
UNIVERSIDAD DE INVESTIGACIÓN DE
TECNOLOGÍA EXPERIMENTAL YACHAY

Escuela de Ciencias Biológicas e Ingeniería

Design and Construct a Robotic Arm for Sign Language
Interpretation with a Neural Network

Trabajo de integración curricular presentado como requisito para la
obtención del título de Ingeniero/a Biomédico/a.

Autores:
Jordan Herrera Dioselyn Anyeline
Ubilluz Ortega Christian Nathanaél

Tutor:
Mgs. Cruz Varela Jonathan David

Urcuquí, Noviembre 2024

Autoría

Yo, Christian Nathanaél Ubilluz Ortega, con cédula de identidad 0604701276, declaro que

las ideas, juicios, valoraciones, interpretaciones, consultas bibliográficas, definiciones y

conceptualizaciones expuestas en el presente trabajo; así cómo, los procedimientos y

herramientas utilizadas en la investigación, son de absoluta responsabilidad del autor del

trabajo de integración curricular. Así mismo, me acojo a los reglamentos internos de la

Universidad de Investigación de Tecnología Experimental Yachay.

Urcuquí, Noviembre 2024.

Christian Nathanaél Ubilluz Ortega

C.I: 0604701276

Autoría

Yo, Dioselyn Anyeline Jordan Herrera, con cédula de identidad 0959378589, declaró que las

ideas, juicios, valoraciones, interpretaciones, consultas bibliográficas, definiciones y

conceptualizaciones expuestas en el presente trabajo; así cómo, los procedimientos y

herramientas utilizadas en la investigación, son de absoluta responsabilidad del autor del

trabajo de integración curricular. Así mismo, me acojo a los reglamentos internos de la

Universidad de Investigación de Tecnología Experimental Yachay.

Urcuquí, Noviembre 2024.

Dioselyn Anyeline Jordan Herrera

C.I: 0959378589

Autorización de publicación

Yo, Christian Nathanaél Ubilluz Ortega, con cédula de identidad 0604701276, cedo a la

Universidad de Investigación de Tecnología Experimental Yachay, los derechos de

publicación de la presente obra, sin que deba haber un reconocimiento económico por este

concepto. Declaro además que el texto del presente trabajo de titulación no podrá ser cedido a

ninguna empresa editorial para su publicación u otros fines, sin contar previamente con la

autorización escrita de la Universidad.

Asimismo, autorizo a la Universidad que realice la digitalización y publicación de este trabajo

de integración curricular en el repositorio virtual, de conformidad a lo dispuesto en el Art. 144

de la Ley Orgánica de Educación

Urcuquí, Noviembre 2024

Christian Nathanaél Ubilluz Ortega

C.I: 0604701276

Autorización de publicación

Yo, Dioselyn Anyeline Jordan Herrera, con cédula de identidad 0959378589, cedo a la

Universidad de Investigación de Tecnología Experimental Yachay, los derechos de

publicación de la presente obra, sin que deba haber un reconocimiento económico por este

concepto. Declaro además que el texto del presente trabajo de titulación no podrá ser cedido a

ninguna empresa editorial para su publicación u otros fines, sin contar previamente con la

autorización escrita de la Universidad.

Asimismo, autorizo a la Universidad que realice la digitalización y publicación de este trabajo

de integración curricular en el repositorio virtual, de conformidad a lo dispuesto en el Art. 144

de la Ley Orgánica de Educación

Urcuquí, Noviembre 2024

Dioselyn Anyeline Jordan Herrera

C.I: 0959378589

Dedicatoria

A mis padres, Diego Fernando Chávez y María Patricia Ubilluz.

A mis abuelitos, Cristóbal Vicente Chávez, María Angelica Chávez, Martha Cecilia Chavéz

Luis Flavio Gonzalo Ubilluz y Ana María Ortega.

A mis hermanos, Diego Alejandro y Fernando Sebastián.

A mis tíos, Liliana Chávez, Edwin Chávez, Xavier Chávez, Gonzalo Ubilluz y Oscar Ubilluz.

A mis primos, Esteban Chávez, Pablo Ubilluz y Ana Ubilluz.

Christian Nathanaél Ubilluz Ortega

Dedicatoria

Dedico este trabajo a mi familia, quienes han sido mi pilar en todo momento. Su apoyo

incondicional, su amor y su comprensión me han dado la motivación necesaria para continuar

en los momentos difíciles. A cada uno de ustedes, que ha creído en mí y me ha acompañado

en este proceso, les agradezco profundamente por ser mi fuerza y mi inspiración diaria.

Dioselyn Anyeline Jordan Herrera

Agradecimientos

Agradezco a mi familia, por ser el impulso a superarme cada día, por ser mi soporte y siempre

apoyarme en mis decisiones. Gracias en especial a mis padres que me han imbuido con sus

valores y me han guiado por este sendero llamado vida, enseñándome que los sueños se

pueden alcanzar dedicándole el suficiente tiempo y sacrificio. A mis hermanos por ser su

modelo a seguir y tratando de ser lo mejor para ellos. A mis cuatro abuelitos, por ser mis

segundos padres que me han instruido en cada una de mis acciones, enseñándome que no

importa cuantas veces nos caigamos siempre tendremos que levantarnos con la frente en alto.

Agradezco profundamente a la vida, que me dio la oportunidad de estudiar esta carrera en esta

Universidad, y a todas las personas maravillosas que formaron parte de esta gran experiencia

de crecimiento personal e intelectual. A Daniel y Héctor por ser mis compañeros de camino

en esta aventura que empezamos juntos llamada Universidad. Agradezco en especial a

Dioselyn que ha sido mi compañera de aventuras y mi confidente a través de estos años, por

creer en mí, en mis ideas locas y sobre todo por nunca perder la fé en mis capacidades.

También agradezco a mi gatito Blacky, por desvelarse conmigo en esas épocas de estudio y

ayudarnos en la realización de la tesis. Agradezco a mi tutor por compartir sus conocimientos

y siempre impulsarme a salir adelante y plantar la semilla de nuevos proyectos. A todos mis

maestros que me han inspirado en el camino de la ciencia e investigación. Y en general a

todos mis amigos y compañeros de carrera por ser parte de estos 5 años de experiencias

inolvidables. Agradezco a todas las personas que fueron parte de toda mi vida universitaria

que compartieron conmigo mis logros. También agradezco a Dios por cada cosa buena y mala

en esta etapa. Cada uno de ellos es una pieza fundamental de la persona que soy ahora, todo

esto se lo debo a ustedes.

Christian Nathanaél Ubilluz Ortega

Agradecimientos

A mi familia, quiero expresar mi más profundo agradecimiento. Gracias por ser mi pilar en

todo momento, por su apoyo incondicional y por brindarme el ánimo necesario en cada paso

de este proceso. Su amor, comprensión y paciencia han sido mi mayor motivación,

especialmente en los momentos de dificultad. A ustedes, que siempre han creído en mí y me

han dado la confianza para seguir adelante, les debo mucho más de lo que puedo expresar con

palabras. Este logro también es suyo, porque sin su respaldo nada de esto habría sido posible.

A mi tutor, le agradezco su paciencia y dedicación. Su guía constante y sus enseñanzas me

ayudaron a enfrentar cada reto de este trabajo.

Dioselyn Anyeline Jordan Herrera

I. Resumen

La discapacidad auditiva es un problema que afecta a las personas en diferentes etapas de la

vida. Solo en Ecuador, esta cifra se extiende al 14,12% de la población total siendo

aproximadamente 62 mil personas que presentan problemas de audición. El uso del lenguaje

de señas se presenta como una alternativa para garantizar una buena comunicación entre

personas con discapacidad auditiva y personas sin esta afección. Sin embargo, pocas

personas conocen sobre este lenguaje. Para ello, desarrollamos un brazo robótico con

características humanas para que trabaje en conjunto con redes neuronales convolucionales

para la interpretación de gestos mediante visión artificial, promoviendo el aprendizaje del

lenguaje de señas de manera didáctica.

Los resultados obtenidos demuestran la capacidad de las redes neuronales para detectar

patrones y distinguir los diferentes tipos de señas que posee este lenguaje. Además, el uso

de diversas redes neuronales permite una comparación sobre las limitaciones que poseen los

diferentes modelos. La eficiencia de los modelos, en términos de porcentaje de precisión, fue

del 99,27% y 98,2% para los modelos AlexNet y GoogleNet, respectivamente. En conclusión,

se demuestra la importancia de implementar técnicas de aprendizaje automático para

mejorar la comunicación y generar un impacto en el entorno de personas que desconocen

esta problemática. Se espera que en un futuro esta tecnología pueda ser implementada en el

sistema educativo para enseñar este lenguaje a niños y jóvenes, reduciendo así la brecha de

comunicación desde una etapa temprana.

Palabras clave: Brazo robótico, Visión artificial, Redes neuronales convolucionales (CNN),

MATLAB, Aprendizaje Automático.

II. Abstract

Hearing impairment is a problem that affects people at different stages of life. In Ecuador,

this affection extends to 14.12% of the total population being approximately 62 thousand

people with hearing problems. The use of sign language is presented as an alternative to

ensure good communication between people with hearing impairment and people without

this condition. However, few people know about this language. For this, we developed a

robotic arm with human characteristics to work together with convolutional neural networks

for the interpretation of gestures through artificial vision, promoting the learning of sign

language in a didactic way.

The results obtained demonstrate the ability of neural networks to detect patterns and

distinguish the different types of signs in this language. In addition, the use of different

neural networks allows a comparison of the limitations of the different models. The

efficiency of the models, in terms of percentage accuracy, was 99.27% and 98.2% for the

AlexNet and GoogleNet models, respectively. In conclusion, the importance of implementing

machine learning techniques to improve communication and generate an impact on the

environment of people who are unaware of this problem is demonstrated. It is hoped that in

the future this technology can be implemented in the educational system to teach this

language to children and young people, thus reducing the communication gap from an early

stage.

Keywords: Robotic arm, Artificial vision, Convolutional Neural Network (CNN), MATLAB,

Machine Learning.

Contents
Thesis Overview...1
Chapter I.. 3
1. Introduction... 3

1.1. Justification.. 4
1.2. Problem Statement... 4
1.3. Objectives and work methodology... 5

1.3.1. General Objective... 5
1.3.2. Specific Objectives... 5

Chapter II...7
2. Theoretical Framework.. 7

2.1. Robotics arm.. 7
2.1.1. Types... 7
2.1.2. Materials..8

2.2. Control System...9
2.3. Actuators.. 10

2.3.1. Kinds of Actuators.. 10
2.3.2. Stepper Motors..12
2.3.3. Servomotors.. 13

2.4. Hearing Impairment... 15
2.4.1. American sign language..16

2.5. Image Processing... 17
2.6. Artificial Intelligence... 18

2.6.1. Robotics and planning...19
2.6.2. Natural Language Processing..20
2.6.3. Expert systems.. 21
2.6.4. Speech and Vision...22
2.6.5. Machine learning...22
2.6.6. Google-Net..27
2.6.7. Alex-Net..27

2.7. Optimizers and techniques to avoid overfitting... 28
2.7.1. Types of optimizers... 28
2.7.2. Techniques to avoid overfitting...29

2.8. Software... 30
2.8.1. Python... 30
2.8.2. Arduino IDE..32
2.8.3. Lab View... 33

2.8.4. Matlab... 34
2.8.5. Microcontrollers..38

1

2.9. Related Works for “Design and construct a robotic arm for sign language
interpretation with neural network”.. 40
2.10. Main Challenges.. 49

2.10.1. Hardware Limitations... 49

Chapter III... 50
3. Methodology.. 50

3.1. Methodology of work...50
3.2. Fundamental Workflows.. 50

3.2.1. Requirements.. 50
3.2.2. Analysis...51
3.2.3. Design... 51
3.2.4. Testing... 51

3.3. Life cycle phases..51
3.3.1. Start... 51
3.3.2. Elaboration.. 52
3.3.3. Construction.. 52
3.3.4. Transition.. 52

3.4. Software Development...52
3.4.1. Database.. 52
3.4.2. Convolutional Neural Network...54
3.4.3. Arm Motion...56
3.4.4. Artificial Vision...58

3.5. Practical development – ​​prototype...61
3.6. System Integration... 66
3.7. Experiment Phase...69

3.7.1. Experiment 1: Database.. 69
3.7.2. Experiment 2 : Convolutional Neural Network.. 72
3.7.3. Experiment 3: Artificial Vision...74
3.7.4. Experiment 4: Prediction Applications... 75

Chapter IV... 77
4. Results and Discussion..77

4.1. Experiment 1: DataBase...77
4.1.1. Human hand.. 77
4.1.2. Robotic Hand.. 78

4.2. Experiment 2: Convolutional Neural Network.. 78
4.2.1. Human...78
4.2.3. Grad-CAM.. 90

4.3. Experiment 3: Artificial Vision..94
4.3.1. Human...94
4.3.2. Robotic Hand.. 95

4.4. Experiment 4: Prediction Applications.. 96

2

4.4.1. Real-Time..96
4.4.2. Single Image... 97

4.5. Discussion.. 97

Chapter V...103
5. Conclusions and future work... 103

5.1. Conclusions..103
5.2. Future works.. 104
5.3. Limitations... 104

6. Reference..106
7. Attachments.. 123

3

List of Figures
Figure 1. Cartesian robots, articulated robot, polar or spheric robot, Scara robot and angular
or anthropomorphic robots [17 - 18]...8
Figure 2. Robot arm [26]..10
Figure 3. Pneumatic actuators [28].. 10
Figure 4. Hydraulic actuators [30]... 11
Figure 5. Mechanical actuators [31]...11
Figure 6. Electric Actuators [33]..11
Figure 7. Hydraulic actuators [33]... 12
Figure 8. Parts of servomotors [41]..14
Figure 9. Percentage of persons with hearing disabilities registered in Ecuador in 2022 [53]....
16
Figure 10. ASL Alphabet [59]..17
Figure 11. Artificial Intelligence applications [66].. 19
Figure 12. Machine learning [66]...22
Figure 13. DeepLearning [66]..24
Figure 14. The basic architecture of CNN based on [103]..26
Figure 15. GoogleNet scheme based on [122].. 27
Figure 16. Structure of Alex Net [125]... 28
Figure 17. Python ecosystem [136]...30
Figure 18. Arduino IDE software...33
Figure 19. Deep Network Designer Start Page.. 35
Figure 20. Deep Network Designer Interface.. 36
Figure 21. Image Region Analyzer interface... 38
Figure 22. Mini Maestro 18 channel Pololu USB servo controller [165]................................ 38
Figure 23. Part of Raspberry Pi [168].. 39
Figure 24. Arduino Mega 2560 connection diagram [171]..39
Figure 25. Arduino Sensor Shield v5.0 diagram [173].. 40
Figure 26. Main phases and workflows of the Unified process [191]..................................... 50
Figure 27. Flowchart to make our database... 54
Figure 28. A flowchart to use in transfer learning on Pre Trained Neural Networks.............. 56
Figure 29. Flowchart for arm movement... 58
Figure 30. Flowchart of Artificial vision... 60
Figure 31. Scheme of Artificial vision... 61
Figure 32. Robotic arm exploded view using Fusion 360..64
Figure 33. Scheme of prototype creation... 66
Figure 34. Global Scheme..67
Figure 35. Robotic hand prototype...68
Figure 36. Different filters to make our DataBase... 70
Figure 37. ASL is made by the Human hand... 77

4

Figure 38. ASL is made by robotic hand... 78
Figure 39. Training progress for Alexnet with Human DataBase..79
Figure 40. Confusion Matrix for Alexnet with Human DataBase... 80
Figure 41. Important Metrics for AlexNet with Human DataBase.. 82
Figure 42. Training progress for GoogleNet with Human DataBase.......................................82
Figure 43. Confusion Matrix for GoogleNet with Human DataBase..................................... 83
Figure 44. Important Metrics for GoogleNet with Human DataBase...................................... 84
Figure 45. Training progress for Alexnet with Robotic DataBase...85
Figure 46. Confusion Matrix for Alexnet with Robotic DataBase.. 86
Figure 47. Important Metrics for AlexNet with Robotic DataBase... 87
Figure 48. Training progress for GoogleNet with Robotic DataBase......................................87
Figure 49. Confusion Matrix for GoogleNet with Robotic DataBase......................................88
Figure 50. Important Metrics for GoogleNetNet with Robotic DataBase............................... 89
Figure 51. Grad-CAM for AlexNet model in Human DataBase..91
Figure 52. Grad-CAM for GoogleNet model in Human DataBase..91
Figure 53. Grad-CAM for AlexNet model in Robotic Hand DataBase................................... 92
Figure 54. Grad-CAM for GoogleNet model in Robotic DataBase...93
Figure 55. Multiple steps to apply Artificial Vision for Background elimination................... 94
Figure 56. Multiple steps to apply Artificial Vision for Background elimination on Robotic
Hand.. 95
Figure 57. Comparison of prediction in Real Time between AlexNet and GoogleNet models...
96
Figure 58. Comparison of prediction on Single Image between AlexNet and GoogleNet
models... 97
Figure 59. 3D printing of the robotic arm thumb...124
Figure 60. 3D printing of a part of the robotic hand.. 124
Figure 61. 3D printing of a part of the robotic hand.. 125
Figure 62. 3D printing of a part of a robotic hand... 125
Figure 63. Power source 10A/5V... 136

5

List of Tables
Table 1. Characteristics of each class of Database... 8
Table 2. Kinds of Actuators..10
Table 3. Types of stepper motor..12
Table 4. Type of servo motors.. 14
Table 5. Comparison between several models of actuators..14
Table 6. Types of NLP..20
Table 7. Types of Optimizers..28
Table 8. Methods to avoid overfitting.. 29
Table 9. MLT & DLT.. 34
Table 10. IP & CV...36
Table 11. Multiple controllers for Servo Motors.. 38
Table 12. Main Characteristics of each author... 46
Table 13. Characteristics of each class of Database... 53
Table 14. Necessity for the robotic arm..61
Table 15. Concurrent design on an as-needed basis for the robotic arm.................................. 62
Table 16. Properties of material (ABS and PLA) [199-200]..63
Table 17. Features of arm parts.. 64
Table 18. Total cost and unit price of material costs for the construction of the robotic arm.. 66
Table 19. Human Database characteristics... 70
Table 20. Robot Database characteristics... 72
Table 21. CNN configuration options.. 73
Table 22. CNN configuration options.. 74
Table 23. TP, FP, FN and TN values for the AlexNet model with Human Database...............81
Table 24. TP, FP, FN and TN values for the GoogleNet model with Human Database...........83
Table 25. TP, FP, FN and TN values for the AlexNet model with robotic Database............... 86
Table 26. TP, FP, FN and TN values for the GoogleNet model with robotic Database........... 88
Table 27. All important data obtained of each model...89
Table 28. Comparison of other studies with our model..100

6

Abbreviation
WHO: World Health Organization
dB: Decibels
CV: Computer Vision
AI: Artificial Intelligence
AV: Artificial Vision
CNN: Convolutional Neural Networks
RNNs: Recurrent Neural Networks
GANs: Generative Neural Networks
ASL: American Sign Language
PLA: Polylactic acid
ABS: Acrylonitrile Butadiene styrene
NLP: Natural Language Processing
IR: Information Retrieval
MLP: Multilayer Perceptron
ROS: Robot Operating System
IP: Image processing
PIL: Python Image Library
ML: Machine learning
IDE: Development Environment
DL: Deep learning
SNNs: Siamese Neural Network
UML: Unified Modeling Language
RUP: Rational Unified Process
TP: True Positive
FP: False Positive
FN: False Negative

7

THESIS OVERVIEW

For our Thesis Project, we have divided all our work into five chapters.

The first is a brief introduction that shows the background, justification, and objectives of this

research, which involves creating/assembling a Robotic Hand and implementing it with a

CNN to classify American Sign Language (ASL).

In the second chapter, we have our theoretical framework that deals with all types of Robotic

Hands, every material that we can use in a 3D printer and successfully assemble for our

model, and every kind of motor controller. Another important point we have is the study of

hearing impairment and the implementation of sign language. In addition, we have a strong

review of artificial intelligence (AI), including all types of learning and neural networks.

Finally, we will describe the software and its important toolbox and applications.

The third chapter is about the methodology, mainly the creation of the prototype of our thesis

project based on AlexNet and GoogleNet Neural Networks. Also, all the modifications that

are required on AV and the System integration of Computer/Hand prototype with their

indispensable Experiment and Optimization process.

The fourth one shows the results that we obtained by the AlexNet and GoogleNet model, their

learning plots and confusion matrix of each, the Grad-Cam, the visualization mode, and their

prediction with their probabilities in a bar plot. The GoogleNet model indicates fewer variable

results than AlexNet, but in some letters like B or X, the AlexNet model had more accuracy

of detection than GoogleNet.

The fifth one describes the main characteristics of the comparison between seven authors,

each of them with different models of Sign Language and different costs of a robotic hand.

The distinguishing difference in our model was the cost (App $164) of the creation of the

robotic hand. Also, we used several processes to improve the detection algorithm, such as

color detection and background elimination in comparison with other authors.

8

Finally, in the last chapter, we discuss the conclusion of our research work, our future

perspectives, and our limitations. We propose using another current model with more degrees

of freedom to improve our system and help sign language become more practical.

9

CHAPTER I

1. INTRODUCTION

Hearing loss affects a significant portion of the world’s population, with more than 5% of

individuals experiencing disabling hearing loss; this number is expected to rise to 2.5 billion

people by 2050, according to the World Health Organization (WHO) [1]. For many

individuals, hearing deteriorates progressively, impacting their ability to communicate

effectively [2]. Communication is fundamental to social interaction, as it enables the sharing

of ideas, emotions, and needs. Thus, inclusive communication tools are crucial, especially for

those with hearing impairments who rely on alternatives to spoken language. While sign

language serves as a powerful medium, its adoption faces challenges, including the need for

specialized interpreters and training for non-signers.

Previous approaches to bridge this communication gap have included wearable technologies,

such as gloves equipped with sensors and camera-based systems that recognize hand gestures

to translate sign language. For example, Naranjo-Zeledón's systematic review (2019)

discusses various methods, such as Visualfy (which translates sign language to visual signals)

and SignLanguageGlove (designed to convert sign language to voice), while other methods

use Deep Learning algorithms for gesture recognition, as seen in Google's AI tracking

algorithms using a DataSet of 30000 images. Also, other projects, such as Huawei’s

StorySign, employ avatars to translate written stories into sign language for children, aiding in

their learning process [3].

Despite these advances, current solutions still encounter limitations, such as low accuracy in

gesture recognition, high processing times, and difficulties in real-time response, especially

when translating complex alphabetic signs. Our project aims to overcome these difficulties

by designing and developing a robotic arm that interprets the ASL alphabet, enhanced by a

graphical interface using neural networks for accurate alphabet recognition using MATLAB to

detect the hand by color recognition and trained using a database with images from 3 different

angles and applying data augmentation to ensure its accuracy.

This approach addresses the technical obstacles and aims to improve the social inclusion of

hearing-impaired people by offering a solution that is potentially more accurate, responsive,

and widely applicable to different social environments. On the other hand, the use of the

10

robotic arm will ensure the interest of youngsters in learning more about sign language and

generate an inclusive approach towards deaf people at an earlier stage. This project is

designed to be implemented in educational centers so that students with and without hearing

disabilities can learn and practice sign language in order to foster an inclusive community

without communication barriers.

1.1. JUSTIFICATION

Hearing loss is a condition that prevents people from perceiving sounds optimally, compared

to hearing a person with normal hearing ability, which is considered to be around 20 decibels

(dB), according to the definition provided by the WHO. In other words, hearing impairment is

experienced, although it is not necessarily classified as total hearing loss. According to WHO,

"loss" implies a decreased hearing ability rather than a complete elimination of hearing [4].

It is important to note that hearing loss is not only a binary condition of "hearing" or "not

hearing" but encompasses a range of degrees and types. About 18% of adults between the

ages of 20 and 69 experience decreased hearing in different frequency ranges [5].

This variability in hearing loss may be due to various factors, such as prolonged exposure to

loud noise, natural aging of the auditory system, and other medical conditions [6]. Individuals

experiencing this hearing impairment may encounter difficulties in everyday communication,

highlighting the importance of hearing health awareness and appropriate prevention and care

measures to preserve hearing throughout life.

