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Resumen

El desarrollo de sistemas fotovoltaicos orgánicos (OPVs) más eficientes, ecológicos y económi-
cos es un desafío fundamental de la nanotecnología. Una forma prometedora de abordar este
problema es el diseño computacional de OPVs de última generación. Entender los procesos de
excitación llevados a cabo en las grandes moléculas de tales sistemas requiere del desarrollo de
nuevos métodos computacionales, precisos y altamente eficientes, para describir sus espectros
de absorción óptica. En este trabajo, usamos una representación eficiente de las funciones de
onda de Kohn-Sham (KS) por medio de una combinación lineal de orbitales atómicos (LCAO),
para realizar cálculos de la teoría del funcional de la densidad tiempo-dependiente (TDDFT) en
el dominio de la frecuencia usando el código LCAO-TDDFT-k-ω. Al aplicar la corrección de la
discontinuidad de la derivada del funcional de Gritsenko-Leeuwen-Lenthe-Baerends para sólidos
y correlación (GLLB-SC) a las energías propias de KS, obtenemos una descripción semicuantita-
tiva de la estructura electrónica. De esta manera, podemos confiar en estos métodos para obtener
una descripción precisa de los espectros de absorción óptica con una reducción significativa del
esfuerzo computacional. Aplicamos este método para calcular los espectros de absorción óptica
de moléculas tales como monómeros y dímeros de clorofila, nanotubos de carbono de pared
simple y combinaciones de los mismos que son potenciales OPVs.

Palabras clave: Teoría del funcional de la densidad, LCAO-TDDFT-k-ω code, espectros
de absorción óptica, clorofila, nanotubos de carbono de pared simple, sistemas fotovoltaicos
orgánicos
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Abstract

The development of more efficient, environmentally friendly, and inexpensive organic photo-
voltaics (OPVs) is a fundamental challenge in nanotechnology. One promising way to address
this problem is the computational design of next generation OPVs. Understanding the excita-
tion processes undergone by the large molecules in such systems requires the development of
novel accurate and highly efficient computational methods for describing their optical absorption
spectra. In this work, we use an efficient linear combination of atomic orbitals (LCAO) repre-
sentation of the Kohn-Sham (KS) wavefunctions to perform time-dependent density functional
theory (TDDFT) calculations in the frequency domain using the LCAO-TDDFT-k-ω code. By
applying the derivative discontinuity correction of theGritsenko-Leeuwen-Lenthe-Baerends solid
and correlation (GLLB-SC) functional to the KS eigenenergies, we obtain a semi-quantitative
description of the electronic structure. In this way we can rely on these methods to obtain an
accurate description of the optical absorption spectra with a significant reduction in computa-
tional effort. We apply this method to calculate the optical absorption spectra of molecules such
as chlorophyll monomers and dimers, single-walled carbon nanotubes and combinations thereof
which are potential OPVs.

Keywords: Density functional theory, LCAO-TDDFT-k-ω code, optical absorption spectra,
chlorophyll, single-walled carbon nanotubes, OPV
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Chapter 1

Introduction

In Ecuador, 35% of electrical power comes from non-renewable sources such as fossil fuels
which are used in internal combustion engines. While the remaining 65% is obtained from
renewable sources, only 0.32% is generated by photovoltaics1. In other words, solar energy is
being harnessed very poorly in a country where each day has a constant of 12 hours of sunlight
throughout the year due to its geographic location on or near the equator. One major obstacle for
using photovoltaics to obtain clean energy is the high production cost of common silicon-based
cells. This is because of the expensive vacuum and high temperature processes involved in their
production2–4. Although the efficiencies of their inorganic counterparts are currently higher5,
novel organic photovoltaic (OPV) cells are still of interest since their production costs are lower6.
More importantly, silicon-based cells have a maximum efficiency of 33.7% according to the
Shockley–Queisser limit7,8, which does not apply to OPVs. This opens the possibility, at least
theoretically, of producing OPVs with significantly higher efficiencies than silicon-based cells.
Such cells could contain materials from dyes9 and polymers10 to carbon-only structures such as
graphene11,12, fullerenes13, and carbon nanotubes14,15.

A solar photovoltaic cell is a device that harnesses the energy of electromagnetic radiation
from the sun and ultimately converts it into electrical energy. Typically, photons or quanta of light
are absorbed by a semiconducting material in the solar cell. If the energy of a photon is equal to
or higher than the energy band gap, the photon can be absorbed in an interband process where an

1
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electron is excited from the valence band to the conduction band of the semiconductor. Before it
returns to its previous state by dissipating energy, via a small bias, the electron can be conducted
to an electrode within the solar cell. In this way an electric current can be produced16,17. Within
this scheme, common solar cells use the p-n junctions of doped silicon18, cadmium telluride19,
copper indium gallium selenide20, gallium arsenide21 and others as the semiconducting material
that absorbs light, whereas organic solar cells use polymers10,13 and other organic molecules9 as
their light-absorbing semiconducting material.

The organic materials used in OPVs have the common characteristic of being large π-
conjugated systems. In such systems, carbon atoms are connected by alternating single and
double bonds where a delocalized bonding π orbital and an antibonding π∗ orbital are formed.
This configuration in general decreases the overall energy and stabilizes the molecule or ion.
The delocalized π orbital becomes the highest occupied molecular orbital (HOMO) and takes
the role of the valence band; whereas the π∗ orbital becomes the lowest unoccupied molecular
orbital (LUMO) and replaces the conduction band. The energy separation between these two
states is considered the energy band gap of the organic material22,23. This is why materials such
as graphene, graphite, carbon nanotubes and polymers are the largest conjugated systems suitable
for photovoltaic applications.

In particular, single-walled carbon nanotubes (SWCNTs) have drawn attention in the field
of organic electronics due to their unique physical properties24. These quasi-one-dimensional
structures come in various chiralities, which depend on the way they are rolled up, changing their
energy band gaps and yielding different absorption and/or conductive properties25. A variety of
different semiconducting SWCNTs can be used to widen the range of light wavelengths that can
be potentially exploited in photovoltaic applications26,27. They exhibit intense absorption peaks
with band gaps around 1 to 1.3 eV and have high thermal stability28,29. In the case of metallic
nanotubes, electronic transport occurs ballistically, meaning they can carry high currents without
heating30,31. Furthermore, a clear advantage is the recently developed methods for separating
SWCNTs based on their chirality32. This provides a straightforward method for tailoring the band
gap of the semiconducting layer in a solar cell.

For these reasons, SWCNTs have been widely used as additives in OPVs to improve their effi-
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ciency by increasing the charge carrier mobility of conventional polymers33,34 and dye-sensitized
solar cells. In donor-acceptor hybrid cells, SWCNTs have been used to either covalently35 or non-
covalently36 graft chromophore molecules, increasing the incident photon-to-current efficiency
(IPCE) or external quantum efficiency of the solar cell by about 17%. SWCNTs can interact
with polymers via π-π stacking, porphyrins electrostatically37 to achieve an IPCE of 8.4%, lipid
nanodiscs, and human deoxyribonucleic acid (DNA)38. Moreover, in many other photovoltaic
devices, metallic carbon nanotubes are used as electrodes because of their ballistic conducting
properties.

Other organic molecules used for light absorption include well known pigments such as
chlorophyll (Chl) a and b, carotenoids, and phycoerytrin. These molecules are involved in
the photosynthesis processes which take place in large light-harvesting complexes (LHCs) of
green plants and algae, where the production of carbohydrates from CO2 and water is driven
by light absorption. Moreover, the in vivo absorption spectra of these photosynthetic pigments
have their maximum at the maximum of the solar spectrum photon flux density at the Earth’s
surface39, which corresponds to the visible region. In 1993, derivatives of chlorophyll were used
to photosensitize colloidal TiO2 electrodes in solar cells that achieved light harvesting and charge
separation comparable to those in natural photosynthesis, that is, artificial photosynthesis40.
More recently, further experimental work has been done in order to improve the performance
of these types of dye-sensitized solar cells, achieving a solar energy-to-electricity conversion
efficiency of ∼1.3%41,42. Specifically, chlorophyll is a magnesium-containing chlorin, that is,
a partially hydrogenated version of a porphyrin43. Also, functionalized SWCNTs interacting
electrostatically with porphyrin molecules have been used to increase the IPCE of donor acceptor
solar cells37.

The recombination of an electron from the conduction band with a hole from the valence
band is an unwanted process in a solar cell. For this reason, efforts must be made to minimize
electron-hole recombination, or germination. A feature that must be taken into account when
designing OPVs is the degree of the charge separation, which can involve different and/or separate
molecules or materials. For example, a hole can be created in a dye or polymer while the electron
is transferred to a conductive layer, such as a SWCNT. Once this step is accomplished, the hole
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on the dye or polymer should be filled again to repeat the cycle. This final necessary process can
be undertaken by ions in a solution, such as iodine ions for example.

Spectroscopy techniques are often used to characterize carbon nanotubes and molecules such
as chlorophyll. The advantages of optical absorption, a specific type of spectroscopy, rely on
the fact that it is nondestructive, noninvasive as well as simple to perform at room temperature
and under ambient pressure. For instance, photoluminescence, absorption, and resonance Raman
spectroscopy are widely employed in bulk SWCNT samples in both research44,45 and industrial
laboratories46. This makes spectroscopy techniques important for the development of OPVs,
since these methods provide insight into the properties of the materials, whether they are suitable
for photovoltaic devices, and how they can be improved. Also, it can be said that information
about the exciton generation process is gathered by spectroscopic techniques to make further
improvements in the design of OPVs. This is because, in the case of optical absorption, light is
most often absorbed when in resonance with the band gap of the material so that the observation
of absorption peaks are related to electronic transitions.

On the one hand, pump-probe spectroscopy has been used to study the excited state dynamics
of the first optical transition, E11, in SWCNTs47. And electron energy loss spectroscopy (EELS)
has been used to experimentally study how optical properties and electronic transport are corre-
lated with structure in carbon nanotubes48. On the other hand, experimental studies have given
insight into the absorption spectrum and properties of both Chl monomers and dimers with and
without the proteins that contain them in biological structures49–51. Moreover, experimental onset
energies and absorption spectra of Chl a and b have been reported to be blue-shifted by 30 to
70 nm compared to that of chlorophyll-containing proteins52.

Theoretical calculations of the photoabsorption processes provide insight into not only how
excitons are generated, but also other properties, such as the charge distribution, which can help
to explain what is observed in experimental data. Some of the most commonly used methods
are those based on density functional theory (DFT)53. DFT, based on the hypothesis that the
electron density distribution completely characterizes the ground state of many electron systems,
uses functionals of the spatially dependent electron density to model the ground state electronic
structure and properties at the quantum mechanical level. DFT has made important contributions
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before in designing materials using theory and computation to replace traditional, and often time
consuming and expensive, experiments54,55. For instance, DFT calculations have been done to
unravel the characteristics of spectroscopy for both SWCNTs and chlorophyll: linear response
time-dependent density functional theory (TDDFT) was used to complement the experimental
work made in Ref. 47; additionally, estimates of the internal quantum efficiency of organic
photovoltaic devices containing polymers, fullerene C60 and SWCNTs have been obtained using
DFT56. Also, first-principles calculations using real-space TDDFT were performed in Ref. 57
for the LHC of chlorophyll.

1.1 Problem Statement

There is not an unique way to perform theoretical calculations on molecular systems and obtain
an accurate description of their properties observed. Therefore, the problem, that is meant to
be tackled in this thesis, is the lack of a defined efficient yet accurate method to do theoretical
spectroscopy calculations on big organic molecules and carbon-based nanostructures, in order to
study their excitation processes. We believe that is important to solve this problem, not just to
reproduce what is observed on the available experimental data, but to also predict the properties
of these kind of materials and, to some extent, evaluate their suitability as components of OPVs.

This was our motivation to perform TDDFT calculations using linear combinations of atomic
orbitals (LCAOs) to represent the Kohn-Sham (KS) wavefunctions in order to obtain the opti-
cal absorption and electron energy loss spectra as well as the excitonic density distribution of
chlorophyll and SWCNTs and to apply the derivative discontinuity correction of the Gritsenko-
Leeuwen-Lenthe-Baerends solid and correlation (GLLB-SC) functional. We implemented this
by using gpaw58, a Python code based on the projector-augmented wave (PAW) method and the
atomic simulation environment (ASE)59, and the LCAO-TDDFT-k-ω code47.
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1.2 General and Specific Objectives

The general goal of this thesis is to contribute to the design of next generation OPVs because it
has been estimated that OPVs could have a higher efficiencies than their inorganic counterparts.
However, only a 10% efficiency has been obtained so far experimentally. Our aim is to contribute
by studying the properties that can be obtained by performing theoretical spectroscopy calculations
in both SWCNTs and chlorophyll, and to provide, to some extent, tools for the computational
screening of materials for OPVs. Somewhat surprisingly, such methods are still an open problem
in computational physics, as there is currently a lack of both accurate and efficient methods for
performing such calculations.

1.3 Overview

This thesis has five chapters and an appendix. The first chapter corresponds to this Introduction
where we have introduced OPVs, why we want to study the optical absorption properties of
chlorophyll, single-walled carbon nanotubes and combined systems containing both, and how
this still is an open problem.

In the second chapter, Theoretical Background, the concepts behind density functional theory,
Kohn-Sham wavefunctions, exchange and correlation functionals and their approximations are
reviewed. We also described the GLLB-SC derivative discontinuity correction, the projector
augmented wave method and the linear combination of atomic orbital basis set, in order to
understand the theory used in gpaw and the LCAO-TDDFT-k-ω code. Also, we include a
description of the chlorophyll monomers and SWCNTs.

In the third chapter, Methodology, we introduce the actual structures of the molecules used
in the calculations and the computational details so the results can be replicated.

The fourth chapter, Results & Discussion, is separated into three well-defined sections. The
first one covers the optical absorption spectra and its dependance on the basis set for Chl a and
Chl b monomers as well as the excitonic density of the first four transitions. The second section
is dedicated to optical absorption and electron energy loss spectroscopy of SWCNTs, their E11
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and E22 transitions’ energies and the excitonic density of the (6,4) SWCNT. In the last section
we show the optical absorbance for a combined system, Chl a/(6,4) SWCNT. and its excitonic
density.

