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Resumen

Dispositivos solares más baratos con mayores eficiencias solo pueden construirse realizando
esfuerzos continuos para desarrollar nuevos materiales que puedan superar la eficiencia del
silicio (Si) a un costo razonable. El transporte cuántico fotoinducido sigue siendo un campo
abierto para el desarrollo de ciencia de alto impacto y con gran importancia economica a nivel
global. Los modelos computacionales actuales pueden ser útiles para un gran conjunto de
aplicaciones relacionados a la física y se han vuelto cruciales para acelerar cualquier proceso de
investigación. El trabajo actual propone un modelo para calcular la eficiencia cuántica externa
(EQE) teóricamente, proporcionando un método simple para comparar la eficiencia de diferentes
materiales semiconductores. La EQE se define como la fracción de electrones transmitidos
respecto a los fotones incidentes en la celda solar, ηEQE =

Ne
Nω

, y puede utilizarse para medir la
capacidad de un material para producir portadores de carga cuando es irradiado con luz.

El modelo se basa en el formalismo de la función de Green fuera del equilibrio (NEGF)
para describir el transporte cuántico. El modelo incluye un operador Â(r, t) = e

2mcÂ.p̂, definido
como la interacción dependiente del tiempo que actúa como un acoplamiento entre los estados
ocupados y desocupados a través del campo electromagnético externo ⟨φµ|Â(r, t)|φv⟩.

Este modelo se aplicó sobre un arreglo de dos y cuatro moléculas de [6,6] fenil-C61-ácido
butírico metil éster (PCBM) utilizando condiciones de contorno periódicas con luz polarizada
en cada dirección. Nuestros cálculos de teoría del funcional de la densidades (DFT) emplean
la combinación lineal de orbitales atómicos (LCAO) para representar las funciones de onda de
Kohn-Sham, la aproximación de gradiente generalizado (GGA) de Perdew, Burke y Ernzerhof
(PBE) para el funcional de intercambio y correlación (xc), las correcciones semiempíricas D3 de
Grimme para describir las interacciones de van der Waals y la corrección de la discontinuidad
derivativa para ajustar el gap energético de la DFT.

Nuestros resultados sugieren una EQE significativa para fotones con energías entre 2.8 y 3.8
eV, lo que corresponde al rango del ultravioleta cercano (UV). Además, en el rango de energía de
0 a 4 eV, la transmisión va del 1 al 5% en las zonas donde los estados ocupados y desocupados
muestran una fuerte superposición. Para investigaciones futuras, el modelo puede utilizarse en
paralelo con inteligencia artificial para analizar grandes conjuntos de bases de datos buscando
aquellos materiales con alta EQE para su diseño *in silico*.

Palabras clave: Eficiencia, modelo computacional, funciones de Green, transmisión.
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Abstract

Cheaper solar devices with higher efficiencies can only be constructed by making continuous
efforts to develop novel materials that can surpass the efficiency of silicon (Si) at a reasonable
cost. Photoinduced quantum transport is still an open field for developing high-impact science of
great importance globally. Current computational models can be helpful for a large set of physical
applications and have become crucial for accelerating any investigation process. The current work
proposes a model to calculate external quantum efficiency (EQE) theoretically, providing a simple
method for comparing the efficiency of different semiconductor materials. EQE is defined as the
fraction of transmitted electrons to incident photons in the solar cell, ηEQE =

Ne
Nω

, and can be used to
measure the capability of a material to produce charge carriers when it is irradiated with light. The
model is constructed using the non-equilibrium Green’s function (NEGF) formalism to describe
the quantum transport. The model includes an operator Â(r, t) = e

2mcÂ.p̂ defined as the time-
dependent interaction which acts as a coupling between the occupied and unoccupied states via
the external electromagnetic field as ⟨φµ|Â(r, t)|φv⟩. This model was applied over an arrangement
of two and four [6,6] phenyl-C61-butyric acid methyl ester (PCBM) molecules using periodic
boundary conditions with light polarized in each direction. Our density functional theory (DFT)
calculations employ a linear combination of atomic orbitals (LCAO) to represent the Kohn-Sham
wavefunctions, the generalized gradient approximation (GGA) implementation of Perdew, Burke,
and Ernzerhof (PBE) for the exchange and correlation (xc) functional, Grimme’s semi-empirical
D3 corrections to describe van der Waals interactions and the derivative discontinuity correction
to correct the DFT energy gap. Our results suggest an important EQE for photons with energies
between 2.8 and 3.8 eV, which corresponds to the near ultraviolet (UV) range. Moreover, in the
energy range from 0 to 4 eV, the transmission goes from 1 to 5% in the places where the occupied
and unoccupied states show strong overlapping. For further research, the model can be used in
parallel with artificial intelligence to analyze large sets of databases looking for those materials
with high EQE for their design in silico.

Keywords: efficiency, computational model, Green’s Functions, transmission.
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Chapter 1

Introduction

The Ecuadorian energy industry still needs decades to reach competitiveness in the international
market. The majority of Ecuadorian electricity production comes from hydroelectric sources.
According to the Ministry of Energy and Mines, Ecuadorian energy is obtained as 92% from
hydroelectric, 7% from thermal, and only 1% comes from photovoltaics, wind, biomass, biogas,
geothermal, etc1. It is critical to increase investments in new technologies to solve future energetic
production problems and be less dependent on Ecuadorian hydro-electrics. The development of
novel photovoltaic cells can be the solution to diversifying electricity sources since Ecuador has
12 hours of sunlight year-round.

Photovoltaic cells are electronic devices that transform light into electricity by the photoelec-
tric effect. When the photons hit the solar cell, electrons are excited from the valence band to the
conduction band producing electron-hole pairs. Typically, solar cells are made of semiconductor
materials in a p-n junction. Usually, these junctions are doped by creating a majority of electrons
in the n-type, and a greater number of holes in the p-type. The most commonly known solar cell
is made using silicon, but there exist many other possible solar cell types such as organic solar
cells, dye solar cells, perovskite solar cells, quantum dot solar cells, etc. In all cases, an array
of solar cells turns light into direct current (DC) electricity. Although there are many options
to construct solar cells, only a few materials can transform solar energy into current and voltage
with high efficiency at a low cost2.

Emerging photovoltaic technologies are still in the development phase and are yet to be
introduced in the market. Many of the appearing organic materials still have low efficiencies for
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commercial purposes. Nevertheless, the research in this technology wants to achieve low-cost
production and high efficiency for the near future3.

Historically, the high costs of producing photovoltaic cells are due to the semiconductor
industry. In 1970 a solar module cost around $96 per watt. Nevertheless, with the advance of
technology and increased investment in research, the prices dropped to $0.3 per watt in 2018
and $0.2 in 20204. This means that nowadays solar cells have become an interesting option to
produce clean energy worldwide. North America, Europe, Asia, and many other countries are
leading solar energy production and making huge investments in research to improve the current
technology. The study of electronics, semiconductors, solar cells, and other topics related to
physics is crucial for the development of novel materials. Soon, the costs of production of such
materials will be reduced as a result of the semiconductor industry capacity.

One common approach for comparing and ranking solar cells is the external quantum effi-
ciency (EQE). This is a measurement of the capability of a material to produce current when
it is irradiated with light. The EQE is defined as the fraction of the transmitted electrons to
incident photons on the solar cell5. In this thesis, the formalism for calculating EQE will be to
use Non-Equilibrium Green’s Functions (NEGF). Since NEGF is a well-established formalism
to model quantum transport in different systems6, we will use it for the EQE calculation in [6,6]
phenyl-C61-butyric acid methyl ester (PCBM). In this context, having a model to calculate EQE
from ab-initio in many materials would be very advantageous. This is because the calculations
are made on the same footing, making it possible to compare the EQE for a large set of candidate
materials and choose the best ones for experimental testing.

This thesis primarily proposes a theoretical and computational model to calculate EQE. This
model is applied to an organic photovoltaic material (OPV) PCBM. Nevertheless, it can be used
for a large range of materials perhaps even using artificial intelligence to search for materials that
have a high EQE.

