

In conclusion, the alignment of the proof-of-concept application with the Smart Campus
Framework demonstrates the effectiveness of the proposed web application development
framework. Each layer of the Smart Campus Framework was meticulously addressed, en-
suring robust connectivity, efficient data management, user-centric design, and stringent
security measures. The implementation of these layers within the proof-of-concept appli-
cation showcases how a well-structured framework can optimize the functionality and user
experience in a smart campus environment. The successful implementation of the proof-of-
concept application validates the practicality and scalability of the framework, paving the
way for future advancements in smart campus technologies. This alignment highlights the
potential for significant improvements in campus operations and user satisfaction through
the adoption of smart technologies and well-structured development frameworks. As ed-
ucational institutions continue to evolve, the integration of such frameworks will be fun-
damental in creating intelligent, responsive, and sustainable campus environments that
satisfy the diverse needs of their communities. The results and discussions presented in
this chapter underscore the importance of a holistic approach to web application develop-
ment for smart campuses, emphasizing the need for continuous innovation and adaptation
to emerging technologies and user needs.

62

Chapter 6

Conclusions

Throughout this thesis, we have conducted a thorough investigation into the development
of web applications specifically designed for smart campus environments. Our research has
entailed an in-depth analysis of current technologies, the creation and deployment of inno-
vative frameworks, and the assessment of their impact on optimizing campus functionalities
and enriching educational experiences. We highlight the significant findings and culminate
the chapter by proposing potential avenues for future research within this domain.

6.1 Conclusions
1. We conducted an exhaustive literature review, tracing the evolution from conceptual

frameworks to the implementation of smart campus applications. This review is a
fundamental first step for understanding the current landscape, identifying promi-
nent trends. It provided a solid background for the subsequent developmental work,
highlighting the need for innovative solutions that address identified challenges.

2. The research has introduced a scalable architecture tailored to meet the dynamic
requirements of smart campuses. This architecture prioritizes adaptability and user
experience, ensuring that web applications can effectively evolve in response to the
expanding and evolving needs of the campus community. By emphasizing these prin-
ciples, the development represents a significant advancement in the field, offering a
flexible and robust framework capable of supporting diverse applications and services
on smart campuses.

3. We successfully developed a web application for student-to-student tutoring as a
proof-of-concept for the proposed framework. The application demonstrates the po-
tential to significantly enhance the smart campus model by improving accessibility
and the overall user experience in managing tutoring services. Our findings suggest

63

that integrating such technology can streamline tutoring processes, making educa-
tional support more efficient and readily available.

4. The design of the data integration component within the proposed framework has sig-
nificantly enhanced its analytical capabilities, enabling data-driven decision-making
processes. This enhancement is crucial for optimizing campus operations and educa-
tional strategies. By facilitating the seamless integration and analysis of diverse data
sources, the framework empowers stakeholders to make informed decisions. The im-
proved data analytical capabilities ensure that the campus community can effectively
leverage data to drive strategic initiatives and improve overall efficiency.

5. We successfully designed a user interface for the web application that is both at-
tractive and accessible. By emphasizing the effective integration of User-Centered
Design (UCD) principles during the proof-of-concept development process, we en-
sured that the application is intuitive and focused on the needs of the campus com-
munity. Our design process centered on understanding the needs and preferences
of students, faculty, and administrative staff, resulting in an interface that fosters
positive interactions and satisfaction.

6.2 Future Work
The research presented in this thesis focuses on the design and development of web appli-
cations tailored for smart campus environments. Nevertheless, there is ample opportunity
for future exploration and enhancement in this direction. Some potential avenues for future
work include:

1. Building upon the foundation laid by the integration of cloud technology in the
development of smart campus environments, future research could explore several
promising avenues for further advancement. One potential area of focus is the refine-
ment and optimization of cloud-based services to better cater to the diverse needs
of teachers, students, and administrators. This could involve the development of
customized applications and tools tailored to specific educational workflows and re-
quirements, thereby enhancing the overall user experience and productivity within
the smart campus ecosystem.

2. Additionally, there is potential for further exploration into the integration of emerging
technologies, such as artificial intelligence and Internet of Things (IoT), with cloud-
based smart campus solutions. By leveraging AI algorithms and IoT devices, smart
campuses can achieve greater levels of automation, efficiency, and personalization in
various aspects of campus operations and services. Future research could delve into
the development of AI-driven analytics platforms for optimizing resource allocation,

64

predictive maintenance systems for campus infrastructure, and personalized learning
environments for students.

3. Finally, as smart campuses continue to evolve and adapt to changing educational
paradigms, ongoing evaluation and refinement of cloud-based solutions will be essen-
tial. Future research could involve longitudinal studies and user feedback mechanisms
to assess the effectiveness and usability of cloud-based services over time. By incor-
porating insights from stakeholders, including students, faculty, and administrators,
researchers can iteratively improve and optimize smart campus environments to meet
the evolving needs of the educational community.