Finally in the fifth chapter, Conclusions, we summarize the principal results and provide an
outlook for future research.





Chapter 2

Theoretical Background

2.1 Density Functional Theory

2.1.1 The Many Body Problem

The wavefunction Ψ of a quantum system’s state is described by Schrödinger’s equation. In the
case of a well defined set of atoms, e.g., a molecule or crystal, the wavefunction will be defined
by the positions and spins of its nuclei and electrons as

Ψ(r1, s1, . . . , rN , sN;R1, S 1, . . . ,RM, S M), (2.1)

where ri and si are the coordinates and spins for the N electrons; andRI and S I are the coordinates
and spins for the M nuclei.

Themany-bodyHamiltonian Ĥ is the operator corresponding to the sum of the kinetic energies
and the interactions

Ĥ = −
1
2

∑
i

∇2
ri
−

∑
i

∑
I

ZI

|ri − RI |
+

1
2

∑
i, j

1
|ri − r j|

−
1
2

∑
I

1
MI
∇2
RI

+
1
2

∑
I,J

1
|RI − RJ |

, (2.2)

where ∇2
ri
and ∇2

Ri
are the Laplacians with respect to the electronic and nuclear coordinates;

and ZI and MI are the atomic number and mass of the Ith nucleus, respectively, in atomic units
(me = a0 = ~ = e = 1). In Eq. 2.2 the first term is the kinetic energy operator for electrons, T̂e, the

9



10 2.1. DENSITY FUNCTIONAL THEORY

second term describes the attractive Coulomb interaction potential between positively charged
nuclei and negatively charged electrons, Ve−n, the third term is the repulsive interaction potential
between electrons, Ve−e, the fourth term is the kinetic energy operator for nuclei, T̂n, and the last
term is the repulsive interaction potential between nuclei, Vn−n. So the many-body Hamiltonian
can be written as

Ĥ = T̂e − Ve−n + Ve−e + T̂n + Vn−n. (2.3)

The linear transformation of the wavefunction Ψ given by the Hamiltonian Ĥ is related to the
evolution of Ψ over time t. Such a relation is

i
∂

∂t
Ψ(x, t) = ĤΨ(x, t), (2.4)

where x ≡ {r1, s1, . . . , rN , sN;R1, S 1, . . . ,RM, S M} represents all the position coordinates and
spins of all nuclei and electrons. This is the time-dependent Schrödinger equation, which is
a linear partial differential equation that describes the wavefunction of the many-body system,
in the position basis60. All the physical observables of the system can be deduced from the
eigenfunctions and eigenvalues that solve this equation.

Because the potential only depends on the position but not on time, the wavefunction is
separable into a time-dependent and a time-independent part with separation constant E. The
time-independent Schrödinger equation for the many-problem is then

Ĥψ(x) = Eψ(x). (2.5)

Eq. 2.5 has an infinite collection of solutions ψi with eigenvalue Ei. Then the general solution is
a linear combination of the separable solutions:

Ψ(x, t) =

∞∑
i=0

ciψi(x)e−iEit/~ (2.6)

2.1.2 Born-Oppenheimer Approximation

The proton-to-electronmass ratio, independent of the systemof units, ismp/me ≈ 1836.15267389,
so that a proton is three orders of magnitude heavier than an electron. This means nuclei, which
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are composed of tens of protons and neutrons, will have much slower velocities than electrons
at the same temperature. In other words, on the time-scale of the nuclear motion, the electrons
will very rapidly relax to the instantaneous ground-state configuration61. Thus it is safe to
assume that the nuclei are stationary while the electrons relax. Consequently, the many-body
wavefunction can be separated into a nuclear and an electronic part. Such separability is known
as the Born-Oppenheimer approximation62.

ψ(x) = ψe(r1, s1, . . . , rN , sN) ⊗ ψn(R1, S 1, . . . ,RM, S M), (2.7)

where ψe is the electronic wavefunction and ψn is the nuclear wavefunction. We can then solve
for the electronic part first, calculate the energy of the system in that configuration, and then solve
for the nuclear motion. The many-body Hamiltonian problem can thus be simplified to a problem
in terms of the electronic Hamiltonian Ĥe:

Ĥe = −
1
2

∑
i=1

∇2
ri

+
1
2

∑
i, j

1
ri − r j

+ VR1,...,RM
ext (r1, . . . , rN), (2.8)

where the external potential Vext includes electronic interactions with any external fields. The
nuclei still interact electromagnetically with the electrons and this interaction is included in the
external potentialVext. Thus it is said that the electronicwavefunction depends only parametrically
on the nuclear position coordinates R1, . . . ,RM. We thus obtain the “frozen-nuclei” Schrödinger
equation

Ĥeψe(r1, s1, . . . , rN , sN) = ε(R1, S 1, . . . ,RM, S M)ψe(r1, s1, . . . , rN , sN). (2.9)

Eq. 2.9 has also a collection of solutions ψei with eigenvalues εi. These are the potential
energy surfaces which are representations of the electronic energy of the system. Neglecting the
kinetic energy of the nuclei, we find that:

Ĥeψ(x) = Ĥeψn(R1, S 1, . . . ,RM, S M)ψe(r1, s1, . . . , rN , sN)

= ψn(R1, S 1, . . . ,RM, S M)Ĥeψe(r1, s1, . . . , rN , sN)

= ε(R1, S 1, . . . ,RM, S M)ψ(x).

(2.10)
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From hereon we will consider Ĥ to be Ĥe, ψe to be ψ, and ε to be E. Computing ψ can provide
much more information than what is actually needed. Even when reducing the problem to only
the relaxation of the electrons, such a calculation can be made in practice only for few electron
systems.

2.1.3 Periodic Systems

The correlated nature of electrons within a solid or a molecule can be an obstacle to solving the
Schrödinger equation. Bloch’s theorem, developed by Felix Bloch, can help us to address this
problem because, instead of requiring us to consider an infinite or very large number of electrons,
it is only necessary to consider the number of electrons within a periodic unit cell of our system.
If the unit cell is repeated until we resemble our original system, then the system is periodic and
there exists a corresponding periodic external potential as well. This potential is the same for all
translations Rn,

vext(r + Rn) = vext(r), (2.11)

where the vector Rn is a linear combination of the three primitive vectors of the unit cell. In this
way

Rn = n1a1 + n2a2 + n3a3, (2.12)

where ni are integers and the periodicity of a lattice is observed with respect to the vectors ai.
The unit cell therefore is the parallelepiped formed from the primitive vectors and the unit cell
volume is then

Ω = |a1 · (a2 × a3)| . (2.13)

The kinetic operator and the Coulomb interactions of the Hamiltonian remain unaffected
under the translations Rn and therefore the Hamiltonian of a periodic system commutes with the
translations, meaning that they have the same eigenstates. Moreover, this results in eigenstates
that can be labeled according to the translational symmetry. For example, in the specific case of
noninteracting electrons in the external potential caused by nuclei as in Eq. 2.11, thewavefunctions



CHAPTER 2. THEORETICAL BACKGROUND 13

will be given by [
−

1
2
∇2 + vext(r)

]
ψn,k(r) = εn,kψn,k(r), (2.14)

where such wavefunctions satisfy Bloch’s theorem.

Theorem 1 (Bloch’s Theorem). For particles in an periodic external potential, there is a basis of
wavefunctions which are Bloch’s waves that are eigenstates of Schrödinger’s equation. Bloch’s
waves are the product of a plane wave eik·r and a function un,k(r) with the same periodicity as the
external potential,

ψn,k(r) = eik·run,k(r), (2.15)

where the quantum numbers k and n are the wave vector and the band index, respectively.

The vectork reflects the periodicity of the system and n corresponds to independent eigenstates
of different energies. Furthermore, for any vector k, there is a complete set of bands n. For
instance, the band structure for a solid is equivalent to the eigenvalues εn,k plotted along a specific
path in k-space.

A direct consequence of Bloch’s theorem is that all observables of the systems can be Fourier
expanded in terms of the reciprocal lattice vectors Gm,

Gm = m1b1 + m2b2 + m3b3, (2.16)

where mi are integers and bi are the primitive vectors of the reciprocal lattice. These are given by

bi = 2π
a j × ak

Ω
. (2.17)

The relation between the vectors of the unit and the reciprocal lattice cell is then

ai · b j = 2πδi j, (2.18)

so that
exp [iGm · (r + Rn)] = exp [iGm · r]. (2.19)

The Fourier expansions of vext and other periodic functions, for example for un,k(r), are then

un,k(r) =
∑

m

eiGm·run,k (Gm) . (2.20)
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In order to ensure the normalization of Bloch waves in Eq. 2.15, we must restrict the values
of k and the number of particles. To do this, boundary conditions must be set by

ψn,k(r + Niai) = ψn,k(r), (2.21)

and we get a restriction for kl

kl =
l1

N1
b1 +

l2

N2
b2 +

l3

N3
b3 and −

Ni

2
≤ li <

Ni

2
, (2.22)

where li are positive integers. These constrained values of k correspond to the first Brillouin
zone. Furthermore, any value of k outside this zone can be reduced to the first Brillouin zone.

To perform the calculations using Bloch waves to represent the Kohn-Sham (KS) wavefunc-
tions, a finite number of sampling points in the first Brillouin zone is required. The orbitals vary
very smoothly with respect to k and calculations are converged with respect to each one of these
sampling points. A Monkhorst-Pack sampling63 of special64 k-points is performed as it is an
unbiased method to select these points in a equally spaced mesh

k(n1, n2, n3) =

3∑
i=1

2ni − Ni − 1
2Ni

b1, (2.23)

where ni = 1, . . . ,Ni, Ni determines the number of points in the bi direction.
The calculation of many properties requires the evaluation of integrals over the Brillouin zone

in reciprocal space. This discrete set of k-points allows us to make an accurate approximation of
these integrals65. To illustrate, the integral of a function F(k)

1
ΩBZ

∫
BZ

F(k)dk ≈
∑
k

wkF(k), (2.24)

where ΩBZ is the volume of the Brillouin zone, is approximately equal to the weighted sum over
the k-points of the first Brillouin zone.

2.1.4 The Hohenberg-Kohn theorem

One alternative way to reduce the computational effort of considering the positions of all electrons
would be to use only the electronic density to calculate the properties we want. The Hohenberg-
Kohn theorem tells us why such a different approach can be used. The Hamiltonian in Eq. 2.9
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is completely determined by the N electrons and the external potential vext, and so is the ground
state electronic wavefunction ψ0.

n0(r) = 〈ψ0|n̂|ψ0〉 =

∫
|ψ0(r, r2, . . . , rN)|2dr2 . . . drN . (2.25)

The ground state density n0(r) is a functional of the number of electrons N and the external
potential vext. In the very foundations of density functional theory is the Hohenberg-Kohn
theorem66.

Theorem 2 (Hohenberg-Kohn). The ground state electronic density n0(r) is uniquely determined
by the corresponding external potential vext(r), to within an additive constant.

The proof to this theorem is very simple and can be found in Ref. 61. Moreover, the ground
state is a unique functional of the ground state density

|ψ0〉 = |ψ[n0]〉. (2.26)

Such a functional dependence can be extremely complicated. The existence of this functional
means any ground state observable is also a density functional,

O[n] ≡ 〈ψ[n]|Ô|ψ[n]〉. (2.27)

In particular, this holds for the ground state energy, which will be the most important density
functional,

E[n] ≡ 〈ψ[n]|Ĥ|ψ[n]〉 = F[n] +

∫
d3rvext(r)n(r),

F[n] ≡ 〈ψ[n]|
(
T̂e + Ve−e

)
|ψ[n]〉.

(2.28)

In Eq. 2.28 F[n] corresponds to a universal part and vext enters into E[n] at only one point.
Another fundamental part of density functional theory (DFT) is the minimum principle for

the ground state energy functional E[n]. For all densities n′0(r) , n0(r), such that n0 is the ground
state density corresponding to vext,

E[n0] < E[n′0] ⇐⇒ E0 = min
n∈N

E[n], (2.29)
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whereN is the set of all ground state densities corresponding to different vext. The latter principle
is a direct consequence of theRitz variational principle, that is, the ground state |ψ′0〉 corresponding
to n′0 is not the same as |ψ0〉. The functional E[n] has its domain restricted to only densities inN ,
as obtained by solving Eq. 2.967. The energy functional can be rewritten as

E[n] = T [n] + EH[n] + Eext[n] + Exc[n], (2.30)

that is, as the sum of the kinetic energy functional T [n], the Hartree interaction energy functional
EH[n], the external potential energy functionalEext[n] and the exchange and correlation (xc) energy
functional Exc[n]. The xc functional accounts for the complicated effects of the interactions not
present in T , EH, or Eext.

2.1.5 Kohn-Sham Self-consistent Field Procedure

The basic idea behindDFT is to introduce an exact mapping of the interactingmany-body problem
onto a suitable non-interacting system, the Kohn-Sham (KS) system68. This fictitious system of
non-interacting electrons should have a ground state density that is the same as the density of the
fully interacting system. Through the KS self-consistent field procedure, the ground state density
n0(r), energy E0, and forces FI between the electrons can be found. The KS scheme has five
steps:

1. An initial guess n0 for the trial density ñ(r) is made.

2. The effective potential

veff[ñ](r) = vext(r) +

∫
ñ(r′)
|r − r′|

d3r′ + vxc[ñ](r), (2.31)

is calculated, where vext(r) is the external potential due to the nuclei, the second term
corresponds to the Hartree potential from the other electrons, and the third term vxc is
the exchange and correlation (xc) potential. The Hartree69 potential’s source is the aver-
age density of the electrons, and the exchange and correlation term includes corrections
to the kinetic energies and electron-electron interactions. vxc is the difference between
Hamiltonians that describe the interacting electrons and the KS system.
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3. The single-electron Schrödinger equation is solved to obtain the KS wavefunctions ϕi. The
effective potential is a functional of the trial density:(

−
1
2
∇2 + veff[ñ](r) − εi

)
ϕi(r) = 0. (2.32)

4. A new trial density ñ′(r) is calculated with the KS wavefunctions from the last step. To
obtain the density only the N/2 lowest eigenfunctions ϕi are summed, where we have
assumed the system is spin-paired

ñ′(r) = 2
N/2∑
i=1

|ϕi|
2. (2.33)

5. Steps (2), (3), and (4) are repeated until the density is converged, that is, the trial density
ñ′(r) is approximately equal to ñ(r), the previous density from Eq. 2.33, within a defined
accuracy. When this is achieved, we have a “final” density n(r) with the corresponding
eigenenergies εi. The cycle is also shown schematically in Fig. 2.1.