In the case of PCBM, it is an acceptor material of n-type that can be blended with polymers
of p-type to create solar cells7. Normally, PCBM is more used than fullerenes as an acceptor
material because it is easier to create donor-acceptor mixes due to its solubility in chlorobenzene.
Nonetheless, the costs of production of PCBM are still an obstacle to its mass production for
photovoltaic applications. The experimental efficiency of PCBM solar cells is above 4%8. Since
the experimental EQE of PCBM is well known, the simulation results can be easily compared.
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Our computational approach to obtain the EQE is based on density-functional theory (DFT)
calculations employing the projector augmented wave (PAW) method code GPAW. The PAW
method is a computational technique to recover the all-electron density of atoms and molecules.
It is based on the statement that wave functions oscillate swiftly near the nucleus, whereas close
to the bonding region they are rather smooth9. Additionally, we are using the atomic simula-
tion environment (ASE), which is a software package designed to facilitate the configuration,
control, and examination of atomistic simulations. It facilitates computations related to energy,
forces, stresses, and various other parameters by establishing connections to numerous external
electronic structure codes or force fields. ASE offers modules that enable the execution of com-
mon simulation procedures, including structural optimization and molecular dynamics, among
others10.

1.1 Problem Statement

The area of photovoltaic cells is quickly evolving, but can still benefit from improvements.
Although there exist experimental ways to contain material’s EQE, we also needed a computational
ab initio method to represent photoinduced quantum transport simulations of semiconducting
materials to optimize their design in silico. The NEGF formalism offers a procedure to describe
quantum transport. In this thesis we will present a model for calculating EQE with the inclusion
of a vector potential working as a coupling between occupied and unoccupied states via the vector
potential of the external electromagnetic field A. This method will provide a theoretical EQE for
photovoltaic devices, based on which it will be possible to design materials with higher EQEs in
silicon.

1.2 General and Specific Objectives

Currently, accurate and efficient ab initio methods for calculating a material’s EQE are still
lacking. The main objective of this thesis is to contribute to solving this problem by constructing
a method to calculate EQE computationally. The treatment of this method allows us to obtain
computational efficiency in quantum transport for photovoltaic devices. It can be used to rank
the efficiency of different photovoltaic materials, i.e., design higher EQE materials in silico, for
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experimental physicists. The contribution to the photovoltaic devices of this thesis includes the
EQE analysis of an arrangement of 2 PCBM and 4 PCBM.

Also, this thesis aims to prove computationally that this model can be applied to a large
set of semiconducting materials, encouraging research in materials like silicon, germanium,
nanoribbons, carbon nanotubes, etc. This work wants to be the first collaboration to construct a
tool capable of finding better semiconducting materials for constructing photovoltaics with higher
efficiencies in the near future.

1.3 Overview

This thesis has five chapters and an appendix. Chapter 1 is the introduction. Here we began by
discussing the lack of photovoltaic industry capacity in Ecuador. Additionally, it briefly explained
what a photovoltaic cell is, its composition, history, and how it works. Also, is explained shortly
what is EQE and how the NEGF describes quantum transport. Furthermore, is explained the
PAW and ASE which are the computational resources to develop the model. Lastly, is explained
how the development of a computational model to calculate EQE is still an open problem.

Chapter 2 describes the relevant theoretical background for EQE calculations. The top-
ics treated are many body problems, periodic systems, Bohr Oppenheimer approximations, the
Hohenberg Kohn theorem, Kohn Sham self-consistent field approach, exchange-correlation func-
tional, derivative discontinuity, Band gap, GLL, GLLBsc, LCAO, Green’s functions, Nonequi-
librium Green’s functions, projector augmented method and the basic theory of materials about
PCBM.

Chapter 3 explains the methodology and the computational details for the model employed.
Specifically, it explained how the PCBM was treated to obtain results, among all the computational
resources and physics theory of the model. Chapter 4, here we provide our results and discussion.
Here we analyze the density of states of the occupied and unoccupied energy levels, the absorption
and transmission probabilities, the excitation energies, and the EQE of the arrangement of the 2
PCBMs.

Finally, Chapter 5 provides conclusions, summarizes the principal results, and provides an
outlook for future research.



Chapter 2

Theoretical Background

2.1 Density Functional Theory

2.1.1 Many body problem

Quantum mechanics is the most powerful tool to describe physics in the quantum regime.
Schrodinger equations describe the physics behind this world with high probabilistic accuracy. In
this case, we are treating a system of many electrons, protons, and their interactions, therefore it is
necessary to introduce the “many-body wave function” which is useful to determine observables
for physical systems. The wavefunction,Ψ depends on the positions of each electron and proton in
the system. Then, in a system there are r1, r2, ...rN for N electrons, and M nuclei with R1,R2...RM

obtaining:
Ψ = Ψ(r1, r2, ..., rN; R1,R2, ...,RM) (2.1)

Now reconstructing the Schrodinger equation with the kinetic and potential energy contributions
for all the interactions including one particle case and all the possible interactions of electrons
and nuclei11 e − e, e − n, n − n :

HΨ = EtotΨ (2.2)

where the Hamiltonian has the form

H = −
∑

i

ℏ2

2me
∇2

i −
∑

I

ℏ2

2MI
∇2

I +
1
2

∑
i, j

e2

4πϵ0

1∣∣∣ri − r j

∣∣∣ + 1
2

∑
I,J

e2

4πϵ0

ZIZJ

|RI − RJ |
−

∑
I

e2

4πϵ0

ZI

|ri − RI |

(2.3)
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6 2.1. DENSITY FUNCTIONAL THEORY

where me is the mass of the electron and MI is the mass of the Ith nucleus, ZI and ZJ are the
atomic numbers of the Ith and Jth nuclei, respectively, and ∇2

i and ∇2
I are the Laplace operators

for the electronic and nuclear coordinates, respectively12.

2.1.2 Periodic Systems

When density functional theory is used to describe the electronic structure of periodic systems,
the application of Bloch’s theorem to the Kohn-Sham wavefunctions facilitates the computations.
This is because, instead of needing a very large number of electrons, it is only necessary to
consider the number of electrons within a single periodic unit cell13. From the basic knowledge
of solid state physics is well known that a periodic arrangement of atoms in a crystal is described
by the unit cell and the lattice points which are invariant under translations. Lattice points are
described by:

R = n1a1 + n2a2 + n2a2 (2.4)

Where n1, n2, n3 are integers and a1, a2, a3 are the lattice vectors spanning in the three-dimensional
unit cell with volume Ω.

Ω = |a1.(a2 × a3)| (2.5)

Then three-dimensional crystal remains invariant under translations R, and this crystal symmetry
can be exploited using Bloch’s Theorem.

Bloch’s theorem : From the translational invariance of the crystal, it follows that the elec-
tronic wave functions can change only up to a phase factor under translation. This theorem is
especially important for systems with a periodic potential because it states that the solutions of
the Schrodinger equation must be of a special form:

ψk(r) = uk exp(ik · r) (2.6)

where uk(r) has the periodicity of the crystal lattice, i.e., uk(r) = uk(r + R), with R as the
translation vector of the lattice, exp(ik · r) is the plane wave and k is the crystal momentum. If a
translation acts on a wave function, its crystal momentum does not change14. Now for every set
of R of lattice points is constructed a reciprocal lattice described by its reciprocal lattice vectors
b1,b2,b3, defined by

ai · b j = 2πδi j (2.7)
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and bi can be obtained as
bi = 2π

ai+1 × ai+2

Ω
(2.8)

2.1.3 Born-Oppenheimer Approximation

The Born-Oppenheimer approximation works with the assumption that the nuclei can be treated
as classical particles. This can be done because the mass of the nucleus is much larger than the
mass of the electrons. Then is understood that the positions of the nuclei are essentially fixed
while the positions of the electrons are dynamic. It consists of writing the total wave function
using the technique of separation of variables. Then it is possible to write Ψtot as the product of
the electronic wave function and the nuclear wave function

Ψtot = ψ
R1,...,RM
e (r1, ..., rN)ψn(R1, ...,RM) (2.9)

where ψe and ψn represent the electronic and nuclear wavefunctions respectively. The electronic
wavefunction ψe is the solution to the electronic Schrödinger equation15:

Heψ
R1,...,RM
e (r1, ..., rN) = Eeψ

R1,...,RM
e (r1, ..., rN) (2.10)

where the electronic wave function depends directly on the electronic coordinates but only
parametrically on the nuclear coordinates. Using Ee as the eigen-energies and He as the electronic
Hamiltonian16. Therefore this system can be solved more efficiently.

