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Resumen

La generación de patrones de actividad es un componente esencial en los sistemas de
modelización de la demanda basados en la actividad, fundamentales para la planificación
urbana y la gestión eficiente de los sistemas de transporte. Tradicionalmente, esta gen-
eración se ha realizado mediante técnicas convencionales; sin embargo, con el avance de
la tecnoloǵıa, las técnicas de aprendizaje automático se han utilizado cada vez más para
tareas como la elección del medio de transporte y la predicción del flujo de tráfico. Este
estudio se enfoca en la aplicación de técnicas de aprendizaje automático para la generación
de patrones de actividad para modelos de demanda de transporte. Se realizarán cuatro
tareas de clasificación: medio de transporte, motivo de desplazamiento, destino y hora
de inicio del desplazamiento. Para dichas tareas, se cuenta con un dataset de la ciudad
de Cuenca perteneciente a Ecuador de aproximadamente 3000 registros, el cual tuvo que
ser preparado, filtrado y ajustado. Se utilizaron tres modelos de aprendizaje automático:
Bosques Aleatorios, Árboles de Decisión y Redes Neuronales Artificiales, y se analizaron
sus resultados para escoger el mejor para cada tarea de clasificación. Los resultados mues-
tran que el mejor modelo para las cuatro tareas de clasificación fue el Bosque Aleatorio,
en conjunto con la técnica de ajuste de hiperparámetros Búsqueda en Cuadŕıcula con Val-
idación Cruzada. Finalmente, para dar utilidad a los mejores modelos, se construyó un
dataset para una simulación utilizando la herramienta MATSim, logrando resultados fa-
vorables.

Palabras Clave:
Patrones de actividad, Aprendizaje automático, Árboles de decisión, Bosques aleatorios,
Redes neuronales artificiales.
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Abstract

Activity pattern generation is an essential component in activity-based demand modeling
systems, which are fundamental for urban planning and efficient management of trans-
portation systems. Traditionally, this generation has been performed using conventional
techniques; however, with the advancement of technology, machine learning techniques
have been increasingly used for tasks such as transportation mode choice and traffic flow
prediction. This study focuses on the application of machine learning techniques for the
generation of activity patterns for transportation demand models. Four classification tasks
will be performed: means of transportation, reason for travel, destination and start time
of travel. For these tasks, a dataset of the city of Cuenca belonging to Ecuador of approx-
imately 3000 records had to be prepared, filtered and adjusted. Three machine learning
models were used: Random Forest, Decision Tree and Artificial Neural Networks, and their
results were analyzed to choose the best one for each classification task. The results show
that the best model for the four classification tasks was the Random Forest, in conjunction
with the Grid Search Cross Validation hyperparameter fitting technique. Finally, to give
utility to the best models, a dataset was built for a simulation using the MATSim tool,
achieving favorable results.

Keywords:
Activity pattern, Machine learning, Decision tree, Random forest, Artificial neural network
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Chapter 1

Introduction

1.1 Background
Effective urban planning and transportation management require an understanding of hu-
man mobility patterns. Over the years, researchers have used a variety of approaches to
analyze and model travel behavior, from conventional survey-based methods to more so-
phisticated data-driven methods. With the advancement of technology and the advent of
machine learning (ML), new ways have been implemented that facilitate the identification
of complex patterns of human activity and mobility [3].

Individual preferences, socioeconomic factors, and the urban environment affect the
dynamics of human mobility over space and time [4]. Conventional transportation de-
mand models, such as the four-step model, are generally based on aggregate data and
assumptions. This makes them difficult to identify the heterogeneity and dynamics of
travel behavior [4]. As a result, the use of machine learning (ML) techniques to improve
the granularity and accuracy of these models is gaining popularity.

ML algorithms that can evaluate massive volumes of data and uncover underlying
patterns include Decision Trees (DT), Random Forests (RF), and Neural Networks (NN)
[5]. By building predictive models using a range of datasets covering human traits, travel
qualities, and contextual elements, researchers can develop models that can estimate trip
demand and comprehend activity patterns with more precise spatial and temporal precision
[6].

According to recent research, ML-based techniques have proven effective in several
transportation planning applications. For instance, travel mode choice analysis is crucial
for understanding and forecasting travel demand in transportation planning and policy-
making [7]. Because machine learning (ML)-based techniques like Random Forest have
reduced processing costs and higher accuracy, they have demonstrated noticeably better
performance in travel mode choice prediction [7].

Even with these advancements, implementing ML approaches into traditional trans-
portation planning frameworks remains challenging. To ensure the moral and practical use
of ML-based solutions in real-world scenarios, aspects such as data privacy, model inter-
pretability, and scalability must be carefully considered [8]. By addressing these difficulties
and leveraging machine learning skills, researchers can increase our understanding of hu-
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man mobility patterns and contribute to the development of more efficient and sustainable
urban transportation systems.

1.2 Problem statement
Urban planning and policy formulation greatly benefit from transportation demand mod-
els, as they guide decisions related to infrastructure development, traffic management, and
environmental sustainability. However, the availability and quality of data pose a fun-
damental challenge in this field. These models rely on a wide range of data, including
population and employment projections, land use patterns, travel surveys, traffic counts,
public transit schedules, and network characteristics [9].

Furthermore, current models struggle to adapt to the dynamic nature of human behav-
ior, particularly in response to shifts in socioeconomic conditions, technological advance-
ments, and urbanization trends. Consequently, decision-makers are compelled to address
transportation shortcomings and mitigate external negative consequences, such as conges-
tion and pollution, without sufficient understanding of the underlying factors influencing
travel behavior.

Machine learning techniques (ML) hold promise in enhancing the predictive capabil-
ities of transportation demand models by leveraging large-scale datasets and advanced
algorithms to uncover hidden patterns and relationships [10]. One of the primary chal-
lenges lies in developing ML models capable of accurately predicting individual activity
patterns, including the timing, mode choice, purpose, and destination of trips.

1.3 Objectives

1.3.1 General Objective
This research introduces a methodology for training and evaluating machine learning tech-
niques aimed at generating activity patterns through classification tasks suitable for inte-
gration into transportation demand models.

1.3.2 Specific Objectives
• Filter, prepare, and adjust the dataset to feed the different machine-learning models.

• Train and evaluate classification machine learning models such as Neural Networks,
Random Forests, and Decision Trees for the classification of the mode of transporta-
tion, motive of travel, start time of displacements, and destination.

• Compare models in classification tasks and choose the best ones.

• Validate the best models by building a dataset to perform a transport simulation
using a framework.
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Chapter 2

Theoretical Framework

This chapter addresses the ideas required to comprehend this project, including an intro-
duction and a detailed overview of the fundamentals of transportation demand models and
activity-based travel demand models. Machine learning models, artificial neural networks,
Random Forest classification, and Decision Tree classification are all discussed, as well
as their structure and operation. Finally, the most common measures for evaluating the
performance of machine learning models are discussed.

2.1 Transport Demand Models
Travel demand arises from thousands of individual travelers choosing their own routes,
destinations, and times of departure [11]. Transportation models have been useful in pro-
jecting transportation demand and assessing the impact of plans and regulations [12]. They
are essential tools in transportation planning and engineering, forecasting and assessing the
demand for transportation services and infrastructure. These models leverage various data
sources, methodologies, and assumptions to simulate the movement of people and goods
within a transportation network. Planners use transportation models to learn about the
behavior of transportation systems [12].

2.1.1 Basic Concepts
Transport demand models are designed to estimate the demand for transportation ser-
vices based on various factors such as population demographics, economic conditions, land
use patterns, and transportation infrastructure. Key concepts in transportation demand
modeling are the following [11]:

• Trip Generation: Estimating the number of trips to and from specific zones or
locations.

• Trip Distribution:s Determining the destinations of trips as well as the routes
traveled between them.

• Modal Split: Allocating trips among different modes of transportation (e.g., car,
public transit, walking, cycling).
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• Traffic Assignment: Allocating trips to specific routes and estimating traffic flows
on the transportation network.

2.1.2 Types of Models
There are many different kinds of transport demand models, from conventional trip-based
models to sophisticated activity-based and agent-based models, each with its own ap-
proaches and uses [13]. A thorough examination of transportation networks is made possi-
ble by the variety of modeling techniques, which support various scales and levels of infor-
mation. Comprehending the distinct categories of transport demand models is important
in order to proficiently tackle the intricate predicaments of contemporary transportation
planning [14]. Among the different types of models that exist, the following stand out:

• Trip-based Model: Also known as the four-step model, is the most widely used
technique for modeling travel demand [15]. These models forecast travel patterns
first, then disperse those patterns throughout an area, calculate the mode of trans-
portation, and lastly allocate those patterns to the transportation network [16].

• Activity-based Model: These models concentrate on individuals’ daily activities
and travel behavior rather than just trips. [16]. These models, which emphasizes
involvement in activities and focuses on sequences or patterns of behavior, can solve
congestion management issues by looking at how people adjust their engagement
in activities [17]. Since they do not have some of the drawbacks that come with
four-step models, activity-based models are often hailed as being better than them
[18].

• Agent-base Model: These models incorporate the agent’s independent decision-
making in addition to modeling and replicating mechanical movement [19]. Agent-
based models imitate the actions and interactions of autonomous agents (individuals
or groups) in order to determine their impact on the transportation system. They
are effective in capturing complicated dynamics and emergent events [20].

2.2 Activity-based travel demand models
Because activity-based travel demand models (ABMs) explicitly focus on how people or-
ganize their activities in time and place, they are being utilized more and more to assist
transport planners [21]. The goal of these demand models is to explain how people orga-
nize and arrange their daily activities, which have an impact on travel demand [22]. By
capturing the daily activity patterns of individuals, ABMs provide a more detailed and
realistic representation of travel behavior, leading to more accurate and reliable forecasts
for transportation planning. Modules for activity generation, activity location choice, and
mode choice are typically included in activity-based models [23].
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2.2.1 Activity Generation Module
In this module, participants must forecast the tasks they will complete during the day by
providing the what, when, and how long of each task. Activities may include job, school,
shopping, leisure, and other personal or household tasks. [17].

2.2.2 Activity Location Choice Module
This module determines the locations where the generated activities will take place. It
involves the spatial distribution of activities and the selection of specific destinations [24].

2.2.3 Mode Choice Module
The mode choice module is essential for modeling how individuals travel between activities
by selecting the mode of transportation (e.g., car, public transit, walking, cycling) for each
trip generated as part of their daily activity pattern [23].

Individuals’ activity plans or schedules are the results of activity-based models. The
activity generation module, which is the first one, is essential to creating a precise and
realistic transport demand model [23].

2.3 Machine Learning
Machine learning (ML) is a branch of artificial intelligence (AI) that investigates algorithms
and approaches for automating solutions to complicated problems that are difficult to solve
using traditional programming methods [25]. In recent years, numerous researchers have
made use of machine learning. Machine learning algorithms excel at managing enormous
datasets, extracting useful insights and patterns that people would be unable to detect.
The primary benefit of employing machine learning is that once an algorithm understands
what to do with data, it can do its tasks automatically [26].

Machine learning is revolutionizing the transportation business by allowing more pow-
erful tools for monitoring and forecasting traveler behavior, enhancing traffic management,
and improving infrastructure. ML approaches can be used to estimate future travel de-
mand based on previous data [27], forecast traffic conditions [28], optimize public transport
timetables and routes by evaluating passenger demand [29], and for a variety of other pur-
poses.

2.4 Neural Networks
From a biological standpoint, neural networks are inspired by the structure and function of
the human brain, which consists of billions of interconnected neurons that process and send
information via electrical signals [30]. Each neuron receives input, processes it, and sends
outputs to other neurons, establishing intricate networks that enable advanced cognitive
activities including as learning and memory [31]. Artificial Neural Networks, a subclass of
machine learning, are computational models inspired by the structures and functions of the
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human brain [26]. These artificial networks are made up of layers of nodes, or ”neurons,”
each of which performs a basic mathematical function. During training, the connections
between nodes are changed to decrease prediction errors, with weights analogous to synap-
tic connections in the brain [32]. It works on three levels. The input layer accepts input.
The hidden layer processes the input. Finally, the output layer transmits the determined
results [26].

2.4.1 Single-layer neural networks
Single-layer neural networks, also known as perceptrons, are the simplest form of artificial
neural networks. The perceptron has no hidden layers, which implies it only has one input
and one output layer [33]. Each input node is linked to an output node with a weight, and
the output is typically decided by a step function that activates when the weighted total
of inputs reaches a predetermined threshold [34]. A layer’s perceptron can be viewed as a
linear function that receives inputs, integrates them with weights and biases, and outputs
the result. The Figure 2.1 shows the single-layer neural network model.

Figure 2.1: The single-layer neural network model.

2.4.2 Multi-layer neural networks
Multi-layer neural networks are regarded more advanced models because they enhance the
capabilities of single-layer networks by integrating one or more hidden layers between the
input and output layers. The additional hidden layers enable the network to understand
and represent more complicated, nonlinear relationships in the data. Each layer comprises
of nodes that use activation functions to introduce nonlinearity, allowing the network to
record complex patterns [35]. Multilayer neural networks are trained using the back-
propagation algorithm, which implies that the network modifies the weights of connections.
This fact reduces the difference between expected and actual outputs by spreading the error
gradient backward through the network [36].