The KS wavefunctions ϕi result in the density of our system and εN/2, the eigenvalue cor-
responding to the highest occupied molecular orbital (HOMO), is the ionization energy. The
ground state energy E0 can be calculated from the outputs of the KS scheme using

E0 =

N/2∑
i=1

εi + Exc[n] −
∫

vext(r)n(r)d3r +
1
2

"
n(r)n(r′)
|r − r′|

d3rd3r′. (2.34)

It is important to mention that, so far, the exchange and correlation potential vxc only has
an exact expression for systems with few atoms. This means that, in the case of a many-body
problem, the exchange and correlation potential functional must be approximated.

Finally, in order to find the relaxed structure of certain system it is necessary to minimize
the forces of its atoms, the force acting on an atom at RI is FI = −∇IE[n]67, which, by the
Hellman-Feynman theorem71, can be also calculated as FI = − 〈ψ0(R)|∇IH(R)|ψ0〉. That is, we
can obtain the forces from the ground state wavefunctions which were already calculated for the
energy. Let us recall that the total energy depends parametrically on the positions of the nuclei.
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(1) Make Initial Guess for Density
n0(r) → ñ(r)

(2) Construct an Effective Potential

veff[ñ](r) = vext(r)+
∫

ñ(r′)
|r − r′|

d3r′+vxc[ñ](r)
ñ′(r) → ñ(r)

(3) Solve Single-Electron
Schrödinger Equation(

−
1
2
∇2 + veff[ñ](r) − εi

)
ϕi(r) = 0

(4) Calculate Electron Density

ñ′(r) =

N∑
i

|ϕi(r)|2
(5) Self Consistent?
ñ′(r) ≈ ñ(r)→ n(r)

Output Ground State
Density n(r), Energy E0, and Forces FI

No

Yes

Figure 2.1: Kohn-Sham self-consistent scheme. Adapted from Ref. 70.
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2.1.6 Exchange and correlation Functionals

Although it is a basic requirement for DFT to obtain the ground state energy, the exact form of
the functional Exc[n] is unknown. Numerical approximations must therefore be made, e.g., using
Monte Carlo simulations.

Local-density approximation

One of the first approaches to estimate the xc-energy functional was proposed by Perdew and
Zunger72. They considered a local-density approximation (LDA) in which the xc-energy of the
system in question, with density n(r), is locally approximated by the xc-energy of a homogeneous
(or uniform) electron gas (HEG), with density n(r) = n0. The HEG is a system of interacting
electrons that do not experience a spatially varying external potential. The LDA xc-energy density
is then

ELDA
xc [n] =

∫
εHEGxc (n0 = n(r))d3r. (2.35)

As discussed in Ref. 67, the LDA is often used in the KS scheme because the corresponding
xc-potential is simply a function of the local density,

vLDAxc (r) =
δELDA

xc [n]
δn(r)

. (2.36)

Physically, the vLDAxc has an extremely short range because it only depends on the local density.
The LDA ignores corrections to the xc-energy due to inhomogeneities, but it is successful despite
this severe approximation. It has been used in DFT for decades producing an overwhelming
number of results throughout the literature. This is because LDA respects the sum rule that
one electron is excluded from the immediate vicinity of a given electron. Also, although LDA
generally underestimates the exchange energy and overestimates the correlation energy, these
errors tend to cancel each other. A known disadvantage of the LDA is its the over binding of
molecules73.
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Generalized gradient approximation

In order to take into account non-homogeneities in the electron density, a semi-local approximation
that depends on the gradient of the density is often used. This generalized gradient approximation
(GGA) is based on how the density changes away from the coordinate. The GGA exchange
functional generally takes the form74

EGGA
x [n] =

∫
εHEGx (n0 = n(r))Fx [s(r)] d3r, (2.37)

where n(r) is the electronic density, εHEGx is the exchange energy density of a HEG (∼ n4/3), Fx is
an enhancement factor, and s is the dimensionless density gradient

s =
|∇n|
2kFn

, (2.38)

with kF = (3π2n)1/3. Eq. 2.37 is spin-unpolarized but a spin-polarized version may also be
deduced74. The enhancement for any GGA that recovers the HEG limit is

Fx[s] = 1 + µs2 + . . . (s→ 0) (2.39)

Similarly, the gradient expansion for the correlation functional that recovers the HEG limit is

EGGA
c [n] =

∫
n(r)

{
εHEGc [n(r)] +

πkF

2
βs2[n(r)] + . . .

}
d3r, (2.40)

where εHEGc is the correlation energy of the HEG and β is a coefficient. GGA functionals used
to be parametrized by fitting experimental data and were therefore restricted to certain systems.
However, parameter-free functionals can be used in a wide range of systems. One example of
these is the functional developed by Perdew, Burke, and Ernzerhof (PBE)74.

PBE GGA

The parameters used in the PBE functional are rather fundamental constants and are defined as

µ = 0.21951 and β = 0.0066725. (2.41)

The PBE functional was used in this thesis and it includes the linear response of the uniform
gas, correct behavior under uniform scaling, and a smoother potential. The physical ideas of PBE
and the consequences for practical calculations are found in Refs. 75 and 76.
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PBEsol GGA

The PBEsol functional is a revised PBE GGA that improves equilibrium properties of densely-
packed solids and their surfaces77. For this functional, the same form as PBE is used but the
parameters are set to

µ = µGE = 0.1235 and β = 0.046, (2.42)

where µGE is used to obtain an accurate gradient expansion for slowly varying electrons. PBEsol
reduces the dependence on error cancellation by providing a more accurate accurate description
for both exchange and correlation energies of surfaces. The performance of PBEsol for solids is
assessed in Ref. 77.

2.1.7 Derivative Discontinuity

Energy functionals are defined only for an integer number of electrons, N. In Ref. 67, the energy
functional for fractional particle numbers is derived as the statistical superposition of the lowest
energies of the two states |ψN〉 and |ψN+1〉,

E f [n] ≡ F f +

∫
d3rvext(r)n(r) (2.43)

F f [n] ≡ min
ψN ,ψN+1

{
(1 − η)

〈
ψN

∣∣∣∣(T̂e + Ve−e

)∣∣∣∣ψN

〉
+ η

〈
ψN+1

∣∣∣∣(T̂e + Ve−e

)∣∣∣∣ψN+1

〉}
, (2.44)

where 0 < η < 1, and the search of the minimum is restricted by the density

n(r) = (1 − η) 〈ψN |n̂(r)|ψN〉 + η 〈ψN+1 |n̂(r)|ψN+1〉 . (2.45)

For fractional particle numbers, the variational equation that determines the ground state density
is well-defined because F f [n] exists for any density that integrates up to N + η,

δE f [n]
δn(r)

= µL, (2.46)

where µL is the Levy-Lieb functional. This functional is identical to the chemical potential for
integer particle number

µ(N) =
∂E
∂N

(N), (2.47)
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where the total energy E(N + η) corresponds to the minimum of the energy functional of a
fractional particle number,

E(N + η) = min
n

E f [n]. (2.48)

The minimum in Eq. 2.48 is obtained when n is a superposition of the ground state densities of
the N-particle system nN and of the (N + 1)-particle system nN+1,

n(r) = (1 − η)nN(r) + ηnN+1(r). (2.49)

The total energy of a system with N + η particles is also the superposition of the total energy
of a system of N particles and a system of N + 1 particles resulting in,

E(N + η) = (1 − η)E(N) + ηE(N + 1). (2.50)

It can be seen in Fig. 2.2 that the total energy for a fractional number of particles is a linear
function between two integer particle numbers.

N − 1 N N + 1
Q

E(Q)

Figure 2.2: Total energy E(Q) in as a function of the fractional particle number Q.
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The chemical potential is the slope of the piecewise linear curve E(Q). For this reason, the
ionization potential (IP) and the electron affinity (EA) are given simply by

µ(N − η) = EN − EN−1 = −IP (2.51)

µ(N + η) = EN+1 − EN = −EA. (2.52)

As a consequence of the form of the total energy, the chemical potential µ(N), that is the
derivative of the energy with respect to the number of particles, is discontinuous at all integer
particle numbers. Recalling Eq. 2.46, the last statement implies that the functional derivative
of the total energy functional E f [n] must also have discontinuities for integer particle numbers.
These are called derivative discontinuities.

2.1.8 Band Gap

The fundamental band gap Eg is defined as the difference between two binding energies: one for
the most weakly bound electron in the ground state of the semiconductor and the other for the
most weakly bound electron in the ground state of the system by adding one electron. For an
N-electron system, the fundamental band gap is

Eg = −
{[

EN
0 − EN−1

0

]
−

[
EN+1

0 − EN
0

]}
, (2.53)

where the sign convention guarantees that the band gap energy is positive. This corresponds
to the difference in energy between the (N + 1)th electron belonging to the conduction band
minimum (CBM) and the Nth electron in the valence band maximum (VBM). For a KS system,
the ionization energies are the same as the orbital energies, that is, EN

0 − EN−1
0 = εN and the band

gap for the non-interacting system is

∆KS = εN+1 − εN . (2.54)

By using Eqs. 2.51 and 2.52 the fundamental band gap can be rewritten as

Eg = IP − EA = lim
η→0+
{µ(N + η) − µ(N − η)} . (2.55)
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By using the variational equation, Eq. 2.46, this expression becomes

Eg = lim
η→0+

{
δE[n]
δn(r)

∣∣∣∣∣
N+η

−
δE[n]
δn(r)

∣∣∣∣∣
N−η

}
, (2.56)

and may be evaluated at the ground state density of the N + η particles. Decomposing the energy
functional as in Eq. 2.30 and as Eext and EH have a continuous dependence on the particle number,
the band gap becomes

Eg = lim
η→0+

{[
δT [n]
δn(r)

∣∣∣∣∣
N+η

−
δT [n]
δn(r)

∣∣∣∣∣
N−η

]
+

[
δExc[n]
δn(r)

∣∣∣∣∣
N+η

−
δExc[n]
δn(r)

∣∣∣∣∣
N−η

]}
=∆KS + ∆xc,

(2.57)

because T is the part of the KS system which has a derivative discontinuity. Finally, the band gap
is the difference between the lowest unoccupied KS orbital and the highest occupied KS orbital,
plus the contribution of the xc derivative discontinuity.

Eg = εN+1 − εN + ∆xc. (2.58)

2.1.9 GLLB-SC to Describe Band Gaps

The KS band gap differs from the experimental band gap by the derivative discontinuity ∆xc,
which can be of the same order of magnitude as the KS band gap, ∆KS = εN+1 − εN . ∆xc is
always positive and ∆KS is thus smaller than Eg. For this reason, comparison with experimental
values should only be done when the derivative discontinuity is added to the KS band gap78.
The xc potential can be tuned to obtain a better agreement of ∆KS with the experimental values,
but this can lead to a potential that has unphysical features, resulting in a poor description of
other properties that are not the band gap79. In Ref. 80, they calculated the exchange part of the
derivative discontinuity ∆x from the KS equations by using a modified version of the Gritsenko,
van Leeuwen, van Lenthe, and Baerends (GLLB) xc potential81,82. This xc potential exhibits a
step structure at the lowest unoccupied orbital when it starts to be occupied. A newer version of
this potential is called GLLB-SC, for solid and correlation, and has been shown to yield a better
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agreement with the experimental band gaps than LDA or GGA for solids83. The expression for
the derivative discontinuity for the GLLB-SC is

∆GLLB−S C
x =

〈
ϕCBM

∣∣∣∣∣∣∣
N/2∑
n=1

8
√

2
3π2

(√
εCBM − εn −

√
εVBM − εn

) |ϕn(r)|2

n(r)

∣∣∣∣∣∣∣ϕCBM
〉
, (2.59)

where ϕCBM and ϕn are the CBM and the nth KS wavefunctions, respectively, and εCBM, εVBM,
and εn are the eigenenergies of the CBM, VBM, and the nth states, respectively. The potential
varies abruptly when ϕCBM starts to be occupied by an infinitesimal amount η.

2.2 Representations of the KS wavefunctions

In DFT calculations, generally one of three types of representations of the KS wavefunctions are
used: real space, plane waves (PWs), or linear combinations of atomic orbitals (LCAOs). In real
space representations the wavefunctions are directly sampled at a finite number of grid points,
whereas in PW or LCAO representations, the wavefunctions are expanded in either a plane wave
or atomic orbital basis set, respectively.

A wavefunction is an element of a Hilbert space, that is, a vector space with an inner product.
States are represented as elements of this vector space and therefore can be expressed as a linear
combination of basis vectors. Moreover, any state ψ can be expressed as the linear combination
of vectors of a complete basis set {φµ}

ψn =
∑
µ

cn,µφµ. (2.60)

In practice, a truncated basis set is used to expand the wavefunctions and find the solution to
the KS equation in such a way that a finite matrix is employed to solve the eigenvalue problem.
In this section, a very brief review of each one of the representations is done.

2.2.1 Real space

The values of wavefunctions, electron densities, and potentials on a discrete grid of finite points
in real space can be used to represent them84–87. Also, the kinetic operator of the Hamiltonian
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contains the Laplacian operator which involves derivatives that can be approximated by finite
difference (FD) techniques88. The accuracy of this method can be systematically improved by
increasing the number of grid points, i.e., decreasing the spacing of the grid. One of the advantages
of this method is its flexibility when imposing boundary conditions: they can be either periodic,
non-periodic, or a mixture of the two. Furthermore, real-space calculations can be parallelized
on different processors by domain decomposition. The real space or FD representation of the
KS wavefunctions cannot be easily scaled up to perform calculations that involve very large
molecules with a great number of atoms.