2.1.4 Hohenberg-Kohn Theorem

In 1964 Hohenberg and Kohn demonstrated that there exists a direct relation between the electronic
density and the external potential vext(r) for the ground state energy. They concluded that the
energy of the ground electronic state is a unique function of the electron density17. In their paper,
they state that a collection of electrons moving due to the influence of an external potential Vext

has the following Hamiltonian.
H = T + U + Vext (2.11)

T =
1
2

∫
∇ψ∗(r)∇ψ(r)dr (2.12)
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U =
1
2

∫
1

|r − r′|
ψ∗(r)ψ∗(r′)ψ(r′)ψ(r)drdr′ (2.13)

Vext =

∫
v(r)ψ∗(r)ψ(r)dr (2.14)

Then define the electronic density in the ground state ψ by:

n(r) = ⟨ψ|n̂|ψ⟩ (2.15)

Since ψ is a functional of n(r) we define:

F[n(r)] = ⟨ψ|(T + U)|ψ⟩ (2.16)

using F[n] as a universal functional for any potential and number of particles. It contains the
kinetic energy T and the electron-electron interaction U. Therefore, for a given potential vext(r),
the energy potential is given by:

E[n] =
∫

vext(r)n(r)dr + F[n] (2.17)

The total energy E[n] is the ground state energy and only depends on the electronic density.18

2.1.5 Kohn-Sham Self-consistent Field Approach

To approximate the Schrödinder equation, many methods to calculate the solid-state properties
have been developed in recent decades. The DFT theory calculations using the Kohn-Sham
approach determine a density by using “self-consistency”. The concept of self-consistency is
born with the so-called mean-field approximation, also called the Hartree potential. This “mean-
field potential” is generated by the charge distribution of the system and replaces the two-body
Coulomb interaction between charged particles19. The Hartree potential or mean-field reaches
self-consistency when the initial field and the final field are the same20.

The first objective is to compute the particle density ρ(x) for some atoms and positions. The
particle density is defined by single-particle orbitals ϕ(x).

ρ(x) =
N∑

i=1

|ϕi(x)|2 (2.18)
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Next, a set of N particles in the system are influenced by an external potential vext which is
defined by species, positions of the atoms, approximation level, etc. Also, the ground state energy
E is possible to calculate.

Now it is possible to introduce the Kohn-Sham equations,

HKS [ρ] = −
1
2
∇2 + ve f f (r; ρ) (2.19)

ve f f = vext(r) + vh[ρ] + vxc[ρ] (2.20)

vh[ρ](x) =
∫

ρ(x′)
|x − x′|

(2.21)

vxc[ρ] =
δϵxc

δρ
(2.22)

and the Kohn Sham Hamiltonian introduced in the Schrödinger equation is

HKS [ρ]ϕi(x) = ϵiϕi(x) (2.23)

Now, to construct the Kohn Sham Hamiltonian it is needed an initial density ρin as the input
to compute the mean field and exchange-correlation potentials. Then, an output density ρout is
calculated from the eigenfunctions of the Kohn-Sham Hamiltonian

HKS [ρin]ϕi(x) = ϵiϕi(x) (2.24)

and

ρout(x) =
N∑

i=1

|ϕi(x)|2 (2.25)

which is an iterative process that uses an initial estimate of density as input and iterates it across
a self-consistent solution of the Kohn-Sham equations.

Initially, as depicted in Figure 2.1 the input density is not equal to the output density for
a given potential and exchange-correlation functional. Self-consistency is reached after some
iterations ρin = ρout and hence the Eqs. 2.15 and 2.16 can be solved20.
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Figure 2.1: Self-consistent Kohn-Sham scheme. Adapted from ref21
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2.1.6 Exchange-correlation functionals

Ideally, an approximate density functional Exc[n ↑, n ↓] should have all of the following features:
(1) a non-empirical derivation, since the principles of quantum mechanics are well-known and
sufficient; (2) universality, since in principle one functional should work for diverse systems
(atoms, molecules, solids) with different bonding characters (covalent, ionic, metallic, hydrogen,
and van der Waals); (3) simplicity, since this is our only hope for intuitive understanding and our
best hope for practical calculation; and (4) accuracy enough to be useful in calculations for real
systems. The energy functional is given by22

Ev[ρ] =
∑

i

ϵi −

∫ ∫
ρ(r)ρ(r’)
|r − r’|

drdr’ + Exc[ρ] −
∫

drρ(r)
δExc

δρ(r)
(2.26)

and the exchange-correlation potential is

vxc(r) =
δExc[ρ]
δρ(r)

(2.27)

Nevertheless, despite the Honenberg-Kohn-Sham being an exact theory, the problem lies in the
fact that the exact expressions for Exc and vxc are not known. Therefore the exchange-correlation
energy and potential needs to be approximated23. There exists a lot of proposed approximations
for the exchange and correlation functionals, they can be classified into families: the local density
approximation (LDA), generalized gradient approximation (GGA), meta-GGA, and hybrid.

Local density approximation

The first technique to approximate those quantities is the Local Density Approximation or LDA,
in which the exchange-correlation energy Exc only depends on local density24. It consists of
replacing the exchange-correlation energy by

Exc[ρ] =
∫

drρ(r)ϵxc[ρ(r)] (2.28)

in which the ϵxc[ρ(r)] is the exchange-correlation energy density of a homogeneous electron gas.
Then in LDA the exact density around an electron at r is replaced by the density of the

homogeneous electron gas ρ(r) as
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ρ(r’)[ f (r, r’) − 1]→ ρ(r’)[ f (r − r’); ρ(r’) − 1] (2.29)

with f as the pair correlation function. LDA is expected to work well when density varies
slowly in space as

k−1
f

∣∣∣∣∣δρρ
∣∣∣∣∣ ≪ 1 (2.30)

with
k f = (3π2ρ)

1
3 (2.31)

now introducing the relative coordinate R = r − r′ one obtains:

Exc[ρ] =
e2

2

∫
drρ(r)

∫
R−1ρxc(r,R)dR (2.32)

with
ρxc(r,R) =

∫
ρ(r + R)[ f (r, r + R) − 1]dΩR (2.33)

finally considering the integral ∫
ρxc(r,R)

R = ⟨
1
R⟩ (2.34)

if this inverse extension is approximated correctly, the LDA approximation is complete25.

Generalized gradient approximation

The local spin density approximation (LSD) for the exchange-correlation energy, was proposed in
the original work of Kohn and Sham and has proved to be remarkably accurate, useful, and hard
to improve upon. The generalized gradient approximation (GGA), is a kind of simple extension
of LSD26.

In 1996, Perdew, Burke, and Ernzerhof (PBE) showed how to construct GGA in a simple
form and derivation starting by writing the correlation energy in the form:

EGGA
c [n ↑, n ↓] =

∫
d3rn[ec(rs, ζ) + H(rs, ζ, t)] (2.35)

Where n ↑, n ↓, are the spin densities. Also ecis the correlation energy per electron of the unit
gas, rs is the Seitz radius defined as the radius of a sphere which on average contains one electron
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and ζ represents the relative spin polarization given by:

ζ =
n ↑ −n ↓
n ↑ +n ↓

(2.36)

t is the reduced density gradient

t =
|δn|

2ϕ(ζ)ksn
(2.37)

with 1/ks as the screening length. Additionally, H can be written as

H = c0ϕ
3ln[1 +

βMB

c0
t2[

1 + At2

1 + At2 + A2t4
]] (2.38)

With A as
A =

βMB
c0

1
exp[−ec(rs, ζ)/c0ϕ3] − 1

(2.39)

On the other hand, the exchange energy is given by:

EGGA
x [n] = Ax

∫
d3rn

4
3 Fx(s) (2.40)

with Fx(s) as
Fx(s) = 1 + k −

k

(1 + µs2

k )
(2.41)

where k is a constant less or equal to 0.804. And

Ax = −
3

4π
(3π2)

1
3 (2.42)

There have been many interesting tests and applications of GGA to a wide range of atoms,
molecules, and solids. In most systems, the exact exchange-correlation hole is reasonably local-
ized around its electron, as it is in LSD or GGA – and that fact is one of the reasons why LSD
and GGA work as well as they do23.