The multi-layer neural network consists of three layers: input, hidden, and output.
The input layer is made up of neurons that receive the initial data characteristics. In
the hidden layer, neurons transform inputs using weighted operations and a nonlinear
activation function. Finally, the output layer makes final predictions or classifications by
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processing signals from the hidden layers and produces the network’s output via weighted
operations [37]. Figure 2.2 shows the multi-layer neural network model.

Figure 2.2: The multi-layer neural network model.

2.4.3 Optimizers
Optimizers in neural networks are algorithms that modify the weights of the network to
reduce the loss function during training. They are critical to the training process because
they determine how the model’s parameters are changed in response to the gradients gen-
erated from the loss function [38]. Stochastic Gradient Descent (SGD), RMSprop, and
Adam are examples of commonly used optimizers [39].

The Adam optimizer (Adaptive Moment Estimation) is a common optimization tech-
nique that combines two variants of stochastic gradient descent, AdaGrad and RMSprop.
Adam computes adaptive learning rates for each parameter by calculating the gradient’s
first and second moments, allowing for faster and more efficient convergence [40].

2.5 Decision Trees
One of the most widely used techniques today not only for classification tasks, but also for
regression tasks, are decision trees. A decision tree is a method that uses a tree structure
where each path from the root to a leaf represents a sequence of data splits, culminating in
a boolean result at the leaf node [2]. To put it simply, a decision tree is made up of decision
nodes, which stand for decisions or attribute tests, branches, which reflect the results of
these decisions, and leaf nodes, which stand for all potential outcomes or forecasts.

2.5.1 Structure of a Decision Tree
• Root Node Represent both the first decision to be made and the entire dataset.

There are no incoming branches for it.

• Internal Nodes Represent judgments or attribute tests. There are one or more
branches on each internal node.
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• Branches Represent the result of a choice or examination that leads to a different
node.

• Leaf Nodes Describe the ultimate judgment or forecast. At these nodes, no more
splits take place.

Figure 2.3 represents the structure of a decision tree.

Figure 2.3: Decision Tree Structure [2].

2.5.2 Functionality of the Decision Tree
Using divide and conquer strategy, decision tree learning looks for the best split points
inside the tree using a greedy search. The top-down, recursive nature of this splitting
procedure is maintained until almost all records are assigned to certain class labels. To
predict the class of a given dataset, the method commences at the root node of the tree.
By comparing the value of the root attribute with the corresponding attribute in the
actual dataset, it follows the appropriate branch to the subsequent node. This procedure
is iteratively executed by the algorithm at each successive node, progressing along the tree
by comparing the attribute value with those of the sub-nodes. This process persists until
a leaf node is reached [41].

The principal difficulty in constructing a decision tree lies in determining the optimal
value to use when splitting the node of the tree [41]. The method finds the best partition
in the training set to solve this problem. The splitting criterion, often called the attribute
selection method, is the metric used to identify the most useful attribute [42]. Two of the
best splitting criterion are Gini Impurity and Entropy.
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Gini Impurity

This measure quantifies the disorder or impurity within a group of elements. It assesses
how often a randomly chosen element from the set would be incorrectly classified if its
classification were assigned randomly according to the distribution of labels in the set [43].
The Equation 2.1 can be used to compute the Gini impurity.

Gini = 1 −
n∑

i=1
(pi)2 (2.1)

Where n is the number of classes and pi represents the likelihood or probability of an
instance being assigned to a specific class.

Entropy

This measure, which usually ranges from 0 to 1, expresses the degree of uncertainty or
impurity in a dataset. With 0 denoting complete certainty and higher values denoting
greater uncertainty, a lower entropy value corresponds to less uncertainty [2]. The entropy
is measured by Equation 2.2

Entropy(S) = −
∑

p(x) log2 p(x) (2.2)
Where S represents the dataset used to calculate entropy, X denotes the set of classes

within the dataset, and the probability of data points in class X relative to the total
number of data points in set S is denoted by P (x) [44].

2.5.3 Decision Tree Algorithms
Using decision tree algorithms, one can get the best splits for distinct classes by deciding
which qualities to evaluate at each node. Consistent splitting criteria are needed since every
resulting partition at every branch strives for maximum purity [45]. Although decision tree
algorithms come in a variety of forms, one of the most significant is the Classification And
Regression Tree (CART).

CART, introduced by Breiman in 1984 [46], constructs classification trees through
binary splitting of attributes. It utilizes the Gini index to select the optimal splitting
attribute. CART also supports regression analysis through regression trees, which forecast
a dependent variable based on predictor variables over a specified time period. CART
accommodates both continuous and nominal attribute data and demonstrates moderate
processing speed on average [47].

In CART, pruning of a complex tree structure occurs after splitting, starting from the
leaves and progressing towards the root. To achieve the most effective decision tree in this
algorithm, the tree is evaluated with randomly selected test data after each pruning step,
aiming to determine the optimal tree structure [48].
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2.6 Random Forest
Another machine learning model used for classification and regression tasks is random
forest. In order for Random Forest to function, it builds several decision trees during
training and outputs continuous values (regression) or discrete labels or specific categories
(classification) for each tree [49]. In order to improve accuracy and control de overfitting
the random forest combines the predictions of multiple decision tree. A random subset
of the data and characteristics is used to train each tree in a random forest, introducing
variation among the trees and assisting in the development of a strong model [50]. Random
forest classification can be considered as an extension of the main random forest algorithm.
It is necessary to understand key ideas and subprocesses in order to fully comprehend all
of the mechanisms underlying the random forest approach.

2.6.1 Ensemble Learning
It is a technique where multiple models (weak learners) are combined to produce a singles
robust model. Using this approach has the goal of preventing the selection of an inadequate
model for a given problem. Rather, a more accurate solution can be achieved by integrating
the results [51]. An example of ensemble learning is Random Forest, which combines several
decision trees (weak learners) to create a reliable predictive model.

2.6.2 Bootstrapping
It is a probabilistic technique used to generate multiple random samples (called bootstrap
samples) from the original data [52]. Bootstrapping is a technique used in Random Forest
to generate numerous subsets of the initial training data. Since each subset is created by
sampling the training data with replacement, certain data points may appear more than
once in a subset while other data points might be left out.

2.6.3 Bootstrap Aggregation
It is also known as Bagging. Bootstrapping is used in this technique. Several iterations of
a predictor are trained on several bootstrapped samples of the original dataset in bagging.
Afterwards, a final forecast is formed by voting on each individual model’s predictions in
classification tasks [53].

When using a Random Forest classifier, numerous parameters can be changed to control
its complexity and increase performance. Table 2.1 shows the parameters that can be
changed, along with their definitions.
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Table 2.1: Adjustable Parameters in Random Forest Classifier [1].

Parameter Definition

Number of Trees (n estimators) It stands for the number of trees in the
forest.

Maximum Depth of Trees (max depth) It stands for the depth of each tree.

Minimum Samples per Split
(min samples split)

It stands for the bare minimum of sam-
ples needed to divide an internal node.

Minimum Samples per Leaf
(min samples leaf)

It stands for the bare minimum of sam-
ples needed to be at a leaf node (A par-
ent node without any children).

Maximum Features (max features) It stands for the greatest amount of
features that were taken into account
when dividing a node.

Bootstrap Sampling (bootstrap) It represents if creating trees involves
using bootstrap samples.

Criterion (criterion) It stands for the function that gauges a
split’s quality.

Maximum Number of Leaf Nodes
(max leaf nodes)

It restricts how many leaf nodes the
trees can have.

2.7 Evaluation Metrics.
Currently, there are various evaluation metrics used in the field of machine learning. Eval-
uation techniques are used to comprehensively assess the effectiveness of machine learning
models. An important aspect of evaluation metrics is their ability to differentiate between
model results. The choice of evaluation metrics plays a fundamental role in the accurate
assessment of machine learning systems [54].

2.7.1 Main Evaluation Metrics in Machine Learning Techniques
The following metrics are considered: accuracy, recall, precision, confusion matrix, and F1-
score for the four classification tasks. These metrics are considered critical when working
with machine learning models in classification tasks. Furthermore, a Kolmogorov-Smirnov
(KS) test statistic was used, which has been applied in classification tasks in two ap-
proaches. The details of each metric are provided below.
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Confusion Matrix

The confusion matrix is a crucial tool for assessing the performance of a classification model,
applicable to both binary and multiclass problems. It is a two-dimensional matrix with
rows showing the true labels and columns showing the anticipated labels by a classifier[55].
In binary classification, the confusion matrix is a 2x2 table representing four possible
classification outcomes [56]:

• True Positives (TP): Instances correctly classified as positive.

• False Positives (FP): Instances incorrectly classified as positive. This condition is
characterized as a Type 1 Error.

• True Negatives (TN): Instances correctly classified as negative.

• False Negatives (FN): Instances incorrectly classified as negative. This condition
is characterized as a Type 2 Error and is equally harmful as a Type 1 Error.

The representation of a confusion matrix for a binary classification problem is outlined in
table 2.2

Table 2.2: Confusion Matrix for Binary Classification.

Predicted Class

Positive (1) Negative (0)

A
ct

ua
lC

la
ss

Positive (1) TP FP

Negative (0) FN TN

In the case of a confusion matrix for multiple classes, it resembles the binary-class
matrix. In a multiclass classification problem, the confusion matrix is an NxN table
(where N is the number of classes) that illustrates the relationship between actual classes
and classes predicted by the model. The elements of the matrix are defined as follows:

• True Positives (TP): Instances correctly classified as belonging to class i.

• False Positives (FP): Instances incorrectly classified as belonging to class i (pre-
diction of class i when the actual class is different from i).

• True Negatives (TN): Instances correctly classified as not belonging to class i.
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• False Negatives (FN): Instances incorrectly classified as not belonging to class i
(incorrect prediction of a class different from i).

We can obtain any metric for a class by calculating TP, TN, FP and FN for a respective
class.

Accuracy

The accuracy (Equation 2.3) is determined by the proportion of correctly classified samples
relative to the total number of samples in the evaluation dataset. Accuracy values range
between 0 and 1, where a value of 1 signifies perfect prediction of all positive and negative
samples, while 0 indicates accurate prediction of neither positive nor negative samples [57].

Accuracy = # correctly classified samples
# all samples = TP + TN

TP + FP + TN + FN
(2.3)

Recall

The recall (Equation 2.4) also referred to as sensitivity or True Positive Rate (TPR),
quantifies the proportion of positive samples that are correctly classified. It is calculated
as the ratio of correctly classified positive samples to the total number of samples that
belong to the positive class [57].

Recall = # true positive samples
# samples classified positive = TP

TP + FN
(2.4)

Precision

Precision (Equation 2.5) represents the fraction of retrieved samples that are relevant, and
it is calculated as the ratio of correctly classified samples to all samples predicted to belong
to that class [57].

Precision = # correct positive predictions
# samples classified as positive = TP

TP + FP
(2.5)

F1-Score

The F1 score (Equation 2.6) is calculated as the harmonic mean of precision and recall,
which implies that it mitigates the impact of extreme values in both metrics. This measure
is asymmetric between classes, meaning it varies based on the definition of positive and
negative classes [57].

F1-Score = 2 × precision × recall
precision + recall = 2 × TP

2 × TP + FP + FN
(2.6)

Kolmogorov-Smirnov (KS) test

In straightforward terms, the KS statistic for the two-sample test can be defined as the
maximum distance observed between the Cumulative Distribution Functions (CDFs) of
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each sample [58]. The Cumulative Distribution Function (CDF) can be defined as a math-
ematical function that describes the accumulated probability of a random variable taking
values less than or equal to a specified value. The KS test can be approached in two
ways. The first approach is to determine whether the distributions of two samples adhere
to the same distribution. Furthermore, it can serve as a metric in classification models to
quantify the separation between the distributions of positive and negative classes, offering
an alternative method for evaluating classifiers.

In the first approach, the two-sample KS test compares any two provided samples to see
if they are from the same distribution. This measure computes the KS test statistic and its
associated p-value. The KS test statistic computes the highest absolute difference between
the cumulative distribution functions (CDFs) of two samples. The p-value is the likelihood
of detecting a test statistic as extreme or more extreme under the null hypothesis that the
samples come from the same distribution. If the p-value is less than a preset significance
level (e.g., 0.05), the null hypothesis is rejected, implying that the samples come from
different distributions [59].

The second strategy uses the KS test to examine the distribution of expected probability
for the model’s positive and negative classes. A high KS test statistic value combined with
a low p-value indicates significant differences in probability distributions, implying that
the model efficiently distinguishes across classes.

Calculating the KS statistic directly for multiclass classification jobs is not possible
without first translating them into binary classification problems. This can be accomplished
using the One vs Rest (OvR) and One vs One (OvO) methods. In our study, we chose
to employ the OvR technique, in which each class is compared to all others concurrently.
One class is classified as the ”positive” class, while the others are called ”negative” classes.
This method is performed for each class in the dataset, with the results averaged to get a
final assessment.
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Chapter 3

State of the Art

This section will provide a detailed evaluation of the state of the art, examining studies and
methodologies relevant to activity generating tasks. This analysis will contain a full expla-
nation of the methodology used and the outcomes acquired from past research. Through
this study, we hope to identify gaps in current understanding and opportunities for future
research in the field of activity generation. In terms of activity generating tasks, we divide
activity-based models into three categories: utility-based, rule-based, and machine learning
(ML-based) [23].