2.2.2 Plane Waves

As we have seen in section 2.1.3, plane waves can constitute a complete basis set that spans the
KS wavefunctions. For a given unit cell of volume Ω,

un(r) =
1
√

Ω

∑
G

ũn,GeiG·r. (2.61)

In this way, the KS wavefunctions can be represented in terms of the coefficients ũn,G, and the
quality of this description is systematically improved by inclusion of more reciprocal lattice
vectors,G, in the sum of Eq. 2.61. However, a PW expansion of the KS wavefunctions cannot be
domain decomposed, as is possible for real space calculations.

2.2.3 Linear Combination of Atomic Orbitals

Another basis set that can be used to represent the KS wavefunctions is a linear combination of
atomic orbitals (LCAO). This approximation is widely used in ab initio calculations based on the
idea that the molecular orbitals of a given system can be built from the orbitals of its constituent
atoms89. The representation of the KS wavefunctions as a linear combination of atom-centered
functions has proven to be useful in large systems with many atoms per unit cell or with vacuum
regions where plane waves become expensive to use90. For instance, the gpaw code employs
LCAOs as basis within the projector-augmented wave (PAW) method91.
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An atomic orbital centered on atom a, φa
nlm(r, θ, ϕ), is the product of a numerical radial function

ζnl(r) and a spherical harmonic Ylm(θ, ϕ),

φa
nlm = ζnl(r)Ylm(θ, ϕ), (2.62)

where {r, θ, ϕ} are the spherical coordinates of the nucleus awhere the wavefunctions are centered.
So µ in Eq. 2.60 corresponds to n, l, and m, the three quantum numbers of a state. This basis set
is obtained by solving the radial all-electron KS equations for isolated atoms92,93. The detailed
procedure to generate LCAO basis functions can be found in Ref. 94.

2.2.4 Naming convention of LCAO basis sets

LCAO basis sets are named following the number of basis functions used for each element91,95.
In this way, for the minimal or single-ζ (SZ) basis set, one radial function ζnl(r) for each occupied
valence orbital, |nl〉 is used. Likewise, multiple-ζ sets are obtained by generating multiple
functions by the split valence technique for each occupied valence orbital96. For instance, the SZ
basis set for a hydrogen atom has one s–type function and the DZ basis set for a carbon atom has
two s–type functions and 2 × 2 p–type functions.

Multiple-Zeta orbitals improve the radial flexibility of the basis set and polarization functions
that have higher angular momentum l improve the angular flexibility. A polarized basis set has
a function with angular momentum l + 1 where l is the highest occupied valence orbital. For
example, a DZP basis for oxygen has 8 functions from the DZ part and 5 functions from the
polarized part which is a d–type orbital95.

2.3 Projector Augmented Wave Method

In order to solve the KS equations using efficient numerical methods, some approximations are
made. These are related to the different behavior of wavefunctions in different regions of real
space, i.e., close to and away from the nucleus. These are the pseudopotential and all-electron
methods.
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The usage of a pseudopotential and pseudowavefunctions is an approximation based on the
observation that core electrons, the ones closest to the atomic nucleus, are relatively unaffected
by the chemical environment. This means that the binding energy of the core electrons in isolated
atoms and in atoms that are brought together, like in molecules, is approximately the same. Also,
the total binding energy depends mostly on the energy of valence electrons. Another motivation
for treating core and valence electrons differently is that the strong nuclear Coulomb potential
and the highly localized core electrons states are difficult to represent computationally97.

All the atomic wavefunctions, either core or valence, should be mutually orthogonal because
they are derived from the same atomic Hamiltonian. Because the core states are highly localized
in the vicinity of the nucleus, the valence wavefunctions must oscillate very rapidly in this region
in order to maintain their orthogonality. Keeping in mind that the kinetic energy is proportional
to second spatial derivatives of the wavefunction and therefore to the magnitude of the curvature,
these rapid oscillations of the valence wavefunctions result in a large kinetic energy of the
valence electrons near the nucleus. This kinetic energy roughly cancels out the potential energy
corresponding to the Coulomb potential and this is why valence electrons are less bound than
core electrons. Because of this, it is convenient to replace the strong Coulomb potential and
core electrons by a pseudopotential98 that is smooth and reproduces the effect of the potential
and core electrons on the valence electrons. The KS equations are then solved only for the
valence electrons using pseudopotentials that are calculated and tabulated once for each element.
Drawbacks of this approximation include that information of wavefunctions near the nucleus is
lost and it is not a simple procedure to generate accurate pseudopotentials.

In the other approach or all-electron methods, the full information of the wavefunction is
available. This is achieved by using the frozen core approximation in which the orbitals of the
core electrons are fixed. These core orbitals are calculated and tabulated once. The frozen core
approximation is also motivated by the fact that the core electrons are inert for most purposes.
The Augmented-Plane-Wave (APW) is one of the all-electron methods in which the space is
divided into two regions: one spherical region centered at each atom where the wavefunction is
expanded into a local basis, and an interstitial region between the spheres where another basis set
is used, e.g., plane waves. The two basis are connected at the boundaries of the two regions99.
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A more general approach is the Projector Augmented Wave method (PAW)100 in which APW
is a special case101, and the pseudopotential method is a well defined approximation102. This
method is implemented using the gpaw58 code in all the calculations presented in this thesis. The
PAWmethod establishes a linear transformation T̂ that maps the physical valence wavefunctions
ψn onto computationally convenient fictitious pseudowavefunctions ψ̃n,

ψn = T̂ ψ̃n, (2.63)

where n is a quantum state label, that is a band, spin, or k-vector index. The transformation
operator is given by

T̂ = 1 +
∑

a

∑
i

(∣∣∣φa
i
〉
−

∣∣∣φ̃a
i

〉) 〈
p̃a

i

∣∣∣ , (2.64)

where φa
i are the atom-centered partial waves used to expand the all-electron wavefunction

within the atom-centered sphere or augmentation region, so that |ψn〉 =
∑

ai ca
ni

∣∣∣φa
i

〉
, φ̃a

i are
the corresponding partial waves used to expand the pseudowavefunctions, and p̃a

i are projector
functions.

The pseudo partial waves coincide with the corresponding true partial wave outside the
augmentation region and are smooth continuations inside the augmentation region. The projector
function for each pseudo partial wave is localized within the augmentation region and fulfills
the condition

〈
p̃a

i |φ̃
a
j

〉
= δi j inside the sphere. In order to make the PAW method a practical

scheme some approximations are needed. These include the frozen core approximation, where
no projector functions are needed for the core states, and employing a finite number of partial
waves and projectors.

2.4 Time-Dependent Density Functional Theory

Time-dependent density functional theory (TDDFT) gives access to excited states and to time-
dependent processes, like transport phenomena and conduction in the quantum regime103. In this
section we are going to describe the basic ideas behind TDDFT, that is, the Runge-Gross theorem
and linear response within TDDFT. Other aspects of this theory, such as the time-dependent
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Kohn-Sham equations and the adiabatic local density approximation (ALDA), are addressed in
previous works such as Refs. 67 and 104.

2.4.1 Runge-Gross Theorem

The Runge-Gross theorem is the analog of the Hohenberg-Kohn theorem for time dependent
systems. It establishes a map from the time dependent many-particle state to the corresponding
time dependent density. The evolution of the wavefunction is ruled by the time dependent
Schroödinger equation

Ĥ(t)ψ(t) = i
∂ψ(t)
∂t

, (2.65)

with an initial state at time t0

ψ(t0) = ψ0, (2.66)

where the Hamiltonian is
Ĥ(t) = T̂ + V̂ext(t) + Ŵ. (2.67)

For all systems of interest, Ŵ is the particle-particle Coulomb interaction and V̂ext(t) is the
coupling between the particle density and a time-dependent potential vext(r, t),

V̂ext(t) =

N∑
i

vext(ri, t) =

∫
d3rvext(r, t)n̂(r). (2.68)

As the system evolves in time, its density also changes, as given by

n(r, t) = N
∫

d3r2 . . .

∫
d3rN |ψ(r, r2, . . . , rN , t)|2 , (2.69)

and is normalized to yield the number of electrons,
∫

d3rn(r, t) = N.

Theorem 3 (Runge-Gross). Two densities n(r, t) and n′(r, t) evolving from the same initial state
ψ0 under the influence of two potentials vext(r, t) and v′ext(r, t), both Taylor expandable about t0,
eventually differ if the potentials differ by more than a purely time-dependent function, that is,
vext(r, t) − v′ext(r, t) , c(t)105.
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Based on this theorem, there is an injective mapping between densities and potentials under
these conditions. This means that the potential is a functional of the density. Having this
relation, a fictitious system of noninteracting electrons that satisfies the time-dependent Kohn-
Sham equations,

i
∂ϕn(r, t)

∂t
=

[
−
∇2

2
+ veff[n](r, t)

]
ϕn(r, t), (2.70)

has the same density as the real system and the effective potential veff yielding this density is
unique. The exchange and correlation potential is defined as Eq. 2.31 of the time independent
case and is also a functional of the time-dependent density as well of the initial KS wavefunction
ϕ(t0).

In contrast to time-independent DFT, the total energy cannot be obtained by minimization
of the energy functional because the total energy is not a conserved quantity. Also, finding the
full solution of the TDKS equations can be computationally expensive for large systems. A
different way to calculate time-dependent properties like excitation energies, transition moments,
ans polarizabilities, is to use linear response within TDDFT.

2.4.2 Linear Density Response

In most situations of interest, systems are subjected to small perturbations and do not deviate
strongly from their initial state. This is the case for most spectroscopy applications, where the
response to a weak probe is used to study the spectral properties of a system. In these cases, one
can use perturbation theory instead of seeking a complete solution to the TDKS equations. Using
liner response, the change of a particular variable or observable can be directly calculated up to
first order in the perturbation106. This can be achieved without calculating the change of the wave
function. In this thesis, we are employing linear density response in our calculations.

Let us consider the case where a system is in the ground state and a time-dependent scalar
potential is activated at time t0

v(r, t) = v0(r) + λΘ(t − t0)v1(r, t), (2.71)

where λ ∈ [0, 1] denotes the order of the potential perturbation, and Θ(t) is the Heavyside step
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function. That is, the potential is static, v0(r), until time t0. After t0 the time-dependent additional,
but small, perturbation potential v1(r, t) in switched on. The potential couples to the density in
the following time-dependent Hamiltonian which describes the perturbation

Ĥ1(t) =

∫
d3r′v1(r′, t)n̂(r′). (2.72)

The potential causes small time-dependent changes in the system and specifically in the
density which can be expanded as

n(r, t) = n0(r) + λn1(r, t) + λ2n2(r, t) + O(λ3), (2.73)

where n0 is the ground state density, that is, the same as before the perturbative potential was
turned on, n1 is the linear density response, and n2 is the second-order density response. n1 is
the first-order change induced by v1 whereas n2 is the quadratic one in λ. As the perturbation
is small, the linear density response dominates over the other higher order terms. Due to norm
conservation, the contributions to the density response must integrate to zero.

Using the first-order approximation to the time evolution operator corresponding to the Hamil-
tonian 2.72 and the interaction picture representation of operators, the linear response of the
density can be expressed as

n1(r, t) =

∫ ∞

−∞

dt′
∫

d3r′χ(r, t, r′, t′)v1(r′, t′), (2.74)

where χ(r, t, r′, t′) is the density-density response function defined as104

χ(r, t, r′, t′) = −iΘ
(
t − t′

) 〈
ψ0

∣∣∣[n̂ (
r, t − t′

)
, n̂(r′)

]∣∣∣ψ0

〉
. (2.75)

Equation 2.74 can be interpreted as the response of a system at position r and at time t, caused
by the sum of the small perturbations at positions r′ and (earlier) times t′. Equation 2.75 depends
on the ground state wavefunction ψ0 of the system and, due to the Hohenberg-Kohn theorem, the
response function is a functional of the ground state density, χ[n0].

It is often advantageous to work with the linear density response in frequency space rather
than in real time. This is key to extract excitation energies of a system from its linear response.
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The linear response of the density in frequency space is

n1(r, ω) =

∫
d3r′χ(r, r, ω)v1(r′, ω), (2.76)

where the Fourier transform of the response function, χ(r, r, ω), is

χ(r, r, ω) = lim
η→0+

∞∑
n=1

{
〈ψ0 |n̂(r)|ψn〉 〈ψn |n̂(r′)|ψ0〉

ω −Ωn + iη
−
〈ψ0 |n̂(r′)|ψn〉 〈ψn |n̂(r)|ψ0〉

ω + Ωn + iη

}
, (2.77)

what is called the Lehmann representation, and Ωn = En − E0 is defined as the nth excitation
energy of the system. In equation 2.77, it can be observed that the response function has poles
at the excitation energies of the many-body system. That is, if the frequency of the perturbation
matches an excitation energy, the response of the system will be large and we will eventually
obtain a peak in the spectrum with half width at half maximum η.

Linear density response of the Kohn-Sham system

Based on the Runge-Gross and Hohenberg-Kohn theorems, we can formally express, the time-
dependent density as a functional of the effective KS potential and hence of the external potential
without any dependence on the initial many-body state:

n(r, t) = n[veff[vext]]. (2.78)

Then the linear density response n1 will be given by the linearized effective KS potential
following Eq. 2.74. Here the density-density response function for the non-interacting KS system
can be expressed as

χ0(r, t, r′, t′) =
δn[veff](r, t)
δveff(r′, t′)

∣∣∣∣∣∣
veff[n0](r)

, (2.79)

where the linearized effective KS potential, i.e., the effective potential of order λ, is

veff 1[n](r, t) = vext 1(r, t) +

∫
d3r′

n1(r′, t)
|r − r′|

+ vxc 1(r, t). (2.80)

Within the framework of TDDFT, we must calculate self-consistently the linear density
response of the non interactingKohn-Sham system to an effective perturbation, since the linearized
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effective potential in Eq. 2.80 depends on n1(r, t). The KS response function in terms of the
frequency is given by

χ0(r′, r, ω) = lim
η→0+

∞∑
m,n=1

fn − fm

ω − ωmn + iη
ϕm(r)ϕ∗n(r)ϕ∗m(r′)ϕm(r′), (2.81)

where ωmn = εm − εn are the excitation energies of the KS states and fn and fm are the occupation
numbers of the KS orbitals. The double summation ensures that the only terms that contribute
are those where one orbital is occupied and the other is not.