2.1.7 Derivative discontinuity

Derivative discontinuities can be understood as the change of the exchange-correlation energies
concerning an integer number of electrons. The electronic energy of quantum systems shows
derivative discontinuities as a consequence of the integer nature of electrons. The derivative
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discontinuity of the total energy is a function of the total number of electrons27. Looking at eq.
2.22 can be seen that the exchange-correlation potential vxc is given by the functional derivative
of the exchange-correlation energy. However, Exc is unknown and then has to be approximated
using functionals. The main idea is that the functionals give an approximation for the exchange-
correlation energy Exc, potential vxc and therefore gives rise to an approximate density ρ(r).
Perder, Parr, Levy, and Balduz demonstrated that the energy for a fractional electron number
system is given by a straight line connecting integer electron numbers

E(N + δ) = (1 − δ)E(N) + δE(N + 1) (2.43)

ρn+δ(r) = (1 − δ)ρN(r) + δρN+1(r) (2.44)

This implies that the energy and density can show derivative discontinuities at the integers. This
phenomenon occurs when the bond orbitals are energetically different. It can be seen in closed
shell molecules where the density difference of the last electron added (ρN − ρN−1) is spatially
different from where the next electron is added (ρN+1 − ρN). The exact Kohn-Sham potential
undergoes a jump using a constant when it finds an integer. This constant, C, is the derivative
discontinuity as ϵ → 0

vN−ϵ
xc (r) = vN

xc(r) (2.45)

vN+ϵ
xc (r) = vN

xc(r) +C (2.46)

For example, if the potential of LDA functional is shifted by a constant, the eq 2.24 will give rise
to identical orbitals and density, however, eigenvalues are shifted by C. Then if those orbitals
and density are included in eq2.26 will be obtained an identical energy. Therefore, there is a
discontinuous change only in eigenvalues, not in the total energy28.

2.1.8 Band Gap

A basic property of a solid is its band gap G, which is positive for semiconductors and insulators
and disappears for metals. The band gap G can be seen as the lowest single electron excitation
energy of a solid, representing the conductivity, optical, and thermal properties. The G is an
excitation energy and a difference of ground state energies. Taking E(M) as the ground state
energy for a solid of M electrons, and M = N then:

G = I(N) − A(N) = [E(N − 1) − E(N)] − [E(N) − E(N + 1)] (2.47)
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Where I(N) the first ionization energy and A(N) is the first electron affinity. Kohn Sham density
functional theory is an exact approach to computing ground state energy and electron density of
M interacting electrons in an external potential. For a solid, Kohn Sham theory produces a band
structure, with a non-zero band gap

g = ϵLU − ϵHO (2.48)

where LU is the lowest unoccupied and HO is highest occupied states29.

2.1.9 GLLB-SC to Describe Band Gaps

GLLB-SC (solid correlation) replaces the energy density functional with another one more
convenient for solids30. It is based on the GLLB-type exchange and PBEsol correlation. The
computational costs needed for GLLB-SC are similar to those for GGA calculations. GLLB-SC
works with an electron gas response potential resulting in a discontinuity that provides good
quasiparticle band gaps to be compared with experiments. In exact DFT, the quasiparticle band
gap of an N electron system, as was defined in eq 2.47 can also be written as

Eg = I(N) − A(N) = EKS
G + ∆xc (2.49)

where EKS
G = εN+1 − εN is the KS band gap and ∆xc is the derivative discontinuity. The total

GLLB-SC potential is

vGLLB−S C(r) = 2ϵPBEsol
xc (r) +

occ∑
i

Kx
√
εr − εi

|ψi(r)|2

n(r)
+ vPBEsol

resp (r)+ (2.50)

Normally, to implement this, is necessary the derivative of the total energy, however, since GLLB-
SC does not have that expression, it has to be written by hand. The PAW potential consists of a
smooth part inside the augmentation sphere. To obtain a enough smooth potential the expression
is

vGLLB−S C(r) = 2ϵPBEsol
x [n(r), |∇n|2](r) +

val∑
i

KG
√
ϵr − ϵi

|ψ(r)|2∑val
i |ψi(r)|2

+ vPBEsol
c [n(r), |∇n(r)|2](r)

(2.51)
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which is equivalent to the GLLB-SC potential but is smooth inside the augmentation spheres.
Nevertheless, this smooth potential requires augmentation sphere corrections to obtain a correct
description to calculate the total PAW Hamiltonian30

uxc = vxc(r) +
atoms∑

a

∑
i j

|pa
i ⟩(⟨ϕ

a
i |v

a
xc(r)|ϕa

j⟩ − ⟨ϕ
a
i |v

a
xc(r)|ϕa

j⟩) × ⟨p
a
j | (2.52)

2.2 Representations of the KS wavefunctions

DFT computations typically employ one of three forms to represent the KS wavefunctions, each
one with its advantages: real space, plane waves (PWs), or linear combinations of atomic orbitals
(LCAOs). In the real space representation approach, the wavefunctions are directly sampled at
a finite number of grid points in real space. For the PW representation, the wavefunctions are
expanded in terms of a basis set of plane waves. This representation is particularly common in
periodic systems. Finally, in LCAO representation the wavefunctions are expanded in terms of
a basis set consisting of linear combinations of atomic orbitals. This approach is often used in
molecular systems and allows for a more localized description of the electronic structure.

A wavefunction lives in Hilbert space, which is a vector space with an inner product. States are
shown as elements within this vector space, allowing them to be expressed as a linear combination
of basis vectors. Additionally, any state ψ can be expressed as a linear combination of vectors of
a complete basis set ϕµ.

ψn(r) =
∑
µ

cnµϕµ(r) (2.53)

The basis set is used to expand the WF to find a solution to the KS equations. Even if it is possible
to describe the real space and PW representations, only LCAO will be described more accurately
since this is the method used to solve KS wavefunctions in this thesis.

2.2.1 Linear Combination of Atomic Orbitals

The linear combination of atomic orbitals (LCAO) is a technique for calculating molecular
orbitals. It is possible to represent the KS wave functions using the assumption that the molecular
orbitals can be constructed using a certain number of atomic orbitals. n atomic orbitals can be
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combined to get n molecular orbitals.

ψn(r) =
∑
µ

cnµΦµ(r) (2.54)

where ψn represents the molecular orbital constructed by the atomic orbitals Φµ(r), each one
multiplied by its respective coefficient represented with n, and µ = (n, l,m). Then one gets the
basis functions which are the products of numerical radial functions and spherical harmonics31.

Φnml(r) = Φnml(ra + Ra) = ζnl(θ, ϕ)Ylm(θ, ϕ) (2.55)

with Ra as the position of nucleus a, and ra = r − Ra

2.3 Green’s Functions

The Green’s functions are integrals that are used to solve ODE and PDE32. Mathematically, given
a linear differential operator L = L(x) acting on a subset Ω, the Green’s function G = G(x, x′) at
point x′ ∈ Ω corresponding to L is any solution of

LG(x, x′) = δ(x − x′) (2.56)

Where x′ are points such that x′ ∈ Ω. Then it is possible to multiply the last identity by a function
f (x′) and integrate with respect to x′∫

LG(x, x′) f (x′)dx′ =
∫

δ(x − x′) f (x)dx′ = f (x) (2.57)

Since L is a linear operator acting on x, the left hand side can be rewritten as

L
∫

(G(x, x′) f (x′)dx′) (2.58)

Therefore one can solve for u = u(x) in differential equations of the form

Lu(x) = f (x) (2.59)

so that
Lu(x) = L

(∫
G(x, x′) f (x′)dx′

)
(2.60)
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and finally u(x) reduces to

u(x) =
∫

G(x, x′) f (x′)dx′ (2.61)

Considering the case of a two-point function, the problem of determining the potential ψ(r)
created by a charge distribution with a charge density ρ(r), applying Poisson’s equation33and
Coulomb’s law to the potential produced by each element of charge ρ(r′)d3r′ at r results in a
solution

ψ(r) =
1

4πε0

∫
ρ(r′)
|r − r′|

d3r′ (2.62)

which is consistent over the region ρ(r′ , 0). Since the right-hand side can be treated as an
operator that converts ρ into ψ, it is possible to write the solution in terms of Green’s function

G(r, r′) = 1
4πε

1
r − r′ (2.63)

Finally, the integral becomes

ψ(r) =
∫

G(r, r′)ρ(r′)d3r′ (2.64)

Some authors prefer to denote the variables x and x′ in terms of r and r′. It is also common to
find this definition with a negative sign, then G is defined as34

LG(x, x′) = −δ(x − x′) (2.65)

2.4 Non-Equilibrium Green’s Functions

The non-equilibrium Green’s functions (NEGF) provide a conceptual basis for the development
of models for describing quantum transport. For the simulation of a device, it is necessary to
perform a self-consistent solution for a transport equation and a Poisson equation. The transport
equation calculates the electron density n(r) and the current I for a given potential U(r), at the
same time the Poisson equation calculates the effective potential U(r) that an electron feel due to
the other electrons35.