3.1 Utility-based models
The utility-based models are built on the econometric premise that people choose a travel
schedule that maximizes their overall utility or satisfaction [23]. One of the first utility
models was developed by Bowman [60]. They proposed a model called DaySim.They ex-
pected that a basic activity pattern was established before deciding on more comprehensive
activity and trip plans. DaySim depicted each individual agenda as a daily activity pattern
incorporating tours. The primary tour was divided into three sections: a primary activity,
a sub-tour type (only three for subsistence primary activity), and intermediate stops before
and after the primary activity location.

Utility-based models can be seen as discrete choice models. Maximum likelihood esti-
mators are used in this model to estimate utility function parameters across a fully enu-
merated choice set. However, this method is unsuitable for Activity Based Models (ABMs)
due to the combinatorial nature of conceivable activities and their sequences, which are
not fully observable. To address this, Pougala et al. [61] introduces a methodology for
sampling a selected set of whole daily itineraries for individuals. The Metropolis-Hastings
algorithm is used to efficiently explore the space of feasible schedules, generating both high
and low probability options for reliable parameter estimate.

Nurul et al. [62] suggest a unique way to modeling activity generation using a utility-
based paradigm. They presented an activity-based agenda formation paradigm. The con-
cept focuses on the creation of activity agendas, which are a series of activities that people
plan and carry out during the day. It takes into account a variety of factors that influence
these selections, such as time limits, trip costs, and personal preferences. In addition, the
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model includes other components, such as utility functions for various types of activities
(e.g., work, leisure, and shopping), time and space limitations, and a probabilistic choice
mechanism to mimic decision-making under uncertainty.

Nurul [63] introduces the Comprehensive Utility-Based System for Activity-Travel Schedul-
ing Options Modelling (CUSTOM). This framework represents workers’ daily activity
scheduling decisions using the utility maximization principle. CUSTOM describes the
complex process of scheduling activities and related travel modes. This framework offers
specific utility functions for a variety of activities such as work, leisure, errands, and trans-
portation modes. It combines these capabilities into a seamless framework that models
how employees prioritize and sequence their tasks and travel throughout the day.

Västberg et al. [64] describes a dynamic discrete choice model (DDCM) for daily ac-
tivity and trip planning. The proposed model makes travel decisions sequentially in time,
beginning at home in the morning and finishing at home in the evening. At each choice
step, the utility of an alternative is calculated by adding the action’s one-stage utility and
the predicted future utility in the attained state. The model creates comprehensive daily
activity schedules with any number of excursions, each consisting of one of six activities,
1240 destinations, and four modes. The model is estimated using travel diaries, and simu-
lation results show that it can reproduce time decisions, trip lengths, and the distribution
of trip numbers within the sample.

3.2 Rule-based models
Rule-based models reflect individual activity decisions as heuristics or rules [18]. The
findings of these models could be the consequence of incorporating observed distributions
into activity generating modules. These distributions are typically created from trip survey
data [23]. One of the first rule-based models was the Toronto Area Scheduling model for
Household Agents (TASHA) proposed by Miller et al. [65, 66]. This model was created to
simulate the activity scheduling and interaction process of household members. TASHA
generated activities in the following order: activity frequency, start time, and duration.
These activity features were derived using empirical probability distributions in a travel
survey. The observed distributions for different activity types were developed by cross-
classification of person, household, and schedule factors such as gender, age, occupation,
job status, student status, the presence of children, and work project status.

Auld et al. [67] describe Agent-based Dynamic Activity Planning and Travel Scheduling
(ADAPTS) model. The model is a framework intended to emulate people’s everyday activ-
ity planning and trip scheduling procedures. The model stresses the dynamic and adaptive
nature of these processes, allowing agents to modify their plans in response to changing
circumstances and restrictions. The ADAPTS model is built around a thorough portrayal
of activity planning procedures. These procedures include decisions about what activities
to undertake, when, where, and with whom. The model’s decision-making mechanisms are
built on rule-based heuristics, which reflect the complexity and variety of human behavior.

Bellemans et al. [68] describe the creation and execution of the FEATHERS activity-
based simulation platform. This approach aims to model and predict individual and house-
hold travel and activity patterns. The platform’s goal is to provide extensive insights
into the relationships between travel behavior, activity engagement, and environmental

16



effect. FEATHERS is an activity-based modeling approach to simulate individuals’ daily
activity patterns and travel decisions while taking into account numerous elements that
influence activity participation, such as socio-demographic traits, time restrictions, and
spatial-temporal interdependence.

3.3 Machine learning (ML-based) models
Machine learning is a practical method for automatically extracting rules from data. It
may help to improve rule-based models by lowering the complexity of expert-designed
components [23]. Hafezi et al. [69] develops a new comprehensive pattern recognition
modeling framework utilizing machine learning approaches in the context of activity-based
travel demand modelling. This approach uses activity data to generate clusters of similar
daily activity patterns. The authors used a subtractive clustering approach to initialize the
number of clusters and their centroids. Individuals with comparable activity patterns were
recognized and grouped using the FCM (Fuzzy C-Means) clustering technique. Finally,
the CART classifier method was used to investigate the interdependence of the qualities in
each discovered cluster, as well as to correlate cluster membership with socio-demographic
factors.

Hafezi et al. [70] presents a new modeling framework capable of simulating temporal
information associated with a traveler’s daily activity schedule for use in activity-based
travel demand modeling. The suggested modeling framework is comprised of two phases.
First, the Random Forest (RF) model predicts temporal information such as start time and
activity duration for the set of activities on the agenda. Second, projected activities are
put into a skeletal schedule using a heuristic decision rule-based technique and arranged
according to two-tier limitations. The results demonstrate that the suggested model can
assemble the traveler’s schedule with an average accuracy of 81.62% across the 24-hour
period.

Pineda-Jaramillo [5] investigated and discussed Machine Learning techniques utilized
in transportation research, particularly for modeling travel mode choice. The author intro-
duces Artificial Neural Networks (ANN), Decision Trees (DT), Support Vector Machines
(SVM), and Cluster Analysis (CA) and compares them to the Multinomial Logit Model
(MNL), which stands out as a discrete choice model employed in this sort of study. Finally,
they conclude that Random Forest (variant of Decision Tree algorithms) is the best model
for representing travel mode choice.

In the same way, Cheng et al. [7] proposed a robust random forest method to examine
travel mode selections in order to assess prediction capabilities and model interpretabil-
ity. The authors use household attributes, individual attributes, a constructed environ-
ment parameters, and travel information. The modes of transportation included in this
study was walking, bicycle, E-motorcycle, public transportation (PT), and automobile.
Finally, a comparison is done between the random forest approach (RF), support vector
machine (SVM), adaptive boosting (AdaBoost), and multinomial logit (MNL), where the
RF method obtained a general accuracy of approximately 85.6%, being the best among
the others.

Zhao et al. [3] analyzed the primary distinctions in the development, evaluation, and be-
havioral interpretation of mode choice between logit models and machine-learning models.
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In this investigation the authors compared the performance of two logit models ( multino-
mial and mixed logit) and seven machine-learning classifiers, including Naive Bayes (NB),
classification and regression trees (CART), boosting trees (BOOST), bagging trees (BAG),
random forest (RF), support vector machine (SVM), and neural network (NN). Then, they
focus on multinominal and mixed logit model and RF and NN model to extract behavioral
insights and compare these findings. The data used for empirical evaluation came from a
survey in which each participant was initially asked to estimate the trip attributes such as
travel time, cost, and wait time for their home-to-work commute using each of the follow-
ing modes: walking, biking, driving, and a new public transportation system. The results
based on accuracy show that the RF model was the best performing model with an overall
accuracy for all travel modes of 85.6%.

Chu et al. [71] introduced an advanced deep learning model named multi-scale con-
volutional long shortterm memory network (MultiConvLSTM) designed to enhance the
prediction of travel demand and origin-destination (OD) flows. They tested the model
on the New York taxi dataset, which includes pickup and dropoff times as well as pickup
(origin) and dropoff (destination) locations for taxi services reported in New York between
January 2009 and June 2015. The correctness of the model is assessed using conventional
metrics such as root mean square error (RMSE), mean absolute error (MAE), and sym-
metric mean absolute percentage error (SMAPE). Finally, the model consistently produced
low RMSE, MAE, and SMAPE values when compared to traditional statistical approaches
and deep learning models.

18



Chapter 4

Methodology

4.1 Dataset Description
The dataset used for classification tasks originates from a survey conducted in the city
of Cuenca, located in the Azuay province of Ecuador, and was provided by Llactalab-
University of Cuenca [72]. The survey targeted approximately 5034 individuals, aiming
to gather information on mobility patterns. It included inquiries into both personal infor-
mation and details regarding participants’ displacements. Within the survey, individuals
reporting two displacements were included, with detailed information collected for each
displacement. The survey is stored in an Excel file in which the rows correspond to indi-
viduals and the columns to the questions asked in the survey, which, for our study, will
represent the characteristic variables.

Figure 4.1 depicts the diagram illustrating the methodology applied from survey pro-
cessing to the final dataset utilized in the simulation. Steps 1, 2, and 3 are described in
greater detail in Section 4.2, and steps 4, 5, 6, 7, 8 and 9 are explained in Section 4.3,
steps 10, 11 and 12 are explained in Section 4.4 and finally the steps 13, 14, 15 and 16 are
presented in the Section 4.5
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Figure 4.1: Diagram of the applied methodology where the suffix 1D denotes the first
displacement.

4.2 Data Preprocessing
At the outset, the columns of the Excel file contained all survey questions. However, to
focus on the information relevant to our objective, we selected only the pertinent questions,
discarding those deemed unimportant. During data collection, it was observed that some
individuals had a maximum of 5 displacements in the survey. Consequently, we decided to
limit our sample to those with exactly two displacements, thus filtering the data. Further-
more, the survey included both complete addresses and their codifications. We opted to
exclusively work with the address zoning for simplicity and consistency. During the first
displacement, it was noted that some individuals did not depart from their homes, leading
to their exclusion from the sample. Subsequently, individuals whose first displacement was
related to returning home were also excluded. Finally, to streamline analysis, we renamed
the Excel file columns, which initially represented survey questions, with names that now
refer to variables in our dataset (Step 1). Table 4.1 illustrates how these variables are
represented in our dataset, where the suffix 1D denotes the first displacement, and 2D
denotes the second displacement.
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Table 4.1: Transformation of Survey Questions into Variables.

Survey Question Variable

Q1a.- Interviewee’s Age Age

Q1b.- Interviewee’s Gender Gender

Q1c.- Interviewee’s Marital Status Marital Status

Q1d.- Occupation Occupation

Q2si.- Number of Displacements Made Displacements

Q3 11sib.- Origin Zoning Origin 1D

Q3 12.- What was the motive for this displacement? Motive 1D

Q3 13b.- Destination Zoning Destination 1D

Q3 14.- What time did the interviewee leave the place
of ORIGIN to go to this other place?

Departure Time 1D

Q3 15 O1.- Please, indicate which mode(s) of trans-
portation you used to go from one place to another for
the motive of your displacement.

Transportation Mode 1D

Q3 16.- How long, in MINUTES, did it take you to go
from one place to another for the motive of your dis-
placement?

Duration 1D

Q3 21b.- Origin Zoning Origin 2D

Q3 22.- What was the motive for this 2nd displacement? Motive 2D

Q3 23b.- Destination Zoning Destination 2D

Q3 24.- What time did you leave the place to go to this
other place?

Departure Time 2D

Q3 25 O1.- Please, indicate which mode(s) of trans-
portation you used to go from one place to another for
the motive of your 2nd displacement.

Transportation Mode 2D

Q3 26.- How long, in MINUTES, did it take you to go
from one place to another for the motive of your 2nd
displacement?

Duration 2D

Q4 Number of Vehicles in the Household? #Household Vehicles

Q5 Do you have a driver’s license? License

Q6 Do you have vehicle availability? Vehicle
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4.2.1 Treatment of the Start Time of the First and Second Dis-
placement.

In the gathered information, it was observed that the variables Departure Time 1D and
Departure Time 2D are formatted as HH:MM. To simplify and ensure consistency, these
variables were converted to minutes since midnight (Step 2). To achieve this, Depar-
ture Time 1D and Departure Time 2D were partitioned into the following sub-variables:
Hours 1D, Minutes 1D, Hours 2D, and Minutes 2D. Subsequently, variables named Min-
utes since midnight 1D and Minutes since midnight 2D were created. These variables en-
compass the sum of hours transformed into minutes (utilizing the sub-variables Hours 1D
and Hours 2D), along with any additional minutes (utilizing the sub-variables Minutes 1D
and Minutes 2D), thereby providing the total minutes since midnight.