By pursuing these hints for future work, researchers can contribute to the ongoing
evolution and improvement of smart campus environments, ultimately enhancing the edu-
cational experience and operational efficiency within higher education institutions.

65

Bibliography

[1] V. Ahmed, K. Abu Alnaaj, and S. Saboor, “An investigation into stakeholders’ per-
ception of smart campus criteria: The american university of sharjah as a case study,”
Sustainability, vol. 12, no. 12, p. 5187, 2020.

[2] N. Chagnon-Lessard, L. Gosselin, S. Barnabé, T. Bello-Ochende, S. Fendt, S. Goers,
L. C. P. D. Silva, B. Schweiger, R. Simmons, A. Vandersickel, and P. Zhang, “Smart
campuses: Extensive review of the last decade of research and current challenges,”
IEEE Access, vol. 9, pp. 124 200–124 234, 2021.

[3] W. Villegas-Ch, J. Molina-Enriquez, C. Chicaiza-Tamayo, I. Ortiz-Garcés, and
S. Luján-Mora, “Application of a big data framework for data monitoring on a smart
campus,” Sustainability, vol. 11, no. 20, p. 5552, 2019.

[4] G. Ikrissi and T. Mazri, “A study of smart campus environment and its security
attacks,” The International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, vol. 44, pp. 255–261, 2020.

[5] Y. Eshet, “Digital literacy: A conceptual framework for survival skills in the digital
era,” Journal of Educational Multimedia and Hypermedia, vol. 13, no. 1, pp. 93–106,
January 2004. [Online]. Available: https://www.learntechlib.org/p/4793

[6] P. S. Leeflang, P. C. Verhoef, P. Dahlström, and T. Freundt, “Challenges and
solutions for marketing in a digital era,” European Management Journal, vol. 32,
no. 1, pp. 1–12, 2014. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0263237313001576

[7] A. Kirkwood and L. Price, “Examining some assumptions and limitations of
research on the effects of emerging technologies for teaching and learning in higher
education,” British Journal of Educational Technology, vol. 44, no. 4, pp. 536–543,
2013. [Online]. Available: https://bera-journals.onlinelibrary.wiley.com/doi/abs/10.
1111/bjet.12049

[8] R. M. Davison, C. Wagner, and L. C. Ma, “From government to e-government: a
transition model,” Information technology & people, vol. 18, no. 3, pp. 280–299, 2005.

66

https://www.learntechlib.org/p/4793
https://www.sciencedirect.com/science/article/pii/S0263237313001576
https://www.sciencedirect.com/science/article/pii/S0263237313001576
https://bera-journals.onlinelibrary.wiley.com/doi/abs/10.1111/bjet.12049
https://bera-journals.onlinelibrary.wiley.com/doi/abs/10.1111/bjet.12049

[9] L. Luo, “Data acquisition and analysis of smart campus based on wireless sensor,”
Wireless Personal Communications, vol. 102, pp. 2897–2911, 2018.

[10] E. Gilman, S. Tamminen, R. Yasmin, E. Ristimella, E. Peltonen, M. Harju, L. Lovén,
J. Riekki, and S. Pirttikangas, “Internet of things for smart spaces: A university
campus case study,” Sensors, vol. 20, no. 13, 2020.

[11] A. H. Celdrán, F. J. G. Clemente, J. Saenz, L. De La Torre, C. Salzmann, and
D. Gillet, “Self-organized laboratories for smart campus,” IEEE Transactions on
Learning Technologies, vol. 13, no. 2, pp. 404–416, 2020.

[12] X. Xu, Y. Wang, and S. Yu, “Teaching performance evaluation in smart campus,”
IEEE Access, vol. 6, pp. 77 754–77 766, 2018.

[13] A. de Paola, A. Giammanco, G. lo Re, and G. Anastasi, “Detection of points of
interest in a smart campus,” in 2019 IEEE 5th International forum on Research and
Technology for Society and Industry (RTSI), 2019, pp. 155–160.

[14] N. Min-Allah and S. Alrashed, “Smart campus—a sketch,” Sustainable
Cities and Society, vol. 59, p. 102231, 2020. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2210670720302183

[15] T. Omotayo, A. Moghayedi, B. Awuzie, and S. Ajayi, “Infrastructure elements for
smart campuses: A bibliometric analysis,” Sustainability, vol. 13, no. 14, 2021.
[Online]. Available: https://www.mdpi.com/2071-1050/13/14/7960

[16] A. K. Bart Valks, Monique H. Arkesteijn and A. C. den Heijer, “Towards a smart
campus: supporting campus decisions with internet of things applications,” Building
Research & Information, vol. 49, no. 1, pp. 1–20, 2021.