Performing a Fourier transformation with respect to position, the linear density response in
reciprocal space is obtained. This is useful for systems with periodic boundary conditions. We
can see in the following equation that we are going from using the positions vectors r and r′ to
using reciprocal lattice vectors G and G′ 107:

χ0
GG′(q, ω) =

1
Ω

BZ∑
k

∑
n,m

fn,k − fm,k+q

ω + εn,k − εm,k+q + iη
〈ϕn,k|e−i(q+G)·r|ϕm,k+q〉〈ϕn,k|ei(q+G′)·r′ |ϕm,k+q〉,

(2.82)
where q is the momentum transferred by the perturbation, fn,k, εn,k and ϕn,k are the occupations,
eigenvalues and eigenfunctions of the nth band at the kth k-point in the Brillouin zone (BZ), Ω is
the volume of the unit cell and η is the half width at half maximum of the Lorentzian broadening.

Random Phase Approximation

The last term of the linearized effective potential in Eq. 2.80 is the linearized effective potential,
which is obtained by functional Taylor expansion

vxc 1(r, t) =

∫
dt′

∫
d3r′

δvxc[n](r, t)
δn(r′, t′)

∣∣∣∣∣
n0(r)

n1(r′, t′), (2.83)

which features the time-dependent xc kernel

fxc(r, t, r′, t′) =
δvxc[n](r, t)
δn(r′, t′)

∣∣∣∣∣
n0(r)

, (2.84)

that is, in turn, also a functional of the ground-state density. In any application of the linear-
response within TDDFT, one must rely on a suitable approximation to the xc kernel which can, for
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example, be generated from the approximation given to the time-dependent xc potential. Another
example is when all dynamical xc effects are ignored, the simplest treatment of the xc kernel is
to set it equal to zero:

f RPAxc = 0, (2.85)

which is known as the random phase approximation (RPA).

Interacting density response function

The interacting density response function is recovered by solving the Dyson equation

χ(r, r′, ω) = χ0(r, r′, ω) +

"
Ω

d3r1d3r2 χ
0(r, r1, ω)

{
1

|r1 − r2|
+ fxc(r1, r2, ω)

}
χ(r2, r′, ω),

(2.86)
where all the terms are functionals of the ground-state density and one can approximate the
interacting response function in terms of the non interaction response function:

χG,G′(q, ω) ≈
χ0
G,G′(q, ω)

1 − vG,G′(q)χ0
G,G′(q, ω)

, (2.87)

where vG,G′ is the interaction kernel for the Coulomb interaction in 3D,

vG,G′(q) =
4π

||q + G||2
, (2.88)

and the RPA was used.

2.4.3 Dielectric matrix using LDR-TDDFT-RPA

The inverse of the dielectric function ε−1 relates the electric field of a system to an external electric
field, E = ε−1Eext, and it can be approximated for long wavelengths and small frequencies as

ε−1 =
v

vext
= 1 + vH

n1

vext
, (2.89)

where vH in the Hartree potential, .
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The dielectric matrix within linear density response TDDFT is related to the the interacting
response function by, and n1 is the linear response of the density to the external perturbation v1.

ε−1
GG′(q, ω) = δGG′ +

4π
‖q + G‖2

χGG′(q, ω), (2.90)

where n1 is the linear response of the density to the external perturbation v1.
Using the RPA, the dielectric matrix108–110 is given in terms of the non-interacting response

function by
εRPA
GG′(q, ω) = δGG′ −

4π
‖q + G‖2

χ0
GG′(q, ω). (2.91)

In optical spectroscopy, the complex index of refraction ñ is defined as

ñ2 = εM(ω), (2.92)

where εM is the macroscopic dielectric function. The imaginary part of themacroscopic dielectric
function is therefore the photoabsorption of a solid. The macroscopic dielectric function in terms
of the microscopic dielectric function follows as

εM(ω) =
1

ε−1(q,G = 0,G′ = 0, ω)
=

1
ε−1

00 (q, ω)
(2.93)

As mentioned before, the optical absorption spectrum is obtained from the imaginary part of
the macroscopic dielectric function

Absorption = Im
[
εM(q→ 0, ω)

]
, (2.94)

where the momentum transfer cannot be zero because the Coulomb kernel (Eq. 2.88) would
diverge at q = G = 0. Instead, we take the limit q → 0+ for G = 0. In this limit, the matrix
elements in equation 2.82 for G = 0 reduce to

〈ϕn,k|e−i(q+G)·r|ϕm,k+q〉 = −iq ·
〈ϕn,k|∇|ϕm,k+q〉

εn,k − εm,k
. (2.95)

Neglecting local field effects, that is, the rapid oscillations on the microscopic scale caused
by slowly varying external fields, the macroscopic dielectric matrix can be approximated as

εM(ω) ≈ ε00(ω), (2.96)
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which is valid for local field effects parallel to q.
Replacing equations 2.82 and 2.95 in equation 2.91, we can obtain an expression for the

imaginary part of the microscopic dielectric function in the optical limit,

=[εM(ω)] =
4πη
Ω

∑
nm

fm − fn

(ω − εn + εm)2 + η2

( êq · 〈ϕn|∇|ϕm〉

εn − εm
+ ∆xc

)2

, (2.97)

and the real part,

<[εM(ω)] = 1 −
4π
Ω

∑
nm

(ω − εn + εm) ( fm − fn)
(ω − εn + εm)2 + η2

( êq · 〈ϕn|∇|ϕm〉

εn − εm
+ ∆xc

)2

, (2.98)

where êq is the unit vector in the direction of q.
The electron energy loss spectrum is then

EELS = −Im
[

1
εM(q, ω)

]
. (2.99)

2.5 Chlorophyll

Chlorophyll (Chl) a and b are the most common chlorophyll molecules found in green plants.
Both have the same basic structure: a magnesium ion (Mg2+) in the center of a chlorin ring, a
reduced porphyrin, and phytol chain. They differ by a group attached to one of the carbon atoms
of the chlorin ring: a methyl group (CH3) for Chl a and a aldehyde group (HCO) for Chl b43 as
shown in Figure 2.3.

The chlorin ring is a stable molecule around which electrons are delocalized in π orbitals.
This means it can easily lose or gain electrons and has the potential to transfer excited electrons
to other molecules. An important property of π-conjugated systems is that they can absorb
light in the visible regime and are therefore deeply colored, which is a general characteristic of
porphyrins. This is because light in the visible regime has sufficient energy to excite an electron
from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital
(LUMO) of a porphyrin.

Chl molecules strongly absorb light in the red and blue regions of the spectrum. These peaks
in the absorption are known as the Q and Soret bands, respectively. This is what gives the green
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(a) (b)

Chl a Chl b

Figure 2.3: Schematics of (a) Chl a and (b) Chl bwith theMg atom and the chlorin ring (blue), the
phytol carbon chain (grey) and either the methyl group (CH3, green) or the aldehyde group (HCO,
red). Mg, C, O, N, and H atoms are depicted in silver, grey, red, blue, and white, respectively.

color to plants and other organisms that contain chlorophyll. When measured in an ether solution,
the difference between the Q and Soret band is smaller for Chl b compared to Chl a, i.e., the
Q band is blue-shifted and the Soret band is red-shifted111. In this way, Chl a and b provide
experimentally relevant non-periodic systems for benchmarking our LCAO-TDDFT-k-ω code.
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2.6 Single-Walled Carbon Nanotubes

A single-walled carbon nanotube (SWCNT) is a graphene sheet rolled into a cylinder with axial
symmetry. SWCNTs have typical diameters of about 0.7 to 10.0 nm, with the majority having
diameters less than 2 nm112, and lengths from 1µm to 1 cm112. For this reason they are considered
to be one-dimensional objects, because their length to diameter ratio is often as large as 104 to
105.

How the graphene sheet is rolled up, that is, the orientation of the carbon atoms’ hexagon
within the lattice relative to the axis of the nanotube, determines the properties of the tube.
SWCNTs are either achiral (zigzag and armchair) or chiral. The chiral vector Ch points along the
circumference of the nanotube, is normal to the translational vector T, and is expressed in terms
of graphene’s unit vectors a1 and a2 by

Ch = na1 + ma2 ≡ (n,m) (0 < m < n), (2.100)

where n and m are integers that determine the chiral angle θ = arctan
[√

3(n/(2m + n))
]
. From

this it follows that (n = m, θ = 30◦) corresponds to armchair type SWCNTs, (m = 0, θ = 0◦) to
zigzag, and other combinations (0◦ < θ < 30◦) to chiral nanotubes as it is shown in Figure 2.4.

The carbon atom periodicity also has a huge impact on the band structure and electronic
properties of the SWCNTs. This dependence is derived from the tight binding model of graphene
and is known as the zone-folding approximation. For our purposes we need only consider the
classification of SWCNTs that is given by the relation of their indices: a SWCNT is metallic if
n − m ≡ 0 mod 3, which includes all armchair type SWNTs, and semiconducting otherwise.
When taking into account curvature effects, the classification changes: armchair SWCNTs remain
metallic but when the indices n − m ≡ 0 mod 3, the nanotube has a finite gap proportional to
1/d2 and sin 3θ where d is the diameter and θ the chiral angle113.

The differences between metallic and semiconducting SWCNTs can be pictured with their
density of states (DOS). TheDOS near the Fermi level is non-zero formetallic nanotubes, whereas
the DOS near the Fermi level is zero for semiconducting nanotubes as shown in Figure 2.5. In
either case, the DOS is not a smooth function of the energy, but instead has sharp peaks known
as van Hove singularities. This feature of the DOS results from the low dimensionality, 1D,
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Figure 2.4: (a) Graphene sheet showing the Ch vector for zigzag (n, 0) (blue), armchair (n, n)

(red), or chiral (n,m) nanotubes and (b) the appearence of armchair (blue), zigzag (red) and chiral
nanotubes.

of SWCNTs. Each singularity is marked with the index of the subband to which it belongs in
Figure 2.5.

Optical selection rules for SWCNTs allow light polarized parallel to the nanotube axis to
produce intense transitions between the corresponding subbands in the valence and conduction
bands. For instance, v1→c1 and v2→c2, and so on, correspond to well-defined absorptions with
energies E11 and E22, as depicted schematically in Figure 2.5. Metallic SWCNTs also have
intense absorption peaks associated to transitions between van Hove singularities114. Recently,
experimentalmeasurements of chirality sorted SWCNTs have provided both optical absorbance115

and electron energy loss (EELS) spectra48 of a plethora of SWCNTs. For this reason, SWCNTs
provide experimentally relevant 1D periodic systems for benchmarking our LCAO-TDDFT-k-ω
code.
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Figure 2.5: Schematics of the density of states (DOS) of (a) a metallic SWCNT and (b) a
semiconducting SWCNT. The sharp peaks are van Hove singularities and the arrows show the
dominant E11 and E22 transitions.





Chapter 3

Methodology

3.1 Chlorophyll Monomers Structures & Computational de-
tails

As discussed in Ref. 52, Chl molecules in nature are found inside protein pockets that modulate
their color. In order to assess how strong this modulation is, the absorption spectra of bare Chl
molecules, without solvents or external perturbations, is needed. This is also the starting point
to understand the absorption properties of photosystems that contain hundreds of Chl molecules
within a protein microenvironment. These were the motivations for Milne et al.52 to take a
new approach in which they tagged the Chl molecules with molecular cations to avoid the rapid
decomposition of the Chl molecules when they were evaporated for gas-phase spectroscopy. The
charge tags used are quaternary ammonium cations which do not posses mobile protons. Hence
the charge remains located in the tag and the Chl spectra should not contain shifts that are hard to
interpret. Tetramethylammonium, 1+, tetrabutylammonium, 2+, and acetylcholine, 3+, were the
charge tags Milne et al. used in Ref. 52.

In this thesis, we performed calculations only for the 1+ tag because Milne et al. showed
that the dependence on the nature of the charge tag was negligible52. Also, the large phytol
or hydrocarbon chain was cut for some of the calculations going from C20H39 to C5H9. This

43
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simplified version of the molecules allowed us to perform the DFT calculations using a smaller
unit cell, 2417.43Å3 for Chl a and 2610.02 for Å3 Chl b. The structures used for these calculations
are depicted in Figure 3.1.

The DFT calculations were performed using the PAW implementation of the gpaw code.
We used the Perdew-Burke-Ernzerhof (PBE)74 exchange and correlation functional, which is a
generalized gradient approximation. To represent the electron density and the KS wavefunctions
we used linear combinations of atomic orbitals with functions from single-ζ (SZ) up to quadruple-
ζ (QZ) and their polarized versions (SZP andQZP, for example). We also used PW representations
with a cutoff of 340 eV, which has been shown to converge carbon dimers as reported on the
gpaw website117. We did not show the convergence of the total energy of the structures with
respect to the PW cutoff. We rather studied the convergence of the optical absorption spectra
by comparison with PW, various basis sets for the LCAO mode, and the experimental results.
We did this because the spectra depend on both occupied and unoccupied eigenenergies and the
convergence of the total energy would not imply a converged spectrum.

The structures were optimized until a maximum force less than 0.03 eV/Å was obtained in a
supercell with more than 6 Å of vacuum. For the charged structures, fixed boundary conditions
were used rather than periodic boundary conditions, i.e., the density and wavefunctions at the
boundaries of the unit cell were set to zero. This has been previously shown to be necessary to
model charged structures in gas phase118. We did not performe calculations at the spin-polarized
level because the number of electrons was even for the charged structures.

The optical absorbance was modelled using the imaginary part of the dielectric function,
=[ε(ω)], from LCAO-TDDFT-k-ω calculations. From Eq. 2.97 and adding the derivative dis-
continuity correction of the exchange part of the GLLB-SC functional to the eigenenergies of
unoccupied KS states, the dielectric function is

=[εM(ω)] =
4πη
Ω

∑
nm

fm − fn

(ω − εn + εm − ∆GLLB-SC
x )2 + η2

( êq · 〈ϕn|∇|ϕm〉

εn − εm + ∆GLLB-SC
x

)2

. (3.1)

From this we can expect the spectra to be blue shifted by the energy derivative discontinuity
correction and the intensities corresponding to lower energies will decrease.
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Figure 3.1: Schematics of (a) full·1+, (b) cut ·1+, and (c) cut chlorophyll a (Chl a) and chlorophyll b
(Chl b).The full (C20H39) or cut (C5H9) hydrocarbon chain are in grey and the tetramethylam-
monium charge tag (N(CH3)+4 ) in red. Labelling of the rings (A–E) and orientation of the x

and y polarization axes (blue and red arrows) are according to IUPAC-IUB nomenclature43,116.
Structures in (a) full·1+ are based on those provided in Ref. 52.



