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Resumen

Al mejorar la situación actual en los barrios marginales, el Ecuador estaŕıa un paso más
cerca de alcanzar los Objetivos de Desarrollo Sostenible para 2030. Hoy en d́ıa, existe la
voluntad poĺıtica para mitigar este problema pero, desafortunadamente, un mecanismo que
busque una solución óptima con la mı́nima inversión no ha sido estudiado en Ecuador.

Brelsford et al. [1] propusieron un enfoque matemático para mejorar cualquier barrio
marginal. Alĺı los autores aseguran que es la topoloǵıa y no la geometŕıa, la que dicta la
forma esencial de las ciudades. Por ello, el crecimiento y/o planificación de los suburbios/-
vecindarios se debeŕıan centrar en cambiar la topoloǵıa de las ciudades, independientemente
de su geometŕıa espećıfica. Estos cambios en la topoloǵıa se logran mediante la construcción
de nuevas carreteras. Por lo tanto, uno puede hacer que cualquier barrio marginal tenga
propiedades topológicas similares a un vecindario planificado con la creación de calles. Adi-
cionalmente, por los escasos recursos económicos de muchos páıses es necesario encontrar la
forma de elegir la mejor combinación posible de calles con el objetivo de obtener un barrio
que sea topológicamente equivalente a un barrio planificado con el uso de la menor cantidad
de recursos posibles.

En este trabajo se llevó a cabo un estudio del enfoque propuesto por Brelsford et al. Se
realizó una replica de sus métodos en un ejemplo académico y se utilizó este enfoque en una
aplicación de la vida real.

Keywords— Mejora de barrios marginales, teoŕıa de grafos topológicos, optimización to-
pológica, topoloǵıa de la ciudad



Abstract

Helping to improve the current situation in Ecuadorian slums would be a step closer to
achieving the Objectives of Sustainable Development by 2030. Nowadays, there is already
the political determination to mitigate this problem but unfortunately, a mechanism that
seeks an optimal solution with the minimum investment has not been studied in Ecuador.

A mathematical approach for upgrading any slum was proposed by Brelsford et al.[1].
There, the authors ensure that it is the topology and not the geometry, that dictates the
essential shape of the cities. So that the growth and/or planning of the suburbs/neigh-
borhoods should be focused on changing the topology of cities, regardless of their specific
geometry. These changes in the topology are achieved through the construction of new
roads. Therefore, one can make any slum has similar topological properties to a planned
neighborhood with the creation of streets.

In this thesis, a study of the approach proposed by Brelsford et al. is done by replicating
its methods in an academic example and using this approach in a real-life application.

Keywords— Slums upgrading, topological graph theory, topological optimization, topology
of city
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1. Introduction

The deurbanized growth of cities is a problem that has plagued Ecuador for a long time.
Particularly, in the city of Guayaquil, you can find many marginal neighborhoods that lack ade-
quate basic services[2]. This problem is so common in Ecuador that the government created the
Superintendencia de Ordenamiento Territorial, Uso y Gestión del Suelo in 2016. The objective
of this organization is to help citizens to have better access to a safe habitat[3].

Despite the efforts made by the government, the number of new constructions in informal
settlements increases every year. This could be because although people living in informal set-
tlements are in worse conditions than the ones living in formal urban areas, these people have
better access to jobs located in the city than if they would live in places far from the city[4].
However, the inadequate infrastructure of informal settlements typically implies that their in-
habitants do not have access to a better quality of life[5].

Since adequate urbanization increases the potential of human development and economic
growth, among other things, many cities are willing to improve the planning of neighborhoods.
Throughout history, there have been several approaches to improve the situation of slums in
the world. Around the 1970s the preferred option was the relocation of residents to new public
housing developments. However, given the large number of people living in slums, this solution
required an exorbitant amount of resources, which made it an unfeasible option for developing
countries[6].

Nowadays, one of the most recommended strategies by the United Nations Human Settle-
ments Program (UN-Habitat) is to build new streets or change the traffic direction of them
to improve the condition of the slums[6]. This is because the street network can improve the
integration of the slums in two levels. Within the neighborhoods, the streets allow better inte-
gration of its inhabitants, increasing social interaction and increasing the economic development
opportunities of the inhabitants in the place. And within the city, the streets allow the integra-
tion of the neighborhood with the rest of the metropolis through a physical integration to the
urban transport network which benefits the city[6].

However, the development of new streets is often an expensive process, especially for develo-
ping countries. Consequently, it is necessary to plan the construction of new roads minimizing
the investment. For this purpose, a mathematical approach seems to be a suitable tool to solve
this problem[1].

Several researchers have analyzed this problem with different approaches. Some of them
have tried to explain the shape of cities based on fractals, while others have used the ideas be-
hind cellular automata to understand the complex system of how cities evolve[7]. The approach
that is discussed here uses tools of topological graph theory to study the difference between
planned neighborhoods and slums[1].

Graph theory has been used to better understand cities[8]. For instance, in 1735, Leonhard
Euler solved what is known as the problem of the bridges of Königsberg[9]. This problem con-
sists in how a citizen of Königsberg could travel the city crossing its seven bridges and return
home. Euler quickly noticed that ”this branch is concerned only with the determination of
position and its properties; It does not involve distances, nor calculations made with them”[9].
Some historians believe that the paper of Königsberg is also the precursor of what is known as
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Topology since the solution of this problem opened the way to the study of the Hamiltonian
circuits, a topic that continues to be investigated these days[9].