4.2.2 Pattern of Departing from and Returning to Home.
The current dataset contains information on the two displacements executed by each in-
dividual. Our objective is to adhere to a pattern whereby individuals depart from their
homes in the first displacement and return to their homes in the second displacement
(Step 3). To achieve this, we have selected individuals whose motive for the second dis-
placement is associated with returning home. In Figure 4.2, the motives related to the
second displacement can be observed, confirming that all individuals returned home.

Figure 4.2: Motives of the second displacement
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Furthermore, to comply with this pattern, the destination address of the first displace-
ment must align with the origin address of the second displacement. Therefore, we have
selected individuals who meet this condition. Additionally, we ensure that the destination
of the second displacement corresponds to the origin of the first displacement. Finally,
with these adjustments, we have successfully established the desired pattern (Figure 4.3)
from the outset.

Figure 4.3: Established pattern of individuals with two displacements.

4.3 Preparing the dataset for the models.
The dataset with which we will work in the classification tasks with the objective of gen-
erating the activity patterns of the people will consist of the information of the people and
the first displacement they made. Table 4.2 shows the 13 variables with which we intend
to perform the tasks.
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Table 4.2: Type of Variables.

Variable Type of Variable

Age Numeric

Gender Categorical

Marital Status Categorical

Occupation Categorical

Origin 1D Categorical

Motive 1D Categorical

Destination 1D Categorical

Transportation Mode 1D Categorical

Duration 1D Numeric

#Household Vehicles Numeric

License Categorical

Vehicle Categorical

Minutes since midnight 1D Numeric

The variable Minutes from midnight 1D is changed from minutes to hours, so now the
variable will contain the hours from midnight (Step 4). The categories of the variable
Transportation Mode 1D are Urban bus, Car as a driver, Walking, Car as a passenger,
Taxi, School bus, Motorcycle as a driver, Company bus, Other buses, Bicycle, Interurban
bus, Motorcycle as a passenger, and Others. We re-categorize these categories as follows
(Step 5):

• Car: Taxi, Car as a passenger, Car as a driver.

• Bus: Urban bus, Company bus, School bus, Other buses, Interurban bus

• Motorcycle: Motorcycle as a driver, Motorcycle as a passenger.

• Bicycle: Bicycle.

• Others: Others.

After the re-categorization of the variable Transportation Mode 1D, we are left with only
the mode of transport Car and Bus.

In the case of the variable Motive 1D the categories are Work, Studies/Formation,
Shopping, Personal errands, Walking/Accompanying people/Visiting a family friend, Medi-
cal/Hospital, Leisure/Entertainment, Leisure/Entertainment, Non-leisure food, and Other.
In the same case of the variable Transportation Mode, we re-categorize this variable as fol-
lows (Step 5):
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• Studies: Studies/Formation

• Personal: Personal errands, Medical/Hospital, Walking/Accompanying people/Vis-
iting a family friend

• Others: Leisure/Entertainment, Non-leisure food, Others.

Finally, with the above re-categorization, the variable Motive 1D went from having 9 cat-
egories to 5 categories like Work, Personal, Studies, Shopping and Others.

4.3.1 Re-categorization of variable Destination 1D.
As mentioned in Section 4.2, for the present study we will take into account the mobility
micro-zoning of the city for both destination and origin. Figure 4.4 displays the micro-
zoning contained in the Destination 1D variable. It can be observed that the variable in
question comprises approximately 50 micro-zones. Therefore, we proceed to re-categorize
the Destination 1D variable. Due to its significant nature and the complexity of its re-
categorization, we opted to employ the K-means method, which is used for clustering
samples (Step 6).

Figure 4.4: Frequency of the Destination 1D variable.

For this purpose, we have access to information regarding the centroids of the zones.
From Figure 4.4, it is evident that there are 10 micro-zones with a frequency equal to
or greater than 80. Consequently, we decided to choose a value of k=10 to perform the
K-means model. Following the application of this algorithm, the micro-zones are grouped
into 10 clusters denoted as Zones (Zone01 to Zone10). Finally, in the following list and
Figure 4.5 we present how the clusters were ordered with the micro-zones that refer to the
destinations of the individuals in the first displacement, leaving us with 10 categories of
destinations.

• Cluster 0(Zone01): Z09, Z36, Z26, Z37.

25



• Cluster 1(Zone02): Z47, Z16, Z17, Z18, Z19, Z20, Z29, Z44.

• Cluster 2(Zone03): Z32, Z50, Z51

• Cluster 3(Zone04): Z12, Z10, Z11, Z46, Z41, Z35, Z40, Z31.

• Cluster 4(Zone05): Z48

• Cluster 5(Zone06): Z03, Z04, Z13, Z45, Z14, Z15, Z23.

• Cluster 6(Zone07): Z01, Z02, Z05, Z06, Z07, Z08.

• Cluster 7(Zone08): Z39, Z43, Z27, Z34, Z28, Z33.

• Cluster 8(Zone09): Z21, Z30, Z24, Z49.

• Cluster 9(Zone10): Z42, Z25, Z22, Z38.

Figure 4.5: Clustering of the Destination variable.

4.3.2 Encoding Categorical Variables.
Because machine learning models are only able to perform their tasks using numerical
values, it is necessary to take into account those variables that are categorical and treat
them accordingly. In our dataset many variables are categorical, that is, non-numerical
variables that acquire values from a limited number of classes or categories. The table 4.3
shows the categorical variables present in our dataset as well as the number of categories
each one contains.

26



Table 4.3: Number of categories of variables categories.

Variable Number of categories

Gender 2

Marital Status 6

Occupation 9

Origin 1D 42

Motive 1D 5

Destination 1D 10

Transportation Mode 1D 2

License 3

Vehicle 3

Handling categorical variables can pose challenges for certain machine learning algo-
rithms. Converting categorical variables into numerical data is essential to ensure the
proper functioning of these algorithms. The method used to encode categorical variables
significantly impacts the performance of various algorithms. Each feature’s dataset may
include one or more labels represented either in word or numeric format, making it easier
for humans to interpret the data but requiring further processing to be understandable for
computers [73].

Nowadays we can find a great variety of coding techniques for categorical variables that
can be used. One-hot encoding and label encoding are the two methods most frequently
used to encode categorical data [74]. In this research, given the abundance of categorical
variables, we will employ the label coding method to transform them into numerical values
in the different tasks that we have, thus allowing us to use them in machine learning models
(Step 7).

Label encoding makes it easier to use numerical labels in a machine learning model and
is an important step in data preprocessing for supervised learning methods. The Label
Encoder generates a unique numerical value for each label in the dataset, replacing the
original categorical labels with numerical representations. This technique assigns numbers
ranging from 0 to N − 1 to each individual value in a category column [75].

4.3.3 Feature Selection.
During the development of a machine learning model, it is usual to come across datasets
containing a large number of variables, some of which are important to the model-building
process, while others are redundant or insignificant. Including these redundant or unneces-
sary features in the dataset can reduce the model’s overall performance and accuracy [76].
As a result, it is critical to identify and choose the most relevant features from the data
while excluding those that are irrelevant or of smaller relevance. This procedure, known
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as feature selection in machine learning, is critical to improving model performance and
efficacy [77].

One of the methods for feature selection is Mutual Information Feature Selection. Mu-
tual information (MI) quantifies the amount of information one random variable holds
about another random variable [78]. It is utilized to measure the reduction in entropy
given the target value (Equation 4.1). MI between two random variables is a non-negative
value that quantifies the dependency between them.

MI(feature; target) = Entropy(feature) − Entropy(feature|target) (4.1)

A high MI value indicates a stronger association between the feature and the target,
thus highlighting the feature’s significance in model training. Conversely, a lower MI score,
such as 0, suggests a weak relationship between the feature and the target.

In our study, we utilized a total of 13 variables within our dataset. With the aim of
reducing the number of variables, as it is often considered that some variables may lack
relevance for certain tasks, we opted to employ the Mutual Information Feature Selection
method using the sklearn.feature selection library for each of the tasks under investigation
(Step 8). For each task, it was imperative to segregate the characteristic variables from
the target variable within our dataset, followed by the subsequent feature selection pro-
cess. Given that our study primarily deals with classification problems, we utilized the
mutual info classif function from the aforementioned library.

Transportation Mode Classification

In Figure 4.6, we depict the characteristic variables alongside their significance concerning
the target variable, which in this instance is the transportation mode variable. In this
classification task, we will consider the six most significant variables, namely: #House-
hold Vehicle, Vehicle, License, Duration 1D, Destination 1D and Origin 1D. These vari-
ables are pertinent as we endeavor to classify the transportation mode individuals utilize,
and thus, they exhibit a strong correlation with the task at hand.
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Figure 4.6: Mutual Feature Selection in Transportation Mode Classification.

Motive of Displacement Classification

In the context of classifying the motive of displacement, the six most significant variables
identified through Mutual Information Feature Selection are as follows: Occupation, Age,
Hours since midnight 1D, Marital Status, Destination 1D, and License, as illustrated in
Figure 4.7. Similarly, upon scrutinizing the outcomes of the feature selection method,
it becomes evident that these variables are interconnected when endeavoring to classify
individuals’ motives for displacement.
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Figure 4.7: Mutual Feature Selection in Motive of Displacement Classification.

Destination Classification

Figure 4.8 illustrates the six most significant variables in the classification of the destina-
tion. These variables, namely Duration 1D, Motive 1D, Origin 1D, Hours since midnight 1D,
Occupation, and Age, are crucial determinants in discerning individuals’ destinations.
Their prominence underscores their pivotal role in the classification process, as depicted in
the graphical representation.
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Figure 4.8: Mutual Feature Selection in Destination Classification.

Start Time of Displacement Classification

In the final task, regarding the classification of the start time of displacement, Figure 4.9
delineates the six most influential variables. These variables, namely Motive 1D, Occu-
pation, Age, License, Destination 1D, and Vehicle, play pivotal roles in this classification
task. These variables have a major role in this type of classification, especially the variable
Motive 1D, since it has a very close relationship with the target variable. With respect to
the other variables also great dependence with the target variable.
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Figure 4.9: Mutual Feature Selection in Start Time of Displacement Classification.

4.3.4 Data balance.
Datasets sourced from real-world scenarios and utilized for classification problems often
exhibit inherent imbalance. In such datasets, the instances belonging to certain classes
vastly outnumber those of others, resulting in what is commonly referred to as class imbal-
ance [79]. Class imbalance arises when there is a greater quantity of observations within
one class compared to another, although the former class holds lesser significance than the
latter [80]. Imbalanced datasets in machine learning represent a significant area of scientific
concern that has garnered increased attention in recent times [81]. Addressing this issue
appropriately is imperative, given its importance in ensuring robust model performance
and reliable outcomes.

The most direct technique to remedy the class imbalance problem is to resample the
original dataset [82]. Resampling techniques can be used to either undersample or over-
sample the dataset [83]. Undersampling is the process of reducing the number of majority
target occurrences or samples [84]. Oversampling operates by generating new instances or
duplicating existing examples from the minority class to augment its representation within
the dataset [85]. One of the methods employing undersampling is the random undersam-
pling technique, which involves randomly removing samples from the majority class until
a balanced distribution between classes is achieved within the remaining dataset. Con-
versely, an oversampling technique known as the random oversampling technique involves
augmenting the instances of the minority class through random replication of the existing
samples within that class.
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In our research, data balancing will be applied across all classification tasks, as sig-
nificant class imbalance is evident within the target variables in certain tasks. Currently,
the dataset comprises a total of 3254 records; however, the dataset size will be altered
post-data balancing. Tables 4.4, 4.5, 4.6, and 4.7 display the frequency distributions of the
categorical variable categories for the various classification tasks.

Table 4.4: Frequency of categories in Transportation Mode Classification.

Category Frequency

Bus 1601

Car 1653

Table 4.5: Frequency of categories in Destination Classification.

Category Frequency

Zone 01 122

Zone 02 125

Zone 03 128

Zone 04 502

Zone 05 9

Zone 06 613

Zone 07 1216

Zone 08 372

Zone 09 99

Zone 10 68

Table 4.6: Frequency of categories in Motive of Displacement Classification.

Category Frequency

Work 1053

Personal 907

Studies 619

Shopping 573

Others 102
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Table 4.7: Frequency of categories in Start Time of Displacement Classification.

Category Frequency

0 to 4 6

4 to 8 835

8 to 12 1532

12 to 16 592

16 to 20 273

20 to 24 16

In most classification tasks, an imbalance in the categories of the target variable is
often observed. An exception lies in the classification task of transportation mode, where
the two categories are nearly balanced; however, we have chosen to undertake balancing
nonetheless. We employ the random oversampling technique to rectify the imbalance in
the categories of the target variables across our classification tasks (Step 9). This entails
equalizing the minority categories to the majority categories in all classification tasks.
We utilize the RandomOverSampler function from the imblearn.over sampling library to
achieve this. In addition, to guarantee reproducibility in the oversampling process, thus
ensuring consistent results each time the code is run, we set a random state parameter at
42. As a consequence of data balancing, the size of our dataset adjusts according to the
classification task at hand. Table 4.8 summarizes the new dataset size for each classification
task.

Table 4.8: Size of the dataset after applying random oversampling technique.

