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Resumen

En el transporte de electrones, los efectos termoeléctricos en estructuras meso- y nanoscópicas

han ganado relevancia en la F́ısica y la Ingenieŕıa gracias a su potencial para explotar los

efectos cuánticos en controlar el acoplamiento de corrientes de calor y carga, con el obje-

tivo de aprovechar el calor residual. En la espintrónica, el efecto de selectividad de esṕın

inducida por quiralidad (en inglés CISS) es ampliamente estudiada para cuantificar el im-

pacto de la quiralidad estructural de sistemas moleculares en los grados de libertad del

esṕın para inducir polarización de esṕın sin la necesidad de introducir campos magnéticos

externos. Ambos proporcionan un sólido tema de investigación casi inexplorado dentro de

la caloritrónica de esṕın, los efectos térmicos sobre el transporte de carga y esṕın a través

de moléculas quirales.

En esta tesis, investigamos el transporte dependiente de esṕın inducido por un gradi-

ente de temperatura (efecto Seebeck de esṕın) en modelos fenomenológicos de dos termi-

nales (electrodos) conectados a través de un sistema quiral simplificado en presencia de

interacciones esṕın-órbita. Comenzamos utilizando el formalismo de Landauer basado en

funciones de Green fuera del equilibrio para calcular la corriente de esṕın en d́ımeros tipo

cable y establecer un punto de referencia para notar la filtración de esṕın en los casos

de d́ımeros tipo quiral. Luego, después de calcular la termopotencia de esṕın sólo para

los casos quirales (a través de una expansión de tipo Sommerfeld), encontramos que la

termopotencia de esṕın se modifica ligeramente debido a la interferencia cuántica.

Palabras Clave:

Esṕın, carga, transporte, termopotencia, d́ımero, quiral
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Abstract

In electron transport, thermoelectric effects in meso-/nanoscopic structures have gained

relevance in Physics and Engineering due to their potential to exploit quantum effects to

control the coupling of heat and charge currents, with the aim of scavenging waste heat.

In Spintronics, the Chirality-induced Spin Selectivity (CISS) effect is widely studied to

quantify the impact of the structural chirality of molecular systems over the spin-dependent

effects during the electron transport to induce spin polarization or spin filtering without

the need of introducing external magnetic fields. Both provide a solid almost unexplored

research subject within spin caloritronics, the thermal effects over the electron and spin

transport through chiral molecules.

In this thesis, we investigate the spin-dependent transport induced by a temperature

gradient (Spin Seebeck effect) in phenomenological models of two terminals (electrodes)

connected through a simplified chiral system in the presence of spin-orbit interaction. We

start with using the Landauer’s formalism based on non-equilibrium Green functions to

compute the spin current for wire-like dimers and to establish a reference in order to

point out the spin filtering in the chiral-like dimer cases. Then, after computing the spin

thermopower only for the chiral cases (via a Sommerfeld-type expansion), we find that spin

thermopower gets slightly modified due to quantum interference.

Keywords:

Spin, charge, transport, thermopower, dimer, chiral
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Chapter 1

Introduction

Thermoelectric (TE) effects allude to physical phenomena in which direct conversion of

heat into electrical energy (or vice versa) is observed. The term refers to the Seebeck and

Peltier effects, but our focus is on the first one. The Seebeck effect (SE), discovered by

T.J Seebeck in 1821 [11], is when a temperature gradient produces an electromotive force

(e.m.f) between two junctions when there is no electrical current. This effect is quantified

by the Thermopower S, also called Thermoelectric Power or Seebeck Coefficient, which

computes the ratio between the charge flow produced and temperature difference, in a

case where there is no extra electric current [12]. Additionally, it reflects the coupling of

heat and charge currents and it finds applications in thermometers, power generators and

coolers.

On the other hand, spin is an intrinsic property related to angular momentum and it

endows to particles with an intrinsic magnetic momentum due to their connection with

electric charge, another intrinsic property. So, as the charge current, spin in the electrons

can be transported between electrodes (contacts) even though there is no charge flow,

it is the spin current [13]. However, special attention is given to manipulating the spin

currents along with charge currents in materials, where such coupling can vary, which

has spawned the Spintronics. This field is important because miniaturization, as it is

described by Moore’s Law [14], has boosted the manufacturing of spintronic devices to

enhance the information storage, where the spin state of electrons can represent bits of

data [15], through the creation of technologies based on those properties, such as magnetic

tunnel junctions [16] and spin valves [17].

1
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Heat currents can also interact with spin currents [18] from which the inter-field of

spin caloritronics has been spawned, whose objective is to influence spin currents through

temperature differences (or vice versa). Similar to the interaction between heat and charge

currents, we focus on the Seebeck effect studies in which depending on how the temper-

ature gradient is applied, we obtain two types of spin-based Seebeck effect. Firstly, the

spin-dependent Seebeck effect (SDSE), where a spin-dependent transport happens in bulk

materials directly due to the temperature differences [18, 19]. Secondly, the Spin Seebeck

effect (SSE) that is a two-step process happening at interface systems where a ferromag-

netic (FM) material, that produces a spin polarized current (spin current generator), is

connected to a nonmagnetic (NM) material (spin sink) through an intermediate interface

[18]. SSE offers unique advantages for ’green’ technologies compared to the TE effects,

as the optimization process is different for both. For TE systems, the strengthening (op-

timization) of the electronic part usually leads to the weakening of the thermal part and

vice versa. On the other hand, in SSE, the optimization is handled separately into the

thermal-magnetic properties of the spin current generator and the electronic properties of

the spin sink [19].

A highly relevant research area within spintronics and spin caloritronics is the Chiral

Induced Spin Selectivity (CISS) effect, discovered in 1999 by Naaman et al. [20]. The CISS

effect refers to an unusual phenomenon where the polarization of a current is produced by

geometries that break parity symmetry (called chiral) [21]. Chirality is not only found

in molecules like DNA but also in non-helical molecules such as enantiomers. In those

cases, we can physically understand the CISS effect as an electron scattering process in

systems where the spin of the electrons takes a relevant role in terms of the handedness of

the molecule. For instance, the enhancement (diminishment) in the transmission rates for

electrons with spin up (down) in right-handed molecules and the opposite for left-handed

molecules. Some sources allude to a more formal description, as an electron scattering

process in a system with strong spin-orbit interactions and where both space inversion and

time-reversal invariance are broken [22]. In any case, it is a broad field of study applied to

asymmetry reactions [23][24], model spin transport over spin-based tunneling phenomena

[25], conduction in DNA structures [26], transport under magnetic field perturbation [27],

among others.

Nanotechnology Engineer / Physicist 2 Graduation Project
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1.1 Problem statement

The SSE has been extensively investigated in interface systems mediated by semiconduc-

tors, metallic-like materials, and similar bulk systems. However, investigations addressing

SSE in chiral structures are rare. Such structures display high spin filtering, an effect

denoted as Chirality-Induced Spin Selectivity (CISS). Additionally, the possible influence

of quantum interference effects, which are ubiquitous in nano- and mesoscale systems, de-

serve a closer investigation in conjunction with spin-dependent transport. In this study,

we develop a minimal theoretical model for wire- and chiral- like dimers to address the

impact of the CISS effect and quantum interference on the SSE. The model studies in

this Thesis contribute to the understanding of the physics behind spintronic devices that

incorporate discrete quantized states in the scattering region such as molecular junctions

and molecular transistors.

1.2 Objectives

1.2.1 General Objective

This thesis aims to clarify qualitatively and theoretically the SE and SSE over 2 terminal-

s/contacts toy models whose mediator (scattering region) has discrete quantized states and

can perform spin filtering in the presence of spin-orbit interactions (CISS effect). Then,

the influence of quantum interference effects over the SE and SSE in the same models will

be analyzed.

1.2.2 Specific Objectives

• To derive in a consistent way the equations for the quantum transport from the

Green’s function formalism

• To derive in a consistent way the equations for the thermopower S and spin ther-

mopower Ss from the Green based transmission functions by using Sommerfeld ex-

pansion.

• To use the Green’s function technique to compute the electron and spin transport in

Nanotechnology Engineer / Physicist 3 Graduation Project
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toy models that do not polarize the spin alignment (wire-like dimer models).

• To compare the electron and spin transport results of the previous models with a

simplified chiral model that presents spin filtering based on the CISS effect (chiral-

like dimer model).

• To propose a modified chiral-like model that includes quantum interference effects.

• To compare the thermopower and spin thermopower of the models which present

spin filtering.

Nanotechnology Engineer / Physicist 4 Graduation Project



Chapter 2

Theoretical Framework

The aim of this chapter is to introduce and discuss the general theoretical background

employed in this work. The starting point is a brief introduction to the Non-Equilibrium

Green’s Functions technique and the derivation of the Landauer transmission for meso-

scopic systems. Then, the derivation of thermoelectric coefficients, in particular of the

thermopower, is provided in terms of the moments of the Landauer transmission function.

2.1 Green Functions and Quantum Mechanics

Within nonrelativistic quantum mechanics, the state of a given physical system can be

described by the Schrödinger equation:

iℏ ∂

∂t
Ψ(r⃗, t) = H Ψ(r⃗, t), (2.1)

where H = − ℏ2

2m
∇2 + V (r⃗, t) is the Hamiltonian of the system. However, Eq.(2.1) is a

partial differential equation, which, depending on the V (r⃗, t) shape, becomes hard to solve

analytically. Additionally, Eq.(2.1) is challenging to solve computationally when we are

treating with many-electron atoms or with molecules because of the many-body nature of

the problem.