Communication plays an essential role in our lives, and hearing loss can create obstacles to

participation in society. People with hearing impairment often encounter difficulties when

interacting with others, leading to frustrating situations and, in the most severe cases, social

isolation [7]. This could hurt their self-esteem and self-confidence, as they may feel

ununderstood or fail to express themselves fully.

Sign language (SL) was created to overcome these difficulties. This system represents letters

and words through hand gestures and body movements [8]. SL has evolved, and its

development has provided a powerful tool for people who are deaf or hard of hearing.

1.2. PROBLEM STATEMENT

Different SL systems have been developed worldwide, each with variations and dialects.

These systems have been enriched by incorporating specific grammar, vocabulary, and

11

linguistic structures. In addition, with the advancement of technology, deaf people have found

new ways to disseminate and share sign language through digital media and online platforms

[9].

Just as the human mind designed a method for SL communication, many technological tools

exist. The most widely used are computer vision (CV) models, where you can identify

patterns of certain objects in real time, allowing computers to interpret and replicate human

visual perception ability using algorithms and computational techniques [10].

On the other hand, neural networks are another more simplified form of Artificial Intelligence

inspired by the structure and functioning of neurons in the brain. These networks are designed

to process information, learn patterns, and perform specific tasks. Their main system

comprises "neurons or nodes" organized in connected layers. Several types of neural networks

are designed for particular tasks [11-12].

Among these types are feed-forward neural networks, which transmit information in one

direction from the input layer to the output layer. Also, we have CNN, designed to process

gridded data, such as images, and are essential in CV applications due to their ability to detect

visual features; recurrent neural networks (RNNs), especially useful in tasks involving data

sequences and temporal dependencies; generative neural networks (GANs), which generate

new realistic data based on a given data set.

1.3. OBJECTIVES AND WORK METHODOLOGY

A series of objectives, detailed below, have been taken into account to carry out this work of

curricular integration.

1.3.1. General Objective

● To develop an innovative tool focused on people with hearing disabilities.

1.3.2. Specific Objectives

● Design and build a robotic arm focused on joint movement, controlled by an electronic

board with a microcontroller.

● Create a database with images for ASL.

● Implement a neural network for ASL classification.

● Perform the preprocessing of the database images for ASL.

12

● Represent the ASL letters through the robotic arm.

● Develop an AV system for the detection of ASL letters.

● Development of a code for positioning the servomotors of the robotic arm.

● Recreate the ASL with a robotic arm and interpret the movements through a neural

network.

13

CHAPTER II

2. THEORETICAL FRAMEWORK

2.1. ROBOTICS ARM
1. Hearing Impairment

The word robot comes from the Czech word robot, a, which means ''Forced labo.' r' This term

was first used in a play by Karel Capek in the 1920s [13]. According to the Oxford

Dictionary, a robot is a machine capable of carrying out a complex series of actions

automatically [14].

2.1.1. Types
There are many types of robots, among which we have Cartesian robots, spherical robots,

scary robots, articulated robots, and anthropomorphic robots, see Figure 1.

A Cartesian robot consists of 3 prismatic joints whose axes coincide with the Cartesian

coordinate [15]. This type of robot stands out for its precision, speed, and constant load

capacity in the x, y, and z directions [16]. Its applications are assembly operations, machine

tool manipulation, spot welding, etc. [17].

Spherical robots were the first robots to appear on the market [15]. Their axes form a polar

coordinate system [16] consisting of two perpendicular rotational axes and a linear one.

Spherical robots are more accessible and have better load capacity than Cartesian robots [15].

Robot Scara is composed of three parallel axes, two rotational and one linear. This

configuration results in very fast robots with very high precision, which are often used in

assembly or packaging operations and simple parts-taking movements [15].

Anthropomorphic robots are robotic arms similar to the human hand, consisting of fingers and

independent thumbs [16]. They consist of three rotating axes, the first one perpendicular to

the ground and the other two parallel to each other. They are very fast robots that occupy little

space and allow complex trajectories [15].

14

Figure 1. Cartesian robots, articulated robot, polar or spheric robot, Scara robot and

angular or anthropomorphic robots [17 - 18].

On the other hand, degrees of freedom are the independent movements that a joint can

perform [15]. Generally, the different types of robotic arms can have two or more degrees of

freedom, except for the anthropomorphic robot, which contains more than 5 degrees of

freedom as it simulates the human arm.

2.1.2. Materials
Robotic arms can be made by 3D printing. The most commonly used materials are PLA and

ABS, but 3D printing is a much simpler and cheaper method than the materials used for

industrial arms, see Table 1. In addition, due to their industrial use, robotic arms can be made

with different types of material, such as metal.

Table 1. Characteristics of each class of Database.

Material Image Description

Polylactic Acid

(PLA)

PLA is mainly composed of Lactic

Acid [19]. This material is

thermoplastic due to its biodegradable

and biocompatible characteristics and

is used for medical purposes [20].

Moreover, this material is used in the

manufacture of robotic arms because it

can be used to print 3D parts.

15

Acrylonitrile

Butadiene styrene

(ABS)

ABS was implemented in the 1950s

and used to describe multiple

acrylonitrile blends and copolymers

[21]. It has a good impact, good

resistance, and high aesthetic qualities

[22].

2.2. CONTROL SYSTEM

A control system is an efficient combination of the software and hardware of a machine with

the aim of automating and streamlining processes as well as minimizing errors that these can

commit. In 1959, we learned of the first machine controlled by a computer through a wiring

system that allowed it to follow a set of basic commands. In 1968, there was an evolution in

the previous systems, allowing the use of modular control and implementing a rustic system

of automation in the processes of assembly lines [23].

In robotics, the implementation of control systems is essential to achieving the desired

objectives. In simple terms, it is crucial to have methods to adjust a robot's movement or

action as needed. For this purpose, control systems are used, which consist of sets of devices

or components designed to maintain predefined safety parameters in an optimal and efficient

state and to be easily programmable [24].

2.3. ACTUATORS

Actuators are an essential part of any control system. They are devices responsible for

receiving an input signal (usually electricity) and transforming it into motion or force, which

is essential for carrying out automation processes [25], see Figure 2.

16

Figure 2. Robot arm [26].

2.3.1. Kinds of Actuators
Several types of actuators, including pneumatic, hydraulic, electric, and mechanical actuators,

are adapted to different application areas shown in Table 2.

Table 2. Kinds of Actuators.

Kind of Actuators Image Description

Pneumatic Actuators
Figure 3. Pneumatic

actuators [28].

It is a device that transforms

air pressure into mechanical

movement. Its main use is

operating valves and

switches when efficient

pressure control and quick

responses are required, as

shown in Figure 3 [27].

Hydraulic Actuators

Figure 4. Hydraulic

actuators [30].

It is a mechanical device that

uses the energy of a fluid in

confinement to generate

mechanical movement, such

as the movement of valves

or the control of the flow of

gasses or fluid, Figure 4

[29].

Mechanical Actuators

These devices implement

various mechanisms to

generate motion. They

mainly use gears, levers, or

cranks. Their use is simple,

and they have applications in

17

Figure 5. Mechanical

actuators [31].

low-cost systems [25]. For

example, the mechanical

actuator presented in Figure

5 mainly functions as a

zipper mechanism.

Electric Actuators

Figure 6. Electric Actuators
[33]

It is a device that uses

electrical energy and

transforms it into physical

movement. These can be

operated by DC or AC

motors, see Figure 6. The

advantage of this type of

actuator is that they are

highly accurate, generate

little noise compared to

other actuators, and require

little maintenance [32].

2.3.2. Stepper Motors
A stepper motor is an electric motor that transforms electrical impulses into incremental

mechanical movement. This means that it is not continuous but a movement in discrete steps.

A stepper motor has several components for its operation: a Rotor and a Sator [34].

A rotor is a rotating component consisting of an electromagnet which allows it to rotate

continuously around its axis, see Figure 7.

18

Figure 7. Hydraulic actuators [33].

A stator is a fixed part where the areas in which the electric current is generated through the

rotor are housed [36]. There are several types of stepper motors which are shown in Table 3.

Table 3. Types of stepper motor.

Name Descriptions

Unipolar Motor

They are characterized by having one coil per phase and can be

used to change their direction by inverting their polarity. Due to

their ease of use and low costs, they are commonly used in power

circuits.

Bipolar Motors

They differ from the Unipolar by having two coils per phase

connected in series or parallel. They present a configurable change

of direction, which is obtained by reversing the current in the coils

[37].

2.3.3. Servomotors
A servo motor is an electronic component that works by direct current and accurately controls

aspects such as speed and position. It has three main pins(Power, GND, and PWM) that

connect it to a microcontroller [38]. It works in most cases with a 5 V power supply and,

depending on the force with which it is handled, uses between 1 mA for proper operation.

Unlike stepper motors, servo motors are used mainly because of their high precision and

higher torque force application. These devices are equipped with feedback mechanisms that

allow for the control of real-time information about the position and speed at which the

servomotor is adjusted. This allows the continuous adjustment of the position of the

servomotor by means of a built-in potentiometer, preventing its movement if it is not in the

adjusted position, thus helping to perform precise movements [39]. Its application is very

diverse, from its use in industrial automation components to its use in the field of robotics.

The main components of a servomotor are the electric motor, regulation system, control

system, and potentiometer, shown in Figure 8.

The electric motor is in charge of moving the servo motor shaft. The regulation system is

responsible for acting on the motor in order to set its speed; it is formed by gears that are

adjusted to the motor [40]. The control system monitors the movement of the motor by

19

constantly sending electrical pulse signals. Finally, the potentiometer, a variable electrical

resistance, allows us to determine in real-time the angle at which the motor is configured.

It is important to emphasize that they have different features that make them unique, from a

metal chassis that allows you to move loads of more than 10 kg to 60 kg depending on the

mode to an almost plastic chassis used for servo motors below 5 kg. On the other hand, these

devices are highly compatible with microcontrollers such as Arduino and Raspberry

electronic cards, which can be configured easily.Also, there are two types of servo motors

implemented in the use of robotics, seen in Table 4.

Figure 8. Parts of servomotors [41].

Table 4. Type of servo motors.

Servomotor
Degrees

Characteristic

180°

The main characteristic of this servomotor is that its movement is

limited to forming an Angle of 180° in its potentiometer. An electronic

card or microcontroller is essential to control it. Generally, its

manipulation is done by determining the angle at which you want to

change its position.

360°

Unlike the 180° servo motor, this one performs an entire 360°

movement. Because it does not present any limitation in its movement,

it can be used in several applications, such as the use of wheels in

electric cars. However, the configuration method of this servomotor

does not work in degrees but at the speed that you want to operate.

The characteristics that helped us to decide the best actuator to implement in our model are

detailed in Table 5. In it, we can see that controlling the position of the joints of the robotic

20

arm is essential to make precise movements for this electric motors are a viable option; on the

other hand, both models, stepper motors and servo motors, are viable options; however, by

needing six motors the stepper motor option would exceed $ 164 while servomotors guarantee

us the most economical option being $ 72 so this is the most economical option without losing

accuracy.

Table 5. Comparison between several models of actuators

Actuator
Type Model Dimension

s

Max
Force/
Torque

Operating
Temperatu

re

Operating
Pressure

Approxi
mate
Cost

Application

Pneumatic

DMSP-5-5
0N-RM-C

M [42]

50 mm x
12 mm 14 kg

N/A
0-6 bar 154,93 € Light

applications

DMSP-40-
120N-RM-
CM [43]

120 mm x
80 mm 600 Kg

N/A
0-6 bar 281,64 €

Heavy
applications (up

to 250 kg)
DMSP-20-
100N-RM-
CM [44]

100 mm x
40 mm 150 kg

N/A
0-6 bar 159,60 € Medium loads

(up to 80 kg)

Hydraulic

Bettis
G-Series
Hydraulic

[45]

N/A

3,000,0
00

lbs-in
(339,0

00
Nm)

-29°C to
+93°C Up to 345 bar N/A High power and

durability

Bettis
GVO
Linear

Pneumatic
[46]

N/A 160 kg -60°C to
+100°C 12 bar $100-$50

0
High torque in

linear operations

Mechanica
l

AC Input
60 mm

Horizontal
[47]

100-800
mm

(Stroke)
10 kg

N/A N/A

$953.00
High speed in

horizontal
movements

AC Input
60 mm
Vertical

[48]

100-800
mm

(Stroke)

5.2-9.5
kg

N/A N/A

$953.00
High speed in

vertical
movements

Electric
(Stepper
Motor)

5.7V, 1 A
NEMA 23
POLOLU

[49]

56.4 mm x
41 mm

Four
kg-cm

N/A N/A

$41.99 High precision
at low cost

7.4V, 0.28
A NEMA

14
POLOLU

[50]

35 mm x
26 mm

650
g-cm

N/A N/A

$26.99 Compact and
low-power

21

Electric
(Servomot

or)

TOWER
PRO

MG996R
180° [51]

40.6 x 19.8
x 42.9 mm

13
kg-cm

-30 to +60
°C N/A $11.99

Angle control
with moderate

torque

TOWER
PRO

MG995
360° [52]

40.7 x 19.7
x 42.9 mm

11
kg-cm 0 to 55 °C N/A $14.99 Continuous

angle control

2.4. HEARING IMPAIRMENT

Hearing impairment is defined as hearing loss greater than 35dB, which is why, within this

concept, we have hyperacusis and deafness [1]. According to the WHO (World Health

Organization), it is expected that by 2050, there will be 2,500 million people with some

degree of hearing loss and that at least 700 million need rehabilitation [1]. Only in Ecuador

(2022) does hearing disability occupy the third place among the most common disabilities in

the country, with 14. 12%, approximately 66,538 have some degree of hearing disability,

Figure 9 [53].

Figure 9. Percentage of persons with hearing disabilities registered in Ecuador in 2022 [53].

Hearing impairment can occur due to various factors, hereditary, noise exposure, meningitis

[54], or age, as most older people have some degree of hearing loss [55]. A significant hearing

loss can affect daily life; the main limitation that people with hearing disabilities have is at the

intrapersonal level, unable to relate to other individuals in the various environments of daily

life to the point of low or zero possibilities in the labor field in front of hearing people [56].

2.4.1. American sign language

In the 1970s, linguistic analysis began, and ASL included different parameters such as hand

shape, movement, location, and palm orientation [57]. The American alphabet forms an

22

important part of ASL, Figure 10; it has a set of 26 known letters, of which 19 different

manual forms are used to express the various letters of the alphabet only with different

orientations and are used to spell words in English. It is commonly used for proper names,

technical terms that have no native ASL equivalent, very short English words, or very long

English abbreviations [58].

Figure 10. ASL Alphabet [59].

2.5. IMAGE PROCESSING

Neural networks require various input models for training. In the case of CNNs, images are

necessary. Using several image samples allows us to perform convolution processes in which

the most noticeable features are extracted to find patterns with respect to the desired

objectives.

23

The quality of the sample images represents an important point in the result of a neural

network. In addition, they need to know the accuracy with which they can detect patterns.

However, only some images present an ideal environment for obtaining them, so they can

present certain errors and impair the desired features. Therefore, certain algorithms are

implemented to improve image detection through AV and feature extraction in neural

networks. An image enhancement leads to a better interpretation of patterns and highlights

desired features to obtain more accurate results.

According to the compilation of image processing (IP) processes [60], several types of

processing can be performed. The ones used for the proposed work are median filtering or

Medfilt2 [61]. This performs noise reduction on the image, replacing the value of each pixel

with the average value in nearby areas, thus avoiding edge smoothing.

The median filter is a common IP technique for reducing noise in an image. It works by

replacing each pixel in the image with the median value of the pixels in its vicinity, which

helps to remove noise without smoothing the edges too much. Morphological operations were

performed to modify the shape and size [62] of the objects in the images.

Finally, two toolboxes, the Image Processing Toolbox [63] and the Computer Vision Toolbox

[64] were used to limit important characteristics in the image, such as color, eccentricity,

orientation, and equivalent diameter, with the objectives of filtering and object detection.

2.6. ARTIFICIAL INTELLIGENCE

AI aims to endow machines with human intelligence, focusing on intelligent agents that

perceive and act, as described [65] and Figure 11. This term is applied when machines

perform human functions. In other words, AI refers to any software and hardware technique

that reproduces the behavior and thinking of human beings and also includes ML, natural

language processing (NLP), text and speech synthesis, CV, robotics, system planning, etc

[66].

24

Figure 11. Artificial Intelligence applications [66].

2.6.1. Robotics and planning

Robotics is a discipline that focuses on designing and building machines programmed to

perform specific activities automatically, in addition to being able to emulate human behavior.

Also, robotics is defined as “the intelligent connection of perception to action” [67]. In simple

words, it describes the movement that can be performed by a computer thanks to a moving

part, either an arm or a gripper. The use of various tools allows artificially created devices to

use “reasoning” in a primitive state, capable of perceiving space and distances between

objects.

The rules that a robotic device must follow allow it to plan a method or a sequence of

algorithms to obtain an efficient or desired result. Furthermore, planning in robotics can be

defined as “all the steps and operations that transform the initial state into the ultimate goal

state” [68], thus arriving at the most optimal solution.

However, the progress made in robotics has been overwhelming. Nowadays, several robots

are focused on specific tasks with a minimal range of error. Industrial robots, for example,

have revolutionized manufacturing by increasing precision and efficiency in mass production.

Robots, such as robotic assembly arms used in automotive manufacturing, can perform

welding and assembly with impressive accuracy [69].

25

In addition, the complement of AI represents unprecedented advances and constant evolution.

In medicine, surgical robots, such as the Da Vinci [70], allow minimally invasive surgeries to

be performed with a precision that surpasses human capabilities, reducing recovery time and

postoperative complications.

2.6.2. Natural Language Processing

Neuro-linguistic programming has its roots in the 1950s with Alan Turing in his 'Machine and

Intelligence' paper [71]. NLP is a discipline of computer science that analyzes text using

specific theories and technologies, the goal of which is to achieve human-like language

processing for various applications [72]. NLP is divided into Machine translation, Content

extraction, Question answering, Information retrieval (IR), Sentiment analysis, Text

generation, and Topic Modeling, see Table 6.

Table 6. Types of NLP

26

Kind of NLP Description

Machine
Translation

Machine translation is a subfield of NLP focused on translating text or

sounds from one language to another automatically. In simple terms, it

is an algorithm that is in a loop trying to obtain a promising result or

with significant features higher than other results to ensure a

translation closer to the original language [73]. However, this does not

guarantee an efficient translation. An example of this system [74] is

the software created by Google to translate various languages: "

Google Translate. "

Content
Extraction

Feature extraction is essential to transforming unprocessed data into

useful information, and feature selection is key to processing

dimensional data [75-76]. In other words, this field focuses on

identifying, labeling, and extracting key information such as person

names, companies, locations, or organizations [72].

Question
Answering

As part of NLP, it is essential that the system is calibrated to obtain the

best result. In this section, the best result must be found using the

available resources by associating different interactions or processes

2.6.3. Expert systems

In past years, the term “expert system” was attributed to software developed to achieve the

performance of a human being with extensive knowledge in a specific area, obtain detailed

results, and explain them efficiently [87].

27

[73]. On the other hand, [77] details that the language can be defined

by means of its syntactic structure with which functions or

transformations can be applied, mixing it with the operation of the

program. Thus, it is essential to analyze these sections in order to

obtain conclusions and a useful prediction.

Information
Retrieval

IR systems, also called document or text retrieval systems, aim to find

documents that match the user's information needs [78]. In addition,

IR has used many NLP techniques such as stemming, chunking,

tagging, recognition, etc [79]. The result of an IR process is usually a

group of documents containing data on a particular topic [80].

Sentiment
Analysis

Sentiment analysis is performed using the NLP technique. It studies

the user's expressions and relates them to the emotions conveyed [81].

Sentiment expressions include adjectives, adverbs, and verbs, for

example, "'good product"' where we want to convey a positive

emotion towards a product [82].

Text Generation

Another section within NLP is text generation. These follow the

aspects previously mentioned in the planning stage. Thus, the aim is to

emulate fluent and understandable writing for users [83]. Currently,

there are a multitude of structures for text generation using RNNs,

dilated convolutional networks, and tokens generated previously [84].

Topic Modeling

Topic modeling is a process described as the identification of a group

of words in a set of text. It is part of text mining which uses data

mining algorithms, NLP, ML,etc. [85].Also, topic models are a

powerful and practical tool for analyzing huge text documents in NLP

[86].

Currently, an expert system is considered a subgenre of AI whose objective is to function as a

decision-making system that emulates the knowledge of an expert in an area of work. These

systems operate primarily through a database containing “knowledge and expertise” along

with a set of rules [88].

2.6.4. Speech and Vision

Speech recognition gives computers the ability to transcribe spoken words into text for

analysis. This is complemented by the NLP technique, which is also integrated into various

electronic devices, providing them with intelligent and automated functions [89]. CV

simulates the human ability to see by employing software and hardware to analyze and

process visual information. It has applications in a wide range of fields, from medicine to

autonomous driving [90].

2.6.5. Machine learning

ML classification is divided into three categories: supervised, unsupervised, and

semi-supervised [91], see Figure 12.

Figure 12. Machine learning [66].

● Supervised machine learning

Supervised learning is a model that performs decision-making based on the classes or labels

assigned to the initial data set and configures both input and output parameters to perform

prediction efficiently [92]. It adjusts internal parameters iteratively using methods like

28

stochastic gradient descent to minimize errors. Deep learning (DL), characterized by a

multilayer architecture, autonomously learns intricate features, addressing

selectivity-invariance challenges without manual engineering. Shinde, P. P., & Shah, S. (2018)

explain that evaluation is conducted on an independent test suite to assess generalization [65].

● Unsupervised Learning

In contrast to supervised learning, which makes decisions based on the configuration of

specific inputs and outputs to obtain its results, unsupervised learning only uses the inputs. It

seeks to discover patterns or features in the data to generate its results [93]. This approach is

especially useful in situations where labeled output data is not available, allowing the

algorithm to explore and analyze the data without direct human supervision.

Furthermore, unsupervised learning is a type of adaptive algorithm, as it dynamically adjusts

to the input data to identify and extract relevant and meaningful features [94]. This

adaptability is crucial in contexts where the data is complex or unknown, allowing the

algorithm to adapt to new information and discover hidden structures without prior guidance.

Finally, unsupervised learning is ideal for feature selection and reduction tasks on very large

datasets [95]. Identifying and removing irrelevant features simplifies data analysis, improves

efficiency, and facilitates the interpretation of results. This is particularly beneficial in fields

such as data mining, bioinformatics, and big data analysis.

● Semi-supervised Learning

A combination of the previous models gave rise to semi-supervised learning. This is

characterized by using an unsupervised scheme (unlabeled output data) in supervised learning

problems, where we are given labeled input and output data [96]. Furthermore, Hady (2013)

highlights that semi-supervised learning is divided into four groups: semi-supervised

classification, semi-supervised regression, semi-supervised clustering, and semi-supervised

dimensionality reduction [96]. Finally, Van Engelen (2019) points out that semi-supervised

learning has a weakness, which is the reduction in performance when applying unlabeled

data; this is an aspect that needs to be strengthened to avoid minimal improvement compared

to other methods [97].

● Reinforcement Learning

29

Reinforcement learning is a significant point in the types of ML because it responds to a

situation of action and reward; in this case, it is not programmed to follow an established

pattern but must find the set of actions that can generate a positive or approving response,

based on an automated trial and error analysis [98]. Kaelbling (1996), in his article, points

out that the action of an agent changes depending on its interaction with the environment by

means of a scalar reinforcement signal, thus developing learning by reinforcement that

complies with pre-established algorithms for its correct functioning [99]. Finally, current

studies mention that this learning method can develop solutions that a trained person can take

a good amount of time to deduce, thus developing skills and behaviors in an exponential way

[100].

● Deep Learning

DL classification is divided into four categories: DeepFeed-Forward networks, Convolution

Neural Networks, RNNs, Siamese Neural Networks (SNNs,) and Transformer, shown in

Figure 13.

Figure 13. DeepLearning [66].

○ Deep Feed Forward Network

The first generation of neural networks were Feed-Forward networks. These are called

one-way because the information moves in only one direction, from the input layer to the

output layer. According to Ketkar (2021), it is essential to understand their architecture, which

consists of multiple layers of neurons, where each neuron is connected to each neuron in the

next layer [101]. In addition, these networks use transfer functions, such as the Heaviside

threshold function, to introduce nonlinearities in the model [102].