[17] R. Jurva, M. Matinmikko-Blue, V. Niemelä, and S. Nenonen, “Architecture and
operational model for smart campus digital infrastructure,” Wireless Personal Com-
munications, vol. 113, pp. 1437–1454, 2020.

[18] W. Li, “Design of smart campus management system based on internet of things
technology,” Journal of Intelligent & Fuzzy Systems, vol. 40, no. 2, pp. 3159–3168,
2021.

[19] W. Muhamad, N. B. Kurniawan, Suhardi, and S. Yazid, “Smart campus features,
technologies, and applications: A systematic literature review,” in 2017 International
Conference on Information Technology Systems and Innovation (ICITSI), 2017, pp.
384–391.

67

https://www.sciencedirect.com/science/article/pii/S2210670720302183
https://www.sciencedirect.com/science/article/pii/S2210670720302183
https://www.mdpi.com/2071-1050/13/14/7960

[20] K. AbuAlnaaj, V. Ahmed, and S. Saboor, “A strategic framework for smart cam-
pus,” in Proceedings of the International Conference on Industrial Engineering and
Operations Management, vol. 22, 2020, pp. 790–798.

[21] R. Vyas, “Comparative analysis on front-end frameworks for web applications,” In-
ternational Journal for Research in Applied Science and Engineering Technology,
vol. 10, no. 7, pp. 298–307, 2022.

[22] F. Almeida and J. Monteiro, “The role of responsive design in web development.”
Webology, vol. 14, no. 2, 2017.

[23] P. C. van Oorschot and P. C. van Oorschot, “Web and browser security,” Computer
Security and the Internet: Tools and Jewels from Malware to Bitcoin, pp. 245–279,
2021.

[24] J. A. Hoffer, V. Ramesh, and H. Topi, Modern database management. Pearson,
2016.

[25] D. A. Norman and S. W. Draper, User Centered System Design; New Perspectives
on Human-Computer Interaction. USA: L. Erlbaum Associates Inc., 1986.

[26] M.-K. D. Abras C. and P. J., “User-centered design,” Encyclopedia of Human-
Computer Interaction., vol. 34, no. 4, pp. 119–135, 2004.

[27] D. Norman, The desing of every things. Basic books, New York, 1988.

[28] J. Dumas and J. Redish, “A practical guide to usability testing,” 1993. [Online].
Available: https://api.semanticscholar.org/CorpusID:108979146

[29] E. Björgvinsson, P. Ehn, and P.-A. Hillgren, “Participatory design and” democratiz-
ing innovation”,” in Proceedings of the 11th Biennial participatory design conference,
2010, pp. 41–50.

[30] F. Kensing and J. Blomberg, “Participatory design: Issues and concerns,” Computer
supported cooperative work (CSCW), vol. 7, no. 3-4, pp. 167–185, 1998.

[31] T. Keinonen, “User-centered design and fundamental need,” in Proceedings of the
5th Nordic conference on Human-computer interaction: building bridges, 2008, pp.
211–219.

[32] C. McKnight, A. Dillon, and J. Richardson, User centered design of hypertext
and hypermedia for education. New York: Macmillan, 1996. [Online]. Available:
http://hdl.handle.net/10150/106501

68

https://api.semanticscholar.org/CorpusID:108979146
http://hdl.handle.net/10150/106501

[33] V. J. Traver, “Can user-centered interface design be applied to education?” ACM
SIGCSE Bulletin, vol. 39, no. 2, pp. 57–61, 2007.

[34] P. Vassiliadis, “A survey of extract–transform–load technology,” International Jour-
nal of Data Warehousing and Mining (IJDWM), vol. 5, no. 3, pp. 1–27, 2009.

[35] A. A. Yulianto, “Extract transform load (etl) process in distributed database aca-
demic data warehouse,” APTIKOM Journal on Computer Science and Information
Technologies, vol. 4, no. 2, pp. 61–68, 2019.

[36] D. A. Chappell, Enterprise service bus: Theory in practice. ” O’Reilly Media, Inc.”,
2004.

[37] B. Suzic, “User-centered security management of api-based data integration work-
flows,” in NOMS 2016-2016 IEEE/IFIP Network Operations and Management Sym-
posium. IEEE, 2016, pp. 1233–1238.

[38] R. Van Der Lans, Data Virtualization for business intelligence systems: revolution-
izing data integration for data warehouses. Elsevier, 2012.

[39] M. Frehner and M. Brändli, “Virtual database: Spatial analysis in a web-based data
management system for distributed ecological data,” Environmental Modelling &
Software, vol. 21, no. 11, pp. 1544–1554, 2006.

[40] E. B. Mandinach, M. Honey, and D. Light, “A theoretical framework for data-driven
decision making,” in annual meeting of the American Educational Research Associa-
tion, San Francisco, CA, 2006.

[41] F. Provost and T. Fawcett, “Data science and its relationship to big data and data-
driven decision making,” Big data, vol. 1, no. 1, pp. 51–59, 2013.