An equivalent formulation of the Schrödinger equation, which can be exploited to de-

velop perturbative treatments, can be achieved by introducing Green’s function (GF),

thus treating Eq.(2.1) as a Sturm-Liouville operator problem (i.e. eigenvalue operator

5
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problem)[28]:

⇒
[
iℏ ∂

∂t
+ ℏ2

2m∇2
]

Ψ(r⃗, t) = V (r⃗, t) Ψ(r⃗, t). (2.2)

Finding a simplified solution for Eq. (2.2) involves treating V (r⃗, t) Ψ(r⃗, t) as the inho-

mogeneous source. The idea is to solve Eq.(2.1) by using the solution for the free case, i.e.

when there is no external potential V (r⃗, t). Then, the formal solution can be written as:

⇒ Ψ(r⃗, t) =
∫
G(r⃗, t; r⃗′, t′)Ψ(r⃗′, t′)V (r⃗′, t′) d3r⃗′ dt′, (2.3)

where G(r⃗, t; r⃗′, t′) is the Green function that must satisfy:
[
iℏ ∂

∂t
+ ℏ2

2m∇2
]
G(r⃗, t; r⃗′, t′) = δ(r⃗ − r⃗′)δ(t− t′).

It should be noted that Eq.(2.3) pertains to the free particle case. Consequently, the

wave function can be evaluated iteratively from the equation (2.3) in the sense of pertur-

bation theory. Alternatively, Green’s function can be directly solved perturbatively using

the Dyson equation method, which will be elaborated in the chapter 2.4. This concept

is important in this work because the resulting transmission in phenomenological models

(e.g. the linear double-dot model from chapters 3.2 and 4.1) are computed by considering

the flow of free particles through a scattering region (i.e. molecules).

Additional to the highly computational power that Green’s functions performs due to

iteration, it is worth to mention that in Quantum Mechanics such functions usually are

interpreted as the mathematical representation of the propagator for single particles [29].

2.2 Second Quantization

In the second quantized approach, particles are treated as Quantum Fields. In sum-

mary, most physics is contained in the operators rather than in the states [29] and such a

framework provides a theoretical frame in which the idea of occupation number within an

associated Fock space is introduced, and creation and annihilation operators are defined.

The Hamiltonian from the Schrödinger equation (2.1) is then reformulated in terms of

creation (annihilation) operators c†
i (ci) and the respective solutions for (2.1) are reformu-

lated in terms of the same ones. These operators must satisfy, in the case of fermions, the
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anticommutation relations:

{ci, ci} =
{
c†

i , c
†
i

}
= 0,{

ci, c
†
j

}
=
{
c†

j, ci

}
= δij, (2.4)

where the curly brackets are the anticommutators:

{a, b} = ab+ ba.

The physical interpretation is that c†
i creates a particle on state i in the Fock space,

for a given quantum property (e.g. position, spin, momentum, etc), while cj annihilates a

particle on the state j (for the same property).

2.3 Equilibrium and Non-equilibrium Green Functions

Green’s functions are not only a mathematical tool but also have physical significance. In

Quantum Mechanics, Green’s function is interpreted as the propagator for the probability

amplitudes (i.e. solutions to eq.(2.1) or namely the wavefunction Ψ(r⃗, t)) from one point

to another in space-time [29] and, in the context of second quantization, as the propagator

of the quantum field operators. Depending on whether we are considering systems in

thermodynamic equilibrium or situations where transport processes take place, we can

define two types of Green functions: equilibrium GF and non-equilibrium (or Keldysh)

GF.

2.3.1 Equilibrium Green Functions

Equilibrium Green’s functions are implemented to solve a Hamiltonian that describes quan-

tum systems in thermodynamic equilibrium. When we define a quantum system to be

analyzed, we must include thermal baths and particle reservoirs (both playing the role of

the environment) connected to the quantum system, i.e., it becomes an open quantum

system. In this regard, we say the system is in equilibrium if there are no flows of any type

involved.

We begin the resolution process by using the interaction picture representation to split

Nanotechnology Engineer / Physicist 7 Graduation Project
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the Hamiltonian:

H = H0 + V, (2.5)

where H0 is the exact solvable term and V is the hard to solve perturbation that represents

many body interactions, with both terms being time independent due to the separation of

the wavefunction into temporal and stationary part.

Once the Hamiltonian is expressed in terms of second quantization formalism, we need

to include propagation characteristics. So, we use the Feynman Green’s functions definition

based on the Wick-Time ordering symbol T [29]:

G(r⃗, t; r⃗′, t′) = −i⟨T
[
Ψ(r⃗, t)Ψ†(r⃗′, t′)

]
⟩,

G(r⃗, t; r⃗′, t′) = −iΘ(t− t′)⟨Ψ(r⃗, t)Ψ†(r⃗′, t′)⟩ + iΘ(t′ − t)⟨Ψ†(r⃗′, t′)Ψ(r⃗, t)⟩, (2.6)

where the brackets ⟨..⟩ for an operator (in interaction picture) O(t) = e
i
ℏH0tOe− i

ℏH0t are a

thermodynamic average using the Grand-canonical density matrix ρ = e−β(H−µN)/Tr(e−β(H−µN))

because we are dealing with a system at finite temperatures, which in turn depends on the

Hamiltonian given by equation (2.5) [1]:

⟨O(t)⟩ ≡
Tr

(
e−β(H−µN)O(t)

)
Tr

(
e−β(H−µN)

) , (2.7)

where N is the occupation number operator and β = 1
kBT

.

In Condensed Matter Physics, Eq.(2.6) is called Time-Ordered Green Function, Causal

Green Function or Finite-Temperature Green Function [1]. It represents the motion of the

field operator Ψ from (r⃗, t) to (r⃗′, t′) and the motion of the field operator Ψ† from (r⃗′, t′)

to (r⃗, t). Green’s functions allow for a perturbation expansion because the Hamiltonian is

constructed in a manner that aligns with the perturbation scheme [1]

Additionally, for reasons that will be explained later, we define the Lesser and Greater

Green’s functions from Eq.(2.6) as follows:

G<(r⃗, t; r⃗′, t′) = i⟨Ψ†(r⃗′, t′)Ψ(r⃗, t)⟩,

G>(r⃗, t; r⃗′, t′) = −i⟨Ψ(r⃗, t)Ψ†(r⃗′, t′)⟩,
(2.8)
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then, we rewrite Eq.(2.6) in terms of (2.8):

G(r⃗, t; r⃗′, t′) = Θ(t− t′)G>(r⃗, t; r⃗′, t′) + Θ(t′ − t)G<(r⃗, t; r⃗′, t′).

Also retarded and advanced Green’s functions can be defined as:

Gr(r⃗, t; r⃗′, t′) ≡ −iΘ(t− t′)⟨
{
Ψ(r⃗, t),Ψ†(r⃗′, t′)

}
⟩ = Θ(t− t′)

(
G>(r⃗, t; r⃗′, t′) −G<(r⃗, t; r⃗′, t′)

)
,

Ga(r⃗, t; r⃗′, t′) ≡ iΘ(t′ − t)⟨
{
Ψ(r⃗, t),Ψ†(r⃗′, t′)

}
⟩ = −Θ(t′ − t)

(
G>(r⃗, t; r⃗′, t′) −G<(r⃗, t; r⃗′, t′)

)
,

(2.9)

where equations (2.8) and (2.9) are taken from Ref.[1] for the case of fermions.

In order to obtain information about the temporal evolution for Green’s Functions,

the (Heisenberg) equation of motion technique for the corresponding time-dependent cre-

ation/annihilation operators can be used:

idO(t)
dt = [O,H]

dO(t)
dt = i[H,O]

(2.10)

where O is an operator, H is the total Hamiltonian of the system and ℏ = 1 (natural

units). In the case of time-independent Hamilton operators, a Fourier transform to the

energy space can be further defined as:

G(E) = F{G(t, t′)} =
∫ ∞

−∞
G(t)eiE(t−t′)dt,

G(t, t′) = F −1{G(E)} = 1
2π

∫ ∞

−∞
G(E)e−iE(t−t′)dE,

(2.11)

following the convention of Zubarev [30].

For example, for a system of noninteracting free electrons, there is an associated Kinetic

Energy Hamiltonian (2.12):

Hkin =
∑

k

ϵk c
†
k ck, (2.12)

where c†
k(ck) creates (annihilates) an electron in the eigenstate k, corresponding to the

wavenumber k⃗, and ϵk is the associated eigenvalue, in this case is the dispersion relation

(ϵk = ℏ2k2

2m
).
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As we know, the Green’s functions are associated to the operators c†
k and ck from Hkin.

So, we have to extract information about the temporal evolution of such operators, by

using the equation of motion technique (2.10):

dck

dt = −i[ck, Hkin] = −iϵkck ⇒ ck(t) = e−iϵktck,

dc†
n

dt′ = −i[c†
k, Hkin] = iϵkc

†
k ⇒ c†

k(t′) = eiϵkt′
c†

k,

so, we can define the causal Green’s function as:

Gk(t, t′) = −i⟨T
[
ck(t), c†

k(t′)
]
⟩, (2.13)

having the retarded and advanced Green’s function as:

Gr
k(t, t′) = −iΘ(t− t′)⟨

{
ck(t), c†

k(t′)
}
⟩ = −iΘ(t− t′)e−iϵk(t−t′)δkk, (2.14)

Ga
k(t, t′) = iΘ(t′ − t)⟨

{
ck(t), c†

k(t′)
}
⟩ = iΘ(t′ − t)eiϵk(t′−t)δkk,

and the lesser and greater Green’s functions as:

G<
k (t, t′) = i⟨c†

k(t′)ck(t)⟩ = i eiϵk(t′−t)⟨c†
kck⟩,

G>
k (t, t′) = −i⟨ck(t)c†

k(t′)⟩ = −i e−iϵk(t−t′)⟨ckc
†
k⟩.

The retarded and advanced GFs are useful to calculate physical responses of the system

such as DOS (density of states), scattering rates and spectral properties [1]. On the

other hand, the lesser and greater GFs are useful to compute kinetic properties, i.e. the

observables of the system, such as particle densities or currents (directly related to quantum

transport phenomena)[1].