Task Size of dataset

Transportation Mode Classification 3306

Motive of Displacement Classification 5265

Destination Classification 12160

Start Time of Displacement Classification 9192

4.4 Applied Machine Learning Technique
To address the stated objectives, several machine learning techniques will be applied, each
designed to solve specific aspects of activity pattern generation in the context of urban
transportation demand. It is important to mention that with the previously prepared
datasets (balanced datasets), we can make use of machine learning models for the task
such as the start time of displacement, transportation mode, motive of displacement, and
destination classification.
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Partitioning the dataset into training, validation, and testing datasets stands as one of
the fundamental techniques in the development and evaluation of machine learning models.
Solely the training samples are utilized to train the machine learning models, and once the
training process is finalized with no further adjustments required, the testing samples are
employed to evaluate the performance of the trained models under deployment conditions.
To reduce model bias, the training step must be conducted without knowledge of the
instances specified for testing. To divide our dataset into training, validation, and testing
sets (Step 10), we utilize the train test split function of the sklearn library to divide it into
training and test sets, using an 80% training and 20% testing ratio. The training set is
then divided into two parts: a smaller training set (80% of the original) and a validation
set (20% of the original). It employs the stratify option to maintain the distribution of
classes inside each subset and a random seed (random state=42 ) to ensure that the results
are reproducible.

After partitioning our dataset into training, validation, and testing sets, we proceed with
the utilization of three distinct machine learning models (Step 11), subsequently selecting
the one demonstrating superior performance based on evaluation metric (accuracy). The
optimal model is chosen for each classification task. It is noteworthy that identical model
configurations are applied across all four classification tasks. A detailed description of each
machine learning model used is provided below.

4.4.1 Random Forest Classifier
One of the machine learning models frequently utilized in tasks related to activity pattern
generation is the Random Forest Classifier. Apart from its application in activity pattern
generation tasks, Random Forest Classifiers have significantly influenced a wide array of
classification tasks. Due to their inherent mechanism of constructing numerous distinct
decision trees and subsequently amalgamating their outputs to yield more precise and
reliable predictions, the Random Forest Classifier was selected as one of the models for our
four classification tasks, aiming to facilitate the generation of individuals’ activity patterns.

In pursuit of enhancing the model’s performance, two popular techniques were employed
for hyperparameter optimization: Grid Search and Random Search. Since both techniques
utilize a parameter grid to determine the optimal parameters, said grids were defined
accordingly. Tables 4.9 and 4.10 present the grids utilized in these techniques.

Table 4.9: Parameter grid for Grid Search.

Hyperparameter Values

Criterion Gini, Entropy

max samples None, 100,200

min samples leaf 3, 5, 6, 10, 20

n estimators 40, 60, 100
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Table 4.10: Parameter grid for Random Search.

Hyperparameter Values

n estimators Random number between 50 and 500

max depth Random number between 1 and 100

It is noteworthy that ten-fold cross-validation was employed in both techniques to
facilitate the hyperparameter search, aiming to achieve an optimal hyperparameter config-
uration.

For constructing the Random Forest Classifier model, we utilized the sklearn.ensemble
module, which is part of the scikit-learn library, also known as sklearn. This library
stands as one of the most widely used machine learning libraries in Python. Further-
more, for techniques such as Grid Search and Randomized Search with cross-validation,
the sklearn.model selection module was utilized, which is also a part of the sklearn library.
Finally, after determining the optimal combination of hyperparameters using the two sep-
arate strategies, the model training procedure begins.

4.4.2 Decision Tree Classifier
Another learning model used in classification tasks is the Decision Tree Classifier. This
model works by breaking down the dataset into smaller subsets based on key attributes.
These partitions are carried out recursively so that each subset becomes more homogeneous
in terms of the target variable being predicted. In our study, we have opted to incorporate
the Decision Tree Classifier for our four classification tasks. With the aim of enhancing
the performance of this model, we decided to conduct a search for the optimal parameters.
The techniques employed were, similar to the Random Forest Classifier model, Grid Search
and Random Search.

As previously stated, both Grid Search and Random Search strategies are based on
parameter grids, which must be created before using these methods. However, when using
a different model, these grids will be modified to suit the hyperparameter values unique
to the new model. Tables 4.11 and 4.12 show parameter grids for the aforementioned
approaches.

Table 4.11: Parameter grid for Grid Search in Decision Tree Classifier.

Hyperparameter Values

Criterion Gini, Entropy

max depth None, 100,200,300

min samples split 2, 5, 10

min samples leaf 3, 5, 6, 10, 20
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Table 4.12: Parameter grid for random search in decision tree classifier.

Hyperparameter Values

max depth Random number between 1 and 100

min samples split Random number between 2 and 10

min samples leaf Random number between 1 and 5

Both parameter search techniques were utilized with ten-fold cross-validation to facil-
itate the selection of the best hyperparameters and, furthermore, to mitigate overfitting,
which is a common issue in machine learning models.

In order to construct the Decision Tree Classifier, we utilized the sklearn.tree module
from the sklearn library. Additionally, for the implementation of Grid Search and Random
Search techniques with cross-validation, we employed the sklearn.model selection module,
similar to the approach taken with the Random Forest Classifier. Subsequently, lever-
aging the outcomes derived from these techniques across the four classification tasks, we
proceeded to train the models, facilitating the selection of the optimal model for each
respective task.

4.4.3 Artificial Neural Network
The latest model utilized for the four classification tasks is the Artificial Neural Network
(ANN). In this study, feedforward networks are employed due to the unidirectional flow
of information, proceeding from the input layer through a series of hidden layers to the
output layer. The neural network comprises multiple layers described as follows:

• Input Layer: A fully connected layer with 1000 neurons and ReLU activation func-
tion, receiving input data.

• Dropout Layer 1: A dropout layer that randomly deactivates 50% of the neurons
during training to prevent overfitting.

• Hidden Layer 1: Another fully connected layer with 500 neurons and ReLU acti-
vation function.

• Dropout Layer 2: A dropout layer that randomly deactivates 50% of the neurons
during training to prevent overfitting.

• Hidden Layer 2: A third fully connected layer with 50 neurons and ReLU activation
function.

• Output Layer: The output layer tailored to the classification task, featuring neu-
rons and an activation function specific to each task.

The input, hidden, and dropout layers have consistent configurations across all four clas-
sification tasks. However, the output layer differs in terms of both the number of neurons
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and the activation function employed. Table 4.13 outlines the output layer configurations
for each categorization task.

Table 4.13: Output layer configuration.

Task Classification Neurons Activation Function

Transportation Mode 1 Sigmoid

Motive of Displacement 5 Softmax

Destination 10 Softmax

Start Time of Displacement 6 Softmax

In the output layer, two activation functions are utilized. The softmax function is com-
monly employed in multiclass classification problems, assigning probabilities to multiple
classes and ensuring that the sum of these probabilities equals one [86]. Conversely, the
sigmoid function is utilized in binary classification problems, transforming the output into
a value between 0 and 1 [87], interpreted as the probability of belonging to a specific class.

Regarding the configuration of the ANN for training, the Adam optimizer was utilized
with a learning rate of 0.001 to optimize the network weights during training. The choice of
loss function depends on the type of classification being performed. For binary classification
(transport mode), binary crossentropy is used, whereas for multiclass classification (motive,
destination, and hour range), sparse categorical crossentropy is employed. The evaluation
metric during training is accuracy, which enables monitoring of the model’s performance
as it trains on the data.

One of the primary challenges encountered in most classification problems is overfit-
ting. Overfitting occurs when the neural network memorizes the training samples instead
of learning generalizable patterns that can be applied to new classification data [88]. To
mitigate the issue of overfitting, one method involves stopping training after a predeter-
mined number of training epochs, which represent all rounds of iterations over the training
dataset. To address this issue in our study, Early Stopping was implemented to halt train-
ing if the loss on the validation set (val loss) ceases to decrease after a certain number of
epochs (100 epochs), restoring the best weights to prevent overfitting.

Lastly, it is important to mention that numerical feature variables were standardized
before being used in the ANN. Standardizing a dataset involves rescaling the distribution
of values so that the mean of observed values is 0 and the standard deviation is 1. This
was accomplished using the scikit-learn object StandardScaler. Additionally, the validation
set created is used during the ANN training process. The ANN was trained during 500
epochs with the configuration described above.

4.4.4 Model Evaluation
In the evaluation of the models (Step 12), it is imperative to emphasize that the sole
criterion for selecting the optimal machine learning model will be accuracy. The evaluation
using this metric will be conducted on the three employed models: Random Forest, Decision

38



Tree, and Neural Network. Subsequently, after identifying the best-performing model for
each task, we will evaluate it using the validation dataset, given the unavailability of a new
dataset for the evaluation of the models with the best results. Each of the top-performing
models will be assessed using the metrics described in Section 2.7.

The evaluation will consist, firstly, of examining the results of the confusion matrix,
where the classification performance of the models will be observed. Subsequently, the
performance of each class in each task will be assessed, culminating in the application of
the KS statistical test in its two previously described approaches. Once the top-performing
models have been evaluated, we will proceed to construct the dataset to be used for the
simulation.

4.5 Simulation
Regarding the simulation we will use the MATSim tool (Multi-Agent Transport Simula-
tion). MATSim (Multi-Agent Transport Simulation) serves as a robust instrument for sim-
ulating individual movements within transportation networks. MATSim, an activity-based,
extensible, multi-agent simulation framework, is developed in Java. As an open-source
project, it is accessible for download via the Internet. MATSim offers a comprehensive
framework for executing large-scale, agent-based transport simulations. The framework is
composed of various modules that can be integrated or utilized independently [89].

In a MATSim simulation, the number of iterations is variable. The daily activities of
the population within the research region are utilized in each iteration. The individuals
being modeled are referred to as agents. Typically, activity chains are generated using
discrete choice modeling or by sampling from empirical data [90]. In our study, we will
employ our most advanced artificial intelligence models to construct these activity chains.

4.5.1 Creation of a synthetic population and use the best models
In our study, the following variables will be required to conduct the simulation using
MATSim: Origin, Destination, Start Time, End Time, Means of Transportation, and
Motive of Displacement. The initial step will involve generating a synthetic population
from the original dataset (Step 13). The creation of the synthetic dataset will be dependent
on the distributions of each variable in the original dataset because our original dataset
includes both numerical and categorical variables. It is significant to remember that the
start time of the second displacement will be considered as the end time. As a result,
the start time of the second displacement from the original dataset will also be taken into
account when creating the synthetic population. We will create a synthetic population
with 5000 records for our simulation.

Once the synthetic dataset is generated, we can apply our machine learning models
(Step 14). For four of the variables necessary for the simulation (means of transport,
motive, destination and start time), we will use machine learning models, since these are
implemented for classification tasks and will allow us to obtain the mentioned variables.
For this purpose, we use the synthetic dataset as well as the relevant variables for each of
the classification tasks.
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4.5.2 Creation of the dataset for simulation
Once we have used the models and obtained the results we can build the dataset for the
simulation with the variables mentioned above (Step 15). At the moment, we do not have
any developed machine learning models for the origin and end time variables. As a result,
the synthetic dataset will be used to directly pick these variables. On the other hand,
we will make use of models for the Means of Transportation and motive of displacement
variables, as previously stated. No additional processing of model outcomes is required
because the classification tasks used to generate these variables do not need class aggregate
of the target variable.

A different situation arises when models are used to obtain the start time and destina-
tion variables. Since in the classification tasks the target variables were categorized (start
time in 6 categories and destination in 10 categories), it is necessary to apply a special
treatment, since the simulator lacks the capability to receive these variables in categories.

To mitigate this problem when obtaining results from the models, which are in the
form of categories, it was necessary to make a selection based on probabilities to obtain a
value that falls within these categories. These probabilities are based on the distribution
(normalized) that each value has in the original dataset, to ensure that the choice of the
value within the category is mostly representative of the original dataset.

We examine and filter out records where the end time is larger than the start time once
the start time variable has run out of categories. This is due to the possibility that some
cases with start times earlier than ends could have been generated during the probability-
based selection procedure. Also, the variables start and end time will be converted to
seconds, as required by the simulator. Since we will be using the simulator in its most
basic configuration, we will filter the data set for the simulation, keeping only the records
that used the car as a means of transportation.

4.5.3 Mobility Plan File and Configuration File
After preparing the dataset for simulation, we create the XML file containing the agents’
mobility plans. The XML file comprises a list of people, and each person contains a list of
plans, which in turn have a list of activities and legs. Figure 4.10 depicts an example of a
mobility plan. In this example, we can see the person’s ID as well as a section specifying
if the plan would be executed by the simulation. The list of activities is then displayed,
together with the type of activity and the time required to complete it. In addition, to
characterize the location of an activity, a coordinate (x and y) is provided. Finally, we
have a leg that defines how an agent intends to travel from one point to another; each leg
requires a means of transportation.
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Figure 4.10: Mobility Plan Example.

When we want to use the simulator, we must change the configuration file. Figure 4.11
depicts what the configuration file looks like. The red box depicts the network configuration
module, which consists of a node and a link graph representing the study zone. The green
box depicts the mobility plan file described above. The blue box specifies the configuration
of the folder to which the simulation results will be stored, as well as the number of
iterations to be done during the experiment. The yellow box is where the kind and length
of each activity are set.