First of all, it is necessary to reach a Hamiltonian H capable of reproducing a good enough
description of some device. When this device is connected to the contacts there is some charge
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transfer in and out that produces a potential U(r). Normally the potential U(r) is calculated self
consistently using the Schrödinger-Poisson solver for some electron density n(r)36.

n(r) =
∑
α

|Ψα(r)|2 f0(ϵα − µ) (2.66)

using the eigenstates Ψα(r) obtained from the Schrödinger equation

[H + U]Ψα(r) = ϵαΨα(r) (2.67)

and according to the Fermi function

f0(E − µ) =
1

1 + exp[ E−µ
kBT ]

(2.68)

If some device is connected to two contacts with different Fermi levels µ1 and µ2 the first goal is
to obtain the electron density. Nevertheless, the density matrix ραβ has to be calculated before,
since it has all the relevant physical quantities such as charge, current, energy current, etc.

n(r) =
∑
αβ

Ψα(r)ψ∗β(r)ραβ (2.69)

In the so-called real space representation it is possible to write

[ρ]rs = [V][ρ][V]† (2.70)

With [V] as a transformation matrix obtained from the wavefunctions Ψα at points r in real space

[V]r,α = Ψα(r)
√
Ω (2.71)

finally obtaining
ρ(r, r′) = Ω

∑
αβ

Ψα(r)Ψ∗β(r
′)ραβ (2.72)

which is an expression that can give us the density matrix of a device connected to two contacts
with different Fermi levels. Then the density matrix is the electron density multiplied by a constant
factor Ω which is the volume of the unit cell. The problem of finding the density matrix is more
complex than only knowing (H + U), also is necessary to realize how the scattering processes
of the contacts are. This information can be obtained from the self-energy functions

∑
1,

∑
2,

∑
s.
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With all of this information, it’s possible to determine the density matrix and therefore the electron
density and the current. The NEGF formalism can be applied to a large set of devices such as
nanotubes or molecules37.

The density matrix is given by:

ρk =

∫
dE
2π

[ f0(E + ϵk − µ1)A1 + f0(E + ϵk − µ2)A2] (2.73)

with A1 and A2 being the left and right spectral functions respectively, defined by

A1 = GΓ1G+ (2.74)

A2 = GΓ2G+ (2.75)

and the associated Green’s functions

G = [EI − HL − Σ1 − Σ2]−1 (2.76)

and the gamma functions composed by the self-energy matrices,Σ1,2, constructing a system in
which the scattering processes are not included or coherent transport

Γ1,2 = [Σ1,2 − Σ
+
1,2] (2.77)

Therefore, it is possible to find the current using

I = (−q)Trace(ρJop) (2.78)

with Jopas the current operator.

[Jop] = (
t
ℏN

)


0 −i 0 ...

+i 0 −i ...

0 +i 0 ...

... ... ... ...

 (2.79)

Also it can be calculated the transmission by the following expression

I = (
−q
h

)
∫

dET (E)(F1 − F2) (2.80)
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Figure 2.2: A: Two contacts connected to a device each one with its own Fermi level µ1, µ2 and
self energies Σ1,Σ2,Σs. B: NEGF formalism self-consistent solver through Poisson equation.
Adapted from ref35.

where T (E) is the probability of an electron transmitting from the left to the right contact.
Additionally, F1 and F2 can be written as

F1 = F0(E − µ1) (2.81)

F2 = F0(E − µ2) (2.82)

with F0 being the logarithmic function that replaces the Fermi function f0.
The NEGF formalism can be used to evaluate the transmission probability, nevertheless, the

true using of this formalism lies in describing this kind of system, including scattering processes,
or what is called the non-coherent transport.

As it is shown in Figure 2.2, the self-energy function Σs represents the scattering processes of
the NEGF formalism. Taking into account that the Σs is dependent on the density matrix and has
to be calculated self consistently, the NEGF formalism gives a clear description to calculate Σs.
Therefore, this description can be used to develop the research of physical descriptions of energy
distributions in nanoscale devices. The scattering process can be viewed as another contact
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described by Σs additional to the self energies of the contacts 1 and 2 described by Σ1 and Σ2

respectively. Then it can be included as

G = [EI − H − Σ1 − Σ2 − Σs]−1 (2.83)

Γ1,2,s = i[Σ1,2,s − Σ
+
1,2,s] (2.84)

A1 = GΓ1G+, A2 = GΓ2G+, As = GΓsG+ (2.85)

Then the matrix can be written as

Σs =


η1, 0, 0, ...
0, η2, 0, ...
0, 0, η3, ...

..., ..., ..., ...

 (2.86)

where η represents the phenomenological parameters related to the scattering time τ by τ = ℏ
2η .

Nevertheless, the scattering contact Σ is not a “contact” itself, therefore it does not have a well-
defined Fermi level µs that can be used to calculate Fs. Because of this, it is constructed a more
physically correct model in which each lattice “n” has a different µsn , that will be named as in
scattering function36:

Σin
s =


Fs1η1, 0, 0, ...
0, Fs2η2, 0, ...
0, 0, Fs3η3, ...

..., ..., ..., ...

 (2.87)

Then one calculates the density matrix from

2π[ρ(E)] = F1A1 + F2A2 +GΣin
S G+ (2.88)

2.5 Projector augmented wave method

The projector-augmented wave method is a technique to perform electronic structure calculations.
The features of the wave functions are different at each region of the space. In the bonding
region, the wave functions are smooth, however, at regions near nuclei wave functions have rapid
oscillations due to the nucleus’s attraction potentials. The procedure of the augmented wave
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method is to divide the wave functions into parts called partial waves.9 To solve this problem is
introduced a linear transformation T̃ which is used to go from smooth wave functions |ψ̃n⟩ to the
all-electron Kohn-Sham single particle wave functions |ψn⟩ such as:

|ψn⟩ = T̃ |ψ̃n⟩ (2.89)

with n being the quantum state label. Then the transformed Kohn-Sham equations have to be
solved.

T̃ †H̃T̃ |ψ̃n⟩ = ϵnT̃
†T̃ |ψ̃n (2.90)

Now it is needed to define T̃ in such a way that wave fucntions |ψ̃n⟩ becomes smooth. Taking
advantage of |ψn⟩ are already smooth at a certain distance from the core, T̃ only modify WF close
to nuclei.

T̃ 1 +
∑

a

T̃ a (2.91)

with T̃ a having no effect outside a certain region |r − Ra
| < ra

c . Here the ra
c or cut-off radii have

to be chosen in such a way that there is no overlap in the augmentation spheres. The true WF
can be expanded into partial waves ϕa

i with it corresponding auxiliary smooth partial wave ϕ̃a
i

38

requiring that
|ϕa

i ⟩ = (1 + T̃ a)|ϕ̃a
i ⟩ ⇔ T̃

a|ϕ̃a
i ⟩ = |ϕ

a
i ⟩ − |ϕ̃

a
i ⟩ (2.92)

From eq 2.67 it’s required the partial and smooth counterpart waves are equivalent outside the
augmentation sphere

∀a, ϕa
i = ϕ̃

a
i (r), > ra

c (2.93)

Hence the smooth all electron wave functions are expanded as

|ψ̃n⟩ =
∑

i

Pa
ni|ϕ̃

a
i (2.94)

where |Pa
ni are the smooth projector functions treated as expansion coefficients. Using the fact

that |ψa
i ⟩ = T̃ |ψ̃

a
i ⟩ then the expansion

|ψn⟩ = T̃ |ψ̃
a
i ⟩ =

∑
i

Pa
ni|ϕ

a
i ⟩ (2.95)
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The expansion coefficients Pa
ni have to be linear functionals of |ϕ̃n i.e.

Pa
ni = ⟨p̃

a
i |ψ̃n⟩ =

∫
dr p̃a∗

i (r − Ra)ψ̃n(r) (2.96)

where |pa
i ⟩ are smooth projector functions inside the augmentation sphere which must satisfy.∑

i

|ψ̃⟩ai ⟨p̃
a
i | = 1 (2.97)

Also implies that
⟨ p̃a

i1|ψ̃
a
i2⟩ = δi1,i2 (2.98)

By eq 2.72 the linear transformation becomes

T̃ a =
∑

i

T̃ a|ϕ̃a
i ⟩⟨p̃

a
i | =

∑
i

(|ϕa
i ⟩ − ⟨ϕ̃

a
i |)⟨ p̃

a
i | (2.99)

then by eq 2.66
T̃ = 1 +

∑
a

∑
i

(|ϕa
i ⟩ − |ϕ̃

a
i ⟩)⟨p

a
i | (2.100)

Therefore we obtain the all-electron Kohn Sham WF ψn(r) from

ψn(r) = ψ̃n(r) +
∑

a

∑
i

(ϕa
i (r) − ˜ϕa

i (r))⟨p̃a
i |ψ̃n⟩ (2.101)

The pseudo-wave functions are smoother and describe the core electrons and nuclei accurately.
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Methodology

∗

3.1 External Quantum Efficiency calculation

As defined in the introduction part, the EQE can be defined as the ratio of excited and transmitted
electrons Ne to incident photons Nω at a certain energy ℏω39, then EQE can be written as

ηEQE =
Ne

Nω

(3.1)

Is the probability of an electron at initial energy εi is exited by a photon to an energy ε f = εi+ℏω.
Here ηEQE can be also defined as.