For example, for the retarded Green’s function for the noninteracting free electrons

case, we can convert it to the energy space by taking the integral representation of the

Heaviside Function [30]:

Θ(t− t′) = i
2π

∫ ∞

−∞
dE

e−iE(t−t′)

E + iη ,
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over Eq.(2.14) (remember δkk = 1):

Gr
k(t, t′) = 1

2π

∫ ∞

−∞
dE

e−i(E+ϵk)(t−t′)

E + iη ,

where, using the change of variable E → E − ϵk, we obtain:

Gr
k(t, t′) = 1

2π

∫ ∞

−∞
dE

e−iE(t−t′)

E − ϵk + iη .

Finally, by comparing with the Fourier Transform (2.11), the resulting retarded Green’s

function in the energy space for Gr
k(t, t′) is obtained:

⇒ Gr
k(E) = 1

E − ϵk + iη . (2.15)

Notice that the denominator in equation (2.15) contains the poles of the retarded

Green’s function and they represent the energy eigenvalues of the state k. For this specific

case (H = Hkin), we rename the Green’s function as the Free Green’s functions Gk(E)’s.

According to Ref.[1], these functions are the building blocks for the perturbation series

used to solve more complex Hamiltonians. This is because, in general, H = Hkin + V ,

where V encodes many-body interactions.

For example, we consider the Hamiltonian for N confined non-interacting electrons:

H =
N∑
n

ϵn c
†
n cn +

N∑
n,m

(
V c†

n cm + h.c.
)
, (2.16)

so, we can define the retarded Green’s function as:

Gr
nm(t, t′) = −iΘ(t− t′)⟨

{
cn(t), c†

m(t′)
}
⟩. (2.17)

and use the equation of motion technique (2.10) to obtain information about the temporal

evolution of Gr
nm(t, t′):

i ∂
∂t
Gr

nm(t, t′) = δ(t− t′)δnm − iΘ(t− t′)⟨
{
iċn(t), c†

m(t′)
}
⟩,

⇒ i ∂
∂t
Gr

nm(t, t′) = δ(t− t′)δnm − iΘ(t− t′)⟨
{
[cn, H], c†

m

}
⟩,

(2.18)

Nanotechnology Engineer / Physicist 11 Graduation Project



School of Physical Sciences and Nanotechnology Yachay Tech University

we solve the equation (2.18) by solving the commutator operation:

[cn, H] =
cn,

N∑
n′
ϵn′ c†

n′ cn′ +
N∑

n′,m′

(
V c†

n′ cm′ + h.c.
) = ϵncn +

N∑
n′,m′

V (δnn′cm′ + δnm′cn′),

and thus, the anticommutator operation:

{
[cn, H], c†

m

}
=
ϵncn +

N∑
n′,m′

V (δnn′cm′ + δnm′cn′), c†
m


⇒
{
[cn, H], c†

m

}
= ϵn

{
cn, c

†
m

}
+

N∑
n′,m′

V
(
δnn′

{
cm′ , c†

m

}
+ δnm′

{
cn′ , c†

m

})
,

we obtain as a result:

i ∂
∂t
Gr

nm(t, t′) = δ(t− t′)δnm + ϵnG
r
nm(t, t′) +

N∑
n′,m′

V
(
δnn′Gr

m′m(t, t′) + δnm′Gr
n′m(t, t′)

)
.

(2.19)

We can use the Fourier Transform and then some reordering to convert the differential

equation (2.19) into a set of algebraic equations:

Gr
nm(E) = δnmG

r
n(E) +

N∑
n′,m′

V Gr
n(E)Gr

m′m(E)δnn′ +
N∑

n′,m′
V Gr

n(E)Gr
n′m(E)δnm′ , (2.20)

where Gr
n(E) = 1

E−ϵn+iη is the Free Green’s function.

2.3.2 Retarded GF for a Dimer

In chemistry, dimer refers to a molecule composed of two identical molecules called monomers,

for example, the nitrogen dioxide (NO2) forming dinitrogen tetroxide (N2O4) at lower tem-

peratures. Alternatively, in solid-state physics, dimer refers to a theoretical model used to

investigate the interaction or hybridization between two relevant structures, not necessar-

ily molecules. For instance, it might represent two relevant orbitals in a molecule chain, a

dimer (as a molecule), two quantum dots, two atoms, etc.

In this work, we will consider the dimer (model) as electrons confined in two certain

locations called sites {ϵ1, ϵ2}, see Fig.2.1. So, we can derive such a model from the Hamil-

tonian for N confined non-interacting electrons by considering the states n(m) as spatial

states (i.e., positions in the dimer), hybridization with neighbor sites and N = 2 confined
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Figure 2.1: Schematic picture of a dimer model. The circles represent structures where
electrons get confined (e.g., quantum dots) and thus contain discrete quantum levels.

non-interacting electrons, then the Hamiltonian will be:

H =
2∑
n

ϵn c
†
n cn +

1∑
n

(
V c†

n cn+1 + h.c.
)
. (2.21)

where h.c. stands for the hermitian conjugate, an operation that reverses the order and

applies complex conjugation. In this case, the hermitian conjugate of V c†
ncn+1 is h.c. =

V ∗c†
n+1cn = V c†

n+1cn as V is a real number. So, the retarded Green Function for this case

will be:

Gr
nm(E) = Gr

n(E)δnm + V Gr
n(E)Gr

2m(E)δn1 + V Gr
n(E)Gr

1m(E)δn2. (2.22)

Since our terminology is focused on the physical standpoint, we will refer to dimer as

a model from now on. It will be explicitly mentioned the cases when we refer to dimer as

a molecule. Finally, this model will play a central role in chapter 3.

2.3.3 Non-equilibrium Green Functions

Although systems in thermodynamic equilibrium provide a useful framework for solving

open quantum systems, it is crucial to recognize that such a condition is an idealized

construct. Every system encountered in daily life are out of equilibrium. In the context of

the open quantum system, the defining characteristic of a non-equilibrium system is the

presence of not compensating flows. Consequently, the study of nonequilibrium systems

primarily focuses on transport phenomena and thus the implementation of Non-equilibrium

Green’s functions (NEGF), also called Keldysh-Green’s functions.

NEGF are Green’s functions implemented to solve a hamiltonian that describes a system
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that is out of the thermodynamic equilibrium. Therefore, the construction will be, in

principle, different from the equilibrium case by the fact that the constant flow of matter or

energy introduces mathematically a time dependence in the system. If so, the Hamiltonian

will be restructured to take into account such time dependence [1]:

H = h+H ′(t), (2.23)

where h ≡ H0 + V is the Hamiltonian from the equilibrium case, and H ′(t) is the time-

dependent perturbation referring to the source. Examples of such sources include an electric

field, a light excitation pulse, or, as assumed in this work, the connection of two contacts

(terminals) at different (electro)chemical potentials.

Including additional term H ′(t) necessitates its incorporation into the density matrix

ρ and Green’s functions, resulting in more complex transformations than the equilibrium

case. Fortunately, as asserted in Refs.[1, 31], both Equilibrium Green’s Function (EGF) and

Nonequilibrium Green’s Function (NEGF) theories can be rendered structurally equivalent.

This structural equivalence has been leveraged in additional studies (Refs.[32, 33, 34, 7]).

Consequently, NEGF operates fundamentally analogous to the equilibrium theory, with

the unique distinction being the replacement of real-axis integrals with contour integrals.

Figure 2.2: Keldysh contour Ck that is splitting into two branches: Ck+ goes from −∞ to
∞ and Ck− goes from ∞ to −∞. Adapted from [1].

The Keldysh Green Function is defined by taking both time labels to follow over two

contour branches according to Fig.2.2:

G(t, t′) = −i⟨TCk

[
Ψ(t)Ψ†(t′)

]
⟩, (2.24)

where now the time ordering is over a path called the Keldysh contour. Additionally, the

causal Green function is defined as well:

GCk(t, t′) = −i⟨T
[
Ψ(t)Ψ†(t′)

]
⟩, t, t′ ∈ Ck+ , (2.25)
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Table 2.1: Langreth Rules for the analytic continuation. Adapted from [1]

Contour Real Axis
C =

∫
C AB C< =

∫
t [ArB< + A<Ba]

Cr =
∫

t A
rBr

D =
∫

C ABC D< =
∫

t [ArBrC< + ArB<Ca + A<BaCa]
Dr =

∫
t A

rBrCr

C(τ, τ ′) = A(τ, τ ′)B(τ, τ ′) C< = A<(t, t′)B<(t, t′)
Cr = A<(t, t′)Br(t, t′) + Ar(t, t′)B<(t, t′)Ar(t, t′)Br(t, t′)

D = A(τ, τ ′)B(τ, τ ′) D< = A<(t, t′)B>(t′, t)
D< = A<(t, t′)Ba(t′, t) + Ar(t, t′)B<(t′, t)

notice that (2.25) is the same expression as (2.6) and, therefore, the same as the example

(2.13) from the previous subchapter.

Now, we must deal with contour integrals in a complex time. Fortunately, we can use

the Langreth Theorem, which, using the analytic continuation, asserts to correlate complex

time contour integrals with real-time integrals [1]. Some of the main results of applying

this theorem over Green functions are shown in the Table 2.1.

Additionally, the treatment in Ch.2.3.1 was based on identifying the retarded Green’s

function and working over it. However, in the non-equilibrium case, it is better to use the

causal Green’s function (which in this work it will be referred just as Green’s function from

now on) because it contains all the other Green’s functions.