30

According to Huang's (2020) research, it is uncommon to consider a feedforward neural

network with more than 30 layers. These types of networks tend to have a higher error rate

compared to their simpler counterparts [103]. This is due to problems such as gradient

degradation, which makes training more difficult.

A typical example of a feedforward network is the multilayer perceptron (MLP). This

nonlinear neural network receives a sum of the incoming signals, and applying a nonlinear

activation function produces an output [104]. The MLP is widely used in various applications

due to its ability to model complex and nonlinear relationships between input and output data.

○ Recurrent Neural Networks

The term “recurrent neural network” refers to any type of neural network that is capable of

sending feedback signals, just like a biological neural network, and capable of storing large

amounts of data such as patterns, scales, and colors, thus modulating learning [105]. These

neural networks were created to emulate pattern learning in dynamic systems with a sequence

of events. Some examples of this type of neural network are the Hopfield network, the

Boltzmann machine, and recurrent backpropagation networks [106].

Unlike the previously mentioned networks, this type of neural network uses all the available

input information to guarantee a good prediction instead of using a fixed number of inputs

[107]. In fact, their performance is given by the configuration prior to training, such as the

activation function, the number of layers, etc.

Currently, the applications of RNNs are much broader, and they are used to predict various

variables more accurately. An example is the research of Nketiah (2023), who focused on

predicting atmospheric temperature using meteorological parameters such as temperature,

dew, and wind speed, guaranteeing an optimal result with minimal errors in the five models he

performed [108].On the other hand, they can also be incorporated into CV, detecting complex

patterns and activating a response system [109].

Finally, the versatility and accuracy of this type of neural network for pattern prediction make

it a powerful tool in research, significantly expanding the fields of study.

○ Siamese Neural Network

31

SNNs, which began in 1994 by Bromley and his collaborator, are described as an algorithm

for verifying a signature written on a tablet with pen input [110]. As the name implies, they

are inspired by the concept of Siamese twins. They are formed by twin models entered by

supervision and are notable for their outstanding approach to one-time learning in face

recognition [111]. Furthermore, SNNs are symmetrically structured to process multiple inputs

and determine similarity within a specific feature space [112].

The SNNs consist of two parallel CNN architectures, two segments, one convolutional layer

followed by pooling, and three fully connected layers. They are designed for 128x128x3 pixel

input. In addition, they consist of max-pooling layers operating in 2x2 non-overlapping

regions [113].

○ Convolution Neural Network

CNNs, ConvNet, are a type of DL model for processing data as grid-like patterns, such as

images that contain a series of pixels, which are values that indicate color and brightness

[114]. A CNN learns according to the characteristics using convolution and clustering and is

fully connected to extracting and classifying patterns from images [115-116], see Figure 14.

Figure 14. The basic architecture of CNN based on [103].

Several pre-trained CNNs are already trained to classify images, such as SqueezeNet [117] is

a CNN; this network is smaller and designed to replace AlexNet as it is smaller than other

models with only 18 layers, which is almost 50 times fewer parameters than AlexNet.

SqueezeNet [118] features an architecture with "compression" and "expansion" layers. In the

compression layer, filters of size 1 × 1 are used, fed into an expansion layer that combines 1 ×

1 and 3 × 3 convolution filters, called the "trigger module".

32

The AlexNet model consists of 5 convolutional layers, three max-pooling layers, two

normalization layers, two fully connected layers, and one softmax layer. Although the input

size is usually stated to be 224x224x3, the padding makes it 227x227x3. Overall, AlexNet has

a total of 60 million parameters. GoogleNet [119], the overall structure comprises 22 layers. It

was conceived to focus on computational efficiency and is designed to process images of 224

x 224 dimensions with RGB color channels. DarkNet-19 [120], a 19-layer CNN, serves as the

backbone of YOLO.v2. Pretrained on a subset of ImageNet with more than one million

images, this network can classify images into 1000 categories, standing out for its strong

recognition capability.

2.6.6. Google-Net

GoogleNet was an important breakthrough in CNNs, demonstrating efficient results with

optimized architectures. According to the research of Szegedy et al. (2015), this model was

characterized by using inception [121]. The module was efficient by greatly reducing the

parameters needed for training the network. Its architecture comprises 9 inception modules,

containing 22 layers along with 4 maxima clustering layers and one averaging clustering

layer,see Figure 15. In addition to the ReLu function in all convolutional layers. Finally, a

dropout of 40% was applied to the SoftMax classification function [122].

Figure 15. GoogleNet scheme based on [122].

2.6.7. Alex-Net

In 2012, Alex Krizhevesky and his team presented a version of a deeper and more extensive

CNN model compared to its predecessor LeNet. AlexNet represented a significant

breakthrough in the field of ML as it boasts visual recognition and classification accuracy

33

compared to other pre-trained networks [123]. The model is composed of 8 learning layers,

five convolutional layers, and three fully connected layers [124], see Figure 16.

The first convolutional layer filters an input image of (224x244x3) with 96 nuclei of

size(11x11x13) with a phase of 4 pixels, the second convolutional layer has as input the first

convolutional layer and filters it with 256 nuclei (5x5x48), the third convolutional layer has

384 cores (3x3x256) connected to the normalized outputs of the second convolutional layer,

the fourth convolution layer has 384 cores (3x3x192) and finally the fifth convolution layer

has 256 cores (3x3x192)(Adam, Mohd & Younis, 2021). The fully connected layers have

4096 neurons [124].

Figure 16. Structure of Alex Net [125].

2.7. OPTIMIZERS AND TECHNIQUES TO AVOID OVERFITTING

2.7.1. Types of optimizers

The different optimizers involve a calculation depending on their algorithm. For our project,

we implemented the Stochastic Gradient Descent (SGD) as our optimizer for neural network

training because it is simple and effective, shown different optimizers in Table 7.

Table 7. Types of Optimizers

Type of
optimizers Optimizers Description

Adaptive
learning rate

methods

Adam (Adaptive estimation of
momentum) [126-127]

Converges quickly and stores the
average of previous gradients.

Adagraf (Adaptive gradient)
[126, 127]

Upgrades the walls individually
as required by the importance of
the upgrades.

34

Gradient Descent

Batch Gradient Descent [126]
It is used to minimize the cost
function and achieve the optimal
weight matrix and bias.

Stochastic Gradient Descent
[126]

It requires less calculation since it
divides the data in half and
updates the weights of the first
half to obtain weights for the
second half.

Moment-based
optimizers

Momentum [126]

The momentum accelerates the
direction of the position of the
weights using velocity instead of
gradient.

Nesterov Accelerated
Gradient(NAG) [126]

Slight variation from the normal
gradient descent can accelerate
the training process significantly.

Mini Batch Optimization [126]
It is recommended for large
networks that process redundant
data.

2.7.2. Techniques to avoid overfitting
Several techniques exist to avoid overfitting a neural network mode, including L1 and L2

regularization, dropout, data augmentation, cross-validation, batch normalization, and early

stopping, see Table 8. For the training of our mode, we applied data augmentation, dropout,

and frequency validation.

Table 8. Methods to avoid overfitting

Technique Description

L1
Regularization
[128]

Using Lasso regression, we use the cab distance, which is the sum of
the absolute values of all the weights as the penalty term.
Some features are removed from our model, and only the most valuable
features are retained.

L2
Regularization
[128]

It uses ridge regression theory, which makes networks prefer to learn
features with small weights

35

Dropout [128]
It is an efficient learning combined with an ingenious approximate
inference scheme that was remarkably accurate in the case of rectified
linear networks.

Data
augmentation
[129]

It focuses on generating more training data from existing training
samples. The goal is that the model never sees the same image twice;
the image changes by rotating, flipping, or shifting it vertically or
horizontally.

Cross
Validation[130]

It is one of the most widely used data resampling methods for model
selection and evaluation. It is used to fit hyperparameters of statistical
and machine learning models.

Batch
Normalization
[131]

Normalizes the outputs of each layer, stabilizing and accelerating
training.

Early Stopping
[128]

The accuracy of the data is calculated as the network is trained, and
training is stopped when the accuracy stops improving.

2.8. SOFTWARE

2.8.1. Python

Guido Van Rossum developed Python in late 1989 to be released in early 1991 [132]. Python

is a versatile programming language that includes object-oriented programming, structured

programming, functional programming, and aspect-oriented programming [133]. In addition,

Python is distinguished by its accessibility and is extremely easy to learn and use, making it

the preferred language for beginners [134].

Anaconda, the Python ecosystem, is the complete and prepackaged version of Python that

includes a wide range of libraries and environments, such as Jupiterr, SymPy, pandas, SciPy,

Numpy, etc. [135], shown in Figure 17.

36

Figure 17. Python ecosystem [136].

● Python Robot Operating System (ROS)

The Python robot operating system (ROS) was released in 2007 [137]. It is a platform

intended for the development of robotic software and is notable for evaluating algorithms

designed for various robotic tasks, such as robot navigation [138]. ROS supports an

open-source framework for developing packages to interact with real sensors, actuators, and

robots, among others [139].

● Artificial Vision in python

In the field of machine vision or CV, Python is one of the most complete languages, capable

of encompassing several pre-established algorithms and libraries that only need to be

imported in order to use them. The main task is to give a machine the ability to detect patterns

and “see.” This is achieved by combining software (libraries and algorithms) and hardware

(cameras and sensors), starting with a system capable of capturing images of the environment

and then performing IP to extract essential features and obtain the expected result [140].

Python is a language with specialized features for these processes, such as face detection,

feature extraction, and color detection. Asaad (2023) points out several libraries capable of

performing CV and IP, such as Numpy, Matplotlib, OpenCV, Scipy, PIL (Python Image

Library), Simple ITK, Mahotas, Scikit-image, TensorFlow, and Keras [141]. However,

TensorFlow and Keras are used more in the field of neural networks.

These libraries process images through the system of pixels contained in an image. The scale

of these pixels can vary depending on the color grade, either RGB, CMYK, or B&W, and will

depend on the value of the data that each pixel possesses [142]. The best-known Python

library focused on IP is OpenCV, which was created in C++. Because it is open access, it can

be applied in various fields, such as facial recognition, surveillance, game applications, and

object counting, among others [143].

● Neural networks in python

An artificial neural network consists of an input layer of neurons, one or more hidden layers

of neurons, and a final layer of output neurons [144]. In Python, there are several ML and DL

libraries, such as Fata, which simplifies the training of neural networks quickly and

37

accurately; Lasagne, which is used to build and input neural networks; and Elepha, where

distributed DL models can be executed [145].

Artificial neural networks have applications in many fields, such as medicine, where they

detect diseases through pattern detection and synthetic vision. They can also be used to detect

and classify objects or characters. Due to their accuracy in predicting responses, artificial

neural networks have recently been introduced to models of Tesla brand cars [146].

2.8.2. Arduino IDE

Arduino offers not only boards(Arduino Uno, Arduino Shield, Arduino Mega, etc.) but also

software that includes a development environment (IDE) [147]. The Arduino IDE

environment is shown in Figure 18.

The integrated development environment or IDE of Arduino is a multiplatform software of

free license that is used to write and load programs in Arduino boards and also in those that

are compatible; in addition, it allows debugging, editing, and saving programs or sketches in

development boards in a fast and simple way [148].

On the other hand, Arduino IDE is an environment focused on the control and programming

of boards that have robotics as an application. In addition, due to its limited environment, this

software does not have applications focused on AV and artificial neural networks. To

compensate for its limited environment, Arduino works with other software such as Python,

which, with the TensorFlow lite library, makes it possible to install and run a neural network

on the Arduino board to recognize voice commands or gesture recognition [149].

38

Figure 18. Arduino IDE software.

2.8.3. Lab View

LabView, whose acronym is ''virtual instrument engineering laboratory'' [150], is both a

programming language and a graphical environment with which applications can be

developed in an agile and accessible way [151].

LabVIEW, unlike other software, is based on add-ons or Toolkits, which are essential to

implement various actions in the software. However, their use is limited to the type of license

with which this application works. It is mainly based on a graphical environment to configure

the processes to be carried out at the industrial and research level. Its applications are varied

but can also be limited to IP and ML. The main disadvantage is that the user must configure

all the necessary parameters in its interface.

According to Ortiz (2020), LabVIEW relies on several main features to implement a machine

vision system, such as the Input matrix, the Reordered matrix, and the distance between pixels

[152]. In addition, the differential matrix is calculated using the AVA algorithm, errors are

removed, and corrections are applied to the model. Another application in the field of CV is

IP using external tools [153].

On the other hand, image acquisition can be performed by using the webcam and performing

simple processing, such as applying noise and implementing various filters to improve clarity

[154]. Finally, in the field of AI, it is essential to use the LabVIEW Analytics and ML Toolkit

to perform efficient predictive analytics and optimally implement ML in order to extract and

39

analyze patterns from a large database [155]. Such is the case of Ramirez (2007) and Dirik

(n.d.), who implemented basic and complex systems, respectively, for pattern detection and

data processing focused on anomaly detection [156-157].

2.8.4.MATLAB

It is programming software focused on numerical computation and data visualization in

various fields of physics, mathematics, and computational engineering [158]. Unlike Python,

this is paid software that limits its use. However, it allows the implementation of various

applications focused on different areas, from aerospace engineering to ML processes.

Its use is very wide. Its friendly language is oriented to matrices, which makes it easy to learn

to perform mathematical operations efficiently. It also has several integrated libraries that

streamline and solve complex problems with exceptional efficiency. Pre-designed applications

are indispensable for adjusting parameters and adding them to lines of code quickly and

easily. Image Region Analyzer and Deep Network Designer are examples of applications used

in this project to optimize the code.

● Machine learning and deep learning ToolBox

Several applications in Matlab perform ML and DL. Among them are the deep network

Quantizer, experiment manager, neural net clustering, classification learner, cluster data, and

reduced dimensionality [159]. Next, we will describe some of the toolboxes used in Table 9.

Table 9. MLT & DLT.

Kind of Machine learning Toolbox Description

Statistics and Machine Learning Toolbox

Provides tools and applications for

describing, analyzing, and modeling data,

including functions for descriptive statistics,

data visualization and clustering, fitting

probability distributions, working with

random numbers for Monte Carlo

simulations, performing hypothesis testing,

regression algorithms, etc. [160].

40

Text Analytics Toolbox

This toolbox works with text data by

providing the user with algorithms and

visualizations for preprocessing and

analyzing text data. A common example of

the use of this toolbox is in sentiment

analysis, predictive maintenance, and topic

modeling. These features can be combined

with other sources to create ML models

using textual, numerical, and different types

of data [161].

Deep Network Designer

On the other hand, Matlab also offers a tool

capable of creating and using pre-trained

models of CNNs, thus facilitating their

design, training, and testing [162]. It has a

user-friendly graphical interface and an

intuitive design, see Figure 19-20.

Figure 19. Deep Network Designer Start Page.

41

Figure 20. Deep Network Designer Interface.

● Image Processing and computer vision

IP and CV, located in the applications section of Matlab, are tools that allow you to perform

end-to-end processing, from acquisition to data preprocessing, enhancement, and analysis,

along with deployment in an integrated vision system. For example, it can be used for image,

video, point cloud, lidar, and hyperspectral data where we can interactively visualize, explore,

label, and process data using applications, perform semantics, object detection,

image-to-image classification, and translation using DL, etc. [163].

In addition, we have several apps that are included in IP and CV applications, see Table 10.

Table 10. IP & CV.

Image processing apps from Matlab Description

Image Region Analyzer

It is an app that provides Matlab with the

objective of characterizing binary images

from the various regions of interest for the

extraction of specific information in

particular areas of the image [164]. It has

several parameters to analyze, such as Area,

Convex Area, Eccentricity, EquivDiamete,

42

and Orientation, which are the parameters

used in part of the project, shown in Figure

21.

DICOM Browser

DICOM Browser allows you to select and

save a specific series within the working

environment. It works with files in DICOM

format, organizes them by study and series,

and stores the data as a volume with

separate variables for color mapping and

spatial details.

Image Segmenter

The Image Segmenter tool facilitates the

creation of segmentation masks using

various automatic, semi-automatic, and

manual methods. This tool uses automatic

algorithms for diffusion filling and offers

tools to enhance masks using interactive

techniques such as active contours [165].

Volume Segmenter

Volume Segmenter is a tool for creating and

refining semantic or binary segmentation

masks for an RGB or 3D grayscale image to

segment an object drawn in the region of

interest [166-167].

43

Figure 21. Image Region Analyzer interface.

2.8.5. Microcontrollers

There are different types of servo motor controllers that help with the movement of servo

motors. We have Pololu mini masters of 12 and 24 channels, Raspberry, Arduino one,

Arduinoo mega 256, and Arduinoo mega shield, see Table 11.

Table 11. Multiple controllers for Servo Motors

Kind of Servo Motor
Controllers

Image Description

Pololu

Figure 22. Mini Maestro 18

channel Pololu USB servo

controller [165].

The Pololu mini master is a

12, 1, 8, and 24-channel

servo controller, see Figure

22, which connects to the

computer via a USB cable.

The external power supply

comes from 5-16 V [168].

44

Raspberry Pi

Figure 23. Part of Raspberry Pi

[168].

Raspberry Pi is a small

open-source microcontroller.

It consists of a Broadcom

BCM2835 chip, including

ARM1176JZF-S, GPU video

core IV, etc. (Figure 23). It

runs using the Raspbian

operating system and can be

programmed using GNU

Octave version 3.6.4 and

Python 2.7, which are

open-source [169].

Arduino Mega 2560

Figure 24. Arduino Mega 2560

connection diagram [171].

The most representative

microcontroller, which is an

improvement over the

original Arduino UNO,

consists of a microcontroller

board that includes 54 digital

pins, 16 analog inputs, 4

hardware serial ports, a

16MHz oscillator crystal,

USB port, power connector,

ICSP header, and reset

button, see Figure 24. For its

operation, it is only

necessary to connect an AC

to a DC adapter or even a

battery [170].

45

Arduino Shield V5

Figure 25. Arduino Sensor

Shield v5.0 diagram [173].

This expansion board

includes a digital and analog

interface, IIC interface,

32-road digital address

controller interface,

Bluetooth module

communication interface,

SD card communication

interface, APC220 RF

module communication

interface, RB URF v1.1

ultrasonic transducer

interface, 12864 LCD

interface, and parallel

interface [172], see Figure

25.

2.9. RELATED WORKS FOR “DESIGN AND CONSTRUCT A ROBOTIC ARM

FOR SIGN LANGUAGE INTERPRETATION WITH NEURAL NETWORK”
It’s important to understand previous models to ensure our project is successful. The research

of Liam, K. (2019) used a CNN that they created to recognize hand modeling. First, it’s

important to select the correct Database; they use 31492 annotated hands from the dataset to

train the right-hand model and left-hand model. Also, the images need to be processed; they

use a simple background and apply Otzu’s model to make an automatic binarization of the

images, and two different databases are used to validate it CNN [174].

Another important study was the project of Nihal, R. (2021), who focused his research on the

creation of a humanoid robot for the correct interpretation of sign language. The use of a

flexible and lightweight material was essential for the creation of his model, and he chose

thermoplastic polyurethane (TPU) as the raw material. The robotic arm operates with 15

degrees of freedom and five servomotors, which will allow for controlled movement, as well

46

as its use with an Arduino UNO microcontroller. Nihal emphasizes that the model of his robot

costs approximately $800 to prototype. For the neural network model, he used DenseNet 201,

DarkNet 53, and ResNet 50, as well as a database of Bangla sign language (BdSL) and

medical signs interpretation for training. Finally, the results obtained for sign language

recognition were 87.5%, and for BdSL using DenseNet-201, they were 98.19% [175].

While Nihal used models such as DenseNet, DarkNet, and ResNet to realize his detector,

Chavan, S. (2021) used neural network models based on LeNet-5, Vgg16, and MobileNet v2

for his study in detecting ASL. RGB to Gray conversion was applied as image processing to

reduce training time. In addition, the Otsu method was applied to perform an automatic

binarization. On the other hand, Canny's method was also used, which is divided into 5 stages:

noise reduction, gradient calculation, non-maximum suppression, double thresholding and

hysteresis thresholding, Mirroring, Cropping, Rotating, shearing, local warping, and Color

shifting as data augmentation parameters were applied to train the neural network.

The database used is from Turkey Ankara Ayrancı Anadolu High School, which comprises

approximately 205 images per class. The dataset consists of hand gestures for 0 to 9 digits in

RGB format with a resolution of 100x100 px. Finally, Chavan's model obtained an accuracy

of 91.37% and a validation of 86.30% [176].

For the study of Rastgoo, R. (2020), a multi-skeleton model of the hand was implemented for

sign language recognition. Both 2D and 3D convolutional neural analytic networks were used

together with an LSTM model to capture spatial and temporal features, the main one being the

ResNet50 model. Hand skeleton processing is performed by projecting the 3D points onto

surface images in 3 different views. For the database, a video was used as input data,

RKS-PERSIANSIGN, characterized by 10,000 videos of 100 words in Persian sign language.

For training, 50 frames per video and an AdaGrad optimization algorithm were used to train

the neural networks. Rastgoo used 21 3D estimated hand key points from RGB inputs and

scaled these inputs to the interval [0:95, 0:95, 0:95, 0:95]. Finally, a hand gesture recognition

accuracy of 91.12% was obtained [177].

On the other hand, Zhi, D. (2018) implemented the multiclass-SVM classifier and

N-Dimensional DTW (ND-DTW) classifier for static posture recognition and dynamic

gesture recognition. The use of a robotic arm was fundamental to test the detection model, the

model used was the ADA Robotic Arm. The main dataset for training consisted of ten digits

47

based on ASL. Factors such as the position of the palm and fingers, along with their speed

and direction, must be taken into account when determining the detector. For the

implementation of the recognition model, the SVM library was added to provide greater

accuracy to the model. For the model to be used in real-time, a linear kernel was selected to

improve the training and classification speed and to reduce the resources needed for

processing. Finally, the experiment showed that the proposed method achieved an accuracy of

98.25% compared to other studies with an accuracy of 95.5% [178].

Previous studies by Cao Dong, M. (2015) laid the groundwork for low-cost detection systems

such as Microsoft's Kinect for detection. The aim of this research was to demonstrate that a

low-cost method with good results can be used to detect ASL. He used several configurations

to obtain the position segments: a dimension-adaptive mean-shift mode-seeking algorithm. In

addition, the assemblies of the 13 key angles of the hand skeleton were used as the features to

describe hand gestures. Random Forest was used because previous studies indicated a high

probability rate for segmenting body parts using depth contrast features.

To improve this algorithm, a glove with different colors was implemented to facilitate the

detection of each section of the hand. In addition, an increase in the color saturation of the

images was performed in order to create an efficient dataset consisting of 3,000 images

generated using the color glove, of which 2,000 images were randomly picked for training,

and the rest were used for validation, with a resolution of 256x256. This method proved to be

novel and efficient, reaching an accuracy of 90% compared to previous models that ranged

from 59% accuracy to 87% accuracy [179].

Barbhuiya, A. (2020) conducted his research with AlexNet and VGG16 CNN models for ASL

recognition applied on a robotic arm. The implementation of the SVM classifier was

fundamental to improving the processing performance by means of support vectors. For his

DataSet, he started from the Barczak Dataset, which included 70 images in each class and had

a total of 36 classes of sign language; 26 classes were of gestures, and ten were of numbers. In

addition, data augmentation (Image translation, image Shedding) was applied to provide more

variety in the training. 70% of the images were taken for the training configuration and 30%

for testing the models. Finally, the results show that the model (AlexNet and SVM classifier)

had an accuracy of 70%, which is better but not enough than other models [180].

48

The use of a robotic hand to perform sign language translation activities was also the

brainchild of Johnson, S. (2021) and his team, who implemented TATUM, designed to

facilitate communication with deaf and deafblind people tactilely and visually. The design

called for 15 degrees of actuation to ensure that the robotic hand could execute the full ASL

alphabet. The hand was constructed from materials such as thermoplastic polyurethane (TPU)

and polylactic acid (PLA), making it affordable and durable. The hand's movement is

controlled through a cloud-based service called Interpres, which translates text into servo

motor instructions, allowing the hand to emulate ASL gestures. The system was validated in a

study with deaf and deafblind participants, with recognition rates of 94.7% for visual and

71.7% for tactile recognition. The results indicate that the potential of TATUM will improve

communication between the deaf and deafblind communities [181].