In an article by Luis Bettencourt and Geoffrey West for the journal Nature, they indicate
that ”New York and Tokyo are, to a surprising and predictable degree, non-linear versions of
San Francisco in California or Nagoya in Japan”[10]. This means that there are common pro-
perties between cities and that a city can be considered as an approximately scaled version of
another. This same fact is used by Brelsford et al. because they identify that regardless of
the appearance of the neighborhoods there are topological properties that vary if a planned
neighborhood or a slum is analyzed[1]. Moreover, they show that it is possible to change the
configuration of a slum to eliminate these differences with planned neighborhoods[1].

This work shows the development and use of an algorithm that tells us how road construction
should be planned to upgrade slums. In this thesis, we implement and run this algorithm in a
sector of Ciudad de Dios, a marginal neighborhood of Guayaquil, with the aim that this area
is topologically equivalent to a planned neighborhood. Thus, the main objective is to analyze
the mathematical approach proposed by Brelsford et al. [1] and replicate the method in an
academic example and the Ciudad de Dios neighborhood.

2. Basic Concepts

2.1. Slums

2.1.1. Definition and Properties

Despite that in the literature, there are several ways to define slums, the one that is most
useful in the context of this work is that a slum is a set of buildings of spontaneous origin in
a landscape. Due to its spontaneous origin, it turns out that the slums seem to be planless
or antiplan[11]. An attempt to classify the slums is shown in [11], where they indicate that
there are two key factors to determine the type of slum: hope (or despair) and escalator (or
non-escalator), see Figure 1.

Figure 1: Slums classification. Reprinted from “A theory of slums,” by C. J. Stokes, 1962, Land
economics, vol. 38, p. 189. Copyright Year by JSTOR.

The hope factor is related to the reason for the settlement, whether it is done by necessity
or in search of better opportunities. While the escalator factor is related to the integration of
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slum dwellers for reasons of culture, religion or race.

The slums are categorized as types A, B, C, D. In practical terms, most of type A slums
are the result of migrations of people from the same country who have some economic capacity.
While the slums belonging to the other types are formed by people of very different origins
or with no economic capacity. This causes that differences can be appreciated in the ordering
of the constructions according to the type of slum. For instance, in the slums of type A we
could find a kind of linear arrangement of the constructions because people living there have
the intention to stay there for a while, but in slums of type D the constructions seem to be
more random because their dwellers were probably settling for need, see Figures 2 and 3.

Figure 2: Slum of type D. By In-
stitute for Housing and Urban De-
velopment Studies, CC BY-SA 3.0,
https://commons.wikimedia.org /w/in-
dex.php?curid=34389333

Figure 3: Slum of type A. Reprinted from
“SLUM ALMANAC 2015/2016: Tracking Im-
provement in the Lives of Slum Dwellers,” by
UN-Habitat, 2016, Participatory Slum Upgrad-
ing Programme, p. 9. Copyright Year by UN-
Habitat/Julius Mwelu.

It is important to take into account that since the proposed factors for the classification
are qualitative, a slum could be of type A but still have certain similarities with those of other
types.

2.1.2. Slums Upgrading

According to the UN-Habitat, the policies used to deal with slums in the last decades can
be grouped into three categories: laissez-faire, restrictive or preventive, and supportive[6].

The laissez-faire strategies (let do strategies) part of the fact that the slums are a temporary
phenomenon, that is, the inhabitants of them are positioned there until they improve their eco-
nomic situation and then move to another more appropriate place. However, for the majority of
slum dwellers, this was not achieved, because the costs of living in other places are prohibitive
for them, or because moving to other places they would be distant from possible sources of
employment[6].

The second type of strategies were based mainly on the resettlement of slum dwellers to
state public housing. The problem with this was that the number of people living in slums
is incredibly high, so resetting them involves a huge expense[6]. It has also been found that
although resettled people improve their living capacity, many of them prefer to return to their
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former settlements in slums[4].

The last type of strategy uses a participatory approach from the public sector to improve
the conditions of current settlements. For these strategies to be the most effective, it is desirable
to involve the inhabitants in the planning of the policies in order to take into account the pecu-
liarities of the site, among other things[6]. According to the UN-Habitat, intervening in slums
for a street-based strategy is one of the best ways to improve slums. This is mainly because
in this way tangible results can be seen, such as improvement in accessibility, infrastructure,
design layout and legalization of land tenure[6].

In [1], a street-based strategy for the improvement of slums using topological algorithms is
proposed. The urbanist Bertaud is a detractor of the use of strategies guided by topological
algorithms to restructure the slums. Because usually, the solutions that involve the construction
of roads need to create space, which will be obtained through the eviction of some inhabitants[8].
However, the reality of slums in Ecuador is that they are not as dense as those that can be
found in other countries such as India for example. This makes it easier to find ways to create
these roads without moving the current buildings.

2.1.3. Slums in Guayaquil

According to Camila Mackliff, 59% of Guayaquil’s surface is occupied informally [12]. This
is due to the fact that the growth of the city took place through the informal accumulation of
people who migrated to the city, at first, fleeing the adverse conditions generated by the eco-
nomic crises that occurred in the history of Ecuador but now to take advantage of the economic
conditions provided by the city with the largest maritime port in Ecuador[13].

Given the current conditions of creation of the slums, it can be said that most of the new
slums in Guayaquil are of type A. In particular, the Ciudad de Dios neighborhood which in
2015 was an area with few numbers of houses but now can be found large spontaneous con-
structions, see Figure 4. An important characteristic of the informal settlements of Guayaquil
is that normally the lands where they are located belong to land traffickers, which means that
the location of the houses is carried out in lots and that it is not completely random[13].

Figure 4: Satellite image of Ciudad de Dios in 2015 (left). Satellite image of Ciudad de Dios in
2018 (right).
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2.2. Topological Graph Theory

Before showing the results of the study of the Topology of the Cities, it is necessary to
review some general concepts of the theory of topological graphs. Our principal resources are
[14], [15], [16] and [17].