[42] E. Brynjolfsson and K. McElheran, “Data in action: data-driven decision making and
predictive analytics in us manufacturing,” Rotman School of Management Working
Paper, no. 3422397, 2019.

[43] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler,
J. Grenning, J. Highsmith, A. Hunt, R. Jeffries et al., “Manifesto for agile software
development,” Software Development, vol. 9, no. 2001, pp. 28–35, 2001.

[44] J. Sutherland and K. Schwaber, “The scrum guide,” The definitive guide to Scrum:
The rules of the game, 2013.

[45] K. Beck, Extreme Programming Explained: Embrace Change. Addison-Wesley Pro-
fessional, 2001.

69

[46] S. W. Ambler and M. Lines, Disciplined agile delivery: A practitioner’s guide to agile
software delivery in the enterprise. IBM press, 2012.

[47] K. Schwaber, “Scrum development process,” in Business Object Design and Im-
plementation: OOPSLA’95 Workshop Proceedings 16 October 1995, Austin, Texas.
Springer, 1997, pp. 117–134.

[48] M. O. Ahmad, J. Markkula, and M. Oivo, “Kanban in software development: A
systematic literature review,” in 2013 39th Euromicro conference on software engi-
neering and advanced applications. IEEE, 2013, pp. 9–16.

[49] C. Prandi, L. Monti, C. Ceccarini, and P. Salomoni, “Smart campus: Fostering
the community awareness through an intelligent environment,” Mobile Networks and
Applications, vol. 25, pp. 945–952, 2020.

[50] N. Verstaevel, J. Boes, and M.-P. Gleizes, “From smart campus to smart cities is-
sues of the smart revolution,” in 2017 IEEE SmartWorld, Ubiquitous Intelligence
& Computing, Advanced & Trusted Computed, Scalable Computing & Communica-
tions, Cloud & Big Data Computing, Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 2017, pp. 1–6.

[51] N. Khamis and K. K. K. Li, “User experience evaluation for a bus tracking apps in
smart campus initiative,” Bulletin of Electrical Engineering and Informatics, vol. 10,
no. 4, pp. 2254–2262, 2021.

[52] A.-M. Yang, S.-S. Li, C.-H. Ren, H.-X. Liu, Y. Han, and L. Liu, “Situational aware-
ness system in the smart campus,” Ieee Access, vol. 6, pp. 63 976–63 986, 2018.

[53] Y. Zhang, C. Yip, E. Lu, and Z. Y. Dong, “A systematic review on technologies and
applications in smart campus: A human-centered case study,” IEEE Access, vol. 10,
pp. 16 134–16 149, 2022.

[54] N. N. M. Kasim and F. Khalid, “Choosing the right learning management system
(lms) for the higher education institution context: A systematic review.” Interna-
tional Journal of Emerging Technologies in Learning, vol. 11, no. 6, 2016.

[55] M. F. Paulsen, “Experiences with learning management systems in 113 european
institutions,” Journal of Educational Technology & Society, vol. 6, no. 4, pp. 134–
148, 2003.

[56] C. C. Aydin and G. Tirkes, “Open source learning management systems in e-learning
and moodle,” in IEEE EDUCON 2010 Conference. IEEE, 2010, pp. 593–600.

70

[57] H. Nguyen, H. Zhao, S. Jamonnak, J. Kilgallin, and E. Cheng, “Rooway: A web-
based application for ua campus directions,” in 2015 International Conference on
Computational Science and Computational Intelligence (CSCI). IEEE, 2015, pp.
362–367.

[58] R. E. Roth, J. Van Den Hoek, A. Woodruff, A. Erkenswick, E. McGlynn, and J. Przy-
bylowski, “The 21st century campus map: Mapping the university of wisconsin-
madison,” Journal of Maps, vol. 5, no. 1, pp. 1–8, 2009.

[59] H. C. Chan and L. Chan, “Smart library and smart campus,” Journal of Service
Science and Management, vol. 11, no. 6, pp. 543–564, 2018.

[60] J. Suhartono, S. Karya, and S. Candra, “The utilize of nfc technology for cam-
pus library services management,” in 2017 International Conference on Information
Management and Technology (ICIMTech). IEEE, 2017, pp. 60–64.

[61] H. Peng, “Research on the integration interface techniques for library management
system and campus smart card system,” in 2009 International Workshop on Intelli-
gent Systems and Applications. IEEE, 2009, pp. 1–4.

[62] B. R. Oderuth, K. Ramkissoon, and R. K. Sungkur, “Smart campus library system,”
in 2019 Conference on Next Generation Computing Applications (NextComp). IEEE,
2019, pp. 1–6.

[63] G. T. Evans and A. Beilby, “A library management information system in a multi-
campus environment,” Clinic on Library Applications of Data Processing (19th:
1982), 1982.