2.4 Quantum Transport Coefficients for Mesoscopic
Tunneling Systems

Transport phenomena involve the transfer of electrons that contain properties like charge,

spin, energy, mass, etc, between different parts of a system. And, as it was mentioned

before, the Non-equilibrium Green’s functions (NEGF) provide a very flexible analytical

framework to compute transport coefficients [1].

Using the equation of motion technique over NEGF leads to the Dyson Equation which
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(usually) is presented in the following form:

G(τ, τ ′) = G0(τ, τ ′) +
∫
dτ1 G0(τ, τ1)U(τ1)G(τ1, τ

′)

+
∫
dτ1

∫
dτ ′′ G0(τ, τ1)Σ(τ1, τ

′′)G(τ ′′, τ ′),
(2.26)

where τ represents the complex time (t represent the real time). It is also assumed a one-

body external potential U that represents the non-equilibrium term in the Hamiltonian

and the irreducible Self-Energy Σ[G] standing for the interactions [1].

Eq.(2.21) from the Ch.2.3.2 has the corresponding Dyson Equation from the perturba-

tion expansion of the Green’s function:

Gnm(τ, τ ′) = δnm

∫
dτ1δ(τ, τ1)Gn(τ1, τ

′) + δn1V
∫
dτ1 Gn(τ, τ1)G2m(τ1, τ

′)

+ δn2V
∫
dτ1 Gn(τ, τ1)G1m(τ1, τ

′),
(2.27)

that, after applying the Langreth Rules (Table 2.1) and then Fourier Transform, Eq.(2.22)

is recovered.

In general, once the required Green Function is defined, the NEGF technique lies in

using the equation of motion technique to get the Dyson Equation (2.26) from a pertur-

bation expansion. Then, making use of Langreth Rules and Fourier Transform over it to

get the matrix form of the Dyson equation:

Gr(E) = Gr
0(E) + Gr

0(E)Σr(E)Gr(E), (2.28)

where Gr
0(E) is the unperturbed retarded Green Function matrix which is composed of free

retarded Green’s functions Gr
0(E), Eq.(2.15), and Σr(E), that is defined as the retarded self

energy function. Consequently, equation (2.28) corresponds to the matrix generalization

for non-equilibrium systems of Eq.(2.20).

Until now, we are not mentioned anything relevant related to the scale lengths in

our derivations, e.g. the dimer model from section 2.3.2. The only thing that we know

is the systems are sufficiently small to consider the effects of quantum mechanics and

thermodynamics. Alternatively, the works related to quantum transport coefficients have

been performed within a defined size scale, the mesoscopic. It refers to a size range that lies

between nano-scale and micro-scale [35]. While other definitions asserts that it pertains to
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material scales larger than a ”few of atoms but not large enough to be ohmic” [31].

In any case, since this thesis takes the works performed in dimers (molecules) [2],

molecular systems [3, 36, 37, 38, 39, 40] and quantum dots [41, 42, 4, 43, 44, 9] as reference

for quantum transport coefficients computations, we will define the mesoscale systems in

terms of the definition of Ref. [31]. However, we will restrict ourselves to those that contain

bound states and where quantum tunneling plays a significant role. Regarding the scale

order of such systems, we have the first row of Fig.2.3. In the second row, we observe

higher size systems, as a result, the methods that we will employ in this work can also

be applied to those systems as they also contain bound states in some manner, e.g., the

helical polymer from Ref.[8].

Figure 2.3: Mesoscale systems ordered in terms of the size. The systems are measured in
terms of the nanoscale. Images extracted from: [2, 3, 4, 5, 6, 7, 8], a) to g) respectively.

2.4.1 Two-Terminals transport system

Now, we define the system that we will work from now on. Fig.(2.4) shows the general

structure that we will consider and that match with the systems of the first row in Fig.2.3.
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It is made of two contacts with different electrochemical potentials that produce a voltage

and then a current, connected to a central region where the quantum wave scattering

process is performed. The idea is to treat both contacts and the scattering region as

decoupled systems at thermal equilibrium [1] in which the electrons are localized in the

case of the central region and delocalized in the case of the contacts. Then, we include a

coupling (tunneling) between regions and contacts through the retarded self-energy for the

left(right) contact Σr
L(R)(E). In this way, we obtain a system that describes the transport

of electrons between regions in thermal equilibrium, i.e., the overall system is now out of

equilibrium.

Figure 2.4: Schematic general representation of the system treated in this work. Here
L(R) refers to the left(right) contact, while Σr

L(R)(E) is the retarded self-energy function
that quantifies the tunneling of electrons from the contacts to the scattering region. In
the scattering region, we can find structures like the dimer with horizontal or vertical
orientation that will be treated in this thesis.

From Fig.2.4, we define the Hamiltonian form once solving techniques (i.e. Dyson

equation) were introduced. The Hamiltonian splits into three regions: H = Hc+Hcen+HT .

Here Hc, Hcen and HT stand for the contacts (i.e., left and right electrodes), the structure

between the contacts (i.e., the scattering region) and the coupling between the contacts

and the center, respectively [1]. Each piece is usually set up as follows:

• The contact Hamiltonian is written in such way that it produces non-interacting

electrons.

Hc =
∑

k, α∈{L,R}
ϵkαc

†
kαckα, (2.29)

• The tunneling Hamiltonian is written in such a way that it produces creation and

annihilation particles in both electrodes and scattering region.
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HT =
∑

k, α∈{L,R}
m

Vkα,mc
†
kαdm + h.c., (2.30)

• The central region has a variety of shapes to ensemble the respective Hamiltonian.

Here some examples provided by [1]:

– For a central region which consist of noninteracting levels:

Hcen =
∑
m

ϵmd
†
mdm. (2.31)

– For a central region which couples charge carriers to phonons:

Hel−ph
cen = ϵ0d

†d+ d†d
∑

q⃗

Mq⃗

[
a†

q⃗ + a−q⃗

]
, (2.32)

Here, a†
q⃗(aq⃗) creates (destroys) a phonon in mode q⃗.

– For a central region produced by the Anderson-type model for electron interac-

tions in the central region.

Hcen =
∑

σ

ϵ0d
†
σdσ + Un↑n↓, (2.33)

Here, σ states a label for the spin state, while nσ is the occupation number

operator of spin-state σ and U describes the on-site Coulombic repulsion. If we

computed the Green function of this Hamiltonian, without taking into account

Hc and HT , we would notice the lack of Kondo behavior because of the lack of

the correlation term with free electrons.

Notice that the central section has rich options that provide plenty of variety of systems

to work on. Also, this background establishes the base for the derivation of the quantum

transport coefficients for mesoscopic systems in general.

Now, following the idea from Ch.2.3.1 about observables of the system, let’s compute

the electron current J for mesoscopic systems in general by using NEGF. For the setup

(Fig. 2.4), the current J is obtained from the occupation number operator over one of

the contacts e.g. left contact NL. In such a case, to obtain more information about NL
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behavior, we need to compute the time derivative of it. So, using the equation of motion

technique (2.10), the electron current expression derivation starts from the definition of the

current for the left contact (JL) which is written as the time derivative of the occupation

number operator NL:

JL = −e⟨ṄL⟩ = − ie
ℏ

⟨[H,NL]⟩, (2.34)

where NL = ∑
k,α∈L c

†
kαckα and H = Hc +HT +Hcen. Using the commutation relations from

Eq.(2.4) results in [H,NL] = [HT , NL] which, defining new Green’s functions i.e. Eq.(2.36),

leads to:

JL = ie
ℏ

∑
k, α∈L

n

[
Vkα,n⟨c†

kαdn⟩ − V ∗
kα,n⟨d†

nckα⟩
]
,

= 2e
ℏ
Re

 ∑
k, α∈L

n

Vkα,nG
<
n,kα(t, t)

 ,
(2.35)

where:

G<(t, t′) ≡ i⟨c†
kα(t′)dn(t)⟩,

G<(t, t′) ≡ i⟨d†
n(t)ckα(t′)⟩,

(2.36)

Additional, the derivation of G<
n,kα(t, t) over Eq.(2.35) comes from the time diagonal com-

ponents and the property G<
kα,n(t, t) = −

[
G<

n,kα(t, t)
]∗

of the Green Functions (2.36).

Next step is to derive an expression for G<(t, t′). The equation of motion technique

(2.10) with Langreth Rules and Fourier Transform are used over the Green Function G(t, t′)

which leads to:

G<
n,kα(t, t′) =

∑
m

V ∗
kα,m

∫ dE

2π
[
Gr

nm(E)g<
kα(E) +G<

nm(E)ga
kα(E)

]
exp

[
−iE(t− t′)

]
,

⇒ G<
n,kα(t, t) =

∑
m

V ∗
kα,m

∫ dE

2π
[
Gr

nm(E)g<
kα(E) +G<

nm(E)ga
kα(E)

]
,

and replacing in (2.35) leads to:

JL = 2e
ℏ

∫ dE

2π Re


∑

k, α∈L
n,m

Vkα,nV
∗

kα,m

[
Gr

nm(E)g<
kα(E) +G<

nm(E)ga
kα(E)

] , (2.37)
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where:

g<(t− t′) = i⟨c†
kα(t′)ckα(t)⟩,

= if(ϵ0
kα) exp[−iϵkα(t− t′)],

gr,a(t− t′) = ∓iΘ(±t∓ t′)⟨{ckα(t), c†
kα(t′)}⟩,

= ∓iΘ(±t∓ t′) exp[−iϵkα(t− t′)],

(2.38)

here f(ϵkα) =
[
exp[(ϵkα − µα/kBT )] + 1

]−1 is the equilibrium Fermi Distribution in a given

contact [1].

Moreover, the electrode Self-energies (Σ) are introduced to convert the summations

related to momentum (i.e. k) into a single expression:

Σ<
α,mn(E) =

∑
k

V ∗
kα,mVkα,ng

<
kα(E),

Σr,a
α,mn(E) =

∑
k

V ∗
kα,mVkα,ng

r,a
k,α(E).