ηEQE =

∫
T (ε, ℏω)p(ε, ℏω)dε (3.2)

T is the absorption and transmission probability and p is the probability distribution of excitable
electrons, where p can be defined as:

p(ε) = f (ε)(1 − f (ε + ℏω))ϱ(ε) (3.3)
∗This work is based on the project in collaboration with Duncan J. Mowbray, Jeyson P. Alomoto-Catota, Daniel

E. Gonzalez-Tamayo, and Vito Despoja, “Photoinduced Quantum Transport” (in progress 2024).

25
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where ϱd is the density of normalized electronic states and f is the Fermi filling. As f (ε) describes
the fermi dirac distribution, the product f (ε)(1 − f (ε + ℏω)) behaves as a Hevisae step function
such that: ∫ ∞

−∞

p(εℏω)dε =
∫ 0

−ℏω

ϱ(ε)dε = 1 (3.4)

with all the energies referenced to the Fermi level εF . Then the only permitted transitions are
from occupied to unoccupied states, which are given per unit photon of energy ℏω. Now eq 3.2
can be expressed as:

ηEQE =

∫ 0

ℏω

T (ε, ℏω)ϱ(ϵ)dε (3.5)

The non-equilibrium Green’s functions (NEGF) states that the probability of transmission of
an electron through some region via appropriate eigenchannel of the transmission matrix T is
given by the magnitude of its related eigenvalue |τ|n 40 36. Since the transmission between different
eigenchannels acts in parallel, the conductance G is given by the sum of the eigenvalues scaled
by the quantum conductance G0, such that

G = G0

N∑
n=1

|τn| (3.6)

where N is the number of basis functions in the interface. To state the restriction that a photon
can be absorbed only once, the probability for the excitation process is redefined as

T = 1 −
N∏

n=1

(1 − |τn|) (3.7)

and now T combines the absorption and transmission processes. The transmission matrix T can
be defined as

T = G(ε, ℏω)Γin(ε)G†(ε, ℏω)Γout(ε + ℏω (3.8)

with G is the Greenś function of the interfacial region and Γin, Γout are the couplings to the input
and output leads. Defining

ε̃ = ε + i0+ (3.9)

as the shift of the energy off the real axis G given by

G =

ε̃S −H − Σin(ε̃) A(ℏω)
A†(ℏω) (ε̃ + ℏω)S −H − Σout(ε̃ + ℏω)

−1

(3.10)
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with A is the coupling between occupied and unoccupied states via external electromagnetic
fields, S andH are the overlap and Kohn Sham Hamiltonian matrices respectively, and Σin/out are
the self energies of the input and output leads. The coupling between input and output leads can
be expressed in terms of the self-energies as

Γin/out = i(Σin/out − Σ
†

in/out) (3.11)

The self-energy of lead α is given by

Σα(ε̃) = [ε̃S Iα −VIα][ε̃S α − Hα]−1[ε̃S †Iα −V
†

Iα] (3.12)

with S α and Hα are the overlap and Hamiltonian matrices of lead α, S Iα andVIα are the overlap
and coupling matrices of the interfacial region41. All matrices are represented using LCAO basis
set, φ, indexed over ath of Nat spatially ordered atoms and its ith of Na basis functions, then µ = a, i.
Therefore, the overlap and Hamiltonian matrices are written as

Sµν = ⟨φµ|φnu⟩ (3.13)

and
Hµν = ⟨φµ|Ĥks(r)|φν⟩ (3.14)

The Kohn Sham Hamiltonian operator is defined as

ĤKS (r) = −
ℏ2

2me
∇2

r + VH[ρ(r)] + Vxc[ρ(r)] + Vext(r) (3.15)

with ρ(r) as the electron density, VH[ρ(r)] as the Hartree potential, Vxc[ρ(r)] is the exchange
correlation potential and Vext(r) is the external potential due to environment.

Furthermore, the coupling between occupied and unoccupied states via photon absorption is
defined as

Aµν = ⟨φµ|Â(r, t)|φν⟩ (3.16)

as depicted schematically in Figure 3.1, the operator Â is defined as the time-dependent interac-
tion with an external electromagnetic field and is written

Â(r, t) = e
2mc

(Â · p̂) = −i
eℏ

2mc
A(r, t) · ∇r (3.17)
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Figure 3.1: Schematic of an excitation process across a donor–acceptor interface from an occupied
initial state with energy εi in the input lead to an unoccupied intermediate state with energy
εi + ℏω via the interaction between an external electromagnetic field with vector potential Â and
momenta p̂, and via coupling to a phonon mode of energy hv to an unoccupied final state with
energy ε f = εi + ℏω − hv in the output lead.

is the time-dependent interaction with external electromagnetic field taken to first order in vector
potential A(r, t) in the coulomb gauge ∇ · A = 0. Noting that eℏ

2mc ≈
1

274 in atomic units, justify
that Â(r, t) can be treated as a perturbation of ĤKS (r). The vector potential of a spherical
electromagnetic wave in vacuum takes the form

A(r, t) = A0sin(kr − ωt)êq (3.18)

where k = ω/c and êq is the field’s polarization direction. The time-averaged energy density
stored in this field is ⟨uem⟩t = ϵ0cω2A2

0/2. The energy density field is the product of the photon
density ρω and their energy ℏω, i.e., uem = ρωℏω. Equating the classical and quantum mechanical
energy density we can describe the magnitude of the vector potential A0 in terms of the photon
frequency ω such as

A0 =

√
2ℏϱω
ϵ0ω

(3.19)

Since ηEQE is defined per incident photon, ρω = 1
Ω

where Ω is the volume of the unit cell,

obtaining A0 =

√
8π
Ωω

in atomic units. The matrix elements for the coupling between initial and
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intermediate states are

Aµv = −i
eℏ2

2m

√
µ0

2Ωℏω
êq · ⟨φµ|∇|φv⟩ (3.20)

3.2 Computational details

The DFT calculations of the PCBM21 system were performed using the GPAW42 implementation
as well as the ASE10 packages over our EQE Python code43. There was created an array of two
PCBM molecules which were treated through the use of a relaxation process using a Grimme’s
semi- empirical D344 approach. The ASE calculator DFT-D3 is used because it is needed to
take into account the van der Waals interactions between the molecules. Also, the double-zeta
polarized (dzp) basis set of LCAO45 is used to represent KS wavefunctions and electron density.
This first step reaches the minimum energy configuration of the system by iterative adjusting the
positions of atoms, relaxing the potential energy until the maximum force is less than 0.03 eV/Å.
The relaxation process finished with a minimized unit cell of (25.6 x 28.8 x 25.6)Å3 in the x, y,
and z directions respectively.

The exchanging correlation potential of GLLB-sc provides an explicit analytical form for the
derivative discontinuity correction so it is easy to compute. We use the derivative discontinuity
correction to shift the khon sham energy gap that we get from PBE correlation potential ∆xc46 47.

Then, the external quantum efficiency and transmission probabilities were calculated consid-
ering the occupied and unoccupied states. For those calculations, we used a broadening of 25µeV
for the calculation of the density of states.





Chapter 4

Results & Discussion

This chapter is structured into six sections. The first section presents the minimum energy result
from the relaxation process. The second subsection presents the EQE calculations for the PCBM
molecule with light polarization in the x-direction and the transmission. The third shows the
results corresponding to the EQE calculation of the PCBM with light polarized in the y-direction,
and transmission. The fourth section explains the results of EQE of PCBM with light polarized
in the z-direction, and transmission. The fifth section discusses how is the transmission and
efficiency behavior for an arrangement of 4 PCBMs with light polarized in z-direction. Finally,
the sixth section discusses about the excitonic density HUMO and LUMO wavefunctions of the
PCBM.