[64] E. Bayangan-Cosidon, “Student information system for kalinga state university-rizal
campus,” Journal of Management and Commerce Innovations, vol. 4, no. 1, pp.
330–335, 2016.

[65] J. A. Ampofo, “Challenges of student management information system (mis) in
ghana: A case study of university for development studies, wa campus,” Interna-
tional Journal of Management & Entrepreneurship Research, vol. 2, no. 5, pp. 332–
343, 2020.

[66] W. Han, S. Ada, R. Sharman, and H. R. Rao, “Campus emergency notification
systems,” Mis Quarterly, vol. 39, no. 4, pp. 909–930, 2015.

[67] M. Mohammed, K. Elleithy, and W. Elmannai, “Kmsafe app: Campus safety mobile
app,” in 2021 4th International Conference on Bio-Engineering for Smart Technolo-
gies (BioSMART). IEEE, 2021, pp. 1–4.

71

[68] J. Elliott, H. Jayachandran, P. Kumar, and K. Metzer, “Campus shuttle: Design of
a college campus parking and transportation system,” in 2013 IEEE Systems and
Information Engineering Design Symposium. IEEE, 2013, pp. 104–109.

[69] S. A. Saad, M. H. I. Ishak, M. H. M. Fauzi, M. A. Baharudin, N. H. Idris et al.,
“Real-time on-campus public transportation monitoring system,” in 2018 IEEE 14th
International Colloquium on Signal Processing & Its Applications (CSPA). IEEE,
2018, pp. 215–220.

[70] W.-J. Shyr, L.-W. Zeng, C.-K. Lin, C.-M. Lin, and W.-Y. Hsieh, “Application of
an energy management system via the internet of things on a university campus,”
EURASIA Journal of Mathematics, Science and Technology Education, vol. 14, no. 5,
pp. 1759–1766, 2018.

[71] D. Kolokotsa, K. Gobakis, S. Papantoniou, C. Georgatou, N. Kampelis, K. Kalaitza-
kis, K. Vasilakopoulou, and M. Santamouris, “Development of a web based energy
management system for university campuses: The camp-it platform,” Energy and
Buildings, vol. 123, pp. 119–135, 2016.

[72] H. A. Widjaja, B. Sablan, K. L. M. Ulo, K. Phusavat, A. N. Hidayanto et al., “The de-
velopment of integrated career portal in university using agile methodology,” in 2017
International Conference on Information Management and Technology (ICIMTech).
IEEE, 2017, pp. 310–315.

[73] U. Bhagat, N. Gujar, and S. Patel, “Implementation of iot in development of intelli-
gent campus lighting system using mesh network,” in 2018 International Conference
on Smart Systems and Inventive Technology (ICSSIT). IEEE, 2018, pp. 251–256.

[74] G. Sivasankar, S. Balaji, and N. Vignesh, “Internet of things based smart students’
body temperature monitoring system for a safe campus,” in 2022 6th International
Conference on Intelligent Computing and Control Systems (ICICCS). IEEE, 2022,
pp. 416–420.

[75] N. P. Sastra and D. M. Wiharta, “Environmental monitoring as an iot application in
building smart campus of universitas udayana,” in 2016 International Conference on
Smart Green Technology in Electrical and Information Systems (ICSGTEIS). IEEE,
2016, pp. 85–88.

[76] M. Musa, M. N. Ismail, and M. F. M. Fudzee, “A survey on smart campus
implementation in malaysia,” JOIV : International Journal on Informatics
Visualization, vol. 5, pp. 51–56, MAR 2021. [Online]. Available: https:
//dx.doi.org/10.30630/joiv.5.1.434

72

https://dx.doi.org/10.30630/joiv.5.1.434
https://dx.doi.org/10.30630/joiv.5.1.434

[77] L. for Kwok, “A vision for the development of i-campus,” Smart Learning
Environments, vol. 2, p. Not available, JAN 2015. [Online]. Available:
https://dx.doi.org/10.1186/s40561-015-0009-8

[78] P. Carrion and M. Quaresma, “Internet da coisas (iot): Definições e aplicabilidade
aos usuários finais,” Human Factors in Design, vol. 8, pp. 49–66, MAR 2019.
[Online]. Available: https://dx.doi.org/10.5965/2316796308152019049

[79] C. LINDSAY, S. P. OSBORNE, and S. BOND, “The ‘new public governance’ and
employability services in an era of crisis: Challenges for third sector organizations
in scotland,” Public Administration, vol. 92, pp. 192–207, AUG 2013. [Online].
Available: https://dx.doi.org/10.1111/padm.12051

[80] S. J. Piotrowski and G. G. V. Ryzin, “Citizen attitudes toward transparency in local
government,” The American Review of Public Administration, vol. 37, pp. 306–323,
SEP 2007. [Online]. Available: https://dx.doi.org/10.1177/0275074006296777