(2.39)

Applying (2.39) to (2.37), and after rewriting, the following is obtained:

JL = 2e
ℏ

∫ dE

2π Re
{
Tr

(
Gr(E)Σ<

L(E) + G<(E)Σa
L(E)

)}
, (2.40)

by using some relations and identities from the Green functions, equation (2.40) leads to

the general current expression from the left contact:

JL = e

ℏ

∫ dE

2π Tr
{
G>(E)Σ<

L(E) − G<(E)Σ>
L(E)

}
, (2.41)

for JR is an analogous process:

JR = e

ℏ

∫ dE

2π Tr
{
G>(E)Σ<

R(E) − G<(E)Σ>
R(E)

}
. (2.42)

Finally, considering steady state, the total current will be uniform which leads to JL =

−JR [1]. Such fact allows us to symmetrize the current (J = JL + JL = JL − JR) which

leads to a general expression for the current:

J = e

ℏ

∫ dE

2π Tr
{

G>(E)
(
Σ<

L(E) − Σ<
R(E)

)
− G<(E)

(
Σ>

L(E) − Σ>
R(E)

)}
, (2.43)

Nanotechnology Engineer / Physicist 21 Graduation Project



School of Physical Sciences and Nanotechnology Yachay Tech University

with:

G<,>(E) = Gr(E)
(
Σ<,>

int (E) + Σ<,>
L (E) + Σ<,>

R (E)
)

Ga(E),

where Σ<,>
int is the lesser/greater self energy due to interactions within the central region.

Depending on the constant factor in the symmetrization, e.g. J = (JL+JL)
2 = (JL−JR)

2 , it is

possible obtain:

J = e

2ℏ

∫ dE

2π Tr
{

G>(E)
(
Σ<

L(E) − Σ<
R(E)

)
− G<(E)

(
Σ>

L(E) − Σ>
R(E)

)}
. (2.44)

Both versions are valid but we will use (2.43) from now on.

2.5 NEGF and Landauer-Büttiker Formalism

The Landauer formula refers to a quantum approximation in which the main quantity to

be computed is the transmission function from one contact to another without taking into

account the state or shape of the central region [31]. In such approximation, the expression

for the current is obtained following the Büttiker equation [31], this leads to the formula

used in the Landuer-Büttiker (L-B) formalism:

J = 2e
ℏ

∫ dE

2π
(
fL(E) − fR(E)

)
T, (2.45)

where T is related to the quantum mechanical transmission coefficient [32, 26, 45, 34, 46,

31].

On the other hand, the NEGF formalism consists of using Eq.(2.43) to compute the

transport between contacts. Unlike the L-B formalism, NEGF takes into account the shape

of the central region by considering the interactions that can occur within it. Examples

of such interacting central regions are the Hamiltonian (2.32), which involves electron-

phonon interactions, and (2.33) which involves electron-electron interactions. As we can

infer, NEGF can, in principle, lead to the L-B formalism if we restrict ourselves to the case

of a non-interacting central region.

To arrive at a general expression relating current and transmission of L-B, we start
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with the general expression for the current from NEGF (2.43):

J = e

ℏ

∫ dE

2π Tr
{

G>(E)
(
Σ<

L(E) − Σ<
R(E)

)
− G<(E)

(
Σ>

L(E) − Σ>
R(E)

)}
.

For the case of non-interacting central region, we introduce new expressions:

G<(E) = Gr(E)
(
Σ<

L(E) + Σ<
R(E)

)
Ga(E),

G>(E) = Gr(E)
(
Σ>

L(E) + Σ>
R(E)

)
Ga(E),

Σ<
α (E) = ifα(E, µα)Γα(E),

Σ>
α (E) = −i

(
1 − fα(E, µα)

)
Γα(E),

(2.46)

where fα(E, µα) is the Fermi-Dirac distribution:

fα(E, µα) = 1
exp(E−µα

kBTα
) + 1

,

and, Γα(E) is the level width function. We will use Γα(E) as the function to quantify the

coupling (tunneling) between the non-interacting regions from now on.

Finally, replacing (2.46) over (2.43) and after some algebra, the electronic current is

obtained:

J = 2e
ℏ

∫ dE

2π
(
fL(E, µL) − fR(E, µR)

)
Tr

{
Gr(E)ΓL(E)Ga(E)ΓR(E)

}
,

⇒ J = 2e
ℏ

∫ dE

2π
(
fL(E, µL) − fR(E, µR)

)
T (E), (2.47)

where T (E) is the Landauer Transmission:

T (E) ≡ Tr
{
Gr(E)ΓL(E)Ga(E)ΓR(E)

}
. (2.48)

In the remaining thesis, the main goal will be to explicitly calculate the Landauer

transmission function for different model systems. Since the spin degree of freedom will

play a crucial role in our investigation, we have to generalize the previous developments to

include the spin label in the operators, i.e. c†
nσ(cnσ), with σ = {↑, ↓} being the spin label.

This leads to:

T (E) = Tr
{
Gr(E)ΓL(E)Ga(E)ΓR(E)

}
=
∑

σ

Tσ(E), (2.49)
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where Tσ(E) is the spin-dependent Landauer Transmission that is determined by the ex-

plicit solution of the required system. Henceforth, the Green’s function formula for the

charge current previously derived (2.47) becomes:

Je ≡ J =
∑

σ

e

ℏ

∫ dE

2π
(
fL(E, µL) − fR(E, µR)

)
Tσ(E), (2.50)

and the spin current:

Js =
∑

σ

1
ℏ

∫ dE

2π

(
σ̂
ℏ
2

) (
fL(E) − fR(E)

)
Tσ(E), (2.51)

where σ = {↑, ↓} is the spin label and σ̂ = {+,−} is the mathematical operator for up and

down spin respectively. And it is also worth deriving the energy current or also called the

heat current:

Jh =
∑

σ

1
ℏ

∫ dE

2π (E − µL)
(
fL(E) − fR(E)

)
Tσ(E). (2.52)

It is worth mentioning that this formalism encompasses only coherent transport because

the electrons involved do not interact with any particles, resulting in no phase-breaking

processes occurring [31, 47]. Thus, the presence of interactions within the central region

play a crucial role in determining whether the transport is coherent or non-coherent.

In general, the NEGF formalism for transport serves as an alternative quantum ap-

proximation method akin to the Landauer-Büttiker (L-B) formalism. The key distinction

between the two lies in the scope of electron transport behavior considered: while the L-B

formalism accounts exclusively for coherent transport the NEGF formalism can encom-

pass both components of the transport phenomena [31]: the coherent and non-coherent.

Given that our focus will be restricted to coherent transport, both approximations become

equivalent.

Lastly, although both approximations lie in the same regime, NEGF is chosen for its

suitability in numerical computations. Given the Hamiltonian of the scattering region

Hcen and the level-width function per contact Γα(E), Eq.(2.48) can be directly applied to

evaluate the current. If a phase-breaking process or more complex shapes for the contacts

need to be included, it would require additional effort to determine the appropriate retarded

self-energy function Σr
α(E), but this is a one-time effort [47], resulting in a method that is

both mechanical and straightforward.
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2.6 Linear Non-equilibrium Thermodynamics and the
Onsager Transport Coefficients

The linear regime for Nonequilibrium Thermodynamics refers to a system that is close to

equilibrium. In such approximation, linear relations are assumed between the forces and

flows through constant coefficients called Onsager coefficients [12]:

Jk =
∑

j

LkjFj.

In such a framework, simplifications derived by Onsager are included Lij = Lji. It

leads to the Symmetry Principle which states that ”macroscopic causes always have fewer

or equal symmetries than effects they produce”. It allows us to restrict the force-flow

coupling that helps in the construction of the phenomenological framework.

2.6.1 Thermoelectric Phenomena

In general terms, TE phenomena involve thermal gradients producing not only heat flow

but also electrical currents and vice-versa. Such effects can be described by linear phe-

nomenological laws for bulk systems as [45]:

Je = Lee
∆V
T

+ Leh
∆T
T 2 ,

Jh = Lhe
∆V
T

+ Lhh
∆T
T 2 .

(2.53)

Considering now the expressions for charge and heat current from the NEGF formalism

(with J ≡ Je):

Je = 2e
ℏ

∫ dE

2π
(
fL(E) − fR(E)

)
T (E),

Jh = 2
ℏ

∫ dE

2π (E − µL)
(
fL(E) − fR(E)

)
T (E),

(2.54)

and using an expansion around the electrochemical potential µ (Fermi Energy) and tem-

perature T up to linear order in applied electric potential and temperature differences (i.e.

Sommerfeld-type expansion) leads to the phenomenological laws for meso- and nanoscopic
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systems:

Je = ∆µ eL0 + ∆T
T

eL1,

Jh = ∆µL1 + ∆T
T

L2,

(2.55)

where Ln are moments of the Landauer transmission and thus, provide explicit expressions

for the Onsager coefficients in a non-interacting quantum mechanical system in contact

with heat and particle reservoirs:

Ln ≡ 2
ℏ

∫ dE

2π (E − µ)n

(
− ∂f

∂E
(E, µ)

)
T (E).

From Eq.(2.55) expressions for the familiar transport coefficients can be derived: the

(isothermal) electric conductance G, the thermal conductance K and the thermopower, or

also called Seebeck coefficient S [45].

For example, the Seebeck coefficient is deduced by considering a case where, knowing

there is no charge current Je = 0, a voltage bias (∆V ) appears by the presence of a

temperature difference (∆T ), so:

S = −
(

∆V
∆T

)
Je=0

= 1
eT

L1

L0
.

Another example, we have the thermal conductance which is deduced by computing

the ration between the heat current and temperature difference in a case where there is no

charge current:

κ =
 Jh

∆T


Je=0

= 1
T

[
L2 − L2

1
L0

]
.