In the research work of Mazhar, O. (2019), a robotic arm called Kuka LWR 4+ was created,

where Microsoft Kinect V2 sensors were used to capture visual information. The robot

consisted of a mobile base called Neobotix MP700. For the dataset, an OpenSign dataset was

used, which contains 20950 images in which there are ten gestures, among which we have

letters, numbers, and the gesture of none (there is no interaction). In addition, we used the

pre-trained network of Inception V3 with the ImageNet dataset, which is coupled with the

objectives of this research. On the other hand, real-time data augmentation was applied with

Keras running transformations such as displacement, zoom, rotation, and translation. Finally,

this model achieved an accuracy of 98.9%. In conclusion, this research work is working

collaboratively in real-time with the human, where the user performs hand gestures, and the

robot performs others [182].

On the other hand, in the work of Meghdari, A. (2018), a robot with arms, hands, and a head

called RASA, which has a total of 29 degrees of freedom, was created. The robot parts were

made of polyamide PA2200 and aluminum AL7075 for the movement of the joints; the

Dynamixel Mx64 and Mx28 servo motor were used for the movement of the arm joints. The

total cost for the development of the RASA robot was less than $10k. This robot was

designed to simulate the movement of sign language, which is 70 signs of sign languages,

including 60 words of the Persian language and 10 of the Baghcheban phonetic alphabet.

Finally, the average recognition rate was 77% in the first test and 100% in the second test. In

conclusion, the researchers developed a robot called RASA designed to teach sign language to

hearing-impaired children [183].

49

In the research of Bulgarelli, A. (2016), improvements were made to a model of an

anthropomorphic robotic hand, which was designed to interpret sign language consisting of a

robotic hand that has 8DoF in the fingers and a 3DoF spherical wrist. The robotic hand was

made by 3D printing with PLA, ABS, nylon, and rubber for the different parts of the robotic

hand. It also used analog servo motors controlled by Arduino One and ROS (Robot Operating

System). The cost of the creation of this robotic arm was around 280 euros. The database

consists of several gestures using the manual alphabet of the Italian sign language. It was also

developed using C/C++ software through ROS, where the movements of the robot were

programmed to reproduce the gestures of the sign language. Finally, the system achieved a

90% success rate in the reproduction of visually evaluated gestures. In conclusion, the project

works with a pre-designed arm model in which improvements are made by adding additional

degrees of freedom, which will help with the interpretation of sign language [184].

In the research of Kenshimov, C. (2021), a 50-DoF humanoid robot with various parts such as

hands, wrist, head, waist, and mobile base was created. This robot was designed using 3D

printing and a movable iron base with a combination of 27 motors, 25 servos, and Arduino

Mega 2560 as the main controller, and is powered by a 24V lithium battery. The software

used is called Python, and a pre-trained network, ResNet 18, contains 18 layers for gesture

recognition. The database consists of 42 gestures of the Kazakh alphabet, 8000 gestures of

which 5000 were used for training and 3000 for evaluation. Finally, the average recognition

accuracy of the system was over 98%. In conclusion, a hand gesture recognition system is

developed for a robot that can interpret and reproduce Kazakh sign language [185].

In Verma's (2017) research, a robotic hand was made, which is responsible for generating

gestures according to ASL. The robotic arm was built using Raspberry Pi 4, PCX9685 servo

controller, servo motors, and an external microphone to receive voice inputs. The focus of the

research is based on an algorithm created using Python software to perform speech

recognition, which generates sign language. The database is composed of the 26 letters of the

ASL alphabet. Finally, the system was tested by ten people (5 men and 5 women) and

achieved an accuracy of 90% [186].

In the research of Al-Khulaidi, R. (2018), a robotic arm called SignBot was created, which

has two robotic hands to perform Malay sign language. They worked using Microsoft Visual

Studio with C# for speech recognition; it processes speech input signals, segments them, and

50

converts them into numerical values. This robot is designed to perform signs of letters and

numbers of the alphabet in Malay Sign Language, in addition to some gestures. It is

composed of Arduino Uno and 12 servo motors, which are responsible for the movement of

the hand and wrist. Finally, the voice recognition system achieved 93% accuracy in

recognizing gestures [187].

In Islam's research (2017), Matlab R1016a software was used for image processing. The

image preprocessing consists of image resizing to 260x260 pixels, conversion from RGB to

binary using the Otsu method, cropping the image to focus on the hand from wrist to fingers,

and a filter was used to remove noise and preserve edges. The database consists of 37 signs,

which include letters and numbers of ASL, so we have 1850 images (50 samples for each

sign). The neural network consists of 3 layers: an input layer, a hidden layer of 20 neurons,

and an output layer. Finally, we have an accuracy of 99.5%, and in a real-time environment,

the system achieved a recognition rate of 94.32% [188].

According to the research, Luo, R. (2012) created a robot designed for sign language

detection. The robot is composed of a head and body with an approximate height of 136cm

with a touch screen, CCD sensors, LRF (Laser Range Finder), ultrasound sensor, sensory

circuits, etc. A PC with an Intel T9400 CPU and 2G RAM was used. For the hand gesture

recognition process, the first step is to detect the hand, so the skin color is an important

feature. Also, the local binary pattern was combined with a feature selected for training and a

hand skeleton method, which comes from the fingertips and the center of the palm, which is

drawn by a yellow line. A Bosphorus Hand Database was used and combined with created

images. Finally, the recognition rate is over 85%, and some signs are around 92% [189].

51

Table 12. Main Characteristics of each author

52

Author Network Used Language Preprocessing Robotic
Arm Accuracy Dataset Software

Used

1 Lim et al. (2019)
[174].

CNN (HEI) ASL
Simple background,

Otsu binarization
No 89.33%

RWTH
BOSTON 50,

ASLLVD
N/A

2 Nihal et al. (2021)
[175]

CNN, RNN (DenseNet,
DarkNet, ResNet)

BdSL
Uniform background,

brightness
Yes (15
DOF)

87.50%
12,581 images,

38 classes
MATLAB

3 Chavan et al. (2021)
[176].

LeNet-5, Vgg 16, MobileNet ASL
Otsu thresholding,

Canny edge detection
No 91.37% ASL (0-9 digits) Python

4 Rastgoo et al.
(2020) [177]

3D ResNet 50 + LSTM Persian 3D hand skeleton No 99.80%
RKS-PERSIAN
SIGN (10,000

videos)
N/A

5 Zhi et al. (2018)
[178].

SVM, ND-DTW ASL Leap Motion controller Yes 98.25% ASL digits N/A

53

6 Dong et al. (2015)
[179].

Random Forest ASL
Color-based
segmentation

No 90%
3,000 images

with color glove
N/A

7 Barbhuiya et al.
(2020) [180].

AlexNet, VGG16 ASL Resizing, augmentation No 70%
36 characters
from 5 people

N/A

8 Johnson et al.
(2021) [181].

Cloud CNN ASL None
Yes (15
DOF)

94.70% N/A C++

9 Mazhar et al. (2019)
[182].

Inception V3 (adapted) ASL
Histogram equalization,

Gaussian noise
Yes 98.90% 20,950 images N/A

10 Meghdari et al.
(2018) [183].

N/A PSL N/A
Yes (32
DOF)

N/A N/A N/A

11 Bulgarelli et al.
(2016) [184].

N/A Italian N/A Yes 90% N/A N/A

12 Kenshimov et al.
(2021) [185].

ResNet-18 N/A N/A Yes 98%
8,000 samples
from 4 people

N/A

54

13 Verma et al. (2017)
[186].

N/A ASL N/A
Yes (7
DOF)

90%
26 ASL

alphabets
Python

14 Al-Khulaidi et al.
(2018) [187].

N/A Malay
Speech signal converted

to numeric
Yes 93%

80 tested
phrases

C#, Microsoft
Visual Studio

15 Islam et al. (2017)
[188].

N/A ASL
Otzu, median filter,

rotation
No 94.32%

1,850 images,
37 signs

MATLAB
R1016a

16

Luo, R. C., & Wu,

Y.-C. (2012) [189]. N/A N/A

Both method support

vector machine (SVM)

and hand skeleton

recognizer (HSR)

Yes 92%

Bosphorus

Hand Database N/A

2.10. MAIN CHALLENGES

2.10.1. Hardware Limitations.

The biggest limitation we obtained when making the robotic arm was printing the 3D mode.

The printer had certain failures when printing because the model had very small holes, which

the printer filled with material. For this purpose, the holes were highlighted with a small

diameter metal tube, removing the excess material. This point is fundamental so that the

tensioning cables do not present inconveniences when performing the function of flexion and

extension of the joints.

On the other hand, it is not included as a limiting factor. Still, the assembly of the tensile

wires is a time-consuming process that includes implementing three flexible wires and a rope

wire that will provide the flexion and extension effect. Three flexible threads were chosen

because using only one lacked strength and would break, and when using two, if one broke,

we had the same problem. Therefore, using three increased the movement force and prevented

the threads from breaking easily.

2.10.2. Software Limitations.

The main limitations occurred in the neural networks phase, both in the configuration of the

parameters for training and in the detection stage.

For the initial stage, we used a computer with an Intel Core I7-1065G7 processor at 1.30 GHz

and an Nvidia Mx230 graphics card. It took approximately one hour and 30 minutes to train

the AlexNet and GoogleNet models for each of the neural networks. When the visualization

of neural network detection was implemented, it took a long time to process the images and

did not give us a smooth visualization.

To improve performance and take less time in training, a laptop with an AMD Ryzen 5 5000

series processor and an RTX 3050 Ti graphics card was used. An improvement was obtained

when training the models from 1 hour and 30 minutes to 20 minutes, in addition to fluidity in

the detection of gestures, which is appreciated.

55

CHAPTER III

3. METHODOLOGY

3.1. METHODOLOGY OF WORK

IBM's Rational Unified Process (RUP) methodology will be used for this process. This

methodology, together with the Unified Modeling Language (UML), is the most widely used

model for analyzing, implementing, and documenting oriented systems [190].

In Figure 26, we can see the life of the unified process. We can see the five workflows:

requirements, analysis, design, implementation, and testing. Each takes place in four phases:

initiation, elaboration, construction, and transition [191].

Figure 26. Main phases and workflows of the Unified process [191].

3.2. FUNDAMENTAL WORKFLOWS

3.2.1. Requirements
We will analyze the optimal materials, the most appropriate and low-cost ones, for the

development and assembly of the curricular integration word.

56

3.2.2. Analysis
According to the corresponding objectives, we proceeded to determine the functional

materials for implementing the curricular integration work, which are specified in the upper

item.

3.2.3. Design
We will detail the architecture of the CNN used to interpret sign language and its correct

movement from a robotic card.

Implementation: The robotic arm will be assembled, and then the code for interpreting ASL

will be programmed. Then, the database will be created with its images by means of

movements and positions of the sign language emulated by the robotic arm. Finally, the

connection between the AV and the mechanical movement of the arm will be made from a

microcontroller and servo motors.

3.2.4. Testing
After the subsequent stages, we will proceed to perform several tests, which will help us

verify the prototype's correct operation. In addition, several factors will be implemented as

key points to evaluate the model and ensure its performance.

3.3. LIFE CYCLE PHASES

3.3.1. Start
During this phase, a final prototype description is developed from an idea proposed as needed.

This need focuses on learning and implementing sign language in everyday life due to the

increasing number of people born with or developing some degree of hearing impairment. As

a development tool, periodic analysis will be conducted to obtain various models of robotic

arms and detail key points with which the system is planned to be implemented, thus

achieving a better understanding of the scope of the project. The final product of this phase

will be the base model of the arm with which the final prototype is intended to be made upon

completion of the project.

57

3.3.2. Elaboration
During this stage, the project begins to take shape as most of the pending requirements are

gathered. In addition, a solid foundation is laid that will guide the project through the different

stages.

3.3.3. Construction
In this stage, the system acquires a more detailed perspective since models, designs, their

programming, and the tests that must be passed for the project's validation are included.

Furthermore, once this phase is completed, we will have the functional prototype with most of

the implemented features. However, the prototype may still present flaws that will need to be

adjusted in later stages.

3.3.4. Transition
In this section, the prototype will undergo rigorous tests to verify its correct operation. If

failures and inconsistencies are found, the necessary adjustments will be made so that the

prototype works optimally. Finally, after making the necessary adjustments, the prototype will

be released as its final version.

In this section, a description is developed according to the work structure based on the

established activities.

3.4. SOFTWARE DEVELOPMENT

In this part of the curricular integration work, the methodology for designing the programs

and algorithms used to increase the database, move the arm, train the neural network, and

develop AV is proposed.

3.4.1. Database
The code for capturing images and saving them in defined folders was developed with the

objective of creating our own database for training neural networks.

For this process, we took into account the size of the pixels that the image has to have, in this

case, 200 x 200 pixels. On the other hand, the number of images is also important for correct

training; this amount is defined as 600 images for each class. The classes are based on the

number of movements or letters that can simulate the robotic arm to emulate the sign

58

language. Therefore, we will have a total of 16 classes for the various letters that will be

interpreted, in addition to adding three more classes that are: Nothing, which is when the

image of an arm is not found in the camera, Table 13, and Base, which is the representation of

a fully extended robotic hand, and Error, which is the representation of a non-hand image

Table 13. Characteristics of each class of Database.

Class Letter Quantity Size (px) Color mode Weight (Kb) each image

1 A 600 200 x 200 RGB 4.00

2 B 600 200 x 200 RGB 4.00

3 C 600 200 x 200 RGB 4.00

4 D 600 200 x 200 RGB 4.00

5 E 600 200 x 200 RGB 4.00

6 F 600 200 x 200 RGB 4.00

7 I 600 200 x 200 RGB 4.00

8 L 600 200 x 200 RGB 4.00

9 O 600 200 x 200 RGB 4.00

10 S 600 200 x 200 RGB 4.00

11 U 600 200 x 200 RGB 4.00

12 W 600 200 x 200 RGB 4.00

13 Y 600 200 x 200 RGB 4.00

14 Error 600 200 x 200 RGB 4.00

15 Nothing 600 200 x 200 RGB 4.00

16 Base 600 200 x 200 RGB 4.00

Once we defined the parameters that we would use for the database, we implemented a code

to speed up this process in Matlab. The key points are the resizing of the image, the creation

of a storage folder, the capture of the 600 images, and the saving of these images in each of

the folders created for each class. It is important to note that the saving directory for each

class must be changed manually, as shown in Figure 27.

59

Figure 27. Flowchart to make our database.

3.4.2. Convolutional Neural Network
The neural network design will be carried out using Matlab software and the Deep Network

Analyzer, which allows the use of transfer learning in different neural network models

through a friendly and intuitive interface. For this section, the AlexNet and GoogleNet models

will be used due to their processing capabilities. To perform the correct training of the

60

different neural networks, we apply transfer learning to use these models with our database

and avoid processing errors.

In this section, it is important to review the theory about the architecture of each one of them.

In fact, similar changes have been made, but they differ in small details in the use of each one

of them. Both have a fully connected layer at the end of their architecture, which must change

its value depending on the number of classes we have. However, the AlexNet model has two

other fully connected layers.

The first step in using these neural networks is creating an Image DataStore, which creates a

variable with all the images inside the Matlab WorkSpace to avoid overloading the system's

memory.

Then, data augmentation is performed to provide more variety in the training images. This

process adds translation, resizing, and reflection to the images. Finally, the training options

are configured, the most important ones being the use of the sgdm optimizer, an

InitialLearnRate of 0.001, a DropOut factor of 0.3 per 2 epoch to avoid overfitting, a

maximum number of epochs of 10, a MiniBatchSize of 64 to speed up the process and a

validation frequency of 20.

This process can be visualized in Figure 28.

61

Figure 28. A flowchart to use in transfer learning on Pre Trained Neural Networks.

3.4.3. Arm Motion
This section is fundamental for the curricular integration project because it is the basis for the

movement of the robotic arm, which emulates sign language.

62

The language that will be used to perform this process is Arduino ID because we have an

Arduino MEGA 2560 microcontroller and servo motors to adjust the position of each phalanx

of our arm.

● Servomotor Controller

There are several ways to control servo motors. These motors contain internal parts that allow

their speed and position to be precisely regulated. According to Autsou (2024), a

potentiometer is used inside these devices, and its function is to track the rotation angle or

shaft speed, thus creating a closed-loop control system with feedback.

One way to control this system is through pulse width modulation (PWM), which is

implemented by sending a pulse of a specific length at a specific frequency. In addition,

Autsou notes that this method is essential when immediate response and precise controls are

required. Arduino IDE already includes a library for controlling servo motors using PWM,

and it is only necessary to configure the angle at which the 180° servo motors should be

positioned [192].

First, variables must be created to define each of the fingers that we will use. These fingers

must be placed at an initial position of 90 °, which serves as point 0 of our robotic arm, so it

can move 90 degrees positively and 90 degrees negatively.

The “Base” movement of our arm corresponds to the extension of all the fingers. Therefore,

the servo motors are set to values greater than 90 degrees.

Then, the user can determine which letter he wants the robotic arm to form by means of an

input. Then, it is evaluated that the response entered by the user is valid depending on the

cases that are created based on the allowed movements; it is also evaluated that the user has

not entered invalid characters such as #$%! etc. Finally, it goes through a system of cases that

evaluates the response. After that, the information of the requested response is sent to the

servomotors, culminating in the movement of the arm.

This section is described more technically in Figure 29.

63

Figure 29. Flowchart for arm movement.

3.4.4. Artificial Vision
Another key point of the project is the use of AV to validate the movement of the robotic arm

and determine that the letter is correct. This section takes several aspects of an image into

account, including essential characteristics such as the channel in which the image is located

(R, G, B), the background of an image, the region to be analyzed in the image, the calibration

of the pixels obtained by the image, the segmentation of an image to highlight the evaluated

are, a and finally the prediction on this image.

First, we evaluate the use of the webcam or an auxiliary camera available for data acquisition.

If we do not have one, the code will show an error informing the users. Then, if we do have a

64

camera available, an area defined by a rectangle is segmented where the images will be taken.

This point is important because unnecessary information in each image can be eliminated

efficiently.

Then we proceed to load the neural network model focused on the detection of sign language

for a robotic arm, in addition to creating an error variable. This is to adjust the binarization of

the image from the range calculated by graythresh, which calculates the global threshold from

the grayscale image using Otsu's method (a threshold is chosen that minimizes the interclass

variance of the black and white pixels). This step is important to avoid taking unnecessary

pixels that do not match the pixels of the color of the human skin or the robotic arm. So, a

loop is generated with which the user can visualize if there are errors in an image that is taken

and, in case of errors, adjust it automatically according to the user's inputs.

A time range is defined within which a picture of the target image will be taken, and this

resulting image will undergo a prediction process.

Finally, the segmented image is obtained with the resulting prediction from the neural

network.

It is a rather long process that can be visualized in Figure 30.

65

Figure 30. Flowchart of Artificial vision.

The result of all these processes is the segmentation of the image and its application in a

real-time viewer and predictor. These processes can be summarized in Figure 31, which is

66

based on AV since the algorithm for the movement of the robotic arm goes together with the

prototype made.

Figure 31. Scheme of Artificial vision.

3.5. PRACTICAL DEVELOPMENT – ​​PROTOTYPE

In this part of the curricular integration work, the methodology for concurrent design for the

prototype of the robotic hand is proposed.

To begin with, we will identify the need related to the requirements proposed for the robot's

development. One of the main objectives of this project is to simulate the movement of the

human hand for the interpretation of ASL, so we need the robotic arm model to have the

following characteristics: Table 14.

Table 14. Necessity for the robotic arm.

Necessity

1 An anthropomorphic robot must have 5 fingers to

simulate a human hand

2 Movable wrist (Required for certain letters)

3 Design for 6 servo motors

4 Finger flexibility

5 Available for 3D printing

67

Next, we searched for several models on Thingiverse, which is an online repository that

allows the user to acquire and mix 3D printing models and allows the user to upload, share,

and download 3D printing models [193]. The first model consists of a claw that allows one to

move certain objects from one place to another [194]. The second model is a model much

more similar to the human hand as it consists of 5 fingers which have flexibility when printing

but no wrist movement [195]. The third model also has five fingers, and it is not possible to

place several servos, and it does not have wrist movement [196]. Finally, the last model has 5

fingers, wrist movement, flexibility in the fingers, and space for 5 servos [197].

The different models are classified in the range of 0 to 1, where 0, we place one if the design

is better than the other arm designs, 0.5 if the design is equivalent to the others, and 0 if the

design is inferior or worse than the others named [198], Table 15.

Table 15. Concurrent design on an as-needed basis for the robotic arm.

Model 5 fingers
Movable

wrist

Servo Motors

for each finger

Finger

flexibility

Available for

3D printing
Sum %

Model 1

[194]
0 1 0 0 1 2 0.142

Model 2

[195]
1 0 1 1 1 4 0.285

Model 3

[196]
1 0 0 1 1 3 0.214

Model 4

[197]
1 1 1 1 1 5 0.357

Sum 14 1

According to Table 15, the robotic arm model that best fits what we are looking for in this

project is model 4, so we use that model.

Then the materials we need to carry out this project are:

● Screws

● 3D printed parts

○ PLA

● Durable rubber

● Arduino Mega 2560

68

● Arduino Shield V5

● 5V & 10A power supply

● Male-male and female-male cables

● Tension cable

● 6 MG996R servo motors

● Elastic thread

● MatLab

● Arduino IDE

Once the model and materials had been chosen, we proceeded with 3D printing. This method

was used due to its low cost. The materials used for printing were PLA due to their light and

flexible properties, such as Table 16.

Table 16. Properties of material (ABS and PLA) [199-200].

Properties PLA

Chemical formula PLA [(C3H4O2)n]

Technical name Polylactic Acid

Modulus of elasticity 37 MPa

Melting temperature 173 C

Density 1.3 g/cm3

Biodegradability Yes

Then, for the 3D printing process, we used PrusaSlicer software, which helped us place all the

necessary features, see Figure 32. The process of printing the parts was exhausting since it

took more than 90 hours to print the robotic arm completely. In addition, the printing

characteristics of the robotic arm are detailed in Table 17.

69

Figure 32. Robotic arm exploded view using Fusion 360.

Table 17. Features of arm parts.

Parts of the arm Infill Wall thickness Other parameters Time

Wristarge 30% 2mm no support, no raft. 6 hours

wrist small 30% 2mm no support, no raft. 4 hours

Thumb 30% 2mm no support, no raft. 2 hours & 45 minutes

Index3 30% 1.5mm
no support, no raft, no

brim.
2 hours & 15 minutes

majeure 3 30% 1.5mm
no support, no raft, no

brim.
2 hours & 19 minutes

ringfinger 3 30% 1.5mm
no support, no raft, no

brim.
2 hours & 55 minutes

auriculaire 3 30% 2mm
no support, no raft, no

brim.
2 hours & 43 minutes

rob part2 30% 2mm
with brim, no raft, no

support.
10 hours

rob part3 30% 2mm
with brim, no raft, no

support.

10 hours & 30

minutes

70

rob part4 30% 2mm
with brim, no raft, no

support.

15 hours & 15

minutes

rob part5 30% 2mm
with brim, no raft, no

support.
16 hours

cover finger 30% 2mm with support 1 hour

rota wrist 2 30% 2mm with support 3 hours & 47 minutes

rota wrist 1V3 30% 2mm with support 4 hours & 30 minutes

rota wrist 3V2 30% 2mm with support 1 hour & 22 minutes

Cable Holder wrist 30% 2mm without support 1 hour

Top Surface 30% 2mm without support 1 hour & 40 minutes

Ribcap 30% 2mm without support 2 hours & 23 minutes

The arm was assembled using silicone to secure each part. We proceeded to make the joints of

the smaller parts (fingers and hand) and then the larger parts, such as the forearm. Once the

parts were sectioned, we proceeded to the incorporation of the threads for the movement. In

the extension part, which is the posterior area, elastic threads were incorporated. For the

frontal area, slightly stiffer and non-elastic threads were applied so that the elastic threads

could be tightened and the fingers could return to the base position of the hand. On the other

hand, multiple tests were carried out to ensure that the threads worked correctly.