[81] L. Trakman, “Modelling university governance,” Higher Education Quarterly,
vol. 62, pp. 63–83, JAN 2008. [Online]. Available: https://dx.doi.org/10.1111/j.
1468-2273.2008.00384.x

[82] P. H. Cheong and P. Nyaupane, “Smart campus communication, internet of
things, and data governance: Understanding student tensions and imaginaries,”
Big Data amp; Society, vol. 9, p. 205395172210926, JAN 2022. [Online]. Available:
https://dx.doi.org/10.1177/20539517221092656

[83] X. Xu, D. Li, M. Sun, S. Yang, S. Yu, G. Manogaran, G. Mastorakis, and C. X.
Mavromoustakis, “Research on key technologies of smart campus teaching platform
based on 5g network,” IEEE Access, vol. 7, pp. 20 664–20 675, 2019.

[84] S. H. Gill, M. A. Razzaq, M. Ahmad, F. M. Almansour, I. U. Haq, N. Jhanjhi, M. Z.
Alam, and M. Masud, “Security and privacy aspects of cloud computing: a smart
campus case study,” Intelligent Automation & Soft Computing, vol. 31, no. 1, pp.
117–128, 2022.

[85] W. Villegas-Ch, X. Palacios-Pacheco, and S. Luján-Mora, “Application of a smart
city model to a traditional university campus with a big data architecture: A sus-
tainable smart campus,” Sustainability, vol. 11, no. 10, p. 2857, 2019.

[86] H. Im, R. S. Srinivasan, D. Maxwell, R. L. Steiner, and S. Karmakar, “The impact
of climate change on a university campus’ energy use: Use of machine learning and
building characteristics,” Buildings, vol. 12, no. 2, p. 108, 2022.

73

https://dx.doi.org/10.1186/s40561-015-0009-8
https://dx.doi.org/10.5965/2316796308152019049
https://dx.doi.org/10.1111/padm.12051
https://dx.doi.org/10.1177/0275074006296777
https://dx.doi.org/10.1111/j.1468-2273.2008.00384.x
https://dx.doi.org/10.1111/j.1468-2273.2008.00384.x
https://dx.doi.org/10.1177/20539517221092656

[87] M. Lillstrang, M. Harju, G. del Campo, G. Calderon, J. Röning, and S. Tamminen,
“Implications of properties and quality of indoor sensor data for building machine
learning applications: two case studies in smart campuses,” Building and Environ-
ment, vol. 207, p. 108529, 2022.

[88] C. Jui-Fa, L. Wei-Chuan, J. Chih-Yu, and H. Ching-Chung, “A chinese interactive
feedback system for a virtual campus,” in Technologies Shaping Instruction and Dis-
tance Education: New Studies and Utilizations. IGI Global, 2010, pp. 290–316.

[89] L. Zhang and W. Song, “Research on intrusion detection algorithm based on smart
campus network security,” in Proceedings of the 2020 International Conference on
Aviation Safety and Information Technology, 2020, pp. 446–449.

[90] I. Kim and A. J. Lee, “” i know what you did last semester”: Understanding pri-
vacy expectations and preferences in the smart campus,” in Proceedings of the CHI
Conference on Human Factors in Computing Systems, 2024, pp. 1–15.

[91] T. Anagnostopoulos, P. Kostakos, A. Zaslavsky, I. Kantzavelou, N. Tsotsolas,
I. Salmon, J. Morley, and R. Harle, “Challenges and solutions of surveillance systems
in iot-enabled smart campus: a survey,” IEEE Access, vol. 9, pp. 131 926–131 954,
2021.

[92] M. A. Bouazzouni, E. Conchon, F. Peyrard, and P.-F. Bonnefoi, “Trusted access
control system for smart campus,” in 2016 Intl IEEE Conferences on Ubiquitous
Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing
and Communications, Cloud and Big Data Computing, Internet of People, and Smart
World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld). IEEE, 2016,
pp. 1006–1012.

[93] Z. Ali, M. A. Shah, A. Almogren, I. Ud Din, C. Maple, and H. A. Khattak, “Named
data networking for efficient iot-based disaster management in a smart campus,”
Sustainability, vol. 12, no. 8, p. 3088, 2020.

[94] Y. Niu, H. Jiang, B. Tian, H. Xiang, Y. Liu, X. Xia, and Y. Zhao, “An efficient
access control scheme for smart campus,” EAI Endorsed Transactions on Scalable
Information Systems, vol. 9, no. 6, pp. e5–e5, 2022.

[95] A. M. Eltamaly, M. A. Alotaibi, A. I. Alolah, and M. A. Ahmed, “Iot-based hybrid
renewable energy system for smart campus,” Sustainability, vol. 13, no. 15, p. 8555,
2021.