46
3.2. SINGLE-WALLED CARBON NANOTUBES STRUCTURES & COMPUTATIONAL

DETAILS

The matrix elements in Eq. 3.1 are expressed using the PAW formalism as in Eq. 2.64 and they
must already be calculated to obtain the forces in the previous DFT calculations. For this reason,
obtaining the imaginary part of the dielectric function, =[ε(ω)], within the LCAO-TDDFT-k-ω
code simply involves the multiplication of matrices that have been already calculated. This
is a very efficient method with a scaling better than O(NM2) where N is the number of KS
wavefunctions and M ≥ N is the total number of basis functions used in the LCAO calculation.

The spectra were calculated with an electronic broadening of η = 50 meV to the individual
Lorentzian peaks. The electron and hole density difference, ∆ρ(r), of the first four excitations,
m→ n, were calculated using the transitions from LCAO-TDDFT-k-ω, with

∆ρ(r) = ρh(r) + ρe(r) ≈ |ϕm(r)|2 − |ϕn(r)|2, (3.2)

where ϕm and ϕn are the KS orbitals corresponding to the hole and electron, respectively47.

3.2 Single-Walled Carbon Nanotubes Structures & Computa-
tional Details

In Figure 3.2 we show the indices (m, n) of the SWCNTs in a graphene sheet used in our
calculations. The ones marked with red are semiconducting nanotubes for which we obtained
the theoretical absorption spectra, the blue ones are semiconducting with electron energy loss
spectroscopy, the mauve ones have both optical absorption and electron energy loss spectroscopy,
and the dark blue ones are metallic nanotubes with electron energy loss spectroscopy.

The density functional theory (DFT) calculations were also performed using the gpaw code,
based on the projector-augmented wave (PAW) method within the atomic simulation environ-
ment (ASE)120. We have used for the SWCNTs a revised Perdew-Burke-Ernzerhof generalized
gradient approximation for solids (PBEsol)77 for the exchange and correlation (xc) functional,
and represented the Kohn-Sham wave functions using a linear combination of atomic orbitals
(LCAO)91 with a double-ζ polarized (DZP) basis set.

Both the unit cell and atomic structure for each of the nineteen SWCNTs studied (see Fig. 3.2)
were relaxed until the maximum force was less than 0.05 eV/Å by including 10 Å of vacuum
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Figure 3.2: SWCNT indices (m, n) of circumference vector C ≡ ma1 + na2 where a1 (red) and
a2 (blue) are the primitive unit vectors with optical absorbance (red), electron energy loss (blue),
and both (mauve) data from Refs. 115 and 48, respectively. Metallic tubes (m − n ≡ 0 mod 3)
are marked in grey or dark blue. Adapted from Ref. 119.

perpendicular to the SWCNT’s axis. Periodic boundary conditions were employed only in the
direction of the SWCNT axis. A grid spacing of h ≈ 0.2 Å was employed and the Brillouin-zone
was sampled with a k-point density of ∆k . 1

30 Å−1.
A Harris calculation was performed for each SWCNT to increase the k-point density to

∆k . 1
1200 nm−1, fixing the electron density throughout the self-consistency cycle. Such a dense

k-point density was found to be necessary to converge the calculated absorbance spectra. In order
to improve the description of the electronic gap, we employed the correction of the derivative
discontinuity of the exchange and correlation (xc) functional GLLB-SC as described in Section
2.1.9. We also corrected the optical absorption spectra given by the imaginary part of the dielectric
function following Eq. 3.1, as well as the real to calculate the electron energy loss spectra in a
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similar manner. The exciton density was calculated as in Section 3.1, where the electron hole
density difference, ∆ρ(r), was calculates as47

∆ρ(r, ω) = ρh(r, ω) + ρe(r, ω) ≈
∑
nm

η2| fnm|
2
(
|ϕn(r)|2 − |ϕm(r)|2

)
(ω − εn + εm + ∆GLLB-SC

x )2 + η2 , (3.3)

where fnm are the calculated intensities of them→ n transition fromEq. 2.97, and
∫

∆ρ(r, ω)d3r =

0.

3.3 Combined System Structure & Computational Details

In Figure 3.3 we show schematics of the combined system, Chl a/(6,4) CNT. The unit cell of
this systems contains the neutral cut structure of Chl a with the y direction (along the N–Mg–N
atomic bonds, see Fig. 2.3) aligned with the (6,4) CNT axis, the z axis. That is, we rotated the
Chl a molecules to be aligned with the nanotube as shown in Fig. 3.3(c). We used the relaxed
structures from the previous sections to build the combined system. The distance between the
Mg atom of the chlorophyll molecule and the nearest C atom from the carbon nanotube is 2.5 Å
after relaxation.

The computational details of the calculations of the combined system are the same as the
SWCNTs unless otherwise stated. The system was relaxed using FIRE121 until the maximum
force was less than 0.05 eV/Å by having vacuum in the x and y directions of 10 and 12 Å,
respectively, in order to avoid interactions with the replicas. The length of the supercell in the z

direction was that of the carbon nanotube, that is 18.3 Å. Periodic boundary conditions were used
in all three directions. A 112×144×96 grid representation was employed and the Brillouin-zone
was sample using 1×1×3 k-points.
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(a)

(b)

(c)

2.5 Å

Eadsorption=
0.667 eV

Figure 3.3: Schematics of the system of a cut chain chlorophyll a molecule and a (6,4) carbon
nanotube. Here are depicted the views along (a) the z axis, (b) the y axis, and (c) the x axis. Mg,
C, O, N, and H atoms are depicted in green, black, red, blue, and white, respectively. In (a) the
separation between the Chl and SWCNT is approximately 2.5 Å. The calculated binding energy
of Chl a on the (6,4) SWCNT is 0.667 eV.





Chapter 4

Results & Discussion

The Results & Discussion chapter is split into three sections: the first section shows the optical
absorption spectra and related properties of the chlorophyll a and b monomers, the second
section corresponds to the optical absorbance and electron energy loss spectroscopy of single-
walled carbon nanotubes (SWCNTs) and the last section corresponds to the study of the combined
system, chlorophyll (Chl) a/(6,4) CNT.

4.1 Chlorophyll a and b Monomers ∗

4.1.1 Optical Absorption Spectra

In Figure 4.1, we show the optical absorption spectrum of the neutral cut structure of Chl a
calculated using either multiple-ζ basis sets (SZ, DZ, TZ and QZ) or the polarized versions
of the basis sets (SZP, DZP, TZP and QZP) within the linear combination of atomic orbitals
(LCAO) mode of the gpaw code. We systematically increase the number of functions to assess
the sensitivity of the optical absorbance and observe that the spectrum converges differently for

∗This work was performed in collaboration with Duncan John Mowbray, Ask Hjorth Larsen, Keenan Lyon and
Bruce Forbes Milne, and is adapted from “Optical Excitations of Chlorophyll a and Chlorophyll b Monomers and
Dimers”, in preparation, 2019.122
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basis sets with and without polarization functions.
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Figure 4.1: Dependence of the optical absorption spectra of Chl a on the single-ζ (SZ), double-ζ
(DZ), triple-ζ (TZ) and quadruple-ζ (QZ) LCAO basis sets (a) with and (b) without polarization
(P) functions.

It can be observed in Figure 4.1(a) that the SZ basis set yields a red-shifted spectrum compared
to the other spectra, the TZ and QZ basis sets spectra are almost the same, and the DZ basis
set yields the same energies of the Q and Soret bands compared to those of the TZ and QZ
but the peaks within the band are more separated than in the TZ or QZ spectra. The polarized
multiple-zeta basis sets are show in Figure 4.1(b) and we observe that the SZP basis set also
yields a red-shifted spectra compared to other spectra and there are more peaks above 3 eV. The
spectra obtained using TZP and QZP are basically the same and the DZP basis set yields the same
energy of the Q and the Soret bands although the peaks within the bands are a little bit separated
when compared to TZP and QZP.
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Even though it seems that the spectrum of Chl a will not change if we increase the number
of functions of the basis set, we cannot rely solely on these results to claim that an LCAO basis
set will guarantee an accurate description of the optical absorption spectra. This is because
LCAO basis sets cannot be systematically converged to the complete basis set limit. This is clear
from comparing the result of the inclusion of polarization functions with the LCAO basis sets
in Figure 4.1. Although double-ζ basis sets are converged with respect to the number of radial
functions, the inclusion of polarization systematically alters the spectra. For this reason, we
compare the spectra of Chl a and Chl b obtained using LCAOs to the spectra yielded by density
functional theory (DFT) calculations with a plane wave plane wave (PW) representation of the
Kohn-Sham (KS) wavefunctions.

In Figure 4.2, we show the optical absorption spectra of the cut structures of both Chl a
and Chl b calculated using either the DZP basis set within the LCAO mode, or using a PW
representation of the KS wavefunctions that ensures converged optical absorption spectra. We
find that the DZP basis set yields an optical absorption spectrum with transition energies very
close to those of the spectrum calculated using PW. We observe that the LCAO spectra is only
slightly (much smaller than the 0.1 eV DFT accuracy) red-shifted compared to the PW spectra
but underestimates the intensities of the transitions. Nevertheless, we can affirm that the atomic
basis set with double-ζ and polarization functions, DZP, is sufficient to ensure semi-quantitative
agreement of the optical absorption spectra for the Chl a and Chl b with the PW calculations.

The DZP basis sets have been shown to be sufficient (and often necessary) to converge to
the results calculated with plane waves representation of the KS wavefunctions in other works as
well91,123. From hereon we shall restrict consideration to the DZP basis set and simply refer to
our calculations as LCAO.

Figure 4.3 shows the optical absorption spectra, obtained with the LCAO-TDDFT-k-ω code
andwith the derivative discontinuity correction of the Gritsenko-Leeuwen-Lenthe-Baerends solid
and correlation (GLLB-SC) functional for the cut, cut·1+ and full·1+ structures of Chl a and Chl
b molecules, as depicted in the schematics of Figure 2.3. For comparison, the experimental data
from reference 52 corresponding to the full chain Chl molecules with either a 1+ or a 3+ tag are
also shown. We have assigned the first and the second excitations of the calculated spectra to the
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Figure 4.2: Optical absorption of Chl a and b employing LCAO (solid lines) and PW (dashed
lines) representations of the Kohn-Sham orbitals.

Q band and the third and fourth excitations to the Soret band.
In the case of Chl a, as observed in the Fig. 4.3(a), the onset of the calculated spectra for the
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full·1+ structure are in semi-quantitative agreement with the experimental spectra obtained with
either the 1+ or 3+ tag. The difference between the maximum of the Q band and the calculated first
excitation energy is less than 0.2 eV and the difference between the maximum of the Soret band
and the calculated fourth excitation is less than 0.1 eV. Also, the spectra of the cut·1+ structure
shows the same qualitative behavior as the full·1+ structure, suggesting that none to negligible
changes in the optical absorption spectra are caused by the carbon chain. However, when the
charge tag is removed, that is, regarding the cut structure, the Q band peaks are blue shifted and
the band gap is widen, whereas the Soret band peaks are red shifted.

For Chl b, Figure 4.3(b), the calculated spectra for the full·1+ structure is also in semi-
quantitative agreement with the experimental spectra. Specifically, the peaks of the Q band and
the Soret band of the full·1+ structure are blue and red shifted, respectively, when compared to
the experimental data, with a difference between the Q band maximum and the calculated first
excitation of 0.23 eV and a difference between the Soret band maximum and the calculated fourth
excitation of 0.26 eV. Again, the spectrum of the cut·1+ structure is qualitatively the same as the
spectrum of the full·1+, reinforcing the idea that the carbon chain has no impact in the optical
absorbance and that it should be centered on the Mg atom and the chlorin ring. When removing
the charge tag, cut structure, the Q band peaks are again blue shifted, and the band gap is widen,
whereas the Soret band peaks are red shifted.

The intensities of the excitations of the Soret band are being underestimated about 75% for
Chl a and 52% for Chl b, comparing the full·1+ to the experimental data. Also, the intensity of
the Soret band peaks is less compared to that of the Q band peaks. This is not the case of the
experimental data. Although, the relative intensities are adjusted, that is, the Soret band peaks
intensities are increased by the applying the GLLB-SC correction to the spectra following Eq. 3.1,
they are still underestimated. Such a difference can be explained by the fact that we are neglecting
charge transfer excitations at the linear density response level. The higher intensity of these peaks
is often attributed in the literature to this type of charge transfer excitation52 which we are unable
to model. In this way, our underestimation of the Soret band intensity provides indirect insight
into the nature of the experimentally observed peaks.
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Figure 4.3: Optical absorption spectra, for isolated chlorophyll a and b, were obtained using the
imaginary part of the dielectric function from the frequency domain TDDFT. Linear combinations
of atomic orbitals representations of the KS wavefunctions were used for (a) chlorophyll a and (b)
chlorophyll b. Different structures are being compared: chlorophyll with a full hydrocarbon chain
and a N(CH3)+4 charge tag (full·1+), with a cut version of the hydrocarbon chain and a (CH3)+4
charge tag (cut·1+), and neutral chlorophyll with a cut hydrocarbon chain (cut). The spectra for
the cut hydrocarbon chain was decomposed along the N-Mg-N bonds either in the x (blue) or y

(red) directions.
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Regarding the decomposed spectra of the cut·1+ and cut structures of Chl a and Chl b, the first
and fourth peaks correspond to excitations parallel to the hydrocarbon chain (x direction, blue
arrow in Figure 3.1), while the second and third peaks correspond to excitations perpendicular
to the hydrocarbon chain (y direction, red arrow in Figure 3.1). In all cases the Q/Soret band for
Chl a is lower/higher in energy than the Q/Soret band for Chl b, as found experimentally.

We have compared the calculated spectra for bare Chl a and Chl bmolecules to those obtained
experimentally. We obtained a reasonable agreement regarding the energies of the excitations,
whereas the relative intensities differ due to our neglect of charge-transfer excitations without
linear density response. Having been able to reproduce in part the experimental results, we will
now study how these excitations are spatially distributed throughout the molecules.