4.1 Relaxed cell, EQE results for 2PCBMs polarized in x,
y, and z, 4 PCBMs polarized in z-direction and HOMO-
LUMO wavefunctions

4.1.1 Relaxed PCBM unit cell results

Figure 4.1 shows the energy change in electron volts (eV) versus the distance in Å of the
PCBM unit cell. In this way, we determine the most stable configuration for a periodic chain
of the PCBM molecule’s unit cell based on its minimum energy. The code used to obtain this

31



32
4.1. RELAXED CELL, EQE RESULTS FOR 2PCBMS POLARIZED IN X, Y, AND Z, 4 PCBMS

POLARIZED IN Z-DIRECTION AND HOMO-LUMO WAVEFUNCTIONS

7.5 8.0 8.5 9.0 9.5
0

2

4

6

8

10

Unitcell size inÅ

E
ne
rg
y
in
eV

L

y

z
x

Figure 4.1: Energy in eV vs PCBM separation in Å. The minimum value of the energy corresponds
to the most stable configuration and minimized PCBM unit cell system along the z direction. L
represents the distance at which the energy is minimum from center to center.

plot uses an arrangement of two PCBM molecules which will be approaching each other in z
direction measuring the energy at each step. The performed calculation runs based on GPAW
implementation code using PBE exchange-correlation functional, 680 bands, a configuration
of [128, 144, 192] grid points, a structure of [1, 1, 5] k-points, and a Fermi-Dirac electronic
temperature of kBT = 25 meV. As the separation between PCBMs decreases, the energies tend to
diminish because of the attractive van der Waals forces between the two PCBM molecules. The
trend reaches a point where the energy has a minimum value and then tends to increase as the
PCBMs get even closer, meaning that electrostatic repulsion now dominates. It can be noted that
the minimum energy configuration for the size of the unit cell corresponds to 9.35Å. This is the
most stable configuration that will be used for the subsequent calculations.

The resulting atomic structure was used to calculate the electronic density, wavefunctions,
derivative discontinuity correction, Hamiltonian, and overlap matrices, that will be used as input
to our EQE calculations.



CHAPTER 4. RESULTS & DISCUSSION 33

We obtain a derivative discontinuity correction of 0.577 eV, yielding a band gap of 1.88 eV.
After that, both the derivative discontinuity correction and the corresponding most stable unit
cell were used to perform the EQE calculation, the density of occupied and unoccupied states,
and transmission probabilities. Finally, there were made calculations for 2PCBMs which use one
PCBM as two principal layers, in this way, we are taking into account all the interactions between
the left-hand side and the right-hand side of the molecule but dropping out all the interactions
with the neighboring molecule. Also we performed the calculation using 4PCBMs. In this case,
we are heating one PCBM as one principal layer considering all the interactions between one
PCBM and its neighbor but zero interactions with a third PCBM.

4.1.2 PCBM with light polarized in x-direction

Figure 4.2 shows a schematic of the whole EQE calculation process: Fig. 4.2 a) shows the
occupied DOS in arbitrary units versus the energy from 0 to 4 eV; Fig. 4.2 b) shows the
unoccupied DOS in arbitrary units versus the energy from -4 to 0 eV; Fig. 4.2 c) is the absorption
and transmission probability T as function of initial energy εi and excitation energy ℏω in eV;
Fig. 4.2 d) shows the external quantum efficiency ηEQE versus the excitation energy ℏω from 0 to
4 eV;. The white dashed lines mark the top and bottom of each energy band of the occupied and
unoccupied DOS. It can be noticed that there exist three principal regions of available allowed
states for absorption to occur. The first one appears due to the overlapping of the first Lowest
unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) states,
has the smallest transmission of the three regions, and is related to the EQE structure around 1.8
and 2.4 eV. The second one comes from the overlapping of the second LUMO and first HOMO
states and has few structures where the transmission can occur and is related to the EQE structure
at 4 eV. The third one arises from the first LUMO and second HOMO states and has a larger
transmission structure, which will give a more important contribution to the EQE probability and
is related to the EQE structure around 2.8 and 3.8 eV. The transmission color bar indicates the
percentage of the incoming photons that will become charge carriers according to the colors of
the overlapping regions.

Discussing Fig. 4.2 d) in deep, we have isolated molecular states that broaden into “bands”
due to overlap between the neighboring PCBM molecules. It can be noted that there exist three
principal regions where the exited electrons can jump. The first structure can be found around
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Figure 4.2: a) The occupied DOS in arbitrary units plotted from 0 to 4eV; b) unoccupied DOS
plotted from 0 to -4eV; c) transmission probabilities from 0 to 5%, d) EQE probability for light
polarization in the x direction for photon energies from 0 to 4eV.
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1.8 and 2.4eV, this means that it is possible to get some electrons with energy that corresponds to
a small part of the visible range. The second structure corresponds to a part of the visible spectra
and a small part of the ultraviolet, it is around 2.8 and 3.8 eV and has the majority of the excited
electrons. This part generates the largest contribution of the charge carriers of the system. The
last EQE structure is around 4eV which corresponds to the ultraviolet region and represents the
smallest contribution of the EQE that can generate charge carriers. There also exists a reasonably
large energy difference between the first and second structure that separates low and high-energy
charge carriers. Therefore, due to the molecular nature of the system, the exited electrons tend
to stay in the second EQE structure around 2.8 - 3.8eV. In other words, charge carriers are more
long-lived in those high-energy states, making it easier to harness the energy of high-energy
UV photons. Molecular electronics allows us to have discrete energy levels so that in the same
system, it is possible to excite electrons to different energies and use that higher voltage to do
work. In common systems such as silicon, the band gap can be modeled as the difference between
the valence band maximum and conduction band minimum transition. Nevertheless, PCBM is
a molecule and therefore does not have its molecular states broadened into bands. This means
for an excited electron in some unoccupied state there will be no overlap with the valence band
maximum. It means that LUMO and LUMO+2 will not overlap.

4.1.3 PCBM with light polarized in the y-direction

Figure 4.3 shows a schematic of the whole EQE calculation process with light polarized in y
direction, Fig. 4.3 a) represents the occupied DOS in arbitrary units versus the energy from 0 to
4eV; Fig. 4.3 b) represents the unoccupied DOS in arbitrary units versus the energy from -4 to
0eV; Fig. 4.3 c) is the absorption and transmission probability T as a function of initial energy
εi and excitation energy ℏω in eV; Fig. 4.3 d) represents the external quantum efficiency ηEQE

versus the excitation energy ℏω from 0 to 4eV.
Anew, the white dashed lines mark the top and bottom of each energy band of the occupied

and unoccupied DOS. Also, there exist the same three principal regions of available allowed
states for absorption to occur, nevertheless, the colors and structures in the transmission plot are
a bit different due to the change in polarization. Similarly, the first region appears due to the
overlapping of the first LUMO and HOMO states, has the smallest transmission, and is related
to the small structure around 2.2eV. The second one comes from the overlapping of the second
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Figure 4.3: a) The occupied DOS in arbitrary units plotted from 0 to 4eV; b) unoccupied DOS
in arbitrary units plotted from 0 to -4eV; c) transmission probabilities from 0 to 5%; c) EQE
probability with light polarization in the y-direction for photon energies from 0 to 4eV.
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LUMO and first HOMO states, it has few structures where the transmission can occur and is
related to the EQE structure at 4eV. The third one arises from the first LUMO and second HOMO
and has a larger transmission structure, which will give a more important contribution to the EQE
probability and is related to the EQE structure around 2.8 and 3.8eV. The transmission color bar
indicates the percentage of the incoming photons that will become charge carriers according to
the colors of the overlapping regions.

Explaining Fig. 4.3 d) in deep, there exist three regions where exited electrons can be stored.
Nevertheless, the first around 2eV and the third one around 4eV are too small, and almost no
electrons can be exited at those energies. The most important EQE region where the exited
electrons can jump lies around 2.8 and 3.8eV. This means that the electrons that remain in that
region will generate the majority of charge carriers of the system. It is possible to find the
same band gap that appears in Figure 4.4 between the first and second structures. Therefore, the
electrons are more long-lived in the high-energy states of the second structure.