[96] H. A. Muqeet, H. Javed, M. N. Akhter, M. Shahzad, H. M. Munir, M. U. Nadeem,
S. S. H. Bukhari, and M. Huba, “Sustainable solutions for advanced energy man-
agement system of campus microgrids: Model opportunities and future challenges,”
Sensors, vol. 22, no. 6, p. 2345, 2022.

74

[97] C. Gackenheimer and C. Gackenheimer, “What is react?” introduction to react, pp.
1–20, 2015.

[98] A. Fedosejev, React. js essentials. Packt Publishing Ltd, 2015.

[99] A. Banks and E. Porcello, Learning React: functional web development with React
and Redux. ” O’Reilly Media, Inc.”, 2017.

[100] S. Aggarwal et al., “Modern web-development using reactjs,” International Journal
of Recent Research Aspects, vol. 5, no. 1, pp. 133–137, 2018.

[101] A. Rastogi, N. Swamy, C. Fournet, G. Bierman, and P. Vekris, “Safe & efficient
gradual typing for typescript,” in Proceedings of the 42Nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, 2015, pp. 167–180.

[102] L. Fischer and S. Hanenberg, “An empirical investigation of the effects of type sys-
tems and code completion on api usability using typescript and javascript in ms
visual studio,” ACM SIGPLAN Notices, vol. 51, no. 2, pp. 154–167, 2015.

[103] G. Richards, F. Zappa Nardelli, and J. Vitek, “Concrete types for typescript,” in 29th
European Conference on Object-Oriented Programming (ECOOP 2015). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[104] Vercel, Inc., “Next.js documentation,” https://nextjs.org/docs, 2023, accessed: 2023-
12-12.

[105] tRPC Contributors, “trpc documentation,” https://trpc.io/docs, 2024, accessed:
2024-01-04.

[106] K. Sandoval, “Using trpc for typescript-enabled apis,” Nordic APIs, April 2023.
[Online]. Available: https://nordicapis.com/using-trpc-for-typescript-enabled-apis/

[107] Prisma, “Prisma documentation,” https://www.prisma.io/docs/, 2023, accessed:
2023-12-21.

[108] S. Chacon and B. Straub, Pro Git. Apress, 2014. [Online]. Available:
https://git-scm.com/book/en/v2

[109] GitHub, Inc., “Github documentation,” https://docs.github.com/, accessed: 2023-
12-20.

[110] Vercel, Inc., “Announcing v0: Generative ui,” https://vercel.com/blog/
announcing-v0-generative-ui, 2023, accessed: 2023-12-16.

[111] G. Developers, “Lighthouse: Tools for web developers,” 2024, accessed: 2024-01-24.
[Online]. Available: https://developers.google.com/web/tools/lighthouse

75

https://nextjs.org/docs
https://trpc.io/docs
https://nordicapis.com/using-trpc-for-typescript-enabled-apis/
https://www.prisma.io/docs/
https://git-scm.com/book/en/v2
https://docs.github.com/
https://vercel.com/blog/announcing-v0-generative-ui
https://vercel.com/blog/announcing-v0-generative-ui
https://developers.google.com/web/tools/lighthouse

[112] Vercel, “What is vercel’s green energy policy?” 2024, accessed: 2024-03-01. [Online].
Available: https://vercel.com/guides/what-is-vercel-green-energy-policy

[113] A. W. Services, “The cloud - amazon sustainability,” 2024, accessed: 2024-03-01.
[Online]. Available: https://sustainability.aboutamazon.com

76

https://vercel.com/guides/what-is-vercel-green-energy-policy
https://sustainability.aboutamazon.com

Appendix A

User Interface Captures

Figure A.1: Initial view of the application.

77

Figure A.2: Login view.

78

Figure A.3: Assignments view.

79

Figure A.4: Session requests view.

80

Figure A.5: Rating and feedback system.