In this section, we secured these threads to the servomotors, which were previously

configured at an angle of 90° so that they could have 90° to perform the flexion movement

and 90° to perform the extension movement but in the opposite direction, working the initial

90° angle as our point of origin. Once each of the threads was tensioned, we proceeded to

perform a small test of the movement to determine whether it was necessary to adjust the

threads in the servomotors.

On the other hand, the wrist's movement was configured at an angle of 180° so that it could

perform the expected movement to position letters that require the arm to be in that position.

In addition, we proceeded to perform a motion experiment by energizing all the servo motors

using the 5 volts and 10 amps power supply to obtain joint movement of all the servomotors.

It was determined that the arm worked properly, but additional tests are still needed to

improve the fluidity of the movement. Finally, the code was coded using the Arduino software

for the simulation of ASL; see the scheme in Figure 33.

71

Figure 33. Scheme of prototype creation.

On the other hand, the materials needed are specified in Table 18, where we can visualize the

individual prices of each material, adding up to a total of 163.67 USD. The materials were

selected to fit the user's limited budgets without compromising their quality.

Table 18. Total cost and unit price of material costs for the construction of the robotic arm.

Quantity Material Cost(Unitary) USD Total Cost USD
1 PLA 25 25
3 MG996R Servo Motors 11.99 35.97
3 MG946R Servo Motors 12.99 38.97
1 Power supply 12.99 12.99
1 Connector cable 3 3
5 Rubber 1.30 6.5
1 Elastic roll 4 4
1 Rope or string 1 1
1 Arduino Mega 2560 24.99 24.99
1 Arduino Mega shield 5 5
25 Screws 0.15 3.75
25 Nuts 0.10 2.5

Total 163.67 USD

3.6. SYSTEM INTEGRATION

Once the machine vision system, the neural network, and the robotic arm prototype were

implemented, we integrated the complete system,see Figure 34.

72

Figure 34. Global Scheme.

The project was structured in 3 main stages: Creation of the database, construction and

movement of the robotic arm and detection by neural networks of the ASL. The database

was created using models of human hand and robotic arm with 16 and 29 classes

respectively, the images were captured with black background from 3 different angles to

improve the training. For the creation of the robotic arm a 3D printer was used where the

main material was PLA due to its malleability and resistance, also used Arduino Mega 2560,

180º Servomotor with torque of 12 kg, Arduino Shield V5 and a power supply which was

necessary for the arm to perform the movement of the fingers. Finally, for the detection of

the ASL, the AlexNet and GoogleNet models were used, having an accuracy higher than 98%

in both cases confirming that the neural network learned as can be visualized in the

Grad-Cam.

The system integration is intended to perform tests of the different sign language letters made

by the robotic arm to identify whether the CNN correctly predicts the letters created with the

arm, see Figure 35.

73

Figure 35. Robotic hand prototype.

Afterward, tests were carried out to demonstrate the functionality of the created model, and

several errors were revealed.

The first error we noticed was due to the environment in which the database was created.

Because of this, the code must be run in a controlled environment because it presents errors

when working in an environment that does not have a black background. For this reason, a

mockup was made with a black background to place the robotic arm. This is being used to

ensure the correct functioning of the network with AV.

Another error we had was when interpreting the results by the CNN since it did not generate

the correct shape of the letters of the sign language, so we proceeded to adjust the parameters,

such as the color adjustment in which the RGB image was divided into its 3 basic channels in

74

order to separate the red channel since this is the closest to the skin color. After adjusting the

parameters, CNN training was carried out.

In addition, an error was detected after making several movements with the robotic arm

because it did not perform the movements satisfactorily since the tension threads used lost

elasticity due to them; several tension threads were placed in each of the arms. Fingers, which

allowed correct movements, the parameters in the finger movement code were also adjusted

for the realization of sign language.

3.7. EXPERIMENT PHASE

To determine the validity of our results, several experiments were carried out to create our

database, with which we will proceed to train the neural networks to classify and predict new

images using human and robotic hands.

3.7.1. Experiment 1: Database

For this section, we must determine both the characteristics of the images we need (valid

letters, necessary size, cases of events).

We also use several processes to maintain the main characteristics and suppress unnecessary

features. The median filter is indispensable in convolutional neural networks since it

eliminates noise and maintains the edges simultaneously. We have opted for this method over

a more advanced one. Although the CLAHE filtering model highlights better features in the

image, when extracting the background, it also removed important parts of the Han since

increasing the contrast changed the colors.

On the other hand, bilateral filtering blurs image values in specific sections or the whole

image. By applying this method, we eliminated important features, so this was

discarded.When performing the median filter, first, the highlight color of the image must be

extracted. In this case, it was re. Then, a binarization is performed to eliminate unnecessary

pixels with median filtering. This results in the total elimination of the background, as shown

in Figure 36.

75

Figure 36. Different filters to make our DataBase.

A. Human Hand

As a first experiment, we will use a method to generate our sign language database. For this

purpose, we will use the Matlab program to create a program capable of taking 600 images

and storing them in the various classes along with their corresponding labels in different

folders.

This database will consist of 29 classes: 26 classes corresponding to the letters of the

American alphabet and 3 special classes focused on analyzing cases: Nothing, where there are

no objects on the screen; Base, where the image of the hand with the fingers extended and

Error, being these images of the face so that the program can determine if it is making an

incorrect shot of the human hand, see Table 19.

Table 19. Human Database characteristics.

Class Letter
Quantity

(Images)
Size (px)

Color

mode

Weight

(Kb) per

image

1 A 600 200 x 200 RGB 4.00

76

2 B 600 200 x 200 RGB 4.00
3 C 600 200 x 200 RGB 4.00
4 D 600 200 x 200 RGB 4.00
5 E 600 200 x 200 RGB 4.00
6 F 600 200 x 200 RGB 4.00
7 G 600 200 x 200 RGB 4.00
8 H 600 200 x 200 RGB 4.00
9 I 600 200 x 200 RGB 4.00
10 J 600 200 x 200 RGB 4.00
11 K 600 200 x 200 RGB 4.00
12 L 600 200 x 200 RGB 4.00
13 M 600 200 x 200 RGB 4.00
14 N 600 200 x 200 RGB 4.00
15 O 600 200 x 200 RGB 4.00
16 P 600 200 x 200 RGB 4.00
17 Q 600 200 x 200 RGB 4.00
18 R 600 200 x 200 RGB 4.00
19 S 600 200 x 200 RGB 4.00
20 T 600 200 x 200 RGB 4.00
21 U 600 200 x 200 RGB 4.00
22 V 600 200 x 200 RGB 4.00
23 W 600 200 x 200 RGB 4.00
24 X 600 200 x 200 RGB 4.00
25 Y 600 200 x 200 RGB 4.00
26 Z 600 200 x 200 RGB 4.00
27 Nothing 600 200 x 200 RGB 4.00
28 Base 600 200 x 200 RGB 4.00
29 Error 600 200 x 200 RGB 4.00

B. Robotic Arm

For this section, we will use the same method for taking images and storing them using

Matlab. In this experiment, the use of a glove is essential because the color of the robotic

hand is white, which ensures its detection.

77

In the case of the robotic arm, we will use limited-class models because the model is limited

in its articulation. So, in this database, we will take into account 16 classes in which we have

letters that have a simple movement, plus two special classes that would be a base movement

with fully extended fingers and a class that detects when there are no objects to analyze.

The same characteristics are presented in size, number of images, and color. These are 200 x

200 pixels, 600 images, and RGB images, see Table 20.

Table 20. Robot Database characteristics.

Class Letter
Quantity

(Images)
Size (px)

Color

mode

Weight

(Kb) per

image

1 A 600 200 x 200 RGB 4.00
2 B 600 200 x 200 RGB 4.00
3 C 600 200 x 200 RGB 4.00
4 D 600 200 x 200 RGB 4.00
5 E 600 200 x 200 RGB 4.00
6 F 600 200 x 200 RGB 4.00
7 I 600 200 x 200 RGB 4.00
8 L 600 200 x 200 RGB 4.00
9 O 600 200 x 200 RGB 4.00
10 S 600 200 x 200 RGB 4.00
11 U 600 200 x 200 RGB 4.00
12 W 600 200 x 200 RGB 4.00
13 Y 600 200 x 200 RGB 4.00
14 Error 600 200 x 200 RGB 4.00
15 Nothing 600 200 x 200 RGB 4.00
16 Base 600 200 x 200 RGB 4.00

3.7.2. Experiment 2 : Convolutional Neural Network
In this section, we will perform several analyses focused on the validation of the neural

network models (GoogleNet and Alexnet) in order to determine which one we can obtain the

best results from and apply to the established objectives. To assess the validity of this

experiment, confusion matrices will be made, and the models will be tested in different

epochs since Matlab incorporates the option to save the models as they are trained depending

78

on the configurations that we place. In our case, a total of 10 epochs will be performed, and

the model will be saved every 2 minutes.

Below, we can visualize the parameters used for the training of GoogleNet and AlexNet, see

Table 21.

Table 21. CNN configuration options.

Configuration of training Operation Values
Data Processing

Imds (ImageDataStore)

Training 80 %
Validation 20 %

Resize
227 x 227 px AlexNet

224 x 224 px GoogleNet

Data Augmentation

RandScale [0.3 1.3]
RandXTranslation [0 10]
RandYTranslation [-50 20]
RandXReflection True

Training Options

Frequently Used

Solver SGDM
InitialLearnRate 0.001
MiniBatchSize 64

MaxEpoch 10
ValidationFrequency 20

Learn Rate
LearnRateSchedule Piecewise

LearnRateDropFactor 3
LearnRateDropPeriod 2

Normalization and
Regularization L2Regularization 0.0001

A) Human hand
Once the databases were created, we proceeded to develop an ImageDataStore, with the

objective of storing all our images with their corresponding classes and labels so that we

would have the necessary data to train our CNNs.

When using pre-trained models such as AlexNet and GoogleNet, it is necessary to perform

learning transfer because these models are already trained with data from various images.

For this, according to the Matlab guide [162], two methods can be used: the first consists of

resizing the images to the input ones and adjusting the classification values to the desired

79

ones, and the second can be done by using images at any type of scale smaller than the base

(for these models their base is 224 x224, and 227x227 pixels), this can cause limitations in

the prediction or even in several layers.

B) Robotic Arm

On the other hand, the images of the robotic arm were made following the previous

parameters but with a smaller number of classes, greatly accelerating this process. We also

used AlexNet and GoogleNet models for training. Therefore, the parameters of the neural

networks were changed to adjust to the number of classes, in this case, 16. However, in this

experiment, an error category was not added because it was planned that there would be no

additional objects besides the robotic arm.

C) Grad-CAM

After performing this analysis, the Gradient-weighted class activation technique (Grad-CAM)

was used. This technique visualizes the values that the neural network considers important to

make its prediction.

3.7.3. Experiment 3: Artificial Vision
This section analyzes the different backgrounds with which the detection of the objects to be

classified can work depending on the environment. Changes such as contrast, brightness, and

hue can vary the result, as the neural networks were focused on training using RGB images.

Also, we applied several factors to keep the detection environment acceptable; those

configurations can be shown in Table 22.

Table 22. CNN configuration options.

Processing images
for detection Description Configuration

Detection Sector
It isolates a specific area of the
main image to focus only on

sign language detection.
[100 0 550 600]

Resized
Images were resized according
to the input size of the neural

network models.

CNN
AlexNet (227 x 227) px

GoogleNet (224 x 224) px

Subtract Red
Color

It is divided in the red channel
of the image, highlighting glove

features (orange).
imsubtract(img(:,:,1)

80

RGB2Gray

It is transformed from grayscale
to binary, with an adjustment of

0.086 to extract the glove
characteristics, and the rest is

removed.

(0.086)

Median Filter
A median filter is applied to
remove noise and maintain

edges at the same time.
[3 3]

Delete small
characteristics

If the filter does not remove all
unnecessary small pixels,

objects with an area of 700
pixels or less are removed,
leaving only objects with a

larger area.

'Área', [700 + eps(700), Inf])

Create a mask and
the detection

image

A mask of the processed image
is created on the original image
by removing regions that do not

belong to the main features.

bsxfun(@times, originalimage,
uint8(processedimg));

A) Human hand

The human hand was evaluated on a colored background, and a corresponding pre-processing

was performed to eliminate the background of the image, leaving only the area of interest.

For this purpose, the values of the red channel of the image were extracted, and applying

binarization values and filters was necessary to extract the most important features and

eliminate the background.

B) Robotic Arm

In the case of the robotic arm, we have an orange glove, so the process that was performed for

the human hand is similar since the Red channel is extracted from the image to focus on the

important features.

3.7.4. Experiment 4: Prediction Applications

In this experiment, the idea is to evaluate two types of applications of CNN models. To obtain

prediction results, the combination of the models obtained by AV and CNN models must be

carried out.

A) Real-Time Analysis

81

The first application proposed is using the camera to predict sign language images in

real-time. For this section, it is essential to have a suitable environment for pattern recognition

and to be able to classify correctly, in addition to having a computer with good features to

maintain performance and quality.

B) Single Image

On the other hand, the detection by image acquisition is done by capturing an image with a

counter so that the user has enough time to get into position to obtain the image. Once this

process is done, IP is applied to reduce errors or unnecessary objects. Finally, the appropriate

prediction and segmentation must be performed. For this section, any computer can perform it

because it does not consume many resources.

82

CHAPTER IV

4. RESULTS AND DISCUSSION

4.1. EXPERIMENT 1: DATABASE

The main characteristic of each class is the number of images, which totals 600 color images

for each class, each 200 x 200 pixels in size and weighing approximately 4 kilobytes per

image.

4.1.1. Human hand

The results of the database creation were obtained in a folder called "Photos," where the

images were stored in color and with the other previously established parameters. It took

approximately 30 minutes to make the 600 images (200 per three angles) for each of the

classes (29) previously established; see Figure 37. This is equivalent to 580 images per

minute, making their respective resizing. All images had 4 kilobytes of storage; this means

2.4 megabytes of images per class and a total of 69.6 megabytes for this database.

Figure 37. ASL is made by the Human hand.

83

4.1.2. Robotic Hand

The same image acquisition process was carried out for the robotic hand; however, the values

that varied were the number of folders obtained because this database was made with 16

classes, as shown in Figure 38. This means that the image acquisition time was reduced to

almost half of the time used in the previous database, which had a total size of 38.4

megabytes.

Figure 38. ASL is made by robotic hand.

4.2. EXPERIMENT 2: CONVOLUTIONAL NEURAL NETWORK

4.2.1. Human

A) AlexNet

84

Figure 39. Training progress for Alexnet with Human DataBase.

The Alexnet model applying the human hand database presents interesting training because it

agrees with normal training. The accuracy values, since they increase as the iterations

progress, are also validation values, which represent the correct predictions that are processed

together with the validation data.

On the other hand, the loss values show a decrease in the graph, which demonstrates a

reduction in the errors that the model can make when making a prediction. In addition to the

reduction in the validation loss values, which are also characterized by decreasing because

they represent the error of the validation data, the validation accuracy value is 99.91. This

may occur because the amount of data is very small, which implies that overfitting may occur,

see Figure 39.

85

Figure 40. Confusion Matrix for Alexnet with Human DataBase.

This confusion matrix shows the performance of the AlexNet pre-trained neural network with

the human hand database. Each class is represented by a letter (''A'' to ''Z'') and additional

classes labeled ''Base'', ''Error'' and ''Nothing''. As can be seen in Figure 40, each diagonal cell

contains values of 120, which indicates that for each class, the model classifies correctly in its

great majority. In contrast, in classes such as ''H'' and ''T'', there is a readback to 119 in the

number of correct predictions, which indicates a slight confusion between these classes.

Moreover, no significant off-diagonal values are observed, so we can point out that the model

is quite accurate.

The confusion matrix performed by the trained model indicates that there are no false positive

or false negative values but an excellent predictive ability, similar to that of the training data,

shown in Figure 40. However, as detailed above, this may be due to the number of epochs and

also to a very small amount of data.

Confusion matrix is a fundamental key to analyze more specific values that will help us to

evaluate our model to determine if we have a good prediction. In Table 23 those values: true

positive (TP), false positive (FP), false negative (FN) and true negative (TN) were calculated.

These values are obtained from the confusion matrix by making the relationship between each

row and column. In the Diagonal values of the matrix we will have the TP values which are

the values predicted by the neural network and classified as true and in the opposite case the

TN. In the FP and FN values the relationship that exists is that the model predicted

86

erroneously depending on whether they were true or negative and predicted them with their

homonyms.

Table 23. TP, FP, FN and TN values for the AlexNet model with Human Database.

Classes TP FP FN TN

A, B, C, D, E,
F, G, I, J, K, L,
M, N, O, P, Q,
R, S, U, V, W,
X, Y, Z

120 0 0 3360

H and T 119 0 1

These data allow us to calculate the Accuracy, Recall, Accuracy, F1-Score, in the different

models. For our sign language detection model these parameters indicate:

Precision: Ensures that the model does not misinterpret gestures.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

Recall: Ensures that relevant signs are not omitted.

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

Accuracy: It is the performance of the model and how the data is balanced.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁

F1-Score: It is the relationship between accuracy and recall, fundamental to determine if our

model presents a considerable performance when relating false positive and false negative

values.

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 * 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 * 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

These values are obtained through each iteration and epoch, in addition to being able to

visualize them in Figure 41 indicating a good training.

87

Figure 41. Important Metrics for AlexNet with Human DataBase.

B) GoogleNet

Figure 42. Training progress for GoogleNet with Human DataBase.

The GoogleNet model applying the human hand database presents training similar to the

previous model. We also have positive training since the accuracy values increase as the

iterations progress, and the validation values remain positive as the training is carried out.

On the other hand, the loss values show a decrease in the model errors. In addition, the errors

of the validation values also decrease.

88

The validation accuracy value is 99.83. The initial values and data are also proposed to be

very small for the number of iterations and epochs performed, see Figure 42.

Figure 43. Confusion Matrix for GoogleNet with Human DataBase.

This confusion matrix shows the performance of the pre-trained GoogleNet neural network

with the human hands database. Each class is represented by a letter (''A'' to ''Z'') and

additional classes labeled ''Base'', ''Error'' and ''Nothing''. In Figure 43, it is observed that the

majority of cells on the diagonal contain values of 120, indicating that, for each class, the

model classifies correctly for the vast majority. However, in classes such as ''N'', ''P'' , ''S'' and

''T'', there is a regression to 119 in the number of correct predictions, indicating a slight

confusion between these classes. For example, the values that produced the minimum error

were the predictions of a letter N mistaken for an M. In addition, no off-diagonal values are

observed indicating that the model is quite accurate.

In the same way as the previous experiment here we also have to determine the values of TP,

FP, FN and TN seen in Table 24 by means of the confusion matrix Figure. 43.

Table 24. TP, FP, FN and TN values for the GoogleNet model with Human Database.

Classes TP FP FN TN

A, B, C, D, E,
F, G, I, H, J, K,
L, M, O, Q, R,
U, V, W, X, Y,
Z, Base,

120 0 0 3360

89

Nothing, Error.

N, P, S, T 119 0 1

Finally, we have the graph of the accuracy, recall and FScore analysis along with the training

values of accuracy and loss, see Figure 44.

Figure 44. Important Metrics for GoogleNet with Human DataBase.

4.2.2. Robotic Hand

A) AlexNet

90

Figure 45. Training progress for Alexnet with Robotic DataBase.

The AlexNet model applying the Robotics hand database presents normal training; however,

the training values present some irregularities, which are thought to be due to the dropout

layer. On the other hand, we have had positive training since the accuracy values increased,

and the validation values also showed a significant increase.

Finally, the loss values show a decrease in the model errors. In addition, the errors of the

validation values also decrease.

The validation accuracy value is 99.27%, which is interesting due to the different classes in

this model compared to those of the human hand, see Figure 45.

91

Figure 46. Confusion Matrix for Alexnet with Robotic DataBase.

This confusion matrix shows the performance of the AlexNet pre-trained neural network with

the database of a robotic hand. Each class is represented by a letter (''A'', ''B'', ''C'', ''D'', ''E'',

''F'', ''I'', ''L'', ''O'', ''S'' , ''U'', ''W'', ''Y'') and additional classes labeled ''Base'', ''Error'' and

''Nothing''. In Figure 46, it is observed that the majority of cells in the diagonal contains

values of 120, which indicates that, for each class, the model classifies correctly in its vast

majority. On the contrary, in the class ''Error'', there is a regression to 112 in the number of

correct predictions, indicating a slight confusion between these classes.

In Table 25 the TP, FP, FN and TN values were calculated.

Table 25. TP, FP, FN and TN values for the AlexNet model with robotic Database.

Classes TP FP FN TN

A, B, C, D, E,
F, I, L, O,S , U,
W, Y, Base,
Nothing

120 0 0 1800

Error 112 0 8

The process with which we obtain the recall, precision and Fscore values is the same, using

the confusion matrix to obtain their values. However, in this case the number of classes

decreased from 29 to 16, it is also reflected in the True Negative values, from 3360 to 1800.

In the same way, the training process, Recall, FScore and accuracy is similar to the previous

experiments. Obtaining curves with high values, see Figure 47.

92

Figure 47. Important Metrics for AlexNet with Robotic DataBase.

B) GoogleNet

Figure 48. Training progress for GoogleNet with Robotic DataBase.

The GoogleNet model applying the Robotic Hand database presents normal training reaching

high training values at epoch two, as the previous model presents smaller irregularities than

the previous model.

Finally, the loss values show a decrease in the model's errors. In addition, the errors of the

validation values also decrease, as shown in Figure 48.

93

The validation accuracy value is 99.17%, which is lower than the previous model's, so tests

are proposed to determine which model is better.

Figure 49. Confusion Matrix for GoogleNet with Robotic DataBase.

This confusion matrix shows the performance of the pre-trained GoogleNet neural network

with the database of a robotic hand. Each class is represented by a letter (''A'', ''B'', ''C'', ''D'',

''E'', ''F'', ''I'', ''L'', ''O'', ''S'' , ''U'', ''W'', ''Y'') and additional classes labeled ''Base'', ''Error'' and

''Nothing''. Figure 49 shows that the diagonal contains values of 120, which indicates that for

each class the model classifies correctly in its great majority.

On the other hand, the values of TP, FP, FN and TN were calculated as shown in Table 26.

Table 26. TP, FP, FN and TN values for the GoogleNet model with robotic Database.

Classes TP FP FN TN

A, B, C, D, E,
F, I, L, O,S , U,
W, Y, Base,
Nothing, Error

120 0 0 1800

The method remains similar to the previous experiment only changing the Neural Network

model.

94

Figure 50. Important Metrics for GoogleNetNet with Robotic DataBase.

Finally, once each experiment was performed, we proceeded to compile the important values

of Accuracy, Recall, F1-score and accuracy and put them together in Table 27, and Figure 50.

Most of the data present high values that indicate an accurate training, however it is important

to consider if an overfitting did not occur.

It is important to emphasize that although the values are very close to each other, when

determining the model with a visual validation (GRAD-CAM) it is possible to appreciate the

characteristics that each model highlights in its prediction.

Table 27. All important data obtained of each model.

CNN / Data Precision Recall F1-score Accuracy
Human
GoogleNet

0.9952 0.9948 0.9950 99.83 %

Human
AlexNet

0.9994 0.9994 0.9994 99.91 %

Robot
GoogleNet

0.9989 0.9989 0.9989 99.17 %

Robot AlexNet 0.9961 0.9958 0.9960 99.27 %

4.2.3. Grad-CAM

A) Human DataBase

95

To evaluate the accuracy of the detections made by our models, we applied analysis using

Grad-CAM. This method uses the gradient of the score with respect to the layers of the

convolutional networks.

Grad-CAM highlights the key features in the image that the neural network models consider

important to highlight their characteristics and make their predictions. This scheme can be

seen in Figures 51-54. In addition, for better understanding, a color map is displayed where

various shades are presented: intense blue indicates low values, and red indicates high values.

Figure 51. Grad-CAM for AlexNet model in Human DataBase.

96

Figure 52. Grad-CAM for GoogleNet model in Human DataBase.

B) Robotic DataBase

The important features that can be visualized in the AlexNet and GoogleNet models are areas

of the human hand, mainly in the palm and phalanges. The AlexNet-based model tends to

highlight incomplete features, such as the letters A, D, I, L, W, and Y, focusing on the finger

area. On the other hand, GoogleNet shows higher accuracy in the results, as it covers the hand

area and characteristic spaces, indicating the sign language more completely.