Definition 1 (Graph). A graph G is a pair of sets (V,E), where V is a finite non-empty set
of elements called vertices, and E is a finite set of elements called edges, each of which has two
associated vertices (which may be the same).

The sets V and E are the vertex-set and edge-set of G and are sometimes denoted by V (G)
and E(G). The order of G is the number of vertices, usually denoted by n, and the number of
edges is denoted by m, see Figure 5.

6

4

5

1

2

3

Figure 5: Graph of order 6.

Definition 2 (Walk). A walk in a graph is a sequence of vertices and edges v0, e1, v1, . . . , ek, vk,
in which each edge ei joins the vertices vi−1 and vi. This walk goes from v0 to vk or connects
v0 and vk, and is called a v0 − vk walk.

a path is a walk in which no vertex is repeated;

a cycle is a non-trivial closed walk in which no vertex is repeated, except the first and
last;

a trail is a walk in which no edge is repeated;

a circuit is a non-trivial closed trail.

Definition 3 (Surface). A (topological) surface is a topological space in which every point has
an open neighborhood homeomorphic to some open subset of the Euclidean plane E2.

Definition 4 (Genus of a Graph). The genus γ(G) of a graph G is the minimum genus of a
surface in which the graph can be embedded – that is, the minimum number of handles that need
to be added to the sphere for G to be embeddable.

A connected graph of genus 0 is said to be planar. In general, a graph is planar if all of its
components are planar. Thus, non-empty connected planar graphs are the graphs embeddable
in the sphere. They are the ones that underlie spherical gems. In general, the determination of
the genus of a graph is an unsolved problem.
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There are two kinds of closed surfaces, orientable and nonorientable. A surface is orientable
if a positive sense of rotation (say, clockwise) can be made around all points consistently, and
is non − orientable otherwise. The sphere, the torus, the double torus, the triple torus, and
so on, are orientable. They are commonly denoted S0, S1, S2, S3, ... Moreover, every closed
connected orientable surface is homeomorphic to one of them. Another characterization of the
closed orientable surfaces is that each one can be obtained by adding some handles to a sphere.
Adding one handle yields S1, adding two yields S2, and so on. See Figure 6.

Figure 6: A 2-sphere (genus 0), a torus (genus 1) and an orientable surface of higher genus. By
Daniel Müllner, http://www.map.mpim-bonn.mpg.de/images/5/57/Surfaces.png

A sphere and a torus are examples of closed surfaces. They have no punctures, they do not
run off to infinity, and they do not have any sharp boundaries. Sometimes we want to consider
surfaces that are not closed. A disk and a cylinder are examples of surfaces with boundary.
A surface with boundary is still locally 2-dimensional, except that it may have one or more
1-dimensional boundary curves, see Figure 7. The surfaces of Figure 7 are equivalent to each
other. This is because one can continuously deform one to obtain the other.

Figure 7: Some examples of orientable surfaces with boundary. By File: Simple
Torus.svg: YassineMrabet File: Sphere wireframe 10deg 6r.svg: Geek3derivative work S
by rnes321 - File: Simple Torus.svg File: Sphere wireframe 10deg 6r.svg, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=12445003

A very important property that relates graphs with surfaces is that of ”embedding”, which
is related to the notion of being able to draw a graph on a surface without the arcs of it crossing
each other.

Definition 5 (Embedding of a Graph on a Surface). An embedding of a graph G on a surface
S is a one-to-one mapping of the vertices of G into that surface and a mapping of the edges
of G to disjoint simple open arcs, so that the image of each edge joins the images of its two
vertices and none of the images of the edges contains the image of a vertex.

The plane is not closed, but since it differs from the sphere by only a single point, it follows
that a given graph can be embedded in the plane if and only if it can be embedded in the sphere.
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A region of an embedded graph G is a maximal connected set of points in the relative
complement of G in the surface; note that one region is unbounded. The topological closure
of a region (that is, the region together with the vertices and edges of G on its boundary) is a
face.

Definition 6 (Cellular Embedding). An embedding is cellular if every region is homeomorphic
to an open disc.

Theorem 1 (Euler’s formula). If a simple graph G has a cellular embedding in a surface S
with n vertices, m edges and r regions, then n −m + r = 2 − 2h, where h is the genus of the
surface Sh.

The number associated with S in this theorem is called its Euler characteristic.

Definition 7 (Poincaré Dual Embedding). The Poincaré dual embedding for a cellular graph
embedding G −→ S(called the primal embedding in this context) is constructed as follows:

in the interior of each primal region, a dual vertex is drawn;

through each primal edge, a dual edge is drawn joining the dual vertex on one side of the
edge to the dual vertex on the other (thus, a loop whenever the same primal region lies on
both sides of that primal edge);

if the surface S is oriented, then in the dual embedding, the orientation is reversed.

The dual graph has been used to perform several proofs in which the initial problem was
not established on graphs. For example, in the demonstration of the four-color map theorem.
The theorem indicates that in a map of a country with continuous regions, it is only necessary
at most four colors so that two continuous regions are not colored the same. In terms of the
dual graph, this problem is reduced in that two adjacent nodes do not have the same color, see
Figure 8.

Figure 8: Coloring the adjacency graph gives a coloring of the map. Reprinted from “Eu-
ler’s Gem: The Polyhedron Formula and the Birth of Topology,” by David S. Richeson, 2008,
Princeton University Press, p. 136. Copyright Year by Princeton University Press.

A famous graph is the Birkhoff diamond, that it is used to study the colorability of some
graphs[18], this graph is shown in Figure 9. Particularly, George D. Birkhoff states that the
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configuration of that graph cannot be present in a minimum counterexample to the four color
theorem[19].