81

Appendix B

Application database schema

82

us
er

s

P
K

id
te

xt

fir
st

na
m

e
te

xt

la
st

na
m

e
te

xt

em
ai

l
te

xt

im
ag

e
te

xt

pa
ss

w
or

d
te

xt

de
sc

rip
tio

n
te

xt

F
K

sc
ho

ol
_i

d
in

te
ge

r

cr
ea

te
d_

at
tim

es
ta

m
p

w
ith

ou
t t

im
e

zo
ne

 tu
to

r_
pr

ic
in

g

P
K

id
in

te
ge

r

F
K

tu
to

r_
id

te
xt

du
ra

tio
n

sm
al

lin
t

pr
ic

e
nu

m
er

ic

da
y_

of
_w

ee
k

P
K

id
in

te
ge

r

da
y

te
xt

in
di

vi
du

al
_s

es
si

on
s

P
K

id
in

te
ge

r

F
K

st
ud

en
t_

id
te

xt

F
K

tu
to

r_
id

te
xt

F
K

co
ur

se
_i

d
in

te
ge

r

se
ss

io
n_

da
te

_t
im

e
tim

es
ta

m
p

w
ith

ou
t t

im
e

zo
ne

du
ra

tio
n

sm
al

lin
t

pr
ic

e
nu

m
er

ic

pl
ac

e
te

xt

on
lin

e
bo

ol
ea

n

to
pi

c
te

xt

F
K

st
at

us
in

te
ge

r

st
ud

en
t_

ra
tin

g
nu

m
er

ic

st
ud

en
t_

co
m

m
en

t
te

xt

tu
to

r_
ra

tin
g

nu
m

er
ic

tu
to

r_
co

m
m

en
t

te
xt

cr
ea

te
d_

at
tim

es
ta

m
p

w
ith

ou
t t

im
e

zo
ne

tu
to

r_
av

ai
la

bi
lit

y

P
K

id
in

te
ge

r

F
K

tu
to

r_
id

te
xt

F
K

da
y_

of
_w

ee
k

sm
al

lin
t

tim
e_

sl
ot

sm
al

lin
t

sc
ho

ol

P
K

id
in

te
ge

r

na
m

e
in

te
ge

r

co
de

te
xt

tu
to

r_
co

ur
se

s

F
K

tu
to

r_
id

te
xt

F
K

co
ur

se
_i

d
in

te
ge

r

co
ur

se
s

P
K

id
in

te
ge

r

na
m

e
te

xt

F
K

sc
ho

ol
_i

d
in

te
ge

r

us
er

_r
ep

or
ts

P
K

id
in

te
ge

r

F
K

re
po

rt
er

_i
d

te
xt

F
K

re
po

rt
ed

_i
d

te
xt

de
sc

rip
tio

n
in

te
ge

r

cr
ea

te
d_

at
tim

es
ta

m
p

w
ith

ou
t

tim
ez

on
e

se
ss

io
n_

st
at

us
es

P
K

id
in

te
ge

r

st
at

us
te

xt

Figure B.1: Proof-of-concept application database schema.
83

	=Dedication
	=Acknowledgment
	=Resumen
	=Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Problem statement
	Objectives
	General Objective
	Specific Objectives

	Theoretical Framework
	Smart Campus Conceptualization
	Defining Smart Campuses
	Smart Campus Ecosystem
	Smart Campus Benefits

	Core principles of Web Applications
	Client-Server Architecture
	Front-End concepts
	Back-End concepts
	Database Management

	User-Centered Design
	User-Centered Design Concepts
	UCD Process
	UCD in the Educational Context

	Data Integration and Analytics
	Data Integration Strategies
	Data-Driven Decision-Making

	Agile Methodologies

	State of the Art
	Smart Campus Initiatives
	Smart Campus - Technologies & Services
	Smart Campus Enablers
	Smart Campus Framework
	Smart Infrastructure Layer
	Data Management and Analytics Layer
	Application Layer
	User Layer
	Security and Privacy Layer
	Sustainability and Energy Efficiency Layer
	Governance and Policy Layer

	Methodology
	Designing the Framework for Web Application Development on Smart Campus
	Key Elements of the Framework
	Alignment with the Smart Campus Framework

	Application Component
	Sensors Layer
	Storage Layer
	Server Layer
	End-User Layer

	User-Centered Design Component
	Engaging with Stakeholders
	Usability Testing
	Iterative Design
	Empathy in Design
	Accessibility Standards
	Feedback Loops

	Data Component
	Data Integration
	Data Analytics
	Data Security

	Agile Methodology
	Front-end Technologies
	React
	Typescript
	Next.js

	Back-end Technologies
	tRPC
	MySQL
	PrismaORM

	Additional tools
	Git & GitHub
	v0
	Vercel
	NextAuth

	Results and Discussion
	Requirements Gathering
	Stakeholder Analysis
	Functional Requirements
	Non-functional requirements

	Design and Development
	Use Case Diagram
	System Architecture
	Database Schema

	Alignment with the Proposed Web Application Development Framework
	User-Centered Design
	Scalable Architecture
	Data Integration and Analytics
	Security and Privacy
	Responsive and Agile Methodologies

	Application Metrics
	Performance Metrics
	Accessibility Metrics
	Best Practices Metrics
	Comparison of Application Versions Lighthouse Results

	Alignment with Smart Campus Framework
	Smart Infrastructure Layer
	Data Management and Analytics Layer
	Application Layer
	User Layer
	Security and Privacy Layer
	Sustainability and Energy Efficiency Layer
	Governance and Policy Layer

	Conclusions
	Conclusions
	Future Work

	Bibliography
	User Interface Captures
	Application database schema

		2024-08-12T14:31:41-0500
	Firmado digitalmente con Security Data
https://www.securitydata.net.ec/

		2024-08-12T14:33:45-0500
	Firmado digitalmente con Security Data
https://www.securitydata.net.ec/