Figure 4.11: Configuration File Example.

Finally, with the mobility plans and configuration ready, we can perform the simulation
using the MATSim tool (Step 16).
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Chapter 5

Results and Discussion

5.1 Performance of Models in Specific Tasks
To validate the machine learning models, we assessed multiple models and selected the
best one for each classification task. We utilized Python, Keras, and Scikit-learn environ-
ments to develop the three machine-learning models employed. Each of these models will
be evaluated across the various classification tasks using the configurations and dataset
described in the preceding section.

5.1.1 Transportation Mode Classification
For this type of task, the input variables that will be used in the three classification models
are: #Household Vehicle, Vehicle, License, Duration 1D, Destination 1D, and Origin 1D.
The target variable is the mode of transportation used in the first displacement (Trans-
portation Mode 1D). In the case of the Random Forest Classifier and the Decision Tree
Classifier, two different hyper-parameter tuning techniques were employed to optimize each
model’s performance. For the Random Forest Classifier, the best parameters identified us-
ing the Grid Search Cross-Validation (GSCV) technique were:

• Criterion: Gini

• max samples: None

• min samples leaf: 3

• n estimators: 40

while those identified using the Random Search Cross-Validation (RSCV) technique were

• max depth: 71

• n estimators: 349

Similarly, for the Decision Tree Classifier, the optimal parameters determined through
Grid Search Cross Validation (GSCV) were:

42



• Criterion: Entropy

• max depth: None

• min samples leaf: 20

• min samples split: 2

and those identified with Random Search Cross Validation (RSCV) were:

• max depth: 13

• min samples leaf: 3

• min samples split: 7

As evident from Table 5.1, the top-performing model based in the test set for trans-
portation classification was the Random Forest Classifier using the Grid Search Cross-
Validation technique, achieving an accuracy of 0.8218. This accuracy outperforms other
machine learning models, such as the Artificial Neural Network which reached an accuracy
of 0.8006 and Decision Tree, with both hyper-parameter tuning approaches which reached
a maximum accuracy of 0.8097. With respect to the hyperparameter fitting techniques,
the technique that stood out was the Grid Search Cross-Validation technique, which in
both the Random Forest and Decision Tree models obtained values of 0.8218 and 0.8097,
respectively. Finally, the model that achieved the lowest performance was the Decision
Tree using Random Search Cross-Validation technique, which barely achieved an accuracy
of 0.7779.

Table 5.1: Performance based on accuracy.

Model Accuracy

Random Forest Classifier using GSCV 0.8218

Random Forest Classifier using RSCV 0.8142

Decision Tree Classifier using GSCV 0.8097

Decision Tree Classifier using RSCV 0.7779

Artificial Neural Network 0.8006

Analysis on validation set

With the best model, Random Forest Classifier, utilizing the hyperparameters criterion=Gini,
max samples=Nome, min samples leaf=3 and n estimators = 40, we applied the model to
the validation set. Figure 5.1 displays the confusion matrix of the model when making
predictions using the validation set.

The confusion matrix illustrates that the model successfully identified the bus class in
202 instances (true positives) and the car class in 209 instances (true negatives). However,
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Figure 5.1: Confusion Matrix of Transportation Mode Classification.

the model also made errors by incorrectly labeling 63 car instances as buses (false positives)
and 55 bus instances as cars (false negatives).

Table 5.2 shows the results of the metrics in both the validation and test sets. For the
bus class, the model achieves somewhat poorer precision (0.7860) and F1-Score (0.7739) in
the validation set than in the testing set (precision: 0.8403, F1-Score: 0.8168), but recall
is pretty consistent in both sets. Similarly, the precision (0.7684) and F1-Score (0.7799)
for the car class are comparable between the validation and testing sets, with the testing
set outperforming the validation set marginally. On the other hand, the testing set has a
little higher recall than the validation set (0.8489 vs. 0.7917).

The average precisions, recalls, and F1-Scores for all classes show that the model per-
formed well in both the validation set (Average Precision: 0.7772, Average Recall: 0.7770,
Average F1-Score: 0.7769) and the testing set (Average Precision: 0.8227, Average Recall:
0.8218, Average F1-Score: 0.8216). Finally, the model achieved an accuracy of 0.7769 in
the validation set and 0.8218 in the testing set. This shows that the model has a strong
ability to properly forecast the mode of transport, despite a slight difference in performance
between the testing and validation data sets.
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Table 5.2: Metrics in transportation mode classification.

Category Validation set Testing set

Precision Recall F1-Score Precision Recall F1-Score

Bus 0.7860 0.7623 0.7739 0.8403 0.7946 0.8168

Car 0.7684 0.7917 0.7799 0.8052 0.8489 0.8265

Average 0.7772 0.7770 0.7769 0.8227 0.8218 0.8216

Accuracy 0.7769 0.8218

The results of the Kolmogorov-Smirnov (KS) test indicate that the model performs
well. In the first approach of the KS test, the value of the test statistic is 0.0151 and the
p-value is 0.9999, since the p-value is not less than 0.05 (5% significance) thus we accept
the null hypothesis and conclude that the distributions of the two samples of both the
original values and the predicted values are the same. In the second approach, the test
statistic value is 0.5539 and the p-value is 6.282×10−38, indicating that the model in some
part can distinguish between the two classes, which in this case are bus and car, based on
the predicted values.

5.1.2 Motive of Displacement Classification
In this classification task, it is important to mention that the input variables are: Occu-
pation, Age, Hours since midnight 1D, Marital Status, Destination 1D, and License. In
addition, the target variable is the motive of displacement in the first displacement (Mo-
tive 1D). When we used GSCV in the Random Forest Classifier we got the following best
parameters:

• Criterion: Entropy

• max samples: None

• min samples leaf: 3

• n estimators: 100

On the other hand, we used RSCV and the best parameters were:

• max depth: 95
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• n estimators: 292

In the case of Decision Tree Classifier, the optimal parameters when we used GSCV were:

• Criterion: Entropy

• max depth: 300

• min samples leaf: 3

• min samples split: 10

and those identified with RSCV were:

• max depth: 79

• min samples leaf: 1

• min samples split: 6

Based on the results in Table 5.3, we can infer that the Random Forest Classifier employing
the RSCV approach has the highest accuracy, with a value of 0.7844. This model performs
substantially better than the other models tested. The Random Forest with RSCV outper-
formed the Random Forest with GSCV, indicating that the randomized hyperparameter
search was successful in identifying an ideal combination that resulted in higher accuracy.
In the case of methods for hyperparameter fitting the Random Search Cross-Validation
was the best technique since got the high accuracy in both methods Random Forest and
Decision Tree classifier (0.7835 and 0.7094 respectively). In this classification experiment,
tree-based models (Random Forest and Decision Tree) beat artificial neural networks. The
Artificial Neural Network had the lowest accuracy (0.6752) of any of the models tested,
which could indicate that in this situation, tree-based models are more effective at captur-
ing the association between characteristics and motive of travel categories.

Table 5.3: Performance based on accuracy in motive of displacement classification.

Model Accuracy

Random Forest Classifier using GSCV 0.7455

Random Forest Classifier using RSCV 0.7844

Decision Tree Classifier using GSCV 0.6895

Decision Tree Classifier using RSCV 0.7094

Artificial Neural Network 0.6752
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Analysis on validation set

Taking the best model, Random Forest Classifier, utilizing the hyperparameters max depth=95
and n estimators = 292, we applied the model to the validation set. Figure 5.2 displays
the confusion matrix of the model in the motive of displacement classification.

Figure 5.2: Confusion Matrix of Motive of Displacement Classification.

Based on the confusion matrix shown in Figure 5.2, the model correctly categorized
121 cases as ”Shopping”. However, there were several misclassifications, with three cases
labeled as ”Studies,” one as ”Others,” 30 as ”Personal,” and 13 as ”Work”. Furthermore,
the majority of occurrences labeled as ”Studies” were correctly predicted (150), but there
were some inaccuracies, including 4 instances misclassified as ”Shopping”, 4 as ”Others”,
7 as ”Personal”, and 4 as ”Work”.

In the category ’Others’ the model correctly classified 167 instances and made only
one incorrect classification. The model confused a instance that belonged to the ’Others’
class with the ’Studies’ class. This result was obtained by resolving the imbalance in this
category using the Random Over Sampling technique, which produced more samples to
balance this specific category. Although the majority of occurrences were correctly classi-
fied as ”Personal” (80), there were some inaccuracies, including 36 instances misclassified
as ”Shopping”, 12 as ”Studies”, 6 as ”Others”, and 35 as ”Work”.

The majority of cases labeled ”Work” were properly classified (129). However, several
inaccuracies were discovered, with 13 instances misclassified as ”Shopping”, 4 as ”Studies”,
and 223 as ”Personal”. Overall, the model performs well in classifying the ”Other”, ”Stud-
ies”, and ”Work” categories, making a large number of right predictions. Nonetheless, more
inaccuracies are visible in the ”Shopping” and ”Personal” categories, where some instances
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were wrongly classified as other categories.
Table 5.4 displays the metrics in both the validation and test sets. The ’Shopping’

class performed better in the test set, particularly in the recall and F1-score, which were
0.8341 and 0.7770, respectively. The validation set had the lowest performance in terms of
precision, with a percentage of 0.6954. In the ’Studies’ class, the metrics are high in both
sets, with the test set showing a minor loss in accuracy but an increase in recall.

In the ’Others’ class, however, all three metrics outperformed in the validation set,
particularly accuracy, which earned a score of 0.9382. The ’Personal’ class has the lowest
metrics in both sets, showing that the model is having trouble accurately detecting personal
excursions. In the ’Work’ class, the precision metric is higher in the test set, while the
recall and F1-score metrics perform better in the validation set.

The averages show similar values in both the validation and test sets which range
between 0.7600 and 0.7844 with the test set values being the highest. Finally, the accutacy
is better in the test set than in the validation set with a value of 0.7675.

Table 5.4: Metrics in motive of displacement classification.

Category Validation set Testing set

Precision Recall F1-Score Precision Recall F1-Score

Shopping 0.6954 0.7202 0.7076 0.7273 0.8341 0.7770

Studies 0.8824 0.8876 0.8850 0.8527 0.9095 0.8802

Others 0.9382 0.9940 0.9653 0.9167 0.9905 0.9522

Personal 0.5714 0.4734 0.5178 0.6369 0.5403 0.5846

Work 0.7127 0.7633 0.7371 0.7556 0.6476 0.6974

Average 0.7600 0.7677 0.7626 0.7778 0.7844 0.7783

Accuracy 0.7675 0.7844

Finally, considering the Kolmogorov-Smirnov (KS), the model exhibits commendable
performance. In the first approach, the test statistic value is 0.0201, and the p-value is
0.9955. Since the p-value is not less than 0.05 (5% significance), we can accept the null
hypothesis and conclude that both the original sample and the predicted sample share the
same distribution. In the second approach, the average test statistic value is 0.7678, and
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the average p-value is 3.9177 × 10−32. Given the high test statistic value and very small
p-value, we can conclude that the model effectively distinguishes between the 5 categories
it classifies, based on the predicted class set.

5.1.3 Destination Classification
For this specific task, the input variables were: Duration 1D, Motive 1D, Origin 1D,
Hours since midnight 1D, Occupation, and Age. The target variable is the destination
of people on their first displacement (Destination 1D). When we used the GSCV technique
in the Random Forest classifier the following best parameters were obtained:

• Criterion: Entropy

• max samples: None

• min samples leaf: 3

• n estimators: 100

on the other hand, when we used RSCV the next best parameters were obtained:

• max depth: 39

• n estimators: 457

Taking into account the Decision Tree Classifier, when we employed the GSCV technique
we obtained the following optimal parameters:

• Criterion: Entropy

• max depth: 200

• min samples leaf: 3

• min samples split: 5

and in the case when we used RSCV technique the optimal parameters were:

• max depth: 23

• min samples leaf: 1

• min samples split: 5

The results presented in Table 5.5 show that the Random Forest Classifier models using
RSCV and Decision Tree Classifier using RSCV obtained the best accuracies, with 0.8886
and 0.8623 respectively. These models outperformed the Decision Tree Classifier using
GSCV, which achieved 0.8076 and Random Forest Classifier using GSCV, which achieved
0.8491. The Artificial Neural Network had an accuracy of 0.8215. In terms of performance,
the Random Forest Classifier with RSCV stands out as the best model, outperforming the
others in terms of accuracy. This suggests that the automatic hyperparameter tuning
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capability provided by Randomized Search Cross Validation could be crucial in improv-
ing model accuracy in this particular case, allowing for better model performance in this
classification task.

Table 5.5: Performance based on accuracy in destination classification.

Model Accuracy

Random Forest Classifier using GSCV 0.8491

Random Forest Classifier using RSCV 0.8886

Decision Tree Classifier using GSCV 0.8076

Decision Tree Classifier using RSCV 0.8623

Artificial Neural Network 0.8215

Analysis on validation set

Now we have the best model for the destination classification task which is the Random
Forest Classifier with the hyperparameters max depth=39 and n estimators = 457 we can
use the validation set to see the performance of the model. In Figure 5.3 we can find the
confusion matrix of the model for this specific classification task.
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Figure 5.3: Confusion Matrix of Destination Classification.