4.1.2 Excitonic Density

In Figure 4.4 we have plotted the spatial distribution of the electron and hole densities for the
first four transitions of the cut·1+ structures of Chl a and Chl b. The first and fourth excitations
are induced by optical absorption in the x polarization direction, whereas the second and third
excitations are induced by optical absorption in the y polarization direction, as shown in Figure
4.3. In all cases, the excitations are π → π transitions, involving the highest occupied molecular
orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) as well as the HOMO−1

and LUMO+1.
The electron density of the first and third excitations has weight on the 2pz orbitals of the N

atoms neighboring the central Mg atom, parallel to the direction of the absorption. In contrast,
the hole density of the second and fourth excitations has weight on the 2pz levels of the N and also
the Mg atoms. Overall, the first and third excitations redistribute the charge within the chlorin
ring, with charge from the ring moving either to the edges or towards the Mg atom. This is in
contrast to the second and fourth excitations, which tend to move charge from the Mg atom to the
edge of the chlorin ring along the direction of the excitation.

The excitations for Chl a and Chl b are qualitatively the same, but there are differences in the
region of the methyl or the aldehyde group. In particular, the electron density of the third and
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Figure 4.4: Isosurfaces of the electron (blue) and hole (red) densities ρ(r) = ±0.001e/Å3 of the
first four excitations of charge tagged Chl a·N(CH3)+4 and Chl b·N(CH3)+4 with a cut hydrocarbon
chain (cut·1+) (i) HOMO → LUMO, (ii) HOMO−1 → LUMO, (iii) HOMO → LUMO+1, and
(iv) HOMO−1 → LUMO+1. Mg, C, O, N, and H atoms are depicted in silver, grey, red, blue,
and white.

fourth transitions has more weight around the aldehyde group of the Chl b than in the methyl
group of Chl a. Also, the hole density of the second and the fourth transitions has weight on
all the N atoms of the chlorin ring of Chl b, but only on three N atoms of Chl a. Moreover, the
electron density has some weight on the remaining N atomwhich is perpendicular to the direction
of excitation.

Finally, it is observed that no charge is coming from or going to the charge tag 1+. Also the
excitations of the cut·1+ and of the cut structures, which are shown in Figures A.1 and A.2 of
Appendix A, have basically the same spatial distribution as the cut·1+ structures. This provides
additional evidence that justifies the use of charge tagged Chl a and Chl b molecules to describe
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experimentally the optical absorption of neutral isolated Chl species.
In this section we have tested the LCAO-TDDFT-k-ω code for isolated molecules obtaining a

good description of the optical absorption spectra that both qualitatively and semi-quantitatively
matches the experimental data. We will now assess the description of low dimensionality systems
using the same code. In the next section we will show the optical absorption spectra and the
energy band gap of single-walled carbon nanotubes (SWCNTs) using the LCAO-TDDFT-k-ω
code.

4.2 Single-Walled Carbon Nanotubes∗

We have looked at very different single-walled carbon nanotubes (SWCNTs) that once relaxed
have diameters ranging from 6.97 to 12.38 Å, lengths from 6.51 to 63.02 Å, and from 84 to 868

atoms per unit cell, as listed in Table 4.1. The SWCNTs for which we made calculations have
also different electronic properties, 14 of them are semiconducting and four are metallic.

Also in Table 4.1, we show the derivative discontinuity correction of the exchange part of
the GLLB-SC functional, ∆x, that was calculated as explained in Reference 80 and in Section
2.1.9. The corrections have a size on average of ∼28% of the corrected band gap energies and
are proportional to both the corrected band gap energy and the KS band gap.

4.2.1 Optical Absorption Spectra

In Figure 4.5, we directly compare our results to the experimental data obtained in Ref. 115.
The experimental data was normalized, that is, the highest value was set to 1.5 in arbitrary units.
Likewise, we normalized the maximum of the calculated spectra to 1 in the same arbitrary units.

In each of the optical absorption spectra, the first peak corresponds to the first excitation
associated to van Hove singularities, i.e., the E11 transition. The second highest peak corresponds

∗This work was performed in collaboration with Víctor Alexander Torres-Sánchez and Duncan John Mowbray,
and is adapted from “Optical and Energy Loss Spectroscopy of Single-Walled Carbon Nanotubes”, submitted,
2019.119,124
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Table 4.1: Relaxed single-walled carbon nanotube (SWCNT) diameters d in Å, unit cell lengths L

in Å, numbers of atoms Nat per unit cell, and derivative discontinuity corrections∆x and electronic
band gaps Egap in eV.

SWNT d L Nat ∆x Egap

(Å) (Å) (eV) (eV)
(6,4) 6.97 18.64 152 0.418 1.475
(9,1) 7.62 40.81 364 0.417 1.476
(8,3) 7.84 42.12 388 0.399 1.414
(6,5) 7.60 40.83 364 0.374 1.317
(7,3) 7.09 38.06 316 0.365 1.281
(7,5) 8.31 44.68 436 0.360 1.273
(10,2) 8.84 23.80 248 0.358 1.269
(9,4) 9.17 49.33 532 0.339 1.199
(8,4) 8.40 11.34 112 0.329 1.158
(7,6) 8.97 48.21 508 0.315 1.113
(10,3) 9.36 50.47 556 0.278 0.983
(11,1) 9.16 49.35 532 0.269 0.950
(10,8) 12.38 33.37 488 0.240 0.849
(9,8) 11.66 63.02 868 0.246 0.869
(11,3) 10.13 54.63 652 0.310 1.098
(11,5) 11.22 20.20 268 — —
(12,3) 10.89 6.51 84 — —
(10,4) 9.91 8.91 104 — —
(7,4) 7.70 13.69 124 — —

to the second excitation of this kind, E22. We were able to resolve in some cases a peak between
these two, such as in the (9,4), (9,1), (8,3), (7,5) and (9,4). We can also observe excitations
higher in energy than the E22, but they do not seem to match any of the transitions obtained
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experimentally. From hereon, we shall restrict our discussion to the E11 and the E22 excitations.
All the spectra were calculated by using the derivative discontinuity correction of the exchange

part of the GLLB-SC functional. This not only shifted the energies, yielding a good description of
the first excitation energy E11 or the band gap, but also changed the intensities of all the spectrum
following Eq. 3.1.

For all the SWCNTs there is semi-quantitative agreement in the description of the relative
intensities and positions of the E11 and E22 transitions. We find that the E11 transition is more
intense than the E22, except in the case of the (9,1) SWCNT. The first transition being more
intense than the second transition is a feature also observed in the experimental data.

When comparing the spectra of all the SWCNTs, we find that the energies of theE22 transitions
are not at all correlated to those of the E11 transitions. The energies of these two transitions are
neither separated by the same amount nor is one proportional to the other. In some cases they
are closer than in others. Although the E11 and the E22 transitions are uncorrelated, the spectra
calculated with the LCAO-TDDFT-k-ω code was able to reproduce semi-quantitatively the values
of these transitions energies.

The optical absorption spectra showed in Figure 4.5 corresponds to the first 12 SWCNTs
listed in Table 4.1, which vary widely in length and number of atoms per unit cell. We can
observe that the spectra calculated using the LCAO-TDDFT-k-ω code reproduce the features of
the experimental data of these very different SWCNTs, showing that it is surprisingly robust when
calculating the optical absorbance of carbon-based one-dimensional nanostructures.

In order to calculate the optical absorption spectra of SWCNTs with large unit cells, it
was also necessary to implement the domain decomposition of the real space grids. This type
of parallelization, used along with parallelization over k-points, allowed us to carry out the
calculations with limited computational resources.
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Figure 4.5: Comparison of LCAO-TDDFT-k-ω calculated (solid lines) and measured (filled
regions) optical absorbance =[ε(ω)] spectra along the SWCNT axis in nm (upper axis) and eV
(lower axis) for chirality sorted (6,4), (9,1), (8,3), (6,5), (7,3), (7,5), (10,2), (9,4), (8,4), (7,6),
(10,3), and (11,1) SWCNTs shown in Fig. 3.2. Experimental spectra were taken from Ref. 115.
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4.2.2 E11 and E22 Transitions

In Figure 4.6 we compare the experimental values of the electronic band gaps E11 from optical
absorption and electron loss spectroscopy of References 115 and 48 to the our theoretical DFT
values. We also compare the values obtained with the derivative discontinuity correction of the
exchange part of the GLLB-SC functional (squares) and without this correction, that is, using
only the PBEsol exchange and correlation functional (circles).
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Figure 4.6: Comparison of theoretical DFT electronic band gaps, E11, in eV with (GLLB-
SC80, filled squares) and without (PBEsol77, open circles) including the derivative discontinuity
correctionwith experimentalE11 transitions obtained from optical absorbance and electron energy
loss measurements of fifteen different chirality sorted SWCNT samples from Refs. 115 and 48,
respectively. The standard deviation for GLLB-SC (σ ≈ 70 meV) and average error for PBEsol
(ε ≈ −0.30 ± 0.03 eV) are shown as grey regions and red solid and dashed lines, respectively.
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The PBEsol functional yields an estimation of the band gap with an average error of ε ≈
−0.30 ± 0.02 eV. It reproduces the trend better than in the case of GLLB-SC functional but the
band gap is always underestimated. When we add the derivative discontinuity correction of the
GLLB-SC functional, the average error is ε ≈ 0.04 ± 0.07 eV, that is, much smaller than when
not adding the correction and well within the expected 0.1 eV accuracy of DFT calculations.
Nevertheless, the standard deviation is somewhat larger. This shows that it is important to use
the derivative discontinuity correction of the GLLB-SC functional to properly describe the band
gaps and have a better agreement with the experimental band gaps of SWCNTs.

In Figure 4.7, we compare the experimental values of transitions energies E22 and their
corresponding theoretical DFT calculated values. We show in this case just the calculated
transition with the derivative discontinuity correction of the GLLB-SC functional. We were
able to obtain a better agreement than in the estimation of the E11 case because the error was
ε ≈ 26 ± 33 meV, so again well within the expected 0.1 eV accuracy of DFT calculations.

Based on the results of this subsection and the previous one, we have shown that the LCAO-
TDDFT-k-ω code can reproduce with great accuracy the uncorrelated E11 and E22 transitions
energies for SWCNTs. Moreover, the fact that we are obtaining such a good agreement suggests
that we are considering almost all the processes that are taking place during the optical absorption.
This also means that absorptions that include charge transfer, which are not described by our
method, do not occur.

4.2.3 Electron Energy Loss Spectroscopy

We have so far looked at the optical absorption spectra calculated using the LCAO-TDDFT-
k-ω code, which was defined as the imaginary part of the dielectric function, =[ε(ω)], for
semiconducting SWCNTs. Now we will look at the EELS of both metallic and semiconducting
SWCNTs. In so doing we are able to also assess the accuracy of the real part of the dielectric
function,<[ε(ω)]. This is because the EELS is the negative of the imaginary part of the inverse
of the dielectric function, −=[ε−1(ω)], i.e., =[ε(ω)]

<[ε(ω)]2
+=[ε(ω)]2 . In this way, we are assessing the

robustness of the LCAO-TDDFT-k-ω code by looking at another of its outputs. Furthermore, the
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Figure 4.7: Comparison of theoretical and experimentalE22 transitions in eV fromLCAO-TDDFT-
k-ω including the derivative discontinuity correction and optical absorbance measurements in
Fig. 4.5 from Ref. 115 for twelve different chirality sorted SWCNT samples shown in Fig. 3.2.
The average error is ε ≈ 26 ± 33 meV (grey region).

comparisonwill be donewith respect tomeasured spectra that correspond to different experiments
than those used in Section 4.2.1.

In Figure 4.8(a) we show the experimentally measured EELS of semiconducting SWCNTs
from Ref. 48, represented by filled regions. They are compared to the theoretical DFT EELS
calculated using the LCAO-TDDF-k-ω code, represented by solid lines. We observe for all five
semiconducting SWCNTs that the first and second peaks are blue-shifted with respect to the
measured spectra by about 0.2 and 0.4 eV on average, respectively. These peaks are the assigned
the E11 and E22 interband transitions.

Following these two peaks there is a trough and one, two or three intermediate peaks before
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a broader and last peak in the measured spectra. The third of all the peaks, that is, the first of
the intermediate peaks or the one right after the trough, is always red-shifted with respect to the
measured spectra by about 0.37 eV on average. These intermediate peaks correspond to the E33,
E44 and E55 interband transitions which can be easily identified in the spectra of the (10,8) and
the (9,8) SWCNTs.

The broader and last peak is blue-shifted by about 0.29 eV on average but it has not been
assigned a specific transition. The spectra have the same behavior in general up to an energy
shift, but in the spectra of the (8,4) and the (8,3) SWCNTs the peaks are closer together and harder
to recognize. As in the experimental results, the spectra present a monotonic downshift as the
diameter of the SWCNT increases.

Turning to an analysis of the metallic SWCNTs’ EELS in Figure 4.8(b), we observe a strong
peak at around 1 eV (marked with an *) that matches what is observed in the experimental spectra.
An exception to this is the spectrum of the (7,4) nanotube where a peak is observed but not as
strong as in the theoretical spectrum. These peaks, which are present only in the spectra ofmetallic
SWCNTs, correspond to free charge carrier plasmons. This means an intraband excitation that
causes quantized collective oscillations of electrons. More specifically, these would correspond
to Drude plasmons.

Going higher in energy, there is a trough and three well-known peaks. The first two of these
peaks correspond to E11 transitions, which we can label M11 as the nanotubes are metallic. The
splitting of the transition into two peaks is probably caused by the trigonal wrapping effect48. The
third peak corresponds to the M22 transition. All of these transitions can be compared to peaks in
the experimental data, although they are red-shifted by about 0.15 eV. Finally, the broader peak
that was not assigned to any transition is blue-shifted by about 0.28 eV. We also observe intense
peaks that do not match any in the spectra beyond the 5 eV in the (11,5) and (12,3) SWCNTs.