Figure 9: Birkhoff diamond. By Snorri95, CC BY-SA 3.0, https: //commons.wikimedia.org/
w/ index.php?curid=24977673

2.3. Topological Optimization

The size, shape, and topology have a big importance in the field of structural design engineer-
ing since these design features have a high-impact on the performance of the final product[20].

The problems of size, shape and topology optimization are resolved in different ways. Par-
ticularly, the topological optimization of structures is involved in the determination of charac-
teristics such as the number, location, and shapes of the holes that will have the design[20].
This translates into establishing in which points of space should have had material and in what
points should remain empty. For instance, when topological optimization is implemented in the
design of a car wheel different feasible solutions could be obtained according to the number of
holes that must be added in the design region[21]. One of these solutions is showed in Figure 10.

Figure 10: Topological optimization for a wheel under different loads. Reprinted from “Topology
Optimization of Periodic Structures,” by Zhihao Zuo, 2009, RMIT University, p. 87. Copyright
Year by RMIT University.

The result obtained by using topological optimization can lead to new and innovative
designs[22]. And these designs could serve as a starting point for then use other optimiza-
tion criteria of interest to the designer[20].

There are several methods to perform topological optimization, one of the most common is
the Evolutionary Structural Optimization Method (ESO). This method is based on removing
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unnecessary material from the structure and thus evolving to the optimal shape and topology of
the object[23]. If we divide the fixed design domain in grids, it would be as pixels for an image,
then the solution of a topological optimization through ESO could be understood as removing
pixels from an image, see Figure 11.

Figure 11: Intermediate half designs of a topological optimization example. Reprinted from
“Topology Optimization of Periodic Structures,” by Zhihao Zuo, 2009, RMIT University, p.
208. Copyright Year by RMIT University.

Besides the use of topological optimization in the field of structural design, this type of
optimization is also used to obtain more robust communication networks that are governed by
different design restrictions and have the lowest possible cost[24]. For example, it is possible to
use a heuristic approach to be able to determine the topology of an optimal Internet network.
Starting from a shorter tree (minimum expansion tree) and then adding connections between
nodes that have a lot of data traffic one could have a robust internet network[24].

3. Results

In order to achieve the goals of this project, we proceed in the following way. First, we
carry out a bibliographic review of the relevant definitions about slums as their characteristics
and classification. Then, an analysis of the situation of the slums in the city of Guayaquil was
made, with emphasis on the Ciudad de Dios sector. Subsequently, the bibliographic review was
aimed at compiling the concepts of topological graph theory that we are going to use in this
work. Then, we follow the approach proposed in [1]. The main goal here was to understand
how the tools of topology and graph theory can be used to diagnose and solve neighborhood
development problems. The next step was to reuse and modify the tools that the authors of [1]
made available to the public for the implementation of their approach. After that, an academic
example was developed to be able to obtain some different solutions that the approach can give
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us. Finally, a sector of the Ciudad de Dios neighborhood was digitized to execute the approach
and analyze the result that it has produced when being used in an Ecuadorian slum.

In this section, we introduce some topological concepts that are used to demonstrate that
using the topological properties of the neighborhoods is a valid methodology to characterize
them.

3.1. Topology of a City

The topology of cities/neighborhoods can be understood as the topological relationship
between the two main components of the city: its streets and its buildings. This is the reason
why it is necessary to understand the topology of the access systems and the topology of the
constructions, to then see how they are related according to each city.

3.1.1. Topology of the Access System

The set of paths and roads of any city is called the urban access system. The access sys-
tem has the property of being path-connected, i.e., any two points on this surface can be
connected traveling on the surface. Moreover, access systems are orientable, 2-dimensional
surfaces and compact. These properties are related with the following facts: there is a global
definition of up from down, we can only move on road and path surfaces and the surface is finite.

Moreover, the urban access system is a 2D surface with both internal and external boun-
daries: the limit of the city is the external boundary, while boundaries between accesses and
each place are the internal boundaries. So, for a city with b blocks, there are b internal boun-
daries and one external boundary so that the total number of boundary components, B, is
B = b + 1. In this sense, a city subsection is defined as a set of contiguous city blocks and
surrounding access system, including an external boundary that defines the physical limits of
the subsection. When a subsection includes all blocks it is equivalent to the city and shares its
entire access system.

The authors in [1] show that the topology of the access system of a city with b blocks is
equivalent to the topology of a sphere with b+ 1 disks removed. In consequence, urban access
systems are topologically equivalent if, and only if, they have the same number of blocks. More-
over, if we use a graph representation of the urban access system (Y ), as the one suggested in
[25], where edges correspond to roads or paths, and nodes correspond to their intersections, Y
has the same Euler characteristic as the urban access system, χ(Y ) = 1− b.

These deductions are summarized in the following theorem and corollaries which were ob-
tained from [26]:

Theorem 2 (Topological Classes of Urban Access System). The access system of any city with
b blocks is topologically equivalent to a sphere with B = b+ 1 disks removed.

Proof. The proof of this theorem is based on the fact that the surfaces with boundaries can
be constructed by removing open discs from the surfaces without boundary. Therefore, as the
access system is orientable, 2-dimension and has genus zero; it is topologically equivalent to a
sphere but with b+1 open discs removed.

The proofs of the following four corollaries are trivial by the definition of topological equi-
valence and the previous theorem. So, we include only the proof of the fifth corollary.
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Corollary 2.1. For any value of b, two cities with b blocks have access systems that are topo-
logically equivalent, since both cities’ access systems are topologically equivalent to a sphere with
b+ 1 disks removed.