97

Figure 53. Grad-CAM for AlexNet model in Robotic Hand DataBase.

98

Figure 54. Grad-CAM for GoogleNet model in Robotic DataBase

Similarly, the use of this method allows us to visualize the important features of the robotic

hand model. It is important to emphasize that in this section, it is clearly observed that the

features visualized by GoogleNet are better than the features that can be presented by the

AlexNet model. Because the latter presents particularly small areas or incomplete information

compared to the GoogleNet model, speculating that the latter has a better predictive ability but

is not 100% accurate because certain letters are not detected efficiently.

99

4.3. EXPERIMENT 3: ARTIFICIAL VISION

4.3.1. Human

Figure 55. Multiple steps to apply Artificial Vision for Background elimination.

In this experiment, different parameters were evaluated to obtain an analysis of the specific

area to be analyzed.

As a first step, the image was taken, and sectioning of the area in which the image is going to

be analyzed was applied, this can be represented with a yellow rectangle in Figure 55 (A). As

a next step, a red color channel extractor was applied to the area previously taken to extract

the color characteristics of the hand and differentiate it from other objects that may be present

and thus identify their pigments (0.086), in addition to this median filter and a pixel limiter

were applied to avoid areas of small pixels or non-conformities in the image, Figure 55 (B).

Then a binary mask is created depending on the color intensity zone of the image; this can be

visualized in a better way by a histogram showing the features and pixels that are part of an

100

image and object that does not correspond to the hand we want to visualize. For this purpose,

a small set or relief can be observed in the histogram area where the pixels of the color that

are part of the hand are determined, Figure 55 (C). This data can be modified either

automatically or manually to determine what type of feature is being extracted.

Finally, the binary mask is superimposed on the image obtained in section A) and the

background is removed, resulting in our image of the hand without the background color,

even if we encounter objects that do not correspond to the color range. In addition, we

implemented a system of segmentation of the image to which we are visualizing, and we

applied a blue line, Figure 55 (D).

4.3.2. Robotic Hand.

Figure 56. Multiple steps to apply Artificial Vision for Background elimination on Robotic

Hand.

In the case of the robotic arm, the same principle can be applied; however, to guarantee the

correct detection, an orange glove was placed, and the same procedures of the previous

experiment were followed with the variations of the color spectrum in the human model it

101

presented a binary mask of 0.086 with respect to the range of pixels. For the robotic arm, it

was applied to 0.21 because the range that is visualized in Figure 56 (C) presents a range of

color with a tendency to the white zone of the spectrum. This may represent a way to segment

the image more efficiently since the color zones are more noticeable, and we can avoid taking

other colors that do not correspond. Finally, we can obtain in Figure 56 (D) the same result as

the previous experiment, an image of the robotic arm with the perimeter section highlighted

and with its correct removal from the background.

4.4. EXPERIMENT 4: PREDICTION APPLICATIONS

4.4.1. Real-Time

Figure 57. Comparison of prediction in Real Time between AlexNet and GoogleNet models.

The use of image segmentation with AV turned out to be a double-edged sword because

several tests were carried out. When using segmentation, the AlexNet network suffered

certain inconsistencies in its data. Mainly when there is no hand to analyze. The network with

the best performance, depending on the tests performed, was GoogleNet, mainly by detecting

various patterns or features that confused the other model. However, some predictions of

GoogleNet were not 100% accurate, which is thought to be due to the fact that the database of

images was very small, and it is proposed to increase the number of images in the database to

improve the model in the future.

102

Figure 57 shows the interpretation of the letter D, both from the GoogleNet and AlexNet

networks. A bar chart was applied to detect the range of predictions and determine which

prediction is the highest, thus delivering the respective prediction within the image capture in

real-time.

4.4.2. Single Image.

Figure 58. Comparison of prediction on Single Image between AlexNet and GoogleNet

models.

The results obtained with the single image method showed favorable results. So, the

pre-calibration methods and the adjustment of the hand in the time set by the user are

important when performing the letters in their correct position, in addition to the established

image calibration method presented in Figure 58. However, making a significant increase in

the error that can be used in the binarization layer can cause an incorrect prediction if the error

is increased too much, which confuses the networks and gives an erroneous result.

4.5. DISCUSSION

This section will cover the analysis of the integration work and explore and compare the

model developed previously with similar models based on the literature.

For the human hand database in our curriculum integration work began with the creation of a

human hand database which was used to train a model prior to the final model, the images

contained in the database consist of 400 images for each class and are stored in 29 classes,

103

where 26 classes correspond to the letters of the American alphabet and 3 special classes

focused to analyze classes also used RGB images without background while in another model

[201], it uses a data set of 300 images distributed 15 images for each sign language class plus

this neural network was trained for 6 different sign language classes resulting in an accuracy

of 92. 3%. Finally, in another model [122], they used grayscale images in which data images

for 26 signs of 3 different people each person contains 120 images for each class so that there

are 9360 images in total, giving an accuracy of 94. 57%.

Similarly, there are previous works that used models of robotic arms for the interpretation of

ASL in this project [203] created a data set for the different signs of the alphabet for the

robotic arm to interpret the sign language trained the model by the images taken so that the

arm performs the movement, another work [182], uses a code written in C++ with libraries of

Arduino this model is called TATUM, the robotic arm is made by 3D printing are moved by

servomotors, in addition, it can perform 26 letters of ASL this model is designed for people

with hearing and vision impairment to place their hand on the robot to facilitate

communication of deaf and blind people compared to our model which is made by 3D

printing can only interpret 15 different signs of ASL which are made by the movement of the

servomotors with a code programmed in Arduino.

In the present study on ASL gesture and image recognition, a robotic arm was designed and

assembled to interpret ASL at a cost of $163.67. The system, using GoogleNet and AlexNet

models, achieved accuracy rates of 99.27% and 99.17%, respectively. As presented in Table

28, we can note that several studies focus on sign language interpretation by a robotic arm or

detection by a neural network. The sign languages studied range from ASL to Bengali Sign

Language (BdSL), Persian (PSL), Italian (ISL), Kazakh (KSL), Malay (MSL) and specific

medical signs. This diversity highlights the importance of adapting sign-interpreting

technology to different cultural and linguistic contexts. When compared to other types of sign

languages, such as Bengali (BdSL) and Kasajo Sign Language (KSL), which show high

accuracy but use more computational resources. When comparing our system performance

with previous studies where several pre-trained neural network models such as DenseNet 201,

ResNet 50, DarkNet 53, etc. are employed, giving a percentage of equal or lower 98.19% in

contrast to our model in which we use AlexNet and GoogleNet whose accuracy rate is higher

than 99% employing as optimizers Sgdm and Adam respectively with data preprocessing

techniques such as data resizing and denoising.

104

In addition, a key aspect of our study is the significantly lower cost compared to other

research. Most studies show costs between $280 to $10,000. For example, the humanoid robot

RASA, which cost approximately $ 10,000 with an initial accuracy of 77%, required

additional adjustments to reach 100%. At the same time, our model highlights an affordable

alternative due to its cost of $163.67. In conclusion, our research provides a cost-effective

ASL recognition system highlighted by its accuracy economy and simplicity in data

processing, making it a promising option for low-cost and affordable applications.

105

Table 28. Comparison of other studies with our model.

Language Model Robotic
hand

Price Dataset Preprocessing Techniques to
avoid overfitting

Optimizers Accuracy

Bangla sign
language
(BdSL) and
Medical
signs
interpretati
on of
ASL[175].

ASL:
Inceptio
n V3
BdSL:
DenseN
et 201,
ResNet
50 y
DarkNet
53

N/A $ 800 ASL: 166
videos(10 kinds
of medical
signs)
BdSL: Dataset
1: 950 images
of 27 BdSL
signs).
Dataset 2:
12,581 images
of 38 signs.

Image resizing
and
normalization
Feature
extraction

Validation Holdout
Dropout
Pruning de pesos

Adam: Learning rate
of 0.0001 and 20
consecutive iterations.
Stochastic Gradient
Descent: 0.0001
learning rate and 50
epochs.

ASL: 87.50%
BdSL:

Dataset 1:
98.19%
Dataset 2:
93.8%

American
Sign
Language
(ALS)
[178]

Multicla
ss-SVM
classifie
r and
N-Dime
nsional
DTW
(ND-DT
W)

Ada
robotic
hand

N/A 10 digits in ASL
for static
postures and 10
self-defined
dynamic
gestures

Extraction of
velocity and
hand position
features; data
segmentation

Probability filter SVM parameters: nu
= 0.05, C = 1;
ND-DTW with radius
adjusted and
smoothing factor

98.25% in static
postures (SVM)
and 95.5% in
dynamic gestures
(ND-DTW).

Persian
Sign

--------- A
humanoi
d robot

Approx
$ 10000

70 standard PSL
signs, including
60 Persian

N/A N/A N/A 77% in the first
test phase but

106

Language
(PSL) [183]

called
RASA

words and 10
signs of the
Baghcheban
alphabet

improved to
100%.

Italian Sign
Language
(ISL) [184]

-

Robotic
hand
with 8
degrees
of
freedom
and
wrist
with 3
degrees
of
freedom

$280 15 letters of the
manual alphabet
of Italian Sign
Language (LIS)

N/A N/A N/A 90% recognition
rate in LIS
manual alphabet
gestures

Kazakh
sign
language
[185]

ResNet-
18

Inmoov
humanoi
d robot
design

N/A 8.000 Different
gestures

Image
Normalización

N/A N/A >98%

American
sign
language
[186]

It is
based on
a
Raspber
ry Pi 4
program
med in
Python

N/A N/A 26 letters from
the ASL
alphabet, with
real vs
generated
gesture
comparisons

N/A N/A N/A 90%

107

that
converts
voice
comman
ds into
gestures.

Malaysian
Sign
Language
(MSL)
[187]

Speech-t
o-text
processi
ng using
Microso
ft Visual
Studio
in C

SignBot N/A Alphabet,
numbers, and
emergency
phrases in MSL.

Speech-to-text
translation

N/A N/A 93%

Our model:
American
sign
languages
(ASL)

Google
Net
AlexNet

Inmoov $ 159.67 Alphabet letters
and the other
two classes.

Image resizing,
image filtering,
and
background
removal.

Data

augmentation,

dropout, frequency

validation.

AlexNet: Sgdm
GoogleNet: Adam

AlexNet:99.27%
GoogleNet:
99.17%

108

CHAPTER V

5. CONCLUSIONS AND FUTURE WORK

5.1. CONCLUSIONS

The use of neural networks and a robotic arm for the detection and interpretation of ASL was

a project that had several details to take into account. Mainly the software limitations and

multiple problems we had in the assembly of each of the pieces of the robotic arm. However,

its design made it viable since it was an Open Source model, which, despite not presenting

characteristics of large movements, could lay the foundations of our project. The coding was

first done on a laptop with simple features, then moved to a powerful laptop with integrated

graphics RTX 3050 Ti to speed up the process, perform more tests, and get results in the

shortest possible time. However, we not only worked with the detection of the robotic arm but

also extended this idea and used detection in a human hand, providing the option to expand

these analyses to different languages and sectors.

All this began with the idea of highlighting the importance of the impact that deaf people have

today, expanding awareness in the educational sector, and providing a way for young people

to interact better with the deaf community.

As main points, we opted for a five-step idea: the creation and assembly of the robotic arm,

the generation of the Database, detection coding, movement of the arm, and final assembly,

which is characterized by joining all previous steps and testing.

The material chosen for the arm was PLA due to its mechanical properties, which are

characterized by high malleability at high temperatures and significant strength. However, if

the focus had been on a prosthesis or something that would have to be subjected to loads, we

would have opted for ABS. The databases were made with a model of the human hand and a

model of the robotic arm, respectively, for 16 and 29 classes. It is important to highlight that

the images were obtained with a black background and with 3 cameras in different positions

to capture the most important details and thus provide more variety for training.

109

For the detection of ASL, models such as AlexNet and GoogleNet were used since these

models share important characteristics, such as the extraction of important characteristics

from the Database. AlexNet (99.27 %) is simpler and faster to process, while GoogleNet

(99.17 %) provides exceptional performance, which could be seen visually using

Grad-Cam.For the arm's movement, 180° servomotors with a torque force of 12 kg were used

to exert the necessary force for flexion and extension. These were coded using ArduinoIDE,

which allowed us to easily perform the movement through PWM.

The final assembly was an interesting task since we had to opt for a 5 V to 10 A power supply

so that all the servomotors could work efficiently. If we used only the connections that the

Arduino had, the amount of amperage was inefficient. On the other hand, for the final

detection tests, we created a “Controlled Environment,” which consists of a black box in

which unnecessary pixels can be avoided. In case of any anomaly, these will be eliminated by

code. Finally, for the final visualization, we proceeded to perform two methods: the first is the

detection in real-time, and the other is through the detection with image capture.

To conclude, the results obtained show that our model is superior to others in sign language

detection; in addition, it presents a model of a robotic arm of lower cost with an approximate

value of $ 164. However, the compared models presented a wide variety of methods with

which they varied their detection. In our case, it is necessary to use a “controlled

environment” to obtain favorable results, as this is the main limitation of our project.

5.2. FUTURE WORKS

For future work, it is planned to apply this design in education, as the machine vision system

can help the education system to teach sign language to hearing-impaired people.

Additionally, it is planned to extend the system's scalability to support other sign languages,

which would increase its applicability and facilitate the learning of sign language for the

hearing impaired. Furthermore, this system could be integrated with specialized robots for

teaching foreign languages, making sign language education more accessible.

5.3. LIMITATIONS

The main limitations we presented were due to hardware and software. First, not having found

a model with greater mobility, we were limited in the emulation of sign language, so we only

had 13 main classes focused on ASL letters. On the other hand, when applying image

110

processing based on Otsu binarization, we obtained inconsistencies when removing the

background of the images. We only had the regions of interest, so we opted for a manual

configuration model, which is limited by time. Also, the elastic that we use to generate the

movement in conjunction with the servo motors wears out over time. Therefore, for future

experiments, it is necessary to evaluate different models that comply with the characteristics

of good elasticity over a long time.

Finally, the database model can be extended by obtaining a larger number of images and

adding more variety to the people from which the images are obtained, thus increasing the

detection accuracy of the neural networks.

111

6.REFERENCE

[1] World Health Organization. (2024). Deafness and hearing loss.

https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss.

[2] Abou-Abdallah, M., & Lamyman, A. (2021). Exploring communication difficulties

with deaf patients. Clinical Medicine, 21(4),

https://doi.org/10.7861/clinmed.2021-0111

[3] Naranjo-Zeledón, L., et. al (2019). A Systematic Mapping of Translation-Enabling

Technologies for Sign Languages. Electronics, 8(9), 1047.

https://doi.org/10.3390/electronics8091047

[4] World Health Organization. (2021). World report on hearing. World Health

Organization.

[5] NIDCD. (2024). Quick Statistics About Hearing, Balance, & Dizziness. National

Institute on Deafness and Other Communication Disorders. https://n9.cl/hslnpo

[6] Santos, A. & Protes, A. (2019). Perceptions of deaf subjects about communication in

Primary Health Care-*. Rev Lat Am Enfermagem, 27, 31-27.

10.1590/1518-8345.2612.3127

[7] Fellinger, J. et al. (2005). Mental distress and quality of life in a deaf population.

Social Psychiatry and Psychiatric Epidemiology, 40, 737-742.

https://doi.org/10.1007/s00127-005-0936-8

[8] Shin, J., et al. (2021). American Sign Language Alphabet Recognition by Extracting

Feature from Hand Pose Estimation. Sensors. 21(17). 10.3390/s21175856

[9] Instituto Nacional para Sordos (2023). Retrieved from: https://n9.cl/ph1jh

[10] Fang, W., et al. (2019). Computer vision applications in construction safety

assurance.Automation in Construction, 110.

https://doi.org/10.1016/j.autcon.2019.103013

[11] Krenker, A., Bešter, J., & Kos, A. (2011). Introduction to artificial neural

networks. Artificial Neural Networks: Methodological Advances and Biomedical

Applications. InTech, 1-18.DOI: 10.5772/15751

[12] Keating, S. J. (2012). Renaissance Robotics: Novel applications of Multipurpose

Robotic Arms spanning Design Fabrication, Utility, and Art. Massachusetts Institute

of Technology.http://hdl.handle.net/1721.1/78184

[13] Krogh, A. (2008). What are artificial neural networks?. Nature Biotechnology,

26(2), 195–197. https://doi.org/10.1038/nbt1386

112

https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
https://doi.org/10.7861/clinmed.2021-0111
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6432988/
https://doi.org/10.1590%2F1518-8345.2612.3127
https://doi.org/10.1590%2F1518-8345.2612.3127
https://doi.org/10.1007/s00127-005-0936-8
https://www.mdpi.com/1424-8220/21/17/5856
https://doi.org/10.1016/j.autcon.2019.103013
http://hdl.handle.net/1721.1/78184

[14] Oxford Dictionaries. (2010). "Robot". Oxford Dictionaries. https://n9.cl/tf1vz

[15] Almeida, G. (2009). Unidad I: Fundamentos generales de la

robótica.https://n9.cl/lz1r8

[16] Surati, S., Hedaoo, S., Rotti, T., Ahuja, V., & Patel, N. (2021). Pick and place

robotic arm: a review paper. Int. Res. J. Eng. Technol, 8(2),

2121-2129.https://n9.cl/rty8a

[17] Rosales, E. M., & Gan, Q. (2004). Forward and inverse kinematics models for a

5-dof pioneer 2 robot arm. University of Essex, UK, Tech. Rep.

CSM-413.https://n9.cl/xj66mw

[18] Kawasaki, H. (2021). Robot Kinematics and Dynamics. Human‐Robot Interaction

Control Using Reinforcement Learning.https://doi.org/10.1002/9781119782773.app1

[19] Serna C., L., Rodríguez de S., A., & Albán A., F. (2003). Ácido Poliláctico (PLA):

Propiedades y Aplicaciones. Ingeniería y Competitividad, 5(1), 16.

https://doi.org/10.25100/iyc.v5i1.2301

[20] Arockiam, A. et al. (2022). A review on PLA with different fillers used as a

filament in 3D printing. Materials Today: Proceedings, 50 ,

2057-2064.https://doi.org/10.1016/j.matpr.2021.09.413

[21] Kristiawan, R., et al. (2021). A review on the fused deposition modeling (FDM)

3D printing: Filament processing, materials, and printing parameters. Open

Engineering, 11(1), 639-649. https://doi.org/10.1515/eng-2021-0063

[22] Wojtyła, S., Klama, P., & Baran, T. (2017). Is 3D printing safe? Analysis of the

thermal treatment of thermoplastics: ABS, PLA, PET, and nylon. Journal of

Occupational and Environmental Hygiene, 14(6), D80–D85.

https://doi.org/10.1080/15459624.2017.1285489

[23] Meinsa. (n.d). Historia de los sistemas de control industrial. https://n9.cl/hr3gqz

[24] Kurdila, A. J., & Ben-Tzvi, P. (2019). Dynamics and control of robotic

systems.https://n9.cl/enxcdi

[25] Joy, A. (2023). What Is An Actuator-Types and Applications. Tameson.

https://n9.cl/rk0yr3

[26] Saha, S. K. (2000). Introducción a la Robótica. McGraw-Hill

España.https://n9.cl/w6pxt

[27] Unox. (n.d). Pneumatic Actuators. https://n9.cl/cuo6tb

113

https://doi.org/10.25100/iyc.v5i1.2301
https://doi.org/10.1515/eng-2021-0063
https://doi.org/10.1080/15459624.2017.1285489

[28] Martin, S. (2021). Actuadores neumáticos Festo: una elección de primer

nivel.EPIDOR Technical Distribution. https://n9.cl/hjqlp

[29] Emerson (n.d). Hydraulic Actuators. https://n9.cl/jkokt4

[30] Cowan Dynamics. (n.d). Actuadores hidráulicos.Cowandynamics.

https://n9.cl/sxvng

[31] Oriental Motor. (n.d).Rack and Pinion System L Series - AZ Series Equipped.

Oriental Motor. https://n9.cl/22gb4

[32] Redekar, A., Deb, D., & Ozana, S. (2022). Functionality analysis of electric

actuators in renewable energy systems—a review. Sensors, 22(11), 4273. doi:

10.3390/s22114273.

[33] Industrial Quick Search (2024).Electrical Actuators. Editorial by Industrial Quick

Search. https://n9.cl/2icfrs

[34] TME. (2020). Motor paso a paso – tipos y ejemplos del uso de motores paso a

paso. TME Electronic Component. https://n9.cl/0u46y

[35] ISL. (n.d).Stepper motor fundamentals.ISL.https://n9.cl/amnp1

[36] Fiore, C. (2020). Stepper Motors Basics: Types, Uses, and Working

Principles.MPS. https://n9.cl/3yqy9

[37] OrientalMotors (n.d). Structure of Stepper Motors. https://n9.cl/uuxk7

[38] Solectro. (2020). Introducción a los servomotores. https://n9.cl/3meqg

[39] Gao, D. et. al (2024). An Intelligent Control Method for Servo Motor Based on

Reinforcement Learning. Algorithms , 17(1),14. https://doi.org/10.3390/a17010014

[40] Fraile García, J.C. (2021). Introducción al control remoto de servomotores

industriales. (Trabajo Fin de Máster Inédito). Universidad de Sevilla, Sevilla.

https://idus.us.es/handle/11441/127920

[41] Dejan. (n.d). How to Control Servo Motors with Arduino – Complete

Guide.Arduino Tutorials, How It Works

https://n9.cl/14xqy

[42] Festo. (2024). Músculo neumático, DMSP-5-50N-RM-CM, 28/10/24.

https://n9.cl/0ogxb

114

https://www.orientalmotor.com/stepper-motors/technology/stepper-motor-overview.html
https://doi.org/10.3390/a17010014
https://idus.us.es/handle/11441/127920
https://howtomechatronics.com/category/tutorials/arduino/
https://howtomechatronics.com/category/how-it-works/

[43] Festo. (2024). Músculo neumático, DMSP-40-120N-RM-CM, 28/10/24.

https://n9.cl/c2hg8

[44] Festo. (2024). Músculo neumático, DMSP-20-100N-RM-CM, 28/10/24.

https://n9.cl/836yf

[45] Emerson. (2024). Bettis G-Series Hydraulic Valve Actuator. Data Sheets: G-Series

Hydraulic Dimensions Data Metric, Bettis-EN. https://n9.cl/qtxyfe

[46] Emerson. (2024). Bettis GVO Linear Pneumatic Valve Actuator. Brochure: Bettis

Actuation Solutions Portfolio. https://n9.cl/3murt

[47] Oriental Motor. (2024). LM2B-AZ Horizontal Rack and Pinion Systems (AC

Input). LM2B500AZAC-1. https://n9.cl/60bfl9

[48] Oriental Motor. (2024). LM2F-AZ Vertical Rack and Pinion Systems (AC Input).

LM2F500AZAC-1 https://n9.cl/zg1t3

[49] ElectroStore. (2024). MOTOR A PASOS POLOLU PAP UNIPOLAR / BIPOLAR

5.7V, 1 A NEMA 23 POLOLU. https://n9.cl/yyjsj8

[50] ElectroStore. (2024). MOTOR A PASOS PAP BIPOLAR 200 PASOS 7.4V, 0.28

A NEMA 14 POLOLU. https://n9.cl/t77ama

[51] ElectroStore. (2024). SERVOMOTOR TOWER PRO MG996R 13 KG.CM

STANDARD 180°.https://n9.cl/1zpt6

[52] ElectroStore. (2024). SERVOMOTOR TOWER PRO MG995 11 KG.CM

STANDARD 360°. https://n9.cl/fyg2v

[53] Estadísticas de Discapacidad – Consejo Nacional para la Igualdad de

Discapacidades. (2022). Gob. ec. https://n9.cl/r0f9

[54] Roizen, N. J. (2003). Nongenetic causes of hearing loss. Mental Retardation and

Developmental Disabilities Research Reviews, 9(2), 120–127.

https://doi.org/10.1002/mrdd.10068

[55] Department of Health (DOH). (2023). Hearing disability assessment: report of the

Expert Hearing Group. Lenus.Ie. Retrieved December 13, 2023, from

https://n9.cl/voswku

[56] O’Connell, N. (2023). Problematising the problem: Exploring how hearing

privilege fosters employment inequality for deaf people. International Journal of

Disability and Social Justice, 3(2). https://doi.org/10.13169/intljofdissocjus.3.2.0071

[57] Wadhawan, A., & Kumar, P. (2019). Sign Language Recognition Systems: A

Decade Systematic Literature Review. Archives of Computational Methods in

Engineering. doi:10.1007/s11831-019-09384-2

115

https://doi.org/10.1002/mrdd.10068

[58] Agrawal, A., Kundalia, H., et al. (2020). Talking Fingers-Sign Language

Translator. International Journal for Research in Engineering Application &

Management (IJREAM). doi: 10.35291/2454-9150.2020.0250

[59] Atkinson, J., et. al (2016). Synesthesia for manual alphabet letters and numeral

signs in second-language users of signed languages. Neurocase.22(4),1-8.