From now on, the Seebeck effect (and its spin version) will be the focus in this work as

we are concentrated only in the thermopower and spin thermopower analysis.

2.6.2 Spin Thermoelectric Phenomena

When spin dependence is involved in the phenomenological law formulae, the linear re-

sponse approximation around the electrochemical potential µ and temperature T is ap-

plied over equations (2.50) to (2.52), so that the Onsager coefficients become in general

Nanotechnology Engineer / Physicist 26 Graduation Project



School of Physical Sciences and Nanotechnology Yachay Tech University

spin dependent.

Je =
∑

σ

∆µ eL0σ +
∑

σ

∆T
T

eL1σ,

Js = ℏ
2
∑

σ

σ̂∆µL0σ + ℏ
2
∑

σ

σ̂
∆T
T
L1σ,

Jh =
∑

σ

∆µL1σ +
∑

σ

∆T
T

L2σ,

(2.56)

where:

Lnσ ≡ 1
ℏ

∫ dE

2π (E − µ)n

(
− ∂f

∂E
(E, µ)

)
Tσ(E). (2.57)

In conclusion, once the retarded Green function is found, the Landauer Transmission

(2.48) is obtained, and it allows to compute the thermoelectric coefficients eventually in-

cluding the spin degree of freedom.

In this way, the so-called Seebeck Effect (SE) is a phenomenon where, knowing there is

no charge and spin current, a voltage bias (∆V ) appears in the presence of a temperature

difference. The Seebeck (Thermopower) coefficient S is the voltage (∆V ) and temperature

difference (∆T ) ratio when Je = 0 and Js = 0:

S =
(

∆V
∆T

)
Je=0,Js=0

= − 1
2eT

(
L1↑

L0↑
+ L1↓

L0↓

)
, (2.58)

and it is useful to compute the efficiency of conversion from heat to electric current.

The Spin Seebeck coefficient Ss is the spin voltage (∆V s) and temperature difference

(∆T ) ratio when Je = 0 and Js = 0:

Ss =
(

∆V s

∆T

)
Je=0,Js=0

= − 1
2eT

(
L1↑

L0↑
− L1↓

L0↓

)
, (2.59)

and it quantifies the efficiency of conversion from heat into spin current. The so called

Spin Seebeck Effect (SSE). A physical interpretation is given by the case where, knowing

there is no charge and spin current, a spin current potential denoted by µ↑−µ↓
e

[48], spin

voltage bias (∆V s), appears produced by a temperature gradient.

Finally, we organize the regimes of influence due to heat for the SE and SSE in the

following scheme, see Fig.2.5. From this figure, we conclude that both SE and SSE occur

in similar systems. However, while SE occurs in any conductor, the SSE is limited to
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magnetic conductors, where the spin of the electrons plays a significant role.

Figure 2.5: Scheme about the SE and SSE domains. We observe that the Spin Seebeck
Effect (SSE) is limited to magnetic conductors.
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Chapter 3

Methodology

In this chapter, the mathematical tools introduced in Chapter 2 will be applied to models

that will be used in the next chapter (spin-independent and spin-dependent versions). The

main focus will be on the calculation of the retarded Green’s function, a crucial element

for transport analysis.

3.1 Model Hamiltonian for Two-Terminals Transport

Let’s remember (from Ch.2.4.1) the Hamiltonian system splits into three parts as follows:

H = Hc +Hcen +HT . (3.1)

Both the NEGF and the Hamiltonian setups of the following models will be mainly based

on Eq.(3.1). Since we are interested in the scattering section (i.e., the central region), we

define the Green Function based on the basis for Hcen which is assumed to be dnσ(d†
mσ′),

thus:

Gnm,σσ′(t, t′) = (−i)⟨T{dnσ(t)d†
mσ′(t′)}⟩. (3.2)

Finally, the NEGF method for non-interacting central region leads to the Eq.(2.28)

which is computed explicitly by using the following matrix form given by [31] for coherent

transport:

Gr(E) =
[
E I − Ĥcen − Σr(E)

]−1
, (3.3)

where: Σr = Σr
L+Σr

R. The explicit expression for Σr
L(R)(E) depends on the approximation
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employed, however one important feature is that −2 Im
(
Σr

L(R)(E)
)

= ΓL(R)(E), where

ΓL(R)(E) is the level width function. The level width function ΓL(R)(E) is related to the

lifetime of the electronic density of states of the contacts within the scattering region. This

is because electrons from the contacts do not remain in the central region indefinitely; they

eventually leak away into the contacts [47].

3.2 Linear double-dot model

The linear double-dot model describes the electron flow between two metallic contacts con-

nected to a central region, which consists of two discrete energy level structures linked by

a hopping parameter V , sometimes denoted by t or ω, i.e. a dimer, in a horizontal orien-

tation. Fig.3.1 illustrates the commonly employed schematic representation for analyzing

electron transport in horizontal molecular junction configurations [36, 37]. In this model,

both contacts contain free electrons. These electrons tunnel from the contact with excess

electrons to the dimer where after undergoing scattering processes between sites 1 and 2,

the resulting electrons then tunnel to the contact with electron deficit. For example, in

Fig.3.1 it is assumed that the left contact has the excess of electrons while the right contact

has the deficit. As a result, the electrons flow from left to right.

Figure 3.1: The schematic representation for spin-dependent electron transport in a hori-
zontal junction. Here L(R) refers to the left(right) contact from which free electrons tunnel
in and out to the molecules, while ΓL(R) is the level width function that quantifies the tun-
neling from the contacts to the molecular junction, while the hopping V quantifies the
contribution of the mixed spatial states 1 and 2.

The Hamiltonian for the model can be written as:

HH = Hc +Hcen +HT , (3.4)
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with

Hc =
∑

k, α∈{L,R}
σ

ϵkασc
†
kασckασ,

Hcen =
2∑

n,σ

ϵnσ d
†
nσ dnσ +

(
V d†

1σ d2σ + h.c.
)
,

HT =
∑
k,σ

(
VkLσ,1σ c

†
kL,σ d1,σ + VkRσ,2σ c

†
kRσ d2,σ + h.c.

)
,

(3.5)

where σ = {↑, ↓} is the spin label. Hcen has thus the following matrix representation in

the basis of the localized states |n, σ⟩:

Ĥcen =



ϵ1↑ 0 V 0

0 ϵ1↓ 0 V

V 0 ϵ2↑ 0

0 V 0 ϵ2↓


.

The NEGF technique leads to an explicit expression for Gr(E) given by Eq.(3.3). In

this study, we will adopt the simplest case for the level width function ΓL(R)(E), assuming

a constant density of states in the contacts over the energy interval around the chemical

potential (µL(R)).This is known as the Wide Band Limit (WBL) approximation, which is

extensively used in quantum transport analysis across various structures, not limited to

molecular junctions [1, 4, 44]. Thus, the approximation for Σr
α(E) under the Wide Band

Limit (WBL) assumption is given by:

Σr
L(E) = − i

2ΓL ≃ − i
2



γ↑
L 0 0 0

0 γ↓
L 0 0

0 0 0 0

0 0 0 0


,

Σr
R(E) = − i

2ΓR ≃ − i
2



0 0 0 0

0 0 0 0

0 0 γ↑
R 0

0 0 0 γ↓
R


,

(3.6)
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as a result, we observe that the tunneling is now characterized by Γ rather than Σr(E)

(see Fig. 3.1). This implies that the effect of the contacts on the scattering process is now

governed solely by the lifetime of the electronic density of states in the contacts within the

scattering region.

Then, Eq.(3.3) gets the following explicit form:

Gr(E) =



E − ϵ1↑ + i
2γ

↑
L 0 −V 0

0 E − ϵ1↓ + i
2γ

↓
L 0 −V

−V 0 E − ϵ2↑ + i
2γ

↑
R 0

0 −V 0 E − ϵ2↓ + i
2γ

↓
R



−1

, (3.7)

with:

ϵnσ ≡ ϵn + σ̂∆,

γσ
α ≡ γα

2 (1 + σ̂pα) ,
(3.8)

being the free spin dependent parameters. Let’s note in Eq.(3.8) that:

• ∆ is called the spin degeneration term due to the presence of a magnetic field in the

central region. It is a free parameter that changes the spin splitting of the site energy

ϵn.

• pα ∈ [−1, 1] is called the polarization term, and it describes the magnetic behavior

of the contact α = {L,R}. It mimics the presence of a ferromagnetic contact.

• The effective Hamiltonian returns to its spin-independent state if ∆ = 0 and pα = 0.

If so, the NEGF Eq.(3.7) becomes:

Gr(E) =

E − ϵ1 + i
2γL −V

−V E − ϵ2 + i
2γR


−1

, (3.9)

Some points about Eq.(3.9) include that it has free parameters like the site energies ϵn,

the hopping term V , and the widths γL, γR. Also, Eq.(3.9) needs numerical calculations

to fully analyze the charge (spin) transmission and the thermopower effect. Therefore, the

widths will be set to a single value (γL = γR = γ) to reduce the number of free parameters.
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3.3 T-shape model

The T-shape model describes the electron flow mediated by two linked (by the hopping

V ) discrete energy levels, the same as in the linear double dot model, but in a vertical

configuration. In this way, we include quantum interference effects, which are absent in the

double-dot model presented in the previous section. Fig.3.2 shows the common schematic

representation that is used to model the electron transport in molecular junctions [3, 36]

and double quantum dots [4, 44]. The main transport channel is given by the L-site 1-R

pathway (or vice versa), while site 2 is not directly involved in the transport process as it

has no connection to the electronic baths.

Figure 3.2: Schematic representation for the spin-dependent electron transport in a vertical
junction. Here ΓL(R) is the tunneling rate from the left to right contact while the hopping
V quantifies the contribution of the mixed spatial states 1 and 2.