Corollary 2.2. Any subsection of one city with b blocks has an access system that is topologically
equivalent to that of another subsection of another city with b′ blocks, if and only if b = b′.

Corollary 2.3. The access system of an entire city with b blocks is topologically equivalent to
a subsection of any other city with the same number of blocks.

Corollary 2.4. Urban Access Systems are topologically equivalent if and only if they have the
same number of blocks.

Corollary 2.5. A 1-complex graph representation of an urban access system with b blocks, where
edges correspond to road and path centerlines and nodes correspond to their intersections, called
the urban access network, Y , has the same Euler characteristic as the urban access system,
χ(Y ) = 1− b.

We recall the proof of this corollary due to Brelsford et al. in [26].

Proof. Let’s compute the Euler characteristic of a general surface S with B boundaries.

First define a surface C, where S∗ corresponds to S with all the B boundaries patched by
disks.

Then, χ(S∗) = χ(S)+B∗χ(Disk). Since, χ(Disk) = 1 and χ(S∗) = 2 because S∗ is a sphere.

χ(S) = 2− (1 + b) = 1− b.

On the other hand, a 2-complex planar graph has χ = v − e + f = 2, while a 1-complex
planar graph has χ = v − e. Let be Y2 a 2-complex graph representation of the urban access
system, then, Y2 has one face per each boundary so f = b+ 1.

Then, χ(Y2) = v − e+ f = 2
v − e = 2− f = 1− b = χ(Y ). Therefore, χ(Y ) = χ(S) = 1− b

3.1.2. Topology of City Blocks

Brelsford et al. use the general term parcel in [1] to denote the decomposition of the city
block land area into separate units: these are buildings, or more generally, separate land hold-
ings and include public places that are not accesses. When a parcel is adjacent to the access
network. it is said that this parcel is accessible. In the case where the parcel is not adja-
cent to the access network. it is internal to the block, this implies that its access is mediated
through other parcels. However, interior parcels can be connected to the urban access sys-
tem by converting edges in the S0 graph from parcel boundaries to roads, where the edges of
S0 correspond to the boundaries of each parcel and its nodes to their intersections, see Figure 12.
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Figure 12: Parcels of a neighborhood in Guayaquil (left). Corresponding S0 graph (right).

One characteristic of most of the planned neighborhoods is that all their parcels are acces-
sible whereas slums are more likely to have inaccessible parcels [6]. Then, the connectivity of
the neighborhoods is a feature to take into account. This characteristic of the neighborhood
can be analyzed using a metric kmax, called block complexity, which measures the connectivity
of a city block. Additionally, they have shown that it is possible to find kmax by iterating the
construction of weak dual graphs to S0; the weak dual graph of S0 is S1, where each parcel
becomes a node and adjacency becomes an edge. This procedure should be done iteratively
(Sk−1 −→ Sk) until there are not more regions in the graph Sk. Moreover, they found that the
complexity of universally accessible blocks (blocks with all parcels accessible) is k ≤ 2, while
non-universally accessible blocks (blocks with interior parcels) will have k > 2. Furthermore,
a block S is universally accessible if, and only if, S2 is a tree. And, if a parcel is represented
with a node in the Sk graph, at least k−1

2 parcel boundaries must be crossed in order to reach
it from the nearest section of the access system.

Finally, in the minimal set of additional roads necessary to have a universal accessible block,
there will be no loops. Thus, newly constructed roads in the minimal set of accesses form a
tree or set of trees (culs-de-sac). This feature is interesting because loopless configurations have
seemed in river basins where every spanning tree is exactly a local minimum of total energy
dissipation [27].

These statements are shown in more detail, as in [26], in the following.

Definition 8. A block S is called universally accessible if every parcel within S adjoins a road.
Otherwise, S is not universally accessible.

Definition 9 (minimal set of accesses). Interior parcels can be connected to the urban access
system by converting edges in the S0 graph from parcel boundaries to roads. The minimal set of
additional roads necessary to connect a given parcel to the road system is the set of edges with
the shortest total length such that at least one node contained in the set of edges to be converted
is part of an existing road, and at least one node is part of the face in S0 that surrounds the
parcel.

Definition 10. In a graph G, a cycle is a collection of m vertices and m edges arranged so
that each vertex has exactly two edges incident to it, where m ≥ 3.

Definition 11. A face of a planar graph is a maximal region in the plane that contains no edge
or vertex of the graph.
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Definition 12 (Weak Dual Graphs). For each bounded face of S0, we assign a vertex in S1.
Two vertices of S1 have an edge between them if and only if the faces of S0 they represent share
a common border of at least one edge in S0. Then, S1 is the weak dual graph of S0. For a block
S, we may then assign a stage k graph, Sk, defined recursively by repeating the process used to
construct S1 from S0 on the stage k − 1 graph Sk−1.

In Figures 13, 14 and 15, there are shown the correspondent construction of the successive
stage graphs. Moreover, the original graph has a block complexity of 4.

Figure 13: Stage graph S1 Figure 14: Stage graph S2 Figure 15: Stage graph S3

Definition 13 (block complexity). The complexity of the block S is the smallest positive integer
k such that Sk is a tree. Every block will be characterized by a positive, discrete value of this
complexity.
The complexity of universally accessible blocks is k ≤ 2. Non-universally accessible blocks will
have k > 2.

Definition 14. A graph G is called a tree if G contains no cycles.

Definition 15. A vertex v of a graph G is called an interior vertex if there exists a cycle
surrounding v so that deleting this cycle from G results in either:

1. Two connected components, one of which contains vertex v and all of its incident edges,
or

2. Just the vertex v and its incident edges.

Theorem 3. A block S is universally accessible if, and only if, its stage-two graph, S2, is a
tree.