10.1080/13554794.2016.1198489

[60] Kuruvilla, J., Sukumaran, D., et al. (2016). A review on image processing and

image segmentation. 2016 International Conference on Data Mining and Advanced

Computing (SAPIENCE).10.1109/sapience.2016.7684170

[61] The MathWorks Inc. (2023). Medfilt2, Natick, Massachusetts: The MathWorks

Inc. https://la.mathworks.com/help/images/ref/medfilt2.html

[62] The MathWorks Inc. (2023). imopen, Natick, Massachusetts: The MathWorks Inc.

https://la.mathworks.com/help/images/ref/imopen.html?s_tid=doc_ta

[63] The MathWorks Inc. (2023). Image Processing Toolbox version: 11.7 (R2023a),

Natick, Massachusetts: The MathWorks Inc. https://www.mathworks.com

[64] The MathWorks Inc. (2023). Computer Vision Toolbox version: 10.4 (R2023a),

Natick, Massachusetts: The MathWorks Inc. https://www.mathworks.com

[65] Shinde, P. P., & Shah, S. (2018). A review of machine learning and deep learning

applications. 2018 Fourth International Conference on Computing Communication

Control and Automation (ICCUBEA).

[66] Mukhamediev, R., et. al. (2021). From classical machine learning to deep neural

networks: A simplified scientometric review. Applied Sciences, 11(12), 5541.

[67] Brady, M. (1985). Artificial intelligence and robotics. Artificial Intelligence, 26(1),

79–121. doi:10.1016/0004-3702(85)90013-x

[68] Chowdhary, K. R. (2020). Fundamentals of Artificial Intelligence.

doi:10.1007/978-81-322-3972-7

[69] Nikolaos, P. et al. (2011).Industrial applications with cooperating robots for the

flexible assembly, International Journal of Computer Integrated Manufacturing, 24:7,

650-660, DOI: 10.1080/0951192X.2011.570790

[70] Villavicencio, H. (2005). Technology of future: Da Vinci robotic surgery. Actas

Urológicas Españolas, 29(10), 919-921. https://n9.cl/r5lg4w

[71] Chopra, A., Prashar, A., & Sain, C. (2013). Natural language processing.

International journal of technology enhancements and emerging engineering research,

1(4), 131-134.

116

https://la.mathworks.com/help/images/ref/medfilt2.html
https://la.mathworks.com/help/images/ref/imopen.html?s_tid=doc_ta
https://la.mathworks.com/help/images/ref/imopen.html?s_tid=doc_ta
https://www.mathworks.com/
http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0210-48062005001000001&lng=es&tlng=en

[72] Liddy, E.D. (2001). Natural Language Processing. In Encyclopedia of Library and

Information Science, 2nd Ed. NY. Marcel Decker, Inc. https://n9.cl/jopmv

[73] Hirschberg, J., & Manning, C. D. (2015). Advances in natural language

processing. Science, 349(6245), 261–266. doi:10.1126/science.aaa8685

[74] Zong, Z., & Hong, C. (2018). On Application of Natural Language Processing in

Machine Translation. 2018 3rd International Conference on Mechanical, Control and

Computer Engineering (ICMCCE). doi:10.1109/icmcce.2018.00112

[75] Wang, D., Su, J., & Yu, H. (2020). Feature Extraction and Analysis of Natural

Language Processing for Deep Learning English Language. IEEE Access, 1–1.

doi:10.1109/access.2020.2974101

[76] Hirschan, L., & Gaizauskas, R. (2001). Natural language question answering: the

view from here. Natural Language Engineering, 7(04).

doi:10.1017/s1351324901002807

[77] Simmons, R. F. (1970). Natural language question-answering systems: 1969.

Communications of the ACM, 13(1), 15–30. doi:10.1145/361953.361963

[78] Voorhees, E. M. (1999). Natural language processing and information retrieval. In

International summer school on information extraction. Berlin, Heidelberg: Springer

Berlin Heidelberg, 32-48. https://doi.org/10.1007/3-540-48089-7_3

[79] Brants, T. (2003). Natural Language Processing in Information Retrieval. CLIN,

111, 1-13.https://n9.cl/465qs

[80] Strzalkowski, T. (Ed.). (1999). Natural language information retrieval. Springer

Science & Business Media, 7. https://doi.org/10.1007/978-94-017-2388-6

[81] Rajput, A. (2020). Natural language processing, sentiment analysis, and clinical

analytics. In Innovation in health informatics. Academic Press, 79-97.

https://doi.org/10.1016/B978-0-12-819043-2.00003-4

[82] Nasukawa, T., & Yi, J. (2003). Sentiment analysis: Capturing favorability using

natural language processing. In Proceedings of the 2nd international conference on

Knowledge capture, 70-77.DOI:10.1145/945645.945658

[83] Badler, N., et. al (1997). Natural language text generation from Task networks.

Technical Report, CIS, University of Pennsylvania, Philadelphia, USA.

https://n9.cl/b97jf

[84] Iqbal, T., & Qureshi, S. (2020). The survey: Text generation models in deep

learning. Journal of King Saud University - Computer and Information Sciences.

doi:10.1016/j.jksuci.2020.04.001

117

https://www.cis.upenn.edu/~badler/documents/DTOG-report.pdf

[85] Albalawi, R., Yeap, T. H., & Benyoucef, M. (2020). Using topic modeling

methods for short-text data: A comparative analysis. Frontiers in artificial

intelligence, 3, 42.DOI:10.3389/frai.2020.00042

[86] Jelodar, H., Wang, Y., Rabbani, M., & Ayobi, S. (2019). Natural language

processing via LDA topic model in recommendation systems. arXiv preprint

arXiv:1909.09551.

[87] Kastner, J. K., & Hong, S. J. (1984). A review of expert systems. European Journal

of Operational Research, 18(3), 285–292. doi:10.1016/0377-2217(84)90150-4

[88] Gupta, I., & Nagpal, G. (2020). Artificial intelligence and expert systems. Mercury

Learning and Information. https://n9.cl/hwd1c

[89] Gollapudi, S. (2019). Artificial intelligence and computer vision. Learn Computer

Vision Using OpenCV: With Deep Learning CNNs and RNNs,

1-29.https://doi.org/10.1007/978-1-4842-4261-2

[90] Li, X., & Shi, Y. (2018). Computer vision imaging based on artificial intelligence.

In 2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS).

IEEE, 22-25. doi: 10.1109/ICVRIS.2018.00014.

[91] R. Saravanan & P. Sujatha. (2018). "A State of Art Techniques on Machine

Learning Algorithms: A Perspective of Supervised Learning Approaches in Data

Classification,”.Second International Conference on Intelligent Computing and

Control Systems (ICICCS). (8),945-949, doi: 10.1109/ICCONS.2018.8663155.

[92] Cunningham, P., Cord, M., Delany, S.J. (2008). Supervised Learning. In.Machine

Learning Techniques for Multimedia. Cognitive Technologies. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-540-75171-7_2

[93] Ghahramani, Z. (2004). Unsupervised Learning. Lecture Notes in Computer

Science, 72–112. doi:10.1007/978-3-540-28650-9_5

[94] Dike, H. U., Zhou, Y., Deveerasetty, K. K., & Wu, Q. (2018). Unsupervised

Learning Based On Artificial Neural Network: A Review. 2018 IEEE International

Conference on Cyborg and Bionic Systems (CBS). doi:10.1109/cbs.2018.8612259

[95] Berry, M. W., Mohamed, A., & Yap, B. W. (Eds.). (2020). Supervised and

Unsupervised Learning for Data Science. Unsupervised and Semi-Supervised

Learning. doi:10.1007/978-3-030-22475-2

[96] Hady, M. F. A., & Schwenker, F. (2013). Semi-supervised Learning. Handbook on

Neural Information Processing, 215–239. doi:10.1007/978-3-642-36657-4_7

118

https://books.google.com.ec/books?hl=es&lr=&id=61PdDwAAQBAJ&oi=fnd&pg=PP13&dq=artificial+intelligence+expert+systems&ots=kyuRY8kgxy&sig=ViK_Larv0tHWY4KEmIEg7EL6J9g&redir_esc=y#v=onepage&q=artificial%20intelligence%20expert%20systems&f=false
https://doi.org/10.1007/978-3-540-75171-7_2

[97] Van Engelen, J. E., & Hoos, H. H. (2019). A survey on semi-supervised learning.

Machine Learning. doi:10.1007/s10994-019-05855-6

[98] Sutton, R. S. (1992). Introduction: The Challenge of Reinforcement Learning.

Reinforcement Learning, 1–3. doi:10.1007/978-1-4615-3618-5_1

[99] Kaelbling, L., et. al (1996). Reinforcement Learning: A Survey. Journal of

Artificial Intelligence Research. 4(1996). https://doi.org/10.1613/jair.301

[100] François-Lavet, V., Henderson, P., Islam, R., Bellemare, M. G., & Pineau, J.

(2018). An Introduction to Deep Reinforcement Learning. Foundations and Trends®

in Machine Learning, 11(3-4), 219–354. doi:10.1561/2200000071

[101] Ketkar, N., & Moolayil, J. (2021). Deep Learning with Python.

doi:10.1007/978-1-4842-5364-9

[102] Baldi, P., & Vershynin, R. (2019). The Capacity of feedforward neural networks.

Neural Networks. doi:10.1016/j.neunet.2019.04.009

[103] Huang, K., Wang, Y., et al. (2020). Why Do Deep Residual Networks Generalize

Better than Deep Feedforward Networks?---A Neural Tangent Kernel Perspective.

Advances in neural information processing systems, 33,

2698-2709.https://doi.org/10.48550/arXiv.2002.06262

[104] Gulcehre, C., Cho, K.,et al. (2014). Learned-Norm Pooling for Deep Feedforward

and Recurrent Neural Networks. Lecture Notes in Computer Science, 530–546.

doi:10.1007/978-3-662-44848-9_34

[105] Grossberg, S. (2013). Recurrent neural networks. Scholarpedia, 8(2), 1888.

doi:10.4249/scholarpedia.1888

[106] Medsker, L., & Jain, L. C. (1999). Recurrent neural networks: design and

applications. CRC press. https://n9.cl/muvtvk

[107] Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks.

IEEE Transactions on Signal Processing, 45(11), 2673–2681. doi:10.1109/78.650093

[108] Nketiah, E. A., Chenlong, L., et al. (2023). Recurrent neural network modeling of

multivariate time series and its application in temperature forecasting. Plos one, 18(5),

https://doi.org/10.1371/journal.pone.0285713

[109] Alam, M., et.al.(2023) "A Review of Recurrent Neural Network Based Camera

Localization for Indoor Environments, (11) , 43985-44009.doi:

10.1109/ACCESS.2023.3272479.,

119

https://doi.org/10.1613/jair.301
http://dx.doi.org/10.4249/scholarpedia.1888
http://dx.doi.org/10.4249/scholarpedia.1888
https://books.google.com.ec/books?hl=es&lr=&id=ME1SAkN0PyMC&oi=fnd&pg=PA1&dq=recurrent+neural+network&ots=7dtwiO1XUq&sig=p6gTBWtPHkeIvdBoqZjWTZ8pP-Y&redir_esc=y#v=onepage&q=recurrent%20neural%20network&f=false

[110] Hayale, W., Negi, P. S., & Mahoor, M. H. (2021). Deep siamese neural networks

for facial expression recognition in the wild. IEEE Transactions on Affective

Computing, 14(2), 1148-1158.https://doi.org/10.1109/TAFFC.2021.3077248

[111] Putra, A. A. R., & Setumin, S. (2021). The performance of Siamese neural

network for face recognition using different activation functions. International

Conference of Technology, Science and Administration (ICTSA), 1-5.doi:

10.1109/ICTSA52017.2021.9406549.

[112] Ilina, O., Ziyadinov, V., et al. (2022). A survey on symmetrical neural network

architectures and applications. Symmetry,

14(7),1391.https://doi.org/10.3390/sym14071391

[113] Zhang, C., Liu, W., et al. (2016). Siamese neural network based gait recognition

for human identification.ieee international conference on acoustics, speech and signal

processing (ICASSP),2832-2836.doi: 10.1109/ICASSP.2016.7472194.

[114] Mishra, M. (2020). Convolutional neural networks, explained. Towards Data

Science. https://n9.cl/8l6pqk

[115] Yamashita, R. et al (2018). Convolutional neural networks: an overview and

application in radiology. Insights into Imaging, 9(4), 611–629.

https://doi.org/10.1007/s13244-018-0639-9

[116] G. Huang, Z. Liu, L. Van Der Maaten & K. Q. Weinberger (2017)."Densely

Connected Convolutional Networks,".IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2261-2269, doi: 10.1109/CVPR.2017.243.

[117] Kurama, V. (2020). A guide to ResNet, Inception v3, and SqueezeNet. Paperspace

Blog. https://n9.cl/oyyiy

[118] Iandola, F. et al (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and <0.5MB model size.https://n9.cl/u0mru

[119] Szegedy, C., et al (2014). Going deeper with convolutions. Arxiv.org.

https://n9.cl/o9i4n

[120] Redmon, J., & Farhadi, A. (2016). YOLO9000: Better, faster, stronger. In arXiv

[cs.CV]. https://n9.cl/g1jbe

[121] Szegedy, C., et al. (2015). Going deeper with convolutions. Conference on

Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2015.7298594

[122] Pawara, P., et, al. (2017). Comparing local descriptors and bags of visual words to

deep convolutional neural networks for plant recognition. Proceedings of the 6th

120

https://doi.org/10.1007/s13244-018-0639-9
https://n9.cl/oyyiy

International Conference on Pattern Recognition Applications and

Methods.DOI:10.5220/0006196204790486

[123] Alom, M., et. al. (2018). The history began from alexnet: A comprehensive survey

on deep learning approaches. DOI:10.48550/arXiv.1803.01164

[124] Adam, K., Mohd, I. I., & Younis, Y. M. (2021). The impact of the soft errors in

convolutional neural network on GPUs: Alexnet as case study. Procedia Computer

Science, 182, 89–94. https://doi.org/10.1016/j.procs.2021.02.012

[125] Saggie. (2017). What is Object Detection?. Saggie. https://n9.cl/0b3a1

[126] Alqushaibi, A., Abdulkadir, et al. (2020). A Review of Weight Optimization

Techniques in Recurrent Neural Networks. 2020 International Conference on

Computational Intelligence (ICCI). doi:10.1109/icci51257.2020.9247757

[127] Desai, C. (2020). Comparative analysis of optimizers in deep neural networks.

International Journal of Innovative Science and Research Technology, 5(10),

959-962.https://n9.cl/dssm55

[128] Ying, X. (2019, February). An overview of overfitting and its solutions. In Journal

of physics: Conference series (Vol. 1168, p. 022022). IOP Publishing.DOI

10.1088/1742-6596/1168/2/022022

[129] Chollet, F. (2021). Deep learning with Python. Simon and

Schuster.https://n9.cl/616slf

[130] Berrar, D. (2019). Cross-validation.DOI:10.1016/B978-0-12-809633-8.20349-X

[131] Singh, S., & Krishnan, S. (2020). Filter response normalization layer: Eliminating

batch dependence in the training of deep neural networks. In Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition (pp.

11237-11246).https://doi.org/10.48550/arXiv.1911.09737

[132] Chun, W. (2001). Programación central de Python (1). Profesional de Prentice

Hall.https://n9.cl/6gfaq2

[133] Van Rossum, G. (2007). Lenguaje de programación Python. En la conferencia

técnica anual de USENIX (41), 1-36.https://n9.cl/i9bae

121

https://doi.org/10.1016/j.procs.2021.02.012

[134] Sharma, A., Khan, F., et al. (2020). Python: el lenguaje de programación del

futuro. En t. J. Res innovadora. Technol , 6 (2), 115-118.

[135] Sarkar, D., Bali, R., et al. (2018). The Python machine learning ecosystem.

Practical Machine Learning with Python: A Problem-Solver's Guide to Building

Real-World Intelligent Systems, 67-118.

[136] Oliva, A. (2020).Ecosistema Python. MAT281 - Aplicaciones de la Matemática en

la Ingeniería – 2020. https://n9.cl/9zctb

[137] Sakai, A., Ingram, D., et al. (2018). Pythonrobotics: a python code collection of

robotics algorithms. arXiv preprint arXiv:1808.10703.

[138] Avelar, E., Castillo, O., & Soria, J. (2020). Fuzzy logic controller with fuzzylab

python library and the robot operating system for autonomous mobile robot

navigation. Journal of Automation Mobile Robotics and Intelligent Systems, 14(1),

48-54.

[139] Yumbla, F., Yumbla, E., & Moon, H. (2020l). The bioloid gp robot with different

configurations for simulation in v-rep controlled by the robot operating system (ros).

6th International Conference on Control, Automation and Robotics (ICCAR), 54-58.

[140] Ardianto, D., & Widiyatmoko, A. T. (2024). Color Detector in an Image using

Python and Computer Vision Library. Journal of Intelligent Systems and Information

Technology, 1(1), 25-30. https://doi.org/10.61971/jisit.v1i1.27

[141] Asaad, R., Ali, R., et al. (2023). Image Processing with Python Libraries.

Academic Journal of Nawroz University, 12(2), 410-416.

https://doi.org/10.25007/ajnu.v12n2a1754

[142] Kalmutskyy Kalmutskyy, G. (2021). Simulación de un sistema de clasificación

robotizado de propósito general utilizando técnicas de Deep-Learning y visión

artificial en Python. http://hdl.handle.net/10835/13455

[143] Mínguez, T. (2021). Visión artificial: aplicaciones prácticas con OpenCV-Python.

Marcombo. (1th Edition).Marcombo.https://n9.cl/61ten3

[144] Wang, S. C., & Wang, S. C. (2003). Artificial neural network. Interdisciplinary

computing in java programming, 81-100.

[145] Dhruv, A. J., Patel, R., & Doshi, N. (2021). Python: the most advanced

programming language for computer science applications. Science and Technology

Publications, Lda, 292-299.

122

https://doi.org/10.61971/jisit.v1i1.27
https://doi.org/10.25007/ajnu.v12n2a1754
https://doi.org/10.25007/ajnu.v12n2a1754
http://hdl.handle.net/10835/13455
https://books.google.com.ec/books?hl=es&lr=&id=FE1OEAAAQBAJ&oi=fnd&pg=PT5&dq=Python:+artificial+vision&ots=3zyoAk-kU4&sig=IXGXs2iRb0ZN47PvQAW5EyvPDrE&redir_esc=y#v=onepage&q=Python%3A%20artificial%20vision&f=false

[146] Vaferi, K., et. al. (2023). Modelado y optimización del rendimiento hidráulico y

térmico de una válvula tesla mediante método numérico y red neuronal artificial.

Entropía , 25 (7), 967.

[147] Plaza, P., et, al (2018). Arduino is an educational tool that introduces robotics.

IEEE international conference on teaching, assessment, and learning for engineering

(TALE), 1-8.

[148] Peña, C. (2020). Arduino IDE: Domina la programación y controla la placa.

RedUsers.

[149] Mistry., S & Pajak., D. (2024). Get Started With Machine Learning on Arduino.

Arduino.

[150] Lajara, J., & Pelegrí, J. (2011). LabView: entorno gráfico de programación.

Marcombo

[151] Kodosky, J. (2020). LabVIEW. Proceedings of the ACM on Programming

Languages, 4(HOPL), 1-54.https://doi.org/10.1145/3386328

[152] De Francisco Ortiz, Ó., Estrems Amestoy, M., & Carrero-Blanco, J. (2020).

Positioning measurement using a new artificial vision algorithm in LabVIEW based

on the analysis of images on an LCD screen. The International Journal of Advanced

Manufacturing Technology, 109(1), 155-170.. doi:10.1007/s00170-020-05497-2

[153] Posada-Gómez, R.,et. al. (2011). Digital image processing using LabVIEW.

Practical Applications and Solutions Using LabVIEW Software, InTech, 297-316.

https://n9.cl/y8ewr

[154] Mezher, L. S. (2016). Digital image processing filtering with LABVIEW.

International Journal of Computer Science Trends and Technology (I JCS T), 278.

[155] NI. (n.d).LabVIEW Analytics and Machine Learning Toolkit. NI.

https://n9.cl/phbx6

[156] Ramirez, J. M., Gomez-Gil, P., & Larios, F. L. (2007). A Robot-vision System for

Autonomous Vehicle Navigation with Fuzzy-logic Control using Lab-View.

Electronics, Robotics and Automotive Mechanics Conference (CERMA 2007).

doi:10.1109/cerma.2007.4367702

[157] DİRİK, M.(n.d). Anomaly detection using LabView-Based machine learning

algorithms. International research in engineering sciences, 366.

10.5281/zenodo.7744436

[158] The MathWorks Inc. (2023). MATLAB, Natick, Massachusetts: The MathWorks

Inc. https://la.mathworks.com/help/matlab/index.html.

123

https://doi.org/10.1145/3386328
https://www.ni.com/es-cr/shop/product/labview-analytics-and-machine-learning-toolkit.html
https://la.mathworks.com/help/matlab/index.html

[159] The MathWorks Inc. (2023). Deep Network Designer, Natick, Massachusetts: The

MathWorks Inc.

https://la.mathworks.com/help/deeplearning/ref/deepnetworkdesigner-app.html

[160] The MathWorks Inc. (2023). Statistics and Machine Learning Toolbox, Natick,

Massachusetts: The MathWorks Inc.https://la.mathworks.com/help/stats/index.html

[161] The MathWorks Inc. (2023). Text Analytics Toolbox, Natick, Massachusetts:

la.mathworks.com/help/textanalytics/index.html

[162] The MathWorks Inc. (2024). AI, Data Science, and Statistics — Apps: The

MathWorks Inc. AI, Data Science, and Statistics — Apps (mathworks.com)

[163] The MathWorks Inc. (2024). Image Processing and Computer Vision : The

MathWorks Inc. Image Processing and Computer Vision - MATLAB & Simulink

(mathworks.com)

[164] The MathWorks Inc. (2023). Image Region Analyzer, Natick, Massachusetts: The

MathWorks Inc.

https://la.mathworks.com/help/images/ref/imageregionanalyzer-app.html

[165] The MathWorks Inc. (2023). Image Segmenter, Natick, Massachusetts.

https://la.mathworks.com/help/images/ref/imagesegmenter-app.html

[166] The MathWorks Inc. (2023). Create Semantic Segmentation using volume

Segmenter, Natick, Massachusetts: https://n9.cl/x9lkp3

[167] The MathWorks Inc. (2023). Volume Segmenter, Natick, Massachusetts.

https://la.mathworks.com/help/images/ref/volumesegmenter-app.html

[168] Pololu. (n.d). 1.b. Mini Maestro Pinout and Components. Pololu Robotics &

Electronics. https://n9.cl/ushjx

[169] Pereira, V., Fernandes, V. A., & Sequeira, J. (2014). Low cost object sorting

robotic arm using Raspberry Pi. IEEE global humanitarian technology

conference-South Asia Satellite (GHTC-SAS), 1-6.