In the confusion matrix presented in Figure 5.3, several important insights can be
gleaned. Firstly, the majority of predictions align with the main diagonal, indicating high
precision in classification for most categories (zones 1, 2, 3, 5, 8, 9, and 10). Zones 4, 6, and
7 display a notable number of incorrect predictions compared to other zones, evident from
values off the main diagonal. This suggests these zones may pose greater challenges for
accurate classification, likely due to similarities in travel patterns. Zone 8 shows a lower
number of incorrect predictions compared to zones with a significant number of errors.
The confusion matrix highlights the model’s ability to distinguish among most categories
while pinpointing areas where adjustments or enhancements to model precision may be
warranted.

Based on the results presented in Table 5.6, it can be concluded that the model exhibits
an overall accuracy of 0.9013 in the validation set and accuracy of 0.8886 in the test set,
indicating strong predictive capability across most categories in the two sets. The precision
rates are notably high across the majority of areas in the two sets, surpassing 90% for most
categories, signifying a substantial proportion of correct positive predictions relative to all
positive outcomes. However, we can see that the results in Zone 7 are very low compared
to the others in both the validation set and the test set. The metric that obtained the
lowest value was recall which obtained values of 0.4691 and 0.4631 for both the validation
and test set respectively. This fact indicates that the model is not capturing many of the
true positive examples. The recall values are high in most classes exceeding 0.90 in both
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the validation and test sets with the exception of Zone 04 and Zone 06 where the values
are between 0.80 and 0.70. The The F1-score remains consistently high in most areas,
demonstrating a commendable balance between model correctness and completeness. In
summary, the Random Forest Classifier with RandomizedSearchCV demonstrates a robust
overall performance, with opportunities for enhancement primarily identified in the metrics
for Zone 07.

Table 5.6: Metrics in destination classification.

Category Validation set Testing set

Precision Recall F1-Score Precision Recall F1-Score

Zone 01 0.9369 0.9897 0.9626 0.9486 0.9877 0.9677

Zone 02 0.9065 1.0000 0.9510 0.9382 1.0000 0.9681

Zone 03 0.9750 1.0000 0.9873 0.9643 1.0000 0.9818

Zone 04 0.8020 0.8144 0.8082 0.7550 0.7705 0.7627

Zone 05 1.0000 1.0000 1.0000 0.9918 1.0000 0.9959

Zone 06 0.8075 0.7744 0.7906 0.7325 0.7325 0.7325

Zone 07 0.6741 0.4691 0.5532 0.6243 0.4631 0.5318

Zone 08 0.8826 0.9641 0.9216 0.8937 0.9342 0.9135

Zone 09 0.9848 1.0000 0.9924 0.9878 1.0000 0.9939

Zone 10 0.9652 1.0000 0.9823 0.9720 1.0000 0.9858

Average 0.8935 0.9012 0.8949 0.8808 0.8888 0.8834

Accuracy 0.9013 0.8886

Finally, regarding the Kolmogorov-Smirnov (KS), in the first approach, the test statistic
value is 0.0200 with an associated p-value of 0.8294. Since the p-value is not less than
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0.05 (5% significance), we can accept the null hypothesis and conclude that both the
sample containing the original data and the sample with the predicted data share the
same distribution. In the second approach, the average test statistic value is 0.9433, and
the average p-value is 9.2329 × 10−126. With a high average test statistic value (close to
1) and a very small average p-value, we can affirm that the model effectively discriminates
among all predicted categories corresponding to people’s destinations.

5.1.4 Start Time of Displacement Classification
In this case, the input variables were: Motive 1D, Occupation, Age, License, Destina-
tion 1D, and Vehicle. The target variable is the start time (Hours since midnight 1D),
which was pretreated before being used in the models. When we used the Random Forest
Classifier with GSCV we got the following optimal parameters:

• Criterion: Gini

• max samples: None

• min samples leaf: 3

• n estimators: 100

when we used RSCV technique the optimal parameters were:

• max depth: 91

• n estimators: 252

On the contrary, when employing the Decision Tree Classifier in conjunction with GSCV
technique, the resulting optimal parameters were identified as follows:

• Criterion: Gini

• max depth: 100

• min samples leaf: 3

• min samples split: 5

and the optimal parameters using RSCV technique were:

• max depth: 64

• min samples leaf: 1

• min samples split: 3

The results obtained (Table 5.7) show that the Random Forest Classifier with the
RSCV technique was the best model in terms of accuracy, reaching a value of 0.8010. This
model outperformed its similar model using the GSCV technique, which only achieved an
accuracy of 0.7548. On the other hand, the Decision Tree Classifier that obtained the
best accuracy using the RSCV technique reached a value of 0.7893. The Artificial Neural
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Network had the lowest performance among the models tested, with an accuracy of 0.7194.
Although neural networks are powerful for certain problems, in this specific case, they could
be outperformed by decision tree-based models.

Table 5.7: Performance based on accuracy in start time of displacement classification

Model Accuracy

Random Forest Classifier using GSCV 0.7548

Random Forest Classifier using RSCV 0.8010

Decision Tree Classifier using GSCV 0.7450

Decision Tree Classifier using RSCV 0.7983

Artificial Neural Network 0.7194

Analysis on validation set

The best model for this specific task is a Random Forest Classifier using the RSCV tech-
nique. With this model we can test the original unbalanced dataset. In Figure 5.4 we can
find the confusion matrix of the model for this specific classification task.

Figure 5.4: Confusion Matrix of Start Time of Displacement Classification.

Using the confusion matrix findings, we can see that the model obtained perfect clas-
sification accuracy for the time ranges 0 to 4 hours and 20 to 24 hours, with no misclas-
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sifications. The model performed well in the 12 to 16 hour range, accurately identifying
the majority of instances (175); but, it occasionally confused this category with the 16 to
20, 20 to 24, 4 to 8, and 8 to 12 categories. Similarly, for the 16 to 20 hour range, the
model properly identified the majority of instances (222), but there were some errors, most
notably mistaking this category with the 12 to 16 (9 instances) and 8 to 12 (7 instances)
categories. There were classification errors between 4 and 8 hours, particularly occurrences
that were wrongly classified as 12 to 16 and 8 to 12. Finally, in the 8 to 12 hour period,
the model correctly identified 116 occurrences, despite mistakes in all other categories.

Based on the findings presented in Table 5.8, it is evident that the model achieved
an accuracy of 0.7865 in the validation set and accuracy of 0.8010 in the validation set,
indicating room for improvement. The precision varies across categories in the both sets,
the higher values is observed in the class ’0 to 4’ in validation and test set where the
values are 0.9960 and 0.9967 respectively. On the other hand lower values is observed in
the class ’8 to 12’ whit values equal to 0.6270 and 0.6217 in the validation and test set
respectively, suggesting that around 60% of positive predictions for this class were correct.
Regarding recall, the highest values were achieved by categories 0 to 4 and 20 to 24, both
scoring 1.00 in the two sets, demonstrating that the model accurately identified all instances
within these classes. It is noteworthy that these categories were the most imbalanced, with
additional records added during dataset balancing. Additionally, all categories exhibit an
F1-Score exceeding 0.65, except for ’8 to 12’, which in the validation and test set displays
a notably lower value (0.5395 and 0.5336 respectively).

Table 5.8: Metrics in start time of displacement classification.

Category Validation set Testing set

Precision Recall F1-Score Precision Recall F1-Score

0 to 4 0.9960 1.0000 0.9980 0.9967 1.0000 0.9984

12 to 16 0.6530 0.7143 0.6823 0.7315 0.7745 0.7524

16 to 20 0.7929 0.9061 0.8457 0.8069 0.9121 0.8563

20 to 24 0.9423 1.0000 0.9703 0.9564 1.0000 0.9777

4 to 8 0.6623 0.6245 0.6429 0.6452 0.6515 0.6483

8 to 12 0.6270 0.4735 0.5395 0.6217 0.4673 0.5336

Average 0.7789 0.7864 0.7798 0.7931 0.8009 0.7944

Accuracy 0.7865 0.8010
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Finally, using the Kolmogorov-Smirnov (KS) in the first approach we obtained that the
value of the test statistic was 0.0503 and the p-value was 0.0483. Because the p-value is
less than 0.05 (5% significance) we reject the null hypothesis so it can be said that the
distribution of the original data set and the predicted set are not equal. This may have
occurred because in category 8 to 12 the model predicted fewer values (Figure 5.5). The
original values for this category were 245 and the model could only predict 185 with a
difference of 60. For this reason, we assume that the distribution of both the original and
the predicted set do not have the same distribution.

On the other hand, in the second approach, we observe that the average value of the
test statistic is 0.8092 and the average p-value is 6.2091 × 10−67. This indicates that the
model is capable of distinguishing between the 6-hour ranges present in this classification
task during the generation of predictions, given the high average value of the test statistic
and the very low average p-value.

Figure 5.5: True values vs Predicted values.

5.1.5 Simulation

Original Dataset vs Predicted Dataset

In this section, we analyze the distributions of both the original and predicted datasets.
The predicted dataset is the dataset utilized for the simulation, and specific variables within
it were predicted using machine learning models. The distribution analysis concentrates
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on the variables start time, transport mode, motive, and destination, as the origin and
end time variables are derived directly from the synthetic dataset created from the original
dataset. As a result, the variables end time and origin will be very similar to those found
in the original dataset, making their study redundant.

Table 5.9: Distribution of the transportation mode.

Category Original
Dataset

Predicted
Dataset

Difference

Bus 0.4920 0.5446 -0.0526

Car 0.5080 0.4554 0.05256

Table 5.9 displays the distributions of transportation modes in both the original and
predicted datasets. The predicted dataset contains a higher fraction of ’Bus’ than the
original dataset. We can observe that the difference is around 5.26%. This shows that
the machine learning model for this task tends to categorize more occurrences as ’Bus’
than are present in the original dataset. Nevertheless, the predicted dataset has a lower
proportion of ’Car’ than the original dataset. Similarly, the difference is approximately
5.26%, showing that the model classifies less instances as ’Car’ than the original data.

Finally, the discrepancies in both categories are equal but opposite, resulting in a total
of zero. This signifies that the model is transferring a portion of the distribution from the
’Car’ class to ’Bus’. Figure 5.6 shows the aforementioned.

Figure 5.6: Distribution of Transportation Mode.
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Table 5.10: Distribution of motive.

Category Original
Dataset

Predicted
Dataset

Difference

Work 0.3236 0.3390 -0.0154

Personal 0.2787 0.3435 -0.0648

Study 0.1902 0.1104 0.0798

Shopping 0.1761 0.1792 -0.0031

Others 0.0313 0.0280 0.0033

The results of the examination of the distribution of categories between the original
and predicted data sets, provided in Table 5.10, show reasonable accuracy in the majority
of categories. The category ”Work” has a slightly greater prediction than the original dis-
tribution, with a difference of -1.54%, suggesting high accuracy. ”Shopping” also produces
a forecast that is quite similar to the original distribution, with a minimum difference of
-0.31%, exhibiting great accuracy. On the other side, the ”Others” group has a slight
underestimation of 0.33%, which is almost trivial.

However, there are some noticeable differences. The ”Personal” category is greatly
overstated in the prediction, with a -6.48% difference, indicating a tendency to overestimate
this category. In contrast, the ”Study” group is severely underrepresented, with a 7.98%
differential. These findings suggest that, while the model performs well overall, specific
changes are required to increase accuracy in the ”Personal” and ”Study” categories. Finally,
the Figure 5.7 shows in a better way the result of distribution in the both datasets.

Figure 5.7: Distribution of Motive.
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Table 5.11: Distribution of motive.

Category Original
Dataset

Predicted
Dataset

Difference

Z01 0.0971 0.1142 -0.0171

Z11 0.0366 0.0343 0.0023

Z02 0.1955 0.2180 -0.0225

Z04 0.0814 0.0660 0.0154

Z03 0.0529 0.0388 0.0141

Z12 0.0246 0.0262 -0.0016

Z39 0.0845 0.0927 -0.0082

Z15 0.0270 0.0219 0.0051

Z51 0.0252 0.0315 -0.0063

Z10 0.0332 0.0272 0.0060

The distribution of destinations between the original and predicted datasets reveals
some significant changes in numerous categories, as shown in Table 5.11. For example,
categories Z01 and Z02 contain discrepancies of -0.0171 and -0.0225, indicating an under-
estimation in the actual data set when compared to the anticipated data set. This indicates
that the prediction model overestimates the frequency of these motifs. Similarly, the Z39
and Z51 categories had slight underestimates of -0.0082 and -0.0063, respectively. These
discrepancies, albeit little, might add up and have an impact on the prediction model’s
overall accuracy.

However, several categories show that the model predicts lower frequencies compared to
the real data. For example, Z04 and Z03 show differences of 0.0154 and 0.0141, indicating
that the model underestimates the frequency of these factors. The model has rather good
accuracy in categories Z11, Z12, Z15, and Z10, as indicated by lower differences. Although
the prediction model appears to function well in most categories, significant differences in
some indicate need for improvement, particularly in categories Z01, Z02, Z04, and Z03. The
Figure 5.8 displays the distribution of destination in the original and predicted dataset.
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Figure 5.8: Distribution of Destination.