We now bring the proof that Brelsford et al. developed for this theorem in [26].

Proof. Let’s assume that S2 is not a tree. This means that there exists an interior face of
S2 whose boundary is a cycle σ consisting of m verticesx1, x2, ..., xm of S2 and m edges. Each
vertex xi in σ represents a face fi of S1, where face fi shares a common edge with face fi−1(mod
m)and face fi+1(mod m). Furthermore, each of these shared edges is incident to a vertex v of
S1 that represents the interior face of S2. Thus, the cycle σ in S2 corresponds to a subgraph of
S1 consisting of the m faces, f1, f2, ..., fm arranged in a circle around the vertex v. This means
that vertex v is an interior vertex of S1, so it corresponds to a parcel of the block S that does
not border a road. This shows that block S is not universally accessible. Now, we will prove
that if a block S is not universally accessible, its stage two graph, S2, is not a tree. We assume
that there exists a parcel n of a block S that does not border a road. Thus, there is a vertex
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vn of S1 corresponding to parcel n that is an interior vertex of S1. Consider the subgraph V1 of
S1 consisting of a minimal cycle surrounding vertex vn, vertex vn itself and all edges incident
to vertex vn. Now, we consider the subgraph V2 of S2 that represents V1. V2 will contain one
vertex for each face of V1 connected by one edge representing each edge incident to vertex vn.
We conclude that the subgraph V2 of S2 is a cycle with m vertices, where m is the degree of
vertex vn in S1. This says that the stage two graph of S contains a cycle, and is therefore not
a tree.

Theorem 4. If a parcel is represented with a node in the Sk graph, at least k−1
2 parcel boundaries

must be crossed in order to reach it from the nearest section of the access system.

We recall the following proof due to Brelsford et al. in [26].

Proof. For any parcel n of block S, the minimum number of parcel boundaries that must be
crossed to reach a road is represented by the minimum number of edges necessary to form a
path from vn, the vertex representing n in the S1 graph, to an exterior vertex of S1.

Observe that, in the algorithm for creating the Sk graph of a block S, parcels of S are
represented by faces of Sk when k is even and nodes of Sk when k is odd. Furthermore, for even
k, if a face of Sk touches an exterior vertex, that face is represented by an exterior vertex in
Sk+1. Finally, observe that, for odd k, the parcels represented by an exterior vertex of Sk are
not represented at all in Sk+1.

Therefore, suppose a parcel n requires a path of length l to connect vertex vn to an exterior
vertex in S1. It is clear that in S3, the path from vn to an exterior vertex will have length l− 1,
and so on. The vertex vn will thus be an exterior vertex of the graph S1+2l. Therefore, we see
that, if vertex vn appears in graph Sk, then k ≤ 1 + 2l, which says that k−1

2 ≤ l.

Theorem 5. There will be no loops in the minimal set of additional roads necessary to connect
all interior parcels to a road. Thus, newly constructed roads in the minimal set of accesses form
a tree or set of trees (culs-de-sac).

We now present the proof effectuated by Brelsford et al. in [26].

Proof. We may consider the access network of a given block as a subgraph of the stage zero
graph S0. To connect all parcels to a road, we consider parcel boundaries, which are represented
by interior edges in S0. We may then choose a set of such edges of S0 to represent additional
segments of road needed to ensure that the block is universally accessible. There will be several
choices for this set of additional roads; we choose the one that has the fewest total geometric
length of edges (minimal set of accesses).

Suppose that there exists a block for which the minimal set of additional roads is not a tree
or set of trees. Let M denote the subgraph of S0 consisting of edges belonging to the minimal
set of roads along with the nodes incident to these edges. We are assuming that there is at
least one cycle in M . Every face of S0 representing an interior parcel must share at least one
node with M in order for every parcel to be accessible via existing or new paths. However, all
connected planar graphs have a spanning tree, which is a subgraph containing all nodes of the
graph but no cycles. Then, we let M ′ be the subgraph of M consisting of spanning trees for
each component of M . Thus, every face of S0 representing an interior parcel will share a node
with M ′, making every parcel accessible via existing or new roads, but M ′ has strictly fewer
edges than M , as it is a subgraph containing no cycles. This contradicts the choice of M as
minimal. Therefore, the set of newly constructed roads must form a tree or set of trees
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3.2. Minimal Neighborhood Reblocking

In [1], the authors describe two ways to analyze the related topological optimization problem.
The first, a strict optimization that is too rigid for practical use. The second, a statistical op-
timization that is more flexible and can be the basis for practical neighborhood upgrading tools.

The strict optimization approach is based on finding the smallest possible configuration of
the streets to ensure that each interior parcel is connected to the access system. Although this
strategy finds the best solution, the computational complexity grows in a combinatorial way
according to the number of parcels that are considered. This is because there may be solutions
with shorter lengths if we consider a pair, trio, etc. of internal plots together. Thus, this ap-
proach is not practical for real situations.

The statistical optimization uses the fact that some paths, despite not being the most opti-
mal, have important features. Then, this technique allows using additional data to the problem
of strict optimization, such as the price of building new streets or how straight the roads are.
As the criterion of the cost of construction of streets is a function of the street length, it is
understandable why this strategy of optimization delivers as a result that the smaller roads
must be built more likely.

The approach developed by Brelsford et al. to deal with blocks within a large number of
parcels consists of the following steps. First, find the solution to strict optimization for an
interior parcel. Then, define a set of feasible solutions adding n alternative paths to connect the
parcel with the access system. This process must be repeated for the rest of the interior parcels.
Then, use the defined probability function for statistical optimization to select a single path
from our set of feasible path solutions. After adding the selected path to the access system, the
information of the interior parcels is updated and the whole process is repeated until there are
no more interior parcels, i. e., the graph S2 is a tree.