Let’s make an analogous of the entire process from Ch.3.2 for solving this system. The

Hamiltonian HT is:

HT = Hc +Hcen +HT , (3.10)

where the spin dependent expressions for the effective Hamiltonians of each zone are:

Hc =
∑

k, α∈{L,R}
σ

ϵkασc
†
kασckασ,

Hcen =
2∑

n,σ

ϵnσ d
†
nσ dnσ +

(
V d†

1σ d2σ + h.c.
)
,

HT =
∑

k, α∈{L,R}
σ

Vkασ,1σc
†
kασd1σ + h.c.

(3.11)
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The corresponding matrix form of the Hamiltonian of the central region is given by:

Ĥcen =



ϵ1↑ 0 V 0

0 ϵ1↓ 0 V

V 0 ϵ2↑ 0

0 V 0 ϵ2↓


.

Using the previously introduced Wide Band Limit (WBL) in the retarded self-energies

leads to:

Σr
α(E) = − i

2Γα ≃ − i
2



γ↑
α 0 0 0

0 γ↓
α 0 0

0 0 0 0

0 0 0 0


, (3.12)

for the α = {L,R} contacts. From which we notice the level-width function ΓR definition

in Eq.(3.12) is different from the same one but of the linear double-dot model (3.6) as the

site 1 is connected to both contacts. Finally, Eq.(3.3) gets the explicit form:

Gr(E) =



E − ϵ1↑ + i
2γ

↑
T 0 −V 0

0 E − ϵ1↓ + i
2γ

↓
T 0 −V

−V 0 E − ϵ2↑ 0

0 −V 0 E − ϵ2↓



−1

, (3.13)

with γσ
T = γσ

L + γσ
R being the main difference with respect to the Eq.(3.7). This is because

the position in the matrix (3.13) for the right width γR is different from the matrix (3.7)

of the linear double-dot model presented in the previous section.

The free spin-dependent parameters are controlled by the same terms as the Ch.3.2

(i.e. ∆ and pα). So, the spin-independent case of (3.13) is:

Gr(E) =

E − ϵ1 + i
2γT −V

−V E − ϵ2


−1

. (3.14)

Nanotechnology Engineer / Physicist 34 Graduation Project



School of Physical Sciences and Nanotechnology Yachay Tech University

3.4 T-shape dimer model

The T-shape dimer model consists of a combination of the previous models. Fig.3.3 de-

scribes the electron flow between two terminals (contacts) mediated by a central region

whose configuration ensembles 4 discrete energy level structures, also called sites, which

are organized into two linked vertical configurations, like the T-shape model but each one

connected by a hopping ω, that are horizontally connected only through one of the two

sites by hopping V , like the linear double dot model. This scheme is useful to figure and

model the electron transport in systems such as the array of laterally coupled quantum

dots [9] which is the generalized case for N vertical configurations horizontally connected.

Figure 3.3: Schematic representation for the spin-dependent transport for an array of
two laterally coupled double quantum dots (DQDs). Here ω quantifies the mixed states
contribution for the sites {(0, 1), (1, 1)} and {(0, 2), (1, 2)} while V quantifies the mixed
states contribution for the sites {(0, 1), (0, 2)}. The generalization of this model for N
laterally coupled DQDs is used for studies in thermal spin filters [9].

The Hamiltonian for this model is:

Hc =
∑

k, α∈{L,R}
σ

ϵkασc
†
kασckασ,

Hcen =
2∑

n,σ

(
ϵ0

nσ b
†
nσ bnσ + ϵ1

nσa
†
nσanσ

)
+

2∑
n,σ

(
ω b†

nσanσ + h.c.
)

+
(
V b†

1σ b2σ + h.c.
)
,

HT =
∑
k,σ

(
VkLσ,1σ c

†
kLσ b1σ + VkRσ,2σ c

†
kRσ b2σ + h.c.

)
,

(3.15)

notice that the non-interacting central region Hcen contains two creation/annihilation op-

erators {b†
nσ, a

†
nσ}/{bnσ, anσ}. Since the side sites (i.e.{(1, 1), (1, 2)}) are non-interacting,

we can rewrite the Hcen and thus the overall Hamiltonian in terms of a new creation/an-

nihilation operator d†
nσ that considers the effective contributions of the side sites energies

ϵ1
n over the connected sites ϵ0

n.
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We can derive such an effective contribution in a rigorous way by considering the total

Green’s function and during the equation of motion technique implementation, design the

functions related to the sites (1, 1) and (1, 2) as contributions for the Green’s function of

the sites (0, 1) and (0, 2).

Alternatively, we can work faster over the matrix form by renormalizing the elements

of the overall Ĥcen. To obtain that, we will focus only in the terms (assuming no spin

dependence) that relates b†
n/bn with a†

n/an from Hcen:

Hs =
2∑
n

(
ϵ0

n b
†
n bn + ϵ1

na
†
nan

)
+

2∑
n

(
ω b†

nan + h.c.
)
,

now, we use the Schrödinger equation for this case, to get:

Hsψ = Eψ

⇒

ϵ0
n ω

ω ϵ1
n


bn

an

 = E

bn

an

 ,
that is a set of linear algebraic equations which we can solve for bn and obtain:

(
ϵ0

n + ω2

E − ϵ1
n

)
bn = E bn,

from which we can redefine in terms of the new operator dn:

⇒
(
ϵ0

n + ω2

E − ϵ1
n

)
dn = εn dn,

and then only includes the spin label:

εnσ ≡ ϵ0
nσ + ω2

E − ϵ1
nσ

,

in this way we assert that Hamiltonian dimension can be reduced by considering effective

energy sites.
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Now, we rewrite the Hamiltonian (3.15) to get:

Hc =
∑

k, α∈{L,R}
σ

εkασc
†
kασckασ,

Hcen =
2∑

n,σ

εnσ d
†
nσ dnσ +

(
V d†

1σ d2σ + h.c.
)
,

HT =
∑
k,σ

(
VkLσ,1σ c

†
kL,σ d1σ + VkRσ,2σ c

†
kRσ d2σ + h.c.

)
,

(3.16)

where:

εnσ ≡ ϵ0
nσ + ω2

E − ϵ1
nσ

,

noticing that the GF is the Eq.(3.2) and Hcen is allowed to be in matrix representation:

Ĥcen =



ε1↑ 0 V 0

0 ε1↓ 0 V

V 0 ε2↑ 0

0 V 0 ε2↓


,

then the NEGF technique leads to the explicit expression for Gr(E) Eq.(3.3), where Σr =

Σr
L + Σr

R and Σr
α(E) is given by the WBL:

Σr
L(E) = − i

2ΓL ≃ − i
2



γ↑
L 0 0 0

0 γ↓
L 0 0

0 0 0 0

0 0 0 0


,

Σr
R(E) = − i

2ΓR ≃ − i
2



0 0 0 0

0 0 0 0

0 0 γ↑
R 0

0 0 0 γ↓
R


.
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Then, Eq.(3.3) gets the following explicit form:

Gr(E) =



E − ε1↑ + i
2γ

↑
L 0 −V 0

0 E − ε1↓ + i
2γ

↓
L 0 −V

−V 0 E − ε2↑ + i
2γ

↑
R 0

0 −V 0 E − ε2↓ + i
2γ

↓
R



−1

, (3.17)

where the free spin-dependent parameters are:

ϵi
nσ ≡ ϵi

n + σ̂∆,

γσ
α ≡ γα

2 (1 + σ̂pα) .
(3.18)

As a result, Eq.(3.17) combines the previous two models, with Eq.(3.7) providing the

matrix structure, while εnσ ≡ ϵ0
nσ + ω2

E−ϵ1
nσ

accounts for the contributions from Eq.(3.13).

The free spin dependent parameters are controlled by the same terms as the Ch.3.2

(i.e. ∆ and pα). Then, the spin independent version of Eq.(3.17) is:

Gr(E) =

E − ε1 + i
2γL −V

−V E − ε2 + i
2γR


−1

. (3.19)

3.5 Michaeli-Geyer Model

The CISS effect has been demonstrated in organic systems characterized by helical sym-

metry, enabling spin filtering without needing an applied magnetic field. Consequently, the

primary approach to analyze spin electron transport involves considering three-dimensional

systems. However, for numerical purposes, a one-dimensional model that captures the es-

sential features of spin electron transport in helical structures is desirable, as it reduces

computational complexity. In this context, Michaeli and Naaman [49] reduced the problem

to an effective one-dimensional problem and then Geyer et al. systematized such a model

to analyze the CISS effects [10]. As a result, the Michaeli-Geyer model was designed to

analyze the CISS effect by utilizing a curved path in 3D space, thereby reducing the prob-

lem to a one-dimensional analysis. Fig.3.4 depicts the central region under a continuous

Hamiltonian in a 3D space. In this adapted model, electrons from the left contact tunnel

Nanotechnology Engineer / Physicist 38 Graduation Project



School of Physical Sciences and Nanotechnology Yachay Tech University

to the bottom of the system, traverse the curved path through the helix, and finally tunnel

to the right contact.

Figure 3.4: Schematic representation of the Helical Cylinder system. Here {t, e1, e2}
refers to the rotated frame and {t,n,b} refers to the Frenet frame, both basis vectors
to parametrize the curve and global z-axis. Extracted from Ref.[10]

The model is characterized by a central region Hamiltonian formulated in terms of

the Frenet frame which refers to the set of unitary vectors designed to parametrize the

curve (helix) in 3D (see Fig. 3.4). By constraining the electron motion to a curved

trajectory, we can reduce the spatial degrees of freedom and employ an effective one-

dimensional Hamiltonian. This approach leverages the quantized version of the classical

Hamilton function for a particle confined to a curve. Ultimately, the effective Hamiltonian

utilized in this study is derived from the tight-binding discretization of the one-dimensional

Hamiltonian where it is assumed sites in a spiral path with their respective hybridization

term between neighbor sites and strong spin-orbit coupling (SOC) term due to a generic

scalar potential (not necessarily an electromagnetic) constructed upon the Frenet frame

coordinates [10].