4.1.4 PCBM with light polarized in the z-direction.

Figure 4.4 shows a schematic of the whole EQE calculation process with light polarized in the
z-direction, Fig. 4.4 a) represents the occupied DOS in arbitrary units versus the energy from 0
to 4eV; Fig. 4.4 b) represents the unoccupied DOS in arbitrary units versus the energy from -4 to
0eV; Fig. 4.4 c) is the absorption and transmission probability T as a function of initial energy
εi and excitation energy ℏω in eV; Fig. 4.4 d) represents the external quantum efficiency ηEQE

versus the excitation energy ℏω from 0 to 4eV.
Anew, the white dashed lines mark the top and bottom of each energy band of the occupied and

unoccupied DOS with the same three principal regions of available allowed states for absorption
to occur. Again, the colors and structures in the transmission plot are a bit different due to the
light polarization in z. The first region appears due to the overlapping of the first LUMO and first
HOMO states, has the smallest transmission, and is related to the small structure around 1.8 and
2.4eV. The second one comes from the overlapping of the second LUMO and first HOMO states,
it has few structures where the transmission can occur and is related to the EQE structure at 4eV.
The third one arises from the first LUMO and second HOMO states and has a larger transmission
structure, which will give a more important contribution to the EQE probability and is related to
the EQE structure around 2.8 and 3.8eV. The transmission color bar indicates the percentage of
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Figure 4.4: a) The occupied DOS in arbitrary units plotted from 0 to 4eV; b) unoccupied DOS
in arbitrary units plotted from 0 to -4eV; d) transmission probabilities from 0 to 5%; c) EQE
probability with light polarization in the z-direction for photon energies from 0 to 4eV.
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the incoming photons that will become charge carriers according to the colors of the overlapping
regions.

Explaining Fig. 4.4 d) more accurately, there exist three regions where exited electrons can
be stored. There exist some small peaks around 2eV and a sharp peak around 4eV, then some
electrons can be exited at that energies, but the most important EQE region where exited electrons
can jump lies around 2.8 and 3.8eV. This means that the remaining electrons in that region will
generate the majority of charge carriers of the system. Again, it is possible to find an energy
separation that appears in Fig. 4.4 d) and Fig. 4.6 d) between the first states around 2eV and the
second states around 3eV. Therefore, the electrons are more long-lived in the high-energy states
of the second structure.

One interesting remark is that if we analyze the figures 4.2 d), 4.3 d) and 4.2 d) the resulting
EQE in the y and z-directions has a few states around 2ev, in comparison with the x-direction
which is the one that has more states at that region of the visible spectra. This can be explained
by the relative facility for an electron to do a transition according to the direction. With the light
polarized in the x-direction, an electron can jump more easily from the functional group to the
fullerene, and it is reflected with more states around 2eV in the EQE plot. For light polarized in the
y-direction, the transitions can also occur from the functional group to the fullerene, nevertheless
is less efficient compared with polarization in x. In contrast, for z-polarization the electrons excite
from the fullerene to the neighboring fullerene, therefore the excitations will be reduced due to
the separation distance. This is reasonable since the polarization in z has the lowest EQE states
for high-energy photons around 3 and 4eV.

Finally, it is necessary to mention that in solution, the PCBM molecules are oriented randomly,
to model this computationally we are creating a semi-infinite arrangement of PCBM molecules
oriented the same to simplify the problem. We expect that the results we obtain by doing this
approximation do not affect the efficiency results appreciably because as we can see in fig 4.6 in
the transitions only participate the fullerene.

4.1.5 4PCBM with light polarized in the z-direction.

In Fig. 4.5 we can see that the occupied density of states is slightly different compared to its
counterpart with a unit cell of 2 PCBM molecules. Also, the transmission color structure and the
EQE change a bit. We can see an increase in the probability states around the visible spectra. This
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information tells us that including all the atomic interactions using a 4 PCBM unit cell increases
the probability of a photon being absorbed and transmitted. Additionally, with all these examples,
we can infer that the model presented here produces results for EQE that can be interpreted and
explained physically.

4.1.6 HOMO-LUMO wavefunctions

Figure 4.6 represents the spatial distributions of the HOMO-LUMO wavefunctions for the negative
phase factor (blue) and positive phase factors (red) for an arrangement of 4 PCBM molecules.
The PCBM molecule has a sp2 hybridization for the carbon since it is a fullerene, and has different
combinations of pz orbitals around the molecule.

The functional group is not involved in the transitions and is perturbing the eigenstates of
the fullerene lowering the band gap and pushing down the energy into the visible spectra. Once
in the LUMO state, there exists hopping between neighboring molecules acting as a conducting
state. The overlaps between HOMO and LUMO states are higher when light is polarized in the
x-direction.

The HOMO-LUMO wavefunctions show a π − π∗ transition, but the functional group is not
involved in this process.
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[H]

Figure 4.5: a) The occupied DOS in arbitrary units plotted from 0 to 4eV; b) unoccupied DOS
in arbitrary units plotted from 0 to -4eV; d) transmission probabilities from 0 to 5%; c) EQE
probability with light polarization in the z-direction for photon energies from 0 to 4eV.
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[H]

Figure 4.6: Spatial distributions of the wavefunction for the negative and positive phase factors
densities of the PCBM molecule HOMO and LUMO. C, O, and H are depicted in grey, red, and
white respectively.



Chapter 5

Conclusions

This thesis analyzes an arrangement of an infinite periodic chain of PCBM molecules, its trans-
mission, the occupied and unoccupied density of states, and EQE for light polarized in x, y,
and z directions. We have also shown the HOMO and LUMO wavefunction to analyze how the
transitions are occurring.

The most stable configuration of a PCBM unit cell was determined by identifying its minimum
energy. The minimum energy configuration corresponds to a unit cell size of 9.35 Å. The atomic
structure file associated with the most stable unit cell was employed to compute the ground state
electronic structure, wavefunctions, Hamiltonian, overlap matrices, and derivative discontinuity
correction in the subsequent calculations. This structure was also utilized to obtain a derivative
discontinuity correction of 0.57 eV and a band gap of 1.8 eV. Following this, both the derivative
discontinuity correction and the associated most stable unit cell were employed to compute EQE
calculations, determine the density of occupied and unoccupied states, and assess transmission
probabilities. Changing the polarization of the light affects the vector potential Â by giving a
direction to ∇r in Eq 4.1.

The EQE plots for light polarization in the x, y, and z directions were also examined. All three
plots exhibit similar three energy regions where charge carriers are generated. The first region is
observed around 1.8 to 2.4 eV, capturing a small portion of the visible range. The second region
spans approximately 2.8 to 3.8 eV, capturing a significant portion of the visible spectrum along
with a minor segment of the ultraviolet range, providing the majority of excited electrons. The
final EQE structure is situated around 4 eV, corresponding to the ultraviolet region, representing

43



44

the smallest contribution to the EQE that can generate charge carriers.
Due to the molecular nature of the system, the excited electrons are expected to stay in

the second EQE structure around 2.8 - 3.8 eV. This is because there exists a significant energy
difference between the first and second structures that could act as a gap between those low
and high-energy charge carriers states. Additionally, it was determined that the EQE plot with
the largest intensity is for x polarization, followed by the y direction. Finally, the EQE plot for
polarization in z is the one with the lowest intensity.

This can be explained by the relative facility for an electron to do a transition. With the light
polarized in the x-direction, an electron can jump more easily from the functional group to the
fullerene. For light polarized in the y-direction, the transitions can also occur from the functional
group to the fullerene, nevertheless is less efficient compared with polarization in x. Finally, for
z-polarization, the electrons excite from the fullerene to the neighboring fullerene, therefore the
transmission will be reduced due to the separation distance.

We analyzed the EQE calculation process for 2 PCBM molecules for x, y, and z light
polarization and also for a 4 PCBM unit cell with light polarized in z. Plots were categorized: a)
occupied DOS versus energy, b) unoccupied DOS versus energy, c) absorption and transmission
probability versus energy, d) EQE versus excitation energy. White dashed lines marked energy
band boundaries. Three absorption regions were identified: 1.8-2.4 eV from the first LUMO-
HOMO overlap, 2.8-3.8 eV from the first LUMO-second HOMO overlap, and 4 eV from the
second LUMO-first HOMO overlap. Maximum charge carrier conversion was around 5% for all
polarizations.

This model can be applied to test many semiconductor materials used to construct photovoltaic
cells. Even if the model does not show the same EQE as in experiments, it gives a trend that can
be used for rating the best options for an experimental design. For future work, this model can
be implemented together with AI, this way reading large amounts of atomic data sets looking for
those materials that give high EQE. This makes it easier to find candidates with better efficiency
properties for constructing solar cells. The model can be used as a tool to improve the process of
designing better solar cells.
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