4. Implementation

The approach was implemented and tested using two examples: an academic one and a real-
life one. The real-life implementation was developed using a zone of the neighborhood Ciudad
de Dios in Guayaquil.

The objective to use an academic example is to recreate the results proposed in [1], and
in this way to be able to verify the different solutions that the algorithm gives us depending
on the type of optimization used, i.e., strict optimization(piecewise) or statistical optimization.
Moreover, we were able to validate the construction of the dual graph for a block with interior
parcels as the theory related to it.

On the other hand, the motivation to use a real-life example is to show that this proposal
is viable to be used in the context of the Ecuadorian slums.

4.1. An Academic Example

The academic example consists of 15 parcels, where 10 of them are exterior parcels and five
are interior parcels, see Figure 16.
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Figure 16: Academic example. Red lines correspond to interior parcels limits.

From this example is possible to realize that the corresponding stage graph S2 (see Figure
17) has a loop, which means that our block is not universally accessible. Therefore, we can use
the approach in order to upgrade his interior parcels to external parcels.

Figure 17: From left to right: Stage graphs S1, S2, and S3.

Using the strict optimal (piecewise) algorithm in our academic example, the solution is
constructed adding the smallest road in order to change an interior parcel into an exterior
parcel in each iteration, see Figure 18. A total of four iterations was necessary in order to have
a universally accessible graph.
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Figure 18: Step by Step execution of the strict optimal approach.

In Figure 19, we can see the dual graphs S1 and S2, respectively. Since S2 is a tree the
complexity of this block is 2. Therefore, this block is universally accessible.
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Figure 19: Stage graphs S1 and S2 for the solution of strict optimization.

Following, two solutions obtained using the statistical optimization approach are shown in
Figures 20 and 21. According to the scale used, one solution path has around of 7.82 meters
of new streets, while the other solution has around of 6.83 meters of new roads. Since the
optimal path solution computed with the strict optimization (piecewise) strategic has a length
of 7 meters of new streets, see Figure 16. This shows that the solution constructed using strict
optimization (piecewise) is not always the globally optimum.

Figure 20: Solution 1 from executing sta-
tistical optimization

Figure 21: Solution 2 from executing sta-
tistical optimization

4.2. Ciudad de Dios neighborhood in Guayaquil

The real life application was developed in a sector of Ciudad de Dios in Guayaquil, see 4.
This sector has about 377 parcels of which, 281 are interior parcels, see Figure 22.
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Figure 22: Graph representation of Ciudad de Dios’s sector. Red lines correspond to interior
parcels limits.

The result of executing the statistical optimization gives us a block that is universally ac-
cessible. Therefore, it is topological equivalent to a planned neighborhood, see Figure 23. This
solution has a lot of culs-de-sac this was expected from the fact that this configuration gives us
an instance of a minimal set of streets needed to have every parcel connected to the connection
system.

As we saw in the Section 2, the topological optimization serves as a starting point to then
modify the solution so that it meets other desired criteria. These criteria may be to decrease
the geometric distance between pairs of plots or to make the new roads as straight as possible
in order to facilitate the delivery of other basic services such as street lighting.
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Figure 23: Graph solution for executing the statistical approach in the sector of Ciudad de Dios.

5. Conclusions

Analyzing neighborhoods and cities through topological tools and graph theory allows to
characterize slums with respect to planned neighborhoods. It was found that the planned neigh-
borhoods are universally accessible, i. e., all their parcels are connected to the network access
system. While slums are not universally accessible. This characteristic can be determined using
a topological tool known as weak dual graphs; it was found that a block is universally accessi-
ble, if and only if, his corresponding stage-two graph S2 is a tree. Which allows to develop an
algorithmic solution of the re-blocking problem with optimal cost as done in[1]. Since executing
an optimization algorithm could be a very time-consuming process, a statistical optimization
algorithm was applied. The advantage of this approach is that we can add more information
about the re-blocking problem and instead of having the global optimal solution we could have
a more suitable solution to be implemented in the slum.

Given the characteristics of most of the slums in Ecuador, we firmly believe that implemen-
ting this mathematical approach in Ecuador could improve the situation of many cities in our
country.
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Appendices

A. Code in Python

Here we show the implementation of the main features of the approach. Full code is available
on https://github.com/open-reblock/.

1 # clean up and probability functions

2 def WeightedPick(d):

3 """ picks an item out of the dictionary d, with probability proportional to

4 the value of that item. e.g. in {a:1, b:0.6, c:0.4} selects and returns

5 "a" 5/10 times , "b" 3/10 times and "c" 2/10 times. """

6

7 r = random.uniform(0, sum(d.values ()))

8 s = 0.0

9 for k, w in d.items ():

10 s += w

11 if r < s:

12 return k

13 return k

14

15

16 def shorten_path(ptup):

17 """ all the paths found in my pathfinding algorithm start at the fake

18 road side , and go towards the interior of the parcel. This method drops

19 nodes beginning at the fake road node , until the first and only the

20 first node is on a road. This gets rid of paths that travel along a

21 curb before ending."""

22

23 while ptup [1]. road is True and len(ptup) > 2:

24 ptup.pop (0)

25 return ptup

26

27

28 def segment_near_path(myG , segment , pathlist , threshold ):

29 """ returns True if the segment is within (geometric) distance threshold

30 of all the segments contained in path is stored as a list of nodes that

31 strung together make up a path.