[170] RaspBerry PI (n.d). Raspberry Pi 4. RaspberryPI. https://n9.cl/9fo7u

[171] Arduino Mega 2560 Rev3. (2024). Arduino Official Store. https://n9.cl/xmm38

124

https://la.mathworks.com/help/deeplearning/ref/deepnetworkdesigner-app.html?searchHighlight=Deep%20network%20designer&s_tid=srchtitle_support_results_1_Deep%20network%20designer
https://la.mathworks.com/help/overview/referencelist.html?type=app&listtype=cat&category=ai-data-science-and-statistics&blocktype=all&capability=&startrelease=&endrelease=&s_tid=CRUX_lftnav
https://www.mathworks.com/help/overview/image-processing-and-computer-vision.html
https://www.mathworks.com/help/overview/image-processing-and-computer-vision.html
https://la.mathworks.com/help/images/ref/imageregionanalyzer-app.html?searchHighlight=IMAGEN%20region%20analyzer&s_tid=srchtitle_support_results_1_IMAGEN%20region%20analyzer

[172] Song, T. L., Lu, Y. P., & Liu, H. Q. (2013). The Controlling Research of the 3D

Bionic Snake-Like Robot Based on the Arduino. Applied Mechanics and Materials,

302, 570–573. doi:10.4028/www.scientific.net/amm.302.570

[173] Cheng, H. C., Chiu, M. C., et al. (2017). A design of toxic gas detecting security

robot car based on wireless path-patrol. In MATEC Web of Conferences. . EDP

Sciences, 123, 00035.

[174] Lim, K. M., et. al (2019). Isolated sign language recognition using Convolutional

Neural Network hand modelling and Hand Energy Image. Multimedia Tools and

Applications, 78(14), 19917–19944. doi:10.1007/s11042-019-7263-7

[175] Nihal, R. A., Broti, N. M., Deowan, S. A., & Rahman, S. (2021). Design and

Development of a Humanoid Robot for Sign Language Interpretation. SN Computer

Science, 2(3). doi:10.1007/s42979-021-00627-3

[176] Chavan, S., Yu, X., & Saniie, J. (2021). Convolutional Neural Network Hand

Gesture Recognition for American Sign Language. 2021 IEEE International

Conference on Electro Information Technology (EIT).

doi:10.1109/eit51626.2021.9491897

[177] Rastgoo, R., Kiani, K., & Escalera, S. (2020). Hand sign language recognition

using multi-view hand skeleton. Expert Systems with Applications, 113336.

doi:10.1016/j.eswa.2020.113336 3

[178] Zhi, D., de Oliveira, T. et al. (2018). Teaching a Robot Sign Language using

Vision-Based Hand Gesture Recognition. 2018 IEEE International Conference on

Computational Intelligence and Virtual Environments for Measurement Systems and

Applications (CIVEMSA). doi:10.1109/civemsa.2018.8439952

[179] Cao Dong, M. C. Leu and Z. Yin. (2015). "American Sign Language alphabet

recognition using Microsoft Kinect," IEEE Conference on Computer Vision and

Pattern Recognition Workshops (CVPRW), 2015, 44-52, doi:

10.1109/CVPRW.2015.7301347

125

[180] Barbhuiya, A. A., Karsh, R. K., & Jain, R. (2020). CNN based feature extraction

and classification for sign language. Multimedia Tools and Applications, 80(2),

3051–3069. doi:10.1007/s11042-020-09829-y

[181] Johnson, S., et. al (2021). An Adaptive, Affordable, Open-Source Robotic Hand

for Deaf and Deaf-Blind Communication Using Tactile American Sign Language.

Conference: 43rd Annual International Conference of the IEEE Engineering in

Medicine and Biology Society. 4732-4737. doi: 10.1109/EMBC46164.2021.9629994.

[182] Mazhar, O., Navarro, B.,et al. (2019). A real-time human-robot interaction

framework with robust background invariant hand gesture detection. Robotics and

Computer-Integrated Manufacturing, 60, 34–48. doi:10.1016/j.rcim.2019.05.008

[183] Meghdari, A., Alemi, M., Zakipour, M., & Kashanian, S. A. (2018). Design and

Realization of a Sign Language Educational Humanoid Robot. Journal of Intelligent &

Robotic Systems. doi:10.1007/s10846-018-0860-2

[184] Bulgarelli, A., Toscana, G., et al. (2016). A low-cost open source 3D-printable

dexterous anthropomorphic robotic hand with a parallel spherical joint wrist for sign

languages reproduction. International Journal of Advanced Robotic Systems, 13(3),

126. doi:10.5772/64113

[185] Kenshimov, C., & et. al (2021). "Development of a Verbal Robot Hand Gesture

Recognition System,". WSEAS Transactions on Systems and Control, (16), 573-583.

DOI:10.37394/23203.2021.16.53

[186] Verma, Y., & Anand, R. S. (2017). Gesture Generation by the Robotic Hand for

Aiding Speech and Hearing-Impaired Persons Based on American Sign Language.

Available at SSRN 4608468

[187] Al-Khulaidi, R. A., Akmeliawati, R., et al. (2018). Development of robotic hands

of signbot, advanced Malaysian sign-language performing robot. Advances in robotics

research, 2(3), 183

[188] Islam, M. M., Siddiqua, S., & Afnan, J. (2017). Real time Hand Gesture

Recognition using different algorithms based on American Sign Language. 2017 IEEE

126

International Conference on Imaging, Vision & Pattern Recognition (icIVPR).

doi:10.1109/icivpr.2017.7890854

[189] Luo, R. C., & Wu, Y.-C. (2012). Hand gesture recognition for Human-Robot

Interaction for service robot. 2012 IEEE International Conference on Multisensor

Fusion and Integration for Intelligent Systems (MFI). doi:10.1109/mfi.2012.6343059

[190] Lea Plaza Chávez, R., & Gutiérrez Espada, H. (2016). Computing platform

proposal for roads building management projects case study: building company "Serco

S.R.L.". Journal Boliviano de Ciencias, 12, 30.

https://doi.org/10.52428/20758944.v12i36.681

[191] Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The unified process. Ieee

Software, 16(3), 96.

[192] S. Autsou, et. al (2024). Principles and Methods of Servomotor Control:

Comparative Analysis and Applications. Applied Sciences, 14(6).2579.

https://doi.org/10.3390/app14062579

[193] Baumann, F. W., & Roller, D. (2018). Thingiverse: review and analysis of

available files. International Journal of Rapid Manufacturing, 7(1), 83.

doi:10.1504/ijrapidm.2018.089731

[194] Larrañaga, A. (2023). Thor – An Open Source 3D Printable 6DOF Robotic Arm.

https://n9.cl/gczif

[195] Gross, R. (2017). Humanoid Robotic Hand. Ultimaker thingiverse.

https://n9.cl/txhv8

[196] Gross, R. (2016). Robotic Prosthetic Hand. Ultimaker Thingiverse.

https://n9.cl/ab6zi

[197] Langevin, G. (2012) InMoov body parts library : Right-Hand. Inmoov: Open

source 3D printed life size robot. https://www.thingiverse.com/thing:17773

[198] Riba Romeva, C. (2002). Diseño concurrente.DOI:10.5821/ebook-9788498800746

[199] Swetham, T., Reddy, K. et al. (2017). A Critical Review of 3D Printing Materials

and Details of Materials used in FDM. Int. J. Sci. Res. Sci. Eng. Technol, 3, 353-361.

127

https://doi.org/10.52428/20758944.v12i36.681
https://www.thingiverse.com/thing:17773

[200] Roy, R., & Mukhopadhyay, A. (2021). Tribological studies of 3D printed ABS and

PLA plastic parts. Materials Today: Proceedings, 41, 856–862.

doi:10.1016/j.matpr.2020.09.235

[201] Munib, Q., et. al (2007). American sign language (ASL) recognition based on

Hough transform and neural networks. Expert Systems with Applications, 32(1),

24–37. doi:10.1016/j.eswa.2005.11.018

[202] Islam, M., et. al (2018). Hand Gesture Feature Extraction Using Deep

Convolutional Neural Network for Recognizing American Sign Language. 2018 4th

International Conference on Frontiers of Signal Processing (ICFSP).

doi:10.1109/icfsp.2018.8552044

[203] Kolli, Y., et. al (2023). ASL Detection and Gesture Based Control of Robotic Hand

Using Image Processing.Research Square.https://doi.org/10.21203/rs.3.rs-2897029/v1

128

https://doi.org/10.21203/rs.3.rs-2897029/v1

7.ATTACHMENTS

We will now include a series of attachments containing figure of the 3D printing process of

the robotic arm, datasheets, and codes used for this work.

Figure 59. 3D printing of the robotic arm thumb.

Figure 60. 3D printing of a part of the robotic hand.

129

Figure 61. 3D printing of a part of the robotic hand.

Figure 62. 3D printing of a part of a robotic hand.

130

Code

● Matlab

Image Capture

131

clc
clear all
close all
warning off
try

% Inicializar cámara
disp('Phase 1: Initializing camera...');
cam = webcam(1);

catch
error('Error initializing the camera. Make sure the camera is

connected.');
end
% Parámetros de la caja de detección
x = 100;
y = 0;
height = 550;
width = 600;
bboxes = [x y height width];
try

% Cargar red neuronal
disp('Phase 2: Loading neural network...');
load("REDESCOLORXEPOCAS\Guante\GoogleNet\GoogleNet20epoch.mat");
load("REDESCOLORXEPOCAS\Guante\Alexnet\AlexNetTotal.mat");
net=trainedNetwork_1;

catch
error('Error loading the neural network.');

end
error=0;
try

%Calibrar imagen
disp("Phase 3: Calibration...")
calibration=input("Do you want to calibrate the image?1/0:");
if calibration ==1

% Capturar imagen de la cámara
snapshotImg = snapshot(cam);

% Mostrar imagen con caja de detección
IFaces =

insertObjectAnnotation(snapshotImg,'rectangle',bboxes,'Detection Sector');

% Recortar y redimensionar imagen
croppedImg = imresize(imcrop(snapshotImg, bboxes), [200 200]);

% Preprocesamiento de imagen
targetImg = imsubtract(croppedImg(:,:,1), rgb2gray(croppedImg));
% Determinar el umbral utilizando el método de Otsu
threshold = graythresh(targetImg);
error_threshold = 0;
while error_threshold < 0.02

binaryImg = imbinarize(targetImg, threshold - error_threshold);
subplot(1, 1, 1);
imshow(binaryImg);

132

x = input("Is the image flawed? 1/0:");
if x == 1

error_threshold = error_threshold + 0.0025;
else

% Si no hay errores, se actualiza el umbral y se sale del
bucle

threshold = threshold - error_threshold;
break;

end
end

else
if calibration == 0

% Capturar imagen de la cámara
snapshotImg = snapshot(cam);

% Mostrar imagen con caja de detección
IFaces =

insertObjectAnnotation(snapshotImg,'rectangle',bboxes,'Detection Sector');

% Recortar y redimensionar imagen
croppedImg = imresize(imcrop(snapshotImg, bboxes), [200 200]);

% Preprocesamiento de imagen
targetImg = imsubtract(croppedImg(:,:,1), rgb2gray(croppedImg));
% Determinar el umbral utilizando el método de Otsu
threshold = graythresh(targetImg);

end
end

catch
error("Correct calibration could not be performed");

end
try

disp("Phase 4: Image proccesing...")
z = input("How many frames do you want?:");
while z > 0

% Capturar imagen de la cámara
snapshotImg = snapshot(cam);

% Mostrar imagen con caja de detección
IFaces =

insertObjectAnnotation(snapshotImg,'rectangle',bboxes,'Detection Sector');

% Recortar y redimensionar imagen
croppedImg = imresize(imcrop(snapshotImg, bboxes), [200 200]);

% Preprocesamiento de imagen
targetImg = imsubtract(croppedImg(:,:,1), rgb2gray(croppedImg));
% Determinar el umbral utilizando el método de Otsu
binaryImg = imbinarize(targetImg, threshold);
filteredImg = medfilt2(binaryImg);
filteredImg = bwpropfilt(filteredImg, 'Area', [700 + eps(700),

Inf]);
processedImg = bsxfun(@times, croppedImg, uint8(filteredImg));

subplot(1,1,1);
imshow(processedImg);
z = z - 1;
if z > 0

if z < 5
fprintf('%d seconds missing\n', z);

133

pause(1);
end
%%pause(0.1);

else
fprintf("Capturing...\n");
break;

end
end

catch
error("Image processing failure")

end
try

disp("Phase 5: Prediction...")
Predict=input("Do you wish to perform a prediction?1/0:");
if Predict==1

disp("Predicting...")
pause(0.5)
% Realizar la predicción usando la red neuronal cargada
prediction = classify(net20epoch, processedImg);
prediction1 = classify(net, processedImg);
subplot(2,1,1);
imshow(processedImg);
title(sprintf('GoogleNet: %s', char(prediction)), 'Color', 'b',

'FontSize', 15);
% Obtener propiedades de las regiones
[B,~] = bwboundaries(filteredImg);
hold on
% Dibujar contornos y etiquetas de predicción
for k = 1:length(B)

boundary = B{k};
plot(boundary(:,2), boundary(:,1), 'b', 'LineWidth', 2);

end
hold off

subplot(2,1,2);
imshow(processedImg);
title(sprintf('AlexNet: %s', char(prediction1)), 'Color', 'r',

'FontSize', 15);
% Obtener propiedades de las regiones
[B,~] = bwboundaries(filteredImg);
hold on
% Dibujar contornos y etiquetas de predicción
for k = 1:length(B)

boundary = B{k};
plot(boundary(:,2), boundary(:,1), 'r', 'LineWidth', 2);

end
hold off

else
disp("Prediction failure...")

end
catch

error("Prediction failure")
end
clear cam;
disp('Camera released. End of program.');

134

clc
clear all
close all
warning off
cam = webcam(1);
x = 100;
y = 0;
height = 550;
width = 600;
bboxes = [x y height width];
load("REDESCOLORXEPOCAS\Humano\Alexnet\Alex20epoch.mat");
load("REDESCOLORXEPOCAS\Humano\GoogleNet\GoogleNet20epochCNN.mat");
while true

% Capturar imagen de la cámara
snapshotImg = snapshot(cam);
% Mostrar imagen con caja de detección
IFaces =

insertObjectAnnotation(snapshotImg,'rectangle',bboxes,'Detection Sector');
% Recortar y redimensionar imagen
croppedImg = imresize(imcrop(snapshotImg, bboxes), [200 200]);
% Preprocesamiento de imagen
targetImg = imsubtract(croppedImg(:,:,1), rgb2gray(croppedImg));
binaryImg = imbinarize(targetImg, 0.06);
filteredImg = medfilt2(binaryImg);
filteredImg = bwpropfilt(filteredImg, 'Area', [700 + eps(700), Inf]);
processedImg = bsxfun(@times, croppedImg, uint8(filteredImg));
% Realizar la predicción usando la red neuronal cargada
[prediction, probability] = classify(net, croppedImg);
%[prediction10, probability10] = classify(net10epoch, croppedImg);
%[prediction15, probability15] = classify(trainedNetwork_1, croppedImg);
[prediction20, probability20] = classify(net20epoch, croppedImg);
% Obtener el porcentaje de predicción
[maxProb, idx] = max(probability);
[maxProb20, idx20] = max(probability20);

% Obtener propiedades de las regiones
[L, N] = bwlabel(filteredImg);
props = regionprops(L);
[B, ~] = bwboundaries(filteredImg);

subplot(2,3,1);
imshow(processedImg);
title(['AlexNet Model: (', num2str(maxProb*100, '%.2f'), '%)']);
hold on
% Dibujar contornos y etiquetas de predicción
for k = 1:length(B)

boundary = B{k};
plot(boundary(:,2), boundary(:,1),'b','LineWidth',2)

end
for n = 1:N

c = round(props(n).Centroid);
%text(c(1), c(2)-100, strcat(char(prediction)), 'Color', 'red',

'FontSize', 15);
end
hold off

subplot(2,3,2:3);
bar(probability);
title('Prediction:',char(prediction));
xlabel('Classes');

Confusion Matrix

Grad-Cam

% Cargar las redes entrenadas

135

ylabel('Probability');
xticks(1:length(probability));
xticklabels(categories(prediction));

subplot(2,3,4);
imshow(processedImg);
title(['GoogleNet Model: (', num2str(maxProb20*100, '%.2f'), '%)']);
hold on
% Dibujar contornos y etiquetas de predicción
for k = 1:length(B)

boundary = B{k};
plot(boundary(:,2), boundary(:,1),'b','LineWidth',2)

end
for n = 1:N

c = round(props(n).Centroid);
%text(c(1), c(2)-100, strcat(char(prediction20)), 'Color', 'white',

'FontSize', 15);
end
hold off

subplot(2,3,5:6);
bar(probability20);
title('Prediction:',char(prediction20));
xlabel('Classes');
ylabel('Probability');
xticks(1:length(probability20));
xticklabels(categories(prediction20));

end
clear cam;

load("REDESCOLORXEPOCAS\Humano\Alexnet\Alextotalcnn.mat")
trainedNetwork_1=net20epoch;
% Evaluar el modelo en el conjunto de validación
predLabels = classify(trainedNetwork_1, imdsValidation);
trueLabels = imdsValidation.Labels;
% Calcular la matriz de confusión
confusionMatrix = confusionmat(trueLabels, predLabels);
% Visualizar la matriz de confusión
figure;
confusionchart(confusionMatrix, unique(trueLabels));
% Realizar predicciones en los datos de validación
YPredValidation = classify(trainedNetwork_1, augimdsValidation);
YValidation = imdsValidation.Labels;
% Crear y mostrar la matriz de confusión para los datos de validación
figure;
plotconfusion(YValidation, YPredValidation);
title('Confusion Matrix');
% Calcular y mostrar el accuracy de validación
%accuracyValidation = sum(YPredValidation == YValidation) /
numel(YValidation);
%disp("Validation Accuracy: ");

load("REDESCOLORXEPOCAS\Humano\GoogleNet\GoogleNet20epochCNN.mat");
load("REDESCOLORXEPOCAS\Humano\Alexnet\Alex20epoch.mat");
net1=net20epoch;
classNames= net.Layers(25,1).Classes;
classNames1= net1.Layers(144,1).Classes;
inputSize = net.Layers(1).InputSize(1:2);
inputSize1 = net1.Layers(1).InputSize(1:2);
img = imread("Fotos\Fotos\Nothing\Nothing0001.jpg");
img = imresize(img,inputSize);
if canUseGPU

X = gpuArray(img);
end
scores = predict(net,single(img));
scores1 = predict(net1,single(img));
% Convierte las puntuaciones a etiquetas de clase
Y = scores2label(scores, classNames);
imshow(img);
title(Y);
% Convierte las puntuaciones a etiquetas de clase
Y1 = scores2label(scores1, classNames1);
imshow(img);
title(Y1);
channel = find(Y == categorical(classNames));
map = gradCAM(net,img,channel);
channel1 = find(Y1 == categorical(classNames1));
map1 = gradCAM(net1,img,channel1);
subplot(2,1,1)
imshow(img);
hold on;
imagesc(map,'AlphaData',0.5);
colormap jet
hold off;
title("Grad-CAM AlexNet");
subplot(2,1,2)
imshow(img);
hold on;
imagesc(map1,'AlphaData',0.5);
colormap jet
hold off;
title("Grad-CAM GoogleNet");

Artificial Vision

clc
clear all
close all
warning off
cam = webcam(1);
x = 100;
y = 0;
height = 550;
width = 600;
bboxes = [x y height width];
load("REDESCOLORXEPOCAS\Guante\Alexnet\AlexNet20epoch.mat")
while true

% Capturar imagen de la cámara
snapshotImg = snapshot(cam);
% Mostrar imagen con caja de detección
IFaces =

136

insertObjectAnnotation(snapshotImg,'rectangle',bboxes,'Detection Sector');
% Recortar y redimensionar imagen
croppedImg = imresize(imcrop(snapshotImg, bboxes), [200 200]);
% Preprocesamiento de imagen
targetImg = imsubtract(croppedImg(:,:,1), rgb2gray(croppedImg));
binaryImg = imbinarize(targetImg, 0.26);
filteredImg = medfilt2(binaryImg);
filteredImg = bwpropfilt(filteredImg, 'Area', [700 + eps(700), Inf]);
processedImg = bsxfun(@times, croppedImg, uint8(filteredImg));
% Mostrar imágenes
subplot(2,2,1);
imshow(IFaces);
title("All");
subplot(2,2,2);
imshow(targetImg);
title("Target")
subplot(2,2,3);
imhist(targetImg);
title("Histogram for Red Color")
subplot(2,2,4);
imshow(processedImg);
title("without background")
% Realizar la predicción usando la red neuronal cargada
prediction = classify(net20epoch, processedImg);
% Obtener propiedades de las regiones
[L, N] = bwlabel(filteredImg);
props = regionprops(L);
[B,~] = bwboundaries(filteredImg);
hold on
% Dibujar contornos y etiquetas de predicción
for k = 1:length(B)

boundary = B{k};
plot(boundary(:,2), boundary(:,1),'b','LineWidth',2)

end
for n = 1:N

c = round(props(n).Centroid);
text(c(1), c(2)-100, strcat(char(prediction)), 'Color', 'white',

'FontSize', 15);
end
hold off

end
clear cam;

DataBase

clear all
clc
close all
% Get the list of available cameras
camList = webcamlist;
% Define desired resolution
desiredWidth = 200;
desiredHeight = 200;
% Set camera resolution
cam.Resolution = sprintf('%dx%d', desiredWidth, desiredHeight);
% Connect to the camera.
cam = webcam(1);
% Start the camera preview.
preview(cam);

137

% Create a folder to store images
if ~exist('Fotos/', 'dir')

mkdir('Fotos/A');
mkdir('Fotos/Nothing');
mkdir('Fotos/B');
mkdir('Fotos/C');mkdir('Fotos/D');
mkdir('Fotos/E');mkdir('Fotos/F');
mkdir('Fotos/G');mkdir('Fotos/H');
mkdir('Fotos/I');mkdir('Fotos/J');
mkdir('Fotos/K');mkdir('Fotos/L');
mkdir('Fotos/M');mkdir('Fotos/N');
mkdir('Fotos/O');mkdir('Fotos/P');
mkdir('Fotos/Q');
mkdir('Fotos/R');mkdir('Fotos/S');
mkdir('Fotos/T');mkdir('Fotos/U');
mkdir('Fotos/V');mkdir('Fotos/W');
mkdir('Fotos/X');mkdir('Fotos/Y');
mkdir('Fotos/Z');

end
% Capture and save multiple frames
for idx = 1:400

img = snapshot(cam);

% Resize image to desired resolution
resizedImg = imresize(img, [desiredHeight, desiredWidth]);

image(resizedImg);
% Generate a unique name for each image based on the capture index
filename = sprintf('Fotos/X/X%04d.jpg', idx);

% Save the resized image in the following folder
imwrite(resizedImg, filename);

end
% Close the camera connection
clear cam;

● Motor Controller with Arduino

//Add servo Library
#include <Servo.h>
//Define multiples Servos
Servo servoInd;
Servo servoMed;
Servo servoAnu;
Servo servoPul;
Servo servoMeq;
//Servo postion in degrees
int ServoPosInd = 90;
int ServoPosMed = 90;
int ServoPosAnu = 90;
int ServoPosPul = 90;
int ServoPosMeq = 90;
void setup() {
Serial.begin(9600);
//Define servo inputs Digital PWM
servoInd.attach(3);
servoMed.attach(4);
servoAnu.attach(5);
servoPul.attach(6);

138

servoMeq.attach(7);
}
void loop() {
moveFingers();
}
void moveFingers() {
// Base movement
// Finger Movement Extension
// Thumb
moveServo(servoPul, ServoPosPul, 90, 180);
// Little finger
moveServo(servoMeq, ServoPosMeq, 90, 175);
// Ring finger
moveServo(servoAnu, ServoPosAnu, 90, 180);
// Index finger
moveServo(servoInd, ServoPosInd, 90, 160);
// Middle finger
moveServo(servoMed, ServoPosMed, 90, 140);
}
void moveServo(Servo servo, int &pos, int from, int to) {
if (pos != to) {
if (pos < to) {
pos++;

} else {
pos--;

}
servo.write(pos);
delay(15);

}
}

Servomotors datasheet.

139

140

Figure 63. Power source 10A/5V.

141

		2024-11-27T19:36:47-0500
	Firmado digitalmente con Security Data
https://www.securitydata.net.ec/

		2024-11-28T00:20:09-0500
	Firmado digitalmente con Security Data
https://www.securitydata.net.ec/

		2024-11-28T00:26:23-0500
	Firmado digitalmente con Security Data
https://www.securitydata.net.ec/

		2024-11-28T00:28:27-0500
	Firmado digitalmente con Security Data
https://www.securitydata.net.ec/