In summary, we obtained an accurate energy for the plasmonic transition and also a qualitative
description of the two peaks related to the M11 transition and the peak related to the M22 up to a
red-shift. In this way we have assessed both the real and imaginary part of the dielectric function
calculated using the LCAO-TDDFT-k-ω code.
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Figure 4.8: Comparison of LCAO-TDDFT-k-ω calculated (solid lines) and measured (filled
regions) electron energy loss =[ε−1(ω)] spectra along the SWNT axis in eV for chirality sorted
(a) semiconducting (10,8), (9,8), (11,3), (8,4), and (8,3) and (b) metallic (11,5), (12,3), (10,4)
and (7,4) SWNTs. Experimental spectra were taken from Ref. 48. Drude metallic plasmons (*)
are marked.
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4.2.4 Excitonic Density

In Figure 4.9 we show the spatially resolved electron-hole density difference ∆ρ(r, ω). The blue
isosurfaces correspond to negative density difference and the red isosurfaces to positive density
difference. This provide us insight into the exciton density distribution at the E11 = 1.48 eV
transition of the (6,4) SWCNT. We observe that the positive (or hole) density is distributed in a
kind of continuos spiral around the nanotube and that the negative (or electron) density follows
the same pattern but is not continuous.

(a) (b)

Figure 4.9: The exciton density difference positive (red) and negative (blue) isosurfaces for the
(6,4) SWCNT corresponding to an absorption induced transition at 1.53 eV (a) along the z axis
and (b) in the xy plane. The density difference corresponds to ∆ρ(r, ω) = ±2 × 105e/Å3 and we
observe that it corresponds to a π→ π orbitals transition.

In Figure 4.9(b) we show the electron-hole density difference isosurfaces seen along the z

direction. The isosurfaces resemble π-orbitals. So the E11 transition is indeed a π→ π transition.
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4.3 Chlorophyll–Single-Walled Carbon Nanotube Combined
System∗

4.3.1 Optical Absorption

In the previous sections we have obtained semi-quantitative agreement when comparing the
measured optical absorbance of chlorophyll structures and different SWCNTs with the optical
spectra calculated using LCAO-TDDFT-k-ω code. Now we shall investigate properties related to
the optical absorbance of amixed system, Chl a/(6,4) SWCNT, as a candidate organic photovoltaic
material.

We showed previously that the carbon chain of the Chl a molecule does not contribute to the
optical absorption spectrum either experimentally or theoretically. For this reason, in this section
we are going to use the cut structure of Chl a to study a mixed system, that is, the cut Chl a on
top of the (6,4) SWCNT. From hereon we shall omit “cut” and “SW” to simply our notation.

Aswe are proposing themixed systemChl a/(6,4) CNT, there is no experimental data available
to compare with our results. However, we can rely on the optical absorbance we obtain, up to a
given point, based on the reliability of our results of the individual molecules in Sections 4.1.1 and
4.2.1. In Figure 4.10 we show the theoretical DFT optical absorption spectrum of the combined
system and observe that it has more peaks or transitions than either of the individual spectra.

We may match the transitions of the molecules alone to the spectra of the combined system.
For example, the first peak at 1.48 eV could correspond to the E11 transition of the (6,4) CNT at
1.52 eV and the third peak at 2.17 eV could correspond to the E22 transition of the CNT. Likewise,
the fourth peak at 2.45 eV may be matched to the first transition at 2.38 eV in the y direction of
the Chl a molecule and the peak at around 2.75 eV to the second transition at 2.88 eV. Of course,
these transitions are in some way kept in the combined system, but the resonant energies are blue
or red-shifted.

This is not the case for a peak in the spectrum of the combined system Chl a/(6,4) CNT at
∗This workwas performed in collaborationwith Duncan JohnMowbray andwill also be included on “Theoretical

Spectroscopy of a Single-Walled Carbon Nanotube with a Modified Chlorophyll Molecule”, in preparation, 2019.

http://nano-bio.ehu.es/files/articles/Preciado-Rivas_JCTAC_2017_1180.pdf
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Figure 4.10: Optical absorption spectra of the mixed system Chl a/(6,4) SWCNT (orange) along
the z direction or the nanotube axis compared to those of the Chl a molecule along the y axis
(green) and the (6,4) SWCNT alone (violet) along the SWCNT axis in eV.

1.83 eV. We could not matched it to a transition of the chlorophyll molecules nor the carbon
nanotube. This could be a new excitation with a transition from one molecule to the other. In
the following section we use the spatial distribution of the exciton density difference to provide
quantitative insight into the nature of the transitions of the combined system.

4.3.2 Excitonic Density

In order to provide insight into the excitonic density of the combined system, we have plotted in
Figure 4.11 the spatially resolved electron-hole density difference ∆ρ(r, ω). Again, the blue/red
isosurfaces correspond to the negative/positive density difference. It is observed that, for the
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same cutoff we chose to plot the isosurfaces, the positive or hole density is only in the Chl a
molecule and that the negative or electron density is only in the CNT.

(a) (b)

e-

Figure 4.11: The exciton density difference positive (red) and negative (blue) isosurfaces for the
combined system Chl a/(6,4) CNT corresponding to an absorption induced transition at ∼ 1.4 eV
(a) along the z axis and (b) in the xy plane. A charge separation is observed where an electron is
going from the Chl a molecule to the (6,4) CNT.

Because the direction of the excitation was along the CNT axis, and therefore perpendicular to
the carbon chain, we consider it appropriate to compare the excitations to the HOMO→LUMO+1

transition of the cut Chl a that are plotted in Fig. A.2. We observe in Figure 4.11(a) that the hole
isosurfaces are distributed in the chlorin ring with very small or no concentration in the N atoms.

In Figure 4.11(b) we see that the electron density resembles the π orbitals, as in the excitonic
density of the (6,4) CTN alone plotted in 4.9. We also find that the hole density has a π orbital
distribution. From this we can say that negative charge, that is, an electron, is excited from the
chlorophyll molecule to the carbon nanotube by a π → π transition. This finding provides clear
evidence of electron–hole spatial separation for the first bright exciton of a Chl a/(6,4) CNT
network, which is an important result for assessing the feasibility of employing this system in a
photovoltaic cells.





Chapter 5

Conclusions & Outlook

In this thesis, we have looked at the optical absorption of chlorophyll a and b monomers in gas
phase, of 14 semiconducting and four metallic single-walled carbon nanotubes, and a combined
system of the two. We have also obtained the electron energy loss spectra for some single-walled
carbon nanotubes (SWCNTs) and provided insight into the spatial distribution of photoinduced
excitations.

We first assessed the dependance on the basis set of the optical absorption spectrum for cut
chlorophyll (Chl) a and found that the DZP basis set within the linear combination of atomic
orbitals (LCAO) mode was necessary and sufficient to ensure a convergence to the complete basis
set limit. This was done by comparing the spectra calculated with a DZP basis set to the one
calculated using a plane wave representation of the Kohn-Sham (KS) wavefunctions. We then
restricted the usage to the DZP basis set to calculate to optical absorbance of charged or neutral,
full or cut structures of Chl a and Chl bmonomers, made direct comparisons to the experimental
data of the same molecules in gas phase, and found a semi-quantitative agreement when adding
the derivative discontinuity corrections of the exchange part of the Gritsenko-Leeuwen-Lenthe-
Baerends solid and correlation (GLLB-SC) functional. We also used the excitonic density
distribution to show that the carbon chain of of Chl molecules does not contribute to the optical
absorbance and that the it was centered principally on the chlorin ring.

We then turned to an analysis of the optical absorption and electron energy loss spectra of
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single-walled carbon nanotubes, one dimensional structures with properties determined by their
(m, n) indices. We looked at nanotubes with very different indices and found that our theoretical
optical absorption spectra, given by the imaginary part of the dielectric function, agree semi-
quantitatively with the experimental data when the derivative discontinuity correction of the
GLLB-SC functional is added. We also found that the E11 transition or band gap energies have
an average error much smaller than the expected accuracy of density functional theory (DFT)
calculations. We also found that E22 transition energies had even better agreement than the E11.
This last result was rather surprising because the E11 and E22 energies seem to be uncorrelated.
Furthermore, we assessed the real part of the dielectric function by comparing the calculated
electron energy loss spectra to experimental data. We were able to reproduce the qualitative
behavior of the spectra and to get an accurate energy for the plasmonic transition in the case of
the metallic SWCNTs.

Finally, we looked at a combined system that contained both a chlorophyll monomer and a
single-walled carbon nanotube. Although we did not have experimental data to compare with we
could rely on our results because the theoretical spectra were already assessed for the separated
molecules, yielding a semi-quantitative agreement. We found that the spectra of the Chl a/(6,4)
SWCNT was not merely the sum of the absorption of the separated molecules. Specifically, there
was a transition at 1.83 eV that could not be matched to any transitions from the SWCNT or the
Chl molecule. Such results may attributed to excitations occurring between the molecules. One
example of this was observed when plotting the spatially resolved electron-hole density difference
of the first transition of the combined system, where the exciton had the electron density in the
nanotube but the hole density in the chlorophyll molecule.

Because of the photoinduced separation of charges, this last result has placed the combined
system Chl a/(6,4) CNT as a potential material to be used in organic photovoltaics (OPVs).
Even though we do not have experimental data to compare with, we already assessed the LCAO-
TDDFT-k-ω code for the constituent molecules of the system and obtained very accurate results
with a reduction of the computational effort. The methods we used in order to do so can be
employed to study other π conjugated systems in gas phase and carbon-based nanostructures. In
this way our results will contribute to the development of next generation organic photovoltaics.
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However, there is still a long way to go in order to have an actual organic photovoltaic device
with the combined system we proposed. Some of the remaining steps include design of the
complete circuit. This involves both seeking for optimal materials or molecules suitable for this
task and calculating the resulting cells’ quantum efficiency. Another project than can be developed
from the work of this thesis is to study the intraband transitions that are related to plasmons in
metallic SWCTNs by using the method we employed to get the electron-hole density difference.
Finally, we also encourage any experimental study than can be done with the proposed system
and that could be compared to our theoretical calculations.





Appendix A

Excitations of full·1+ and cut·1+ Structures

Figure A.1: Isosurfaces of the electron (blue) and hole (red) densities ρ(r) = ±0.001e/Å3 of the
first four excitations of charge tagged Chl a·N(CH3)+4 and Chl b·N(CH3)+4 with a full hydrocarbon
chain (full·1+) (i) HOMO→ LUMO, (ii) HOMO−1→ LUMO, (iii) HOMO→ LUMO+1, and
(iv) HOMO−1 → LUMO+1. Mg, C, O, N, and H atoms are depicted in silver, grey, red, blue,
and white.
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Figure A.2: Isosurfaces of the electron (blue) and hole (red) densities ρ(r) = ±0.001 e/Å3 of the
first four excitations of neutral Chl a and Chl b with a cut hydrocarbon chain (cut) (i) HOMO→
LUMO, (ii) HOMO−1→ LUMO, (iii) HOMO→ LUMO+1, and (iv) HOMO−1→ LUMO+1.

Additionally, the CIF of the structures used in this thesis are available in https://drive.
google.com/drive/folders/1dPpHdEGbidvguAdPpHTc7FSgGD-IugJm?usp=sharing.

https://drive.google.com/drive/folders/1dPpHdEGbidvguAdPpHTc7FSgGD-IugJm?usp=sharing
https://drive.google.com/drive/folders/1dPpHdEGbidvguAdPpHTc7FSgGD-IugJm?usp=sharing
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Abbreviations

E11 first van Hove optical transition in SWCNTs xix, 4, 6, 40, 41, 59, 61, 63–66, 68, 69, 74
E22 second van Hove optical transition in SWCNTs xix, 7, 40, 41, 60, 61, 64, 65, 69, 74

APW augmented plane wave 28, 29
ASE atomic simulation environment 5

CBM conduction band minimum 23, 25
Chl chlorophyll xix, 3–7, 37, 38, 43–45, 48, 49, 51–55, 57–59, 69–71, 73, 74, 77, 78

DFT density functional theory 4, 5, 15, 16, 19, 25, 31, 44, 46, 53, 63–65, 69, 74
DNA deoxyribonucleic acid 3
DZ double-ζ 27, 51, 52
DZP double-ζ polarized 27, 46, 51–53, 73

EA electron affinity 23
EELS electron energy loss spectroscopy 4

GGA generalized gradient approximation 20, 21, 25, 44, 46
GLLB Gritsenko-Leeuwen-Lenthe-Baerends 24
GLLB-SC Gritsenko-Leeuwen-Lenthe-Baerends solid and correlation xi, xiii, xv, 5, 6, 24, 25,

44, 47, 53, 55, 59, 61, 63, 64, 73, 74

HOMO highest occupied molecular orbital 2, 17, 37, 57, 58, 71, 77, 78

IP ionization potential 23
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IPCE incident photon-to-current efficiency 3

KS Kohn-Sham xi, xiii, xvi, 5, 14, 16, 17, 19, 23–28, 31, 33, 34, 44, 46, 53, 56, 59, 73

LCAO linear combination of atomic orbitals xi, xiii, xvi, xix, 5, 25–27, 44, 46, 51–54, 73
LDA local-density approximation 19, 25
LHC light-harvesting complex 3, 5
LUMO lowest unoccupied molecular orbital 2, 37, 57, 58, 71, 77, 78

OPV organic photovoltaic xi, xiii, 1–6, 74

PAW projector-augmented wave 5, 26, 29, 44, 46
PBE Perdew-Burke-Ernzerhof 20, 21, 44, 46
PBEsol Perdew-Burke-Ernzerhof for solids 21, 46, 63, 64
PW plane wave xix, 25, 26, 28, 44, 53, 54

QZ quadruple-ζ 44, 51, 52
QZP quadruple-ζ polarized 44, 51, 52

SWCNT single-walled carbon nanotube xix, xxi, 2–7, 39–41, 46–49, 51, 59–66, 68–70, 73, 74
SZ single-ζ 27, 44, 51, 52
SZP single-ζ polarized 44, 51, 52

TDDFT time-dependent density functional theory xi, xiii, 5, 29, 31, 33, 34, 36, 56
TZ triple-ζ 51, 52
TZP triple-ζ polarized 51, 52

VBM valence band maximum 23, 25

xc exchange and correlation xv, 6, 16, 19, 21, 24, 31, 34, 35, 44, 46, 47, 63
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