32 """

33 # assert isinstance(segment , mg.MyEdge)

34

35 # pathlist = ptup_to_mypath(path)

36

37 for p in pathlist:

38 sq_distance = segment_distance_sq(p, segment)

39 if sq_distance < threshold **2:

40 return True

41

42 return False
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43

44 def shortest_path_p2p(myA , p1 , p2):

45 """ finds the shortest path along fencelines from a given interior parcel

46 p1 to another parcel p2"""

47

48 __add_fake_edges(myA , p1 , roads_only=True)

49 __add_fake_edges(myA , p2 , roads_only=True)

50

51 path = nx.shortest_path(myA.G, p1.centroid , p2.centroid , "weight")

52 length = nx.shortest_path_length(myA.G, p1.centroid , p2.centroid , "weight")

53

54 myA.G.remove_node(p1.centroid)

55 myA.G.remove_node(p2.centroid)

56

57 return path[1:-1], length

58

59 def find_short_paths(myA , parcel , barriers=True , shortest_only=False):

60 """ finds short paths from an interior parcel ,

61 returns them and stores in parcel.paths """

62

63 rb = [n for n in parcel.nodes+parcel.edges if n.road]

64 if len(rb) > 0:

65 raise AssertionError("parcel %s is on a road") % (str(parcel ))

66

67 if barriers:

68 barrier_edges = [e for e in myA.myedges () if e.barrier]

69 if len(barrier_edges) > 0:

70 myA.remove_myedges_from(barrier_edges)

71 else:

72 print("no barriers found. Did you expect them?")

73 # myA.plot_roads(title = "myA no barriers ")

74

75 interior , road = shortest_path_setup(myA , parcel)

76

77 shortest_path = nx.shortest_path(myA.G, road , interior , "weight")

78 if shortest_only is False:

79 shortest_path_segments = len(shortest_path)

80 shortest_path_distance = path_length(shortest_path [1: -1])

81 all_simple = [shorten_path(p[1: -1]) for p in nx.all_simple_paths(myA.G,

82 road , interior , cutoff=shortest_path_segments + 2)]

83 paths = dict((tuple(p), path_length(p)) for p in all_simple

84 if path_length(p) < shortest_path_distance *2)

85 if shortest_only is True:

86 p = shorten_path(shortest_path [1: -1])

87 paths = {tuple(p): path_length(p)}

88

89 myA.G.remove_node(road)

90 myA.G.remove_node(interior)

91 if barriers:
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92 for e in barrier_edges:

93 myA.add_edge(e)

94

95 parcel.paths = paths

96

97 return paths

98

99 def find_short_paths_all_parcels(myA , flist=None , full_path=None ,

100 barriers=True , quiet=False ,

101 shortest_only=False ):

102 """ finds the short paths for all parcels , stored in parcel.paths

103 default assumes we are calculating from the outside in. If we submit an

104 flist , find the parcels only for those faces , and (for now) recaluclate

105 paths for all of those faces.

106 """

107 all_paths = {}

108 counter = 0

109

110 if flist is None:

111 flist = myA.interior_parcels

112

113 for parcel in flist:

114 # if paths have already been defined for this parcel

115 # (full path should exist too)

116 if parcel.paths:

117

118 if full_path is None:

119 raise AssertionError("comparison path is None "

120 "but parcel has paths")

121

122 rb = [n for n in parcel.nodes+parcel.edges if n.road]

123 if len(rb) > 0:

124 raise AssertionError("parcel %s is on a road" % (parcel ))

125

126 needs_update = False

127 for pathitem in parcel.paths.items ():

128 path = pathitem [0]

129 mypath = ptup_to_mypath(myA , path)

130 path_length = pathitem [1]

131 for e in full_path:

132 if segment_near_path(myA , e, mypath , path_length ):

133 needs_update = True

134 # this code would be faster if I could break to

135 # next parcel if update turned true.

136 break

137

138 if needs_update is True:

139 paths = find_short_paths(myA , parcel , barriers=barriers ,

140 shortest_only=shortest_only)
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141 counter += 1

142 all_paths.update(paths)

143 elif needs_update is False:

144 paths = parcel.paths

145 all_paths.update(paths)

146 # if paths have not been defined for this parcel

147 else:

148 paths = find_short_paths(myA , parcel , barriers=barriers ,

149 shortest_only=shortest_only)

150 counter += 1

151 all_paths.update(paths)

152 if quiet is False:

153 pass

154 # print (" Shortest paths found for {} parcels ". format(counter ))

155

156 return all_paths

157

158

159 def build_path(myG , start , finish ):

160 ptup = nx.shortest_path(myG.G, start , finish , weight="weight")

161

162 ptup = shorten_path(ptup)

163 ptup.reverse ()

164 ptup = shorten_path(ptup)

165

166 mypath = ptup_to_mypath(myG , ptup)

167

168 for e in mypath:

169 myG.add_road_segment(e)

170

171 return ptup , mypath

172

173

174 def choose_path(myG , paths , alpha , strict_greedy=False):

175

176 """ chooses the path segment , choosing paths of shorter

177 length more frequently """

178

179 if strict_greedy is False:

180 inv_weight = dict((k, 1.0/( paths[k]** alpha )) for k in paths)

181 target_path = WeightedPick(inv_weight)

182 if strict_greedy is True:

183 target_path = min(paths , key=paths.get)

184

185 mypath = ptup_to_mypath(myG , target_path)

186

187 return target_path , mypath
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B. Euler’s Figures

Although Euler did not use graphs in the original article to treat the problem of the Königs-
berg’s bridges[17], the abstract treatment that he did marked the beginning of the field of graph
theory and topology, see Figure 24.

Figure 24: Original figures from Euler’s paper. By Euler, Leonhard, ”Solutio prob-
lematis ad geometriam situs pertinentis”, 1741. Euler Archive - All Works. 53.
https://scholarlycommons.pacific.edu/euler-works/53
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