A comparison of the distributions in the original and predicted datasets reveals some
notable differences. The histogram of the original data, shown in blue, looks to have a
wider and possibly more uniform distribution than the histogram of the predicted data,
displayed in red. Including KDE (Kernel Density Estimate) curves in both histograms
provides a more refined perspective of the distributions in the two sets. For example, at 5
a.m., we can see that the original and predicted dataset distributions are identical. Figure
5.9 shows that the prediction model overestimates the frequency of the start time between
8 a.m. and the original data.

From 8 a.m. to shortly after 10 a.m., we can see that the distributions in both datasets
are identical. Finally, around 12 p.m., the projected set contains fewer records than the
original dataset, resulting in a considerable reduction in the anticipated dataset’s distribu-
tion. This trend continues for the rest of the time.

Figure 5.9: Distribution of Start Time.
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Simulation result

Once the simulation dataset, which is our predicted dataset, has been analyzed, we proceed
to execute the simulation first filtering the dataset for records that contain cars as a mode of
transportation, as described in the methodology. When the simulation completed, several
files were created in the output directory. The most straightforward approach to visualize
MATSim results is to utilize VIA [91]. Then you can drag and drop files into this section
(such as network.xml or events.xml.gz). Finally, the visualizer understands our data, and
we can instruct it on how to visualize it. Figure 5.10 shows the trajectory of the vehicles
in the simulation at approximately 7:30 and 8:00 am.

Figure 5.10: Trajectory of simulation vehicles.

Figure 5.11 represents the histogram of the distribution of vehicle movement during the
simulation, with red vehicle leaving, green vehicle on route, and blue vehicle arriving. As
can be observed, the red frequencies closely mirror the distribution of the actual dataset’s
start time, indicating that the predicted dataset built using machine learning models is
good. However, it is significant to note that the peak at 8 a.m. in the histogram most
closely resembles the distribution of the original dataset’s start time; this period shows
when people leave home more frequently to undertake their respective activities. In terms
of the other hours, those before 8 a.m. reflect the distribution in the original dataset since
they tend to grow, as indicated in the histogram; however, those after 8 a.m. do not
resemble the distribution of the original dataset.
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Figure 5.11: Histogram of the distribution of the simulation movement.
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Chapter 6

Conclusions

The present work focused on a general objective: the generation of activity patterns by
means of machine learning techniques to be used in transportation demand models. The
fulfillment of specific objectives, the results obtained and their respective analysis provide
useful information to support this objective.

We get a mobility survey dataset [72] from Cuenca city. Having an initial dataset that
did not have the conditions to be used in the machine learning models, the first step was
to prepare, filter, and adjust the dataset before being used in the machine learning models.
The dataset went through a certain number of steps described in the methodology so that
our final dataset has the necessary conditions to be used with the machine learning models.

The analysis of the literature revealed a trend toward the use of machine learning models
for the generation of activity patterns, since at the beginning only traditional models were
used, but with time they presented certain limitations. With the advance of technology,
more modern models were used, such as the automatic learning models, among which the
Random Forest and Decision Tree models stand out. As a result of this analysis, it was
decided to use these models and also include a third model which is the Artificial Neural
Networks to see the performance of this model in this type of task.

Four classification tasks were applied, which were performed for the following variables:
means of transportation, motive of displacement, destination, and start time of the dis-
placement. To improve the performance of the Radom Forest and Decision Tree models,
hyperparameter adjustment techniques such as Grid Search Cross-Validation and Random
Search Cross-Validation were used. In addition, when presenting a considerable amount
of variables for each type of classification, the feature selection method was used to keep
only the most important variables.

In the case of the transportation classification task, all three machine learning models
were adequately employed. In this task, the categories of the target variable were mostly
balanced which led to very relevant results. The model that stood out the most in this task
was the Random Forest using the GSCV technique, however when analyzing the model
using the validation set it performed below the performance with the test set. However,
the Smirnov Kolmogorov test in its two approaches confirms that the model performed
well in this task.

In the case of the displacement motive classification task, the dataset was unbalanced
because the Radom Over Sampling technique had to be applied to achieve a balance in
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all classes of the target variable. After this, the three machine learning models were
applied. In this case, the model that stood out was the Radom Forest, but unlike the
previous classification task, here the best hyperparameter adjustment technique was RSCV.
When comparing the validation and test set, we were able to observe that the average
of the metrics was similar, being in an interval between 0.7600 and 0.7844. Similarly,
the Smirnov Kolmogorov test indicated that the model can to some extent distinguish
between the 5 classes during classification and also this test statistic helps to conclude that
the distribution of the original sample and the predicted sample are the same.

In the task of destination classification, it was observed that the dataset was very
unbalanced, so after balancing the dataset, its size was increased, reaching a size of 12160
records. In addition, in this task, it was necessary to use the K-Means algorithm to group
the destinations into 10 clusters based on their centroid, since this variable had about 50
classes. When applying the three machine learning models, the best one was Random
Forest using the RSCV. In this task at the moment of the comparison with the validation
and test set, it was obtained that the best model had a better performance in the validation
set reaching an accuracy of 90%. Similarly, the test statistic supports the conclusion that
the best model can distinguish between the 10 categories and that the original and predicted
samples are equal.

Concerning the task of classifying the start time, it was necessary to group the target
variable by intervals of hours. However, when grouping by intervals, these intervals were
unbalanced, so, as in the previous classification tasks, the Random Over Sampling tech-
nique was used to balance the dataset. After applying machine learning models, the one
that stood out the most was the Random Forest in the same way using the RSCV tech-
nique. When comparing the results between the validation and test sets, we can conclude
that the values of the metrics do not have much variation in both sets. These values are
in the range between 0.7789 and 0.8009. The test statistic indicates that the model can
distinguish between the existing classes, but the distribution of the original and predicted
samples are not the same, suggesting that the model can be improved.

In general terms comparing the models of the four classification tasks, we can conclude
that the model that stood out the most was Random Forest which takes advantage of
the nature of its operation to stand out among the other models. On the other hand,
concerning the hyperparameter fitting techniques, the one that performed the best was
Random Search Cross-Validation.

Finally, to give an application to the models, we built a dataset that will be used to
perform a simulation using the MATSim tool. The best models for each classification task
were used to build the dataset. When analyzing the distributions between the original
dataset and the simulation dataset (predicted dataset) in three of the predicted variables
the differences between the original and predicted distributions are minimal except for the
classification task at the start time. For example, in this case, the predicted distribution
contains significant peaks or valleys that are not reflected in the original data, which
means that the model is not sufficiently capturing some patterns in the actual data set.
Discrepancies between distributions, particularly those with a higher frequency than the
other, may suggest that the model needs to be changed or additional features added to
increase accuracy. Finally, the observed differences suggest that the prediction model
might be improved to better resemble the original data set’s start time distribution. The
simulation results show that, despite the fact that the model for start time prediction does
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not capture the start time ranges adequately, the results are not significantly different from
the original dataset.

6.1 Future works
With a limited data set, machine learning models could be used to generate new and
realistic data from a training data set such as Generative Antagonistic Networks (GANs).
On the other hand, by having an unbalanced dataset for the 4 classification tasks, different
data balancing techniques could be explored to obtain more consistent results. Finally,
conduct the same study but in another area of Ecuador where the information could be
accessed.
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[20] A. L. Bazzan and F. Klügl, “A review on agent-based technology for traffic and trans-
portation,” The Knowledge Engineering Review, vol. 29, no. 3, pp. 375–403, 2014.

[21] S. Algers, J. Eliasson, and L.-G. Mattsson, “Activity-based model development to
support transport planning in the stockholm region,” 2001.

[22] K. W. Axhausen and T. Gärling, “Activity-based approaches to travel analysis: con-
ceptual frameworks, models, and research problems,” Transport reviews, vol. 12, no. 4,
pp. 323–341, 1992.

[23] D. T. Phan and H. L. Vu, “A novel activity pattern generation incorporating deep
learning for transport demand models,” arXiv preprint arXiv:2104.02278, 2021.

[24] J. L. Bowman and M. E. Ben-Akiva, “Activity-based disaggregate travel demand
model system with activity schedules,” Transportation research part a: policy and
practice, vol. 35, no. 1, pp. 1–28, 2001.

[25] G. Rebala, A. Ravi, and S. Churiwala, An introduction to machine learning. Springer,
2019.

[26] B. Mahesh, “Machine learning algorithms-a review,” International Journal of Science
and Research (IJSR).[Internet], vol. 9, no. 1, pp. 381–386, 2020.

67



[27] L. Zhu, F. R. Yu, Y. Wang, B. Ning, and T. Tang, “Big data analytics in intelligent
transportation systems: A survey,” IEEE Transactions on Intelligent Transportation
Systems, vol. 20, no. 1, pp. 383–398, 2018.

[28] Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic flow prediction with
big data: A deep learning approach,” Ieee transactions on intelligent transportation
systems, vol. 16, no. 2, pp. 865–873, 2014.

[29] X. Ma, Z. Tao, Y. Wang, H. Yu, and Y. Wang, “Long short-term memory neural net-
work for traffic speed prediction using remote microwave sensor data,” Transportation
Research Part C: Emerging Technologies, vol. 54, pp. 187–197, 2015.

[30] M. Bear, B. Connors, and M. Paradiso, Neuroscience: Exploring the Brain.
Wolters Kluwer, 2016. [Online]. Available: https://books.google.com.ec/books?id=
vVz4oAEACAAJ

[31] T. Macpherson, A. Churchland, T. Sejnowski, J. DiCarlo, Y. Kamitani, H. Takahashi,
and T. Hikida, “Natural and artificial intelligence: A brief introduction to the interplay
between ai and neuroscience research,” Neural Networks, vol. 144, pp. 603–613, 2021.

[32] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H. Arshad,
“State-of-the-art in artificial neural network applications: A survey,” Heliyon, vol. 4,
no. 11, 2018.

[33] J. Singh and R. Banerjee, “A study on single and multi-layer perceptron neural net-
work,” in 2019 3rd International Conference on Computing Methodologies and Com-
munication (ICCMC). IEEE, 2019, pp. 35–40.

[34] A. Thakur and A. Konde, “Fundamentals of neural networks,” International Journal
for Research in Applied Science and Engineering Technology, vol. 9, no. VIII, pp.
407–426, 2021.

[35] A. A. Heidari, H. Faris, S. Mirjalili, I. Aljarah, and M. Mafarja, “Ant lion optimizer:
theory, literature review, and application in multi-layer perceptron neural networks,”
Nature-Inspired Optimizers: Theories, Literature Reviews and Applications, pp. 23–
46, 2020.

[36] K. Han and Y. Wang, “A review of artificial neural network techniques for environ-
mental issues prediction,” Journal of Thermal Analysis and Calorimetry, vol. 145,
no. 4, pp. 2191–2207, 2021.

[37] M. Uzair and N. Jamil, “Effects of hidden layers on the efficiency of neural networks,”
in 2020 IEEE 23rd international multitopic conference (INMIC). IEEE, 2020, pp.
1–6.

[38] D. Choi, C. J. Shallue, Z. Nado, J. Lee, C. J. Maddison, and G. E. Dahl, “On empirical
comparisons of optimizers for deep learning,” arXiv preprint arXiv:1910.05446, 2019.

[39] S. Sun, Z. Cao, H. Zhu, and J. Zhao, “A survey of optimization methods from a
machine learning perspective,” IEEE transactions on cybernetics, vol. 50, no. 8, pp.
3668–3681, 2019.

68

https://books.google.com.ec/books?id=vVz4oAEACAAJ
https://books.google.com.ec/books?id=vVz4oAEACAAJ


[40] S. Bock and M. Weiß, “A proof of local convergence for the adam optimizer,” in 2019
international joint conference on neural networks (IJCNN). IEEE, 2019, pp. 1–8.

[41] K. Rai, M. S. Devi, and A. Guleria, “Decision tree based algorithm for intrusion
detection,” International Journal of Advanced Networking and Applications, vol. 7,
no. 4, p. 2828, 2016.

[42] Priyanka and D. Kumar, “Decision tree classifier: a detailed survey,” International
Journal of Information and Decision Sciences, vol. 12, no. 3, pp. 246–269, 2020.

[43] S. Lee, C. Lee, K. G. Mun, and D. Kim, “Decision tree algorithm considering distances
between classes,” IEEE Access, vol. 10, pp. 69 750–69 756, 2022.

[44] M. Somvanshi, P. Chavan, S. Tambade, and S. Shinde, “A review of machine learning
techniques using decision tree and support vector machine,” in 2016 international
conference on computing communication control and automation (ICCUBEA). IEEE,
2016, pp. 1–7.

[45] H. H. Patel and P. Prajapati, “Study and analysis of decision tree based classification
algorithms,” International Journal of Computer Sciences and Engineering, vol. 6,
no. 10, pp. 74–78, 2018.

[46] L. Breiman, Classification and regression trees. Routledge, 2017.

[47] H. Sharma, S. Kumar et al., “A survey on decision tree algorithms of classification in
data mining,” International Journal of Science and Research (IJSR), vol. 5, no. 4, pp.
2094–2097, 2016.
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