So, the effective Hamiltonian Hhel used is based upon the second quantization model

presented by Ref.[10] that is:

Hhel = Hc +Hcen +HT , (3.20)
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where the explicit spin-dependent terms, for N = 2, are:

Hc =
∑

k, α∈{L,R}
σ

ϵkασc
†
kασckασ,

Hcen =
N∑

n,σ

ϵnσ d
†
nσ dnσ +

N−1∑
n,σ

(
d†

n+1σ V̂ dnσ + h.c.
)

+ λ2L
N∑

n,σ,σ′
d†

nσ (σ · B)σσ′ dnσ′ ,

HT =
∑
k,σ

(
VkLσ,1σ c

†
kL,σ d1σ + VkRσ,2σ c

†
kRσ d2σ + h.c.

)
,

(3.21)

with: V̂ ≡ −tδσσ′ − iλ1 (σ · A)σσ′ , where B plays the role of an effective magnetic field and

σ · A plays the role of a geometric Gauge potential. The GF is defined as the Eq.(3.2):

Gnm,σσ′(t, t′) = (−i)⟨T{dnσ(t), d†
mσ′}⟩,

given that Hcen can exhibit a discrete spectrum and assuming that A = (0, 0, 0) and

B = (0, B,B), the matrix representation of Hcen is as follows:

Ĥcen =



ϵ1↑ + λ2LB −iλ2LB −t 0

iλ2LB ϵ1↓ − λ2LB 0 −t

−t 0 ϵ2↑ + λ2LB −iλ2LB

0 −t iλ2LB ϵ2↓ − λ2LB


, (3.22)

so, the NEGF technique leads to the explicit expression for Gr(E) i.e. Eq.(3.3):

Gr = [EI − Ĥcen − Σr(E)]−1,

where Σr = Σr
L + Σr

R and Σr
α(E) is given by the WBL:

Σr
L(E) = − i

2ΓL ≃ − i
2



γ↑
L 0 0 0

0 γ↓
L 0 0

0 0 0 0

0 0 0 0


,
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Σr
R(E) = − i

2ΓR ≃ − i
2



0 0 0 0

0 0 0 0

0 0 γ↑
R 0

0 0 0 γ↓
R


.

Then, Eq.(3.3) takes the following explicit form:

Gr(E) =


E − ϵ1↑ − λ2LB + i

2 γ↑
L iλ2LB t 0

−iλ2LB E − ϵ1↓ + λ2LB + i
2 γ↑

L 0 t

t 0 E − ϵ2↑ − λ2LB + i
2 γ↑

R iλ2LB

0 t −iλ2LB E − ϵ2↓ + λ2LB + i
2 γ↑

R


−1

.

(3.23)

3.6 Extended Michaeli-Geyer Model

The extended Michaeli-Geyer model takes the entire model proposed by Ref.[10] but at-

taching side dots to the central tight-binding chain to now include quantum interference

(QI) effects during the electron transport. In this regard, the only change is due to the

onsite energies, which must be renormalized.

After renormalization process, the effective Hamiltonian for such a model Hhel
s−d is:

Hhel
s−d = Hc +Hcen +HT , (3.24)

where the explicit spin-dependent terms are:

Hc =
∑

k, α∈{L,R}
σ

εkασc
†
kασckασ,

Hcen =
N∑

n,σ

εnσ d
†
nσ dnσ +

N−1∑
n,σ

(
d†

n+1σ V̂ dnσ + h.c.
)

+ λ2L
N∑

n,σ,σ′
d†

nσ (σ · B)σσ′ dnσ′ ,

HT =
∑
k,σ

(
VkLσ,1σ c

†
kL,σ d1σ + VkRσ,2σ c

†
kRσ d2σ + h.c.

)
,

(3.25)

with: V̂ ≡ −tδσσ′ − iλ1 (σ · A)σσ′ and εnσ ≡ ϵ0
nσ + ω2

E−ϵ1
nσ

. The GF is defined as the Eq.(3.2):

Gnm,σσ′(t, t′) = (−i)⟨T{dnσ(t), d†
mσ′}⟩,
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the next steps about definitions for Ĥcen and Gr(E) are analogous.

In what follows, we will assume the null vector for A, A = (0, 0, 0) while 0 for the x

component and the same values for the y and z components of B, B = (0, B,B). So, the

matrix representation of Hcen is as follows:

Ĥcen =



ε1↑ + λ2LB −iλ2LB −t 0

iλ2LB ε1↓ − λ2LB 0 −t

−t 0 ε2↑ + λ2LB −iλ2LB

0 −t iλ2LB ε2↓ − λ2LB


, (3.26)

the NEGF technique leads to the explicit expression for Gr(E):

Gr = [EI − Ĥcen − Σr(E)]−1,

where Σr = Σr
L +Σr

R and Σr
α(E) is given by the WBL. It follows the same matrix elements

from the retarded self energy matrices in Ch. 3.5.

Then, Eq.(3.3) takes the following explicit form:

Gr(E) =


E − ε1↑ − λ2LB + i

2 γ↑
L iλ2LB t 0

−iλ2LB E − ε1↓ + λ2LB + i
2 γ↑

L 0 t

t 0 E − ε2↑ − λ2LB + i
2 γ↑

R iλ2LB

0 t −iλ2LB E − ε2↓ + λ2LB + i
2 γ↑

R


−1

,

(3.27)

which is identical to Eq.(3.23) but with εnσ ≡ ϵ0
nσ + ω2

E−ϵ1
nσ

instead of ϵnσ.
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Chapter 4

Results and Discussion

In this chapter, we will discuss (spin-dependent) quantum transport using the effective

models introduced in the previous chapter. Our focus will be on thermopower and the

effects of quantum interference on it. In the final part of the chapter, the modified Michaeli-

Geyer model, which includes spin-orbit interaction, will also be investigated.

4.1 Linear double-dot model: Landauer Transmission

We start our discussion with the transmission function of this model, which does not

display any quantum interference (QI) effects and which will serve as a reference point

when introducing QI. Firstly, we want to see the effect of the hopping term V and the

onsite energy {ϵ1, ϵ2} and with ∆ = 0 when the charge carrier flow is spin-independent

(pL = pR = 0) for a given spectral broadening γ. The corresponding Landauer transmission

is shown in Fig. 4.1.

We notice in Fig.4.1a) that the numerical value at the transmission peaks is 2, which

corresponds to the maximum allowed value for transmission instead of the usual 1. This

occurs because the transport is divided into two channels, one for each spin. Since the

maximum value per spin channel is 1, the total transmission, which is the contribution of

both channels, is 2. These transmission peaks (Tmax = 2) remain constant as we vary V

because the site energies are equal (ϵ1 = ϵ2). The peaks are located at two energies that

get closer if |V | → |γ| and keep away if |V | > |γ|. In contrast, in Fig.4.1b), we see a similar

relationship between the peak energies and the parameters |V | and |γ| as in a), indicating

that the distance between peaks is generally controlled by |V | regardless of whether the

43



School of Physical Sciences and Nanotechnology Yachay Tech University

Figure 4.1: Landauer Transmission for the linear double dot model; when ∆ = 0meV ,
γ = 0.5meV and pα = 0 ; for different values of the hopping term V in an energy interval
of [−4, 4]meV , with a) The same site energies, ϵ1 = ϵ2 = 0meV . b) Different site energies,
ϵ1 = −0.5 meV and ϵ2 = 0.5 meV . The peaks from both figures are called resonances and
represent the energy where the Transmission is the maximum (i.e. Tmax).

site energies are equal or not. However, unlike in Fig.4.1a), the transmission peaks are

no longer constant as V varies because the site energies are now different (ϵ1 ̸= ϵ2). The

peak values decrease (Tmax → 0) as |V | → |γ|, while they approach to the maximum value

allowed (Tmax → 2) if |V | ≫ |γ|.

We can explain analytically the behavior of the peak value for different values of V by

considering the explicit total Landauer transmission derived from Eq.(3.7) when ∆ = 0

and pα = 0:

T (E) = 2

(
γ2

4

)
V 2[

(E − ϵ1)(E − ϵ2) −
(

γ
4

)2
− V 2

]2
+
(

γ
4

)2
(2E − ϵ1 − ϵ2)2

. (4.1)

Firstly, if we consider ϵ1 = ϵ2 ≡ ϵ:

T (E) = 2

(
γ2

4

)
V 2[

(E − ϵ)2 −
(

γ
4

)2
− V 2

]2
+ γ2

4 (E − ϵ)2
,

we can obtain a value near to Tmax if:

(E − ϵ)2 −
(
γ

4

)2
− V 2 = 0,
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⇒ E± = ϵ±
√(

γ

4

)2
+ V 2, (4.2)

then, evaluating E± over T (E):

⇒ T (E±) = 2V 2

(E± − ϵ)2 ,

= 2 V 2(
γ
4

)2
+ V 2

,

which, after dividing by the broadening γ, results in:

⇒ T (E±) = 2

(
V
γ

)2

1
16 +

(
V
γ

)2 . (4.3)

From Eq.(4.3), we obtain T (E±) ≈ 1.9 if we evaluate
∣∣∣V

γ

∣∣∣ → 1 for any ϵ and T (E±) ≈ 2 ≡

Tmax if we evaluate
∣∣∣V

γ

∣∣∣ ≫ 1 for any ϵ.

On the other hand, we make an analogous process for ϵ1 ̸= ϵ2 and we obtain:

E± = (ϵ1 + ϵ2)
2 ± 1

2

√
(ϵ1 − ϵ2)2 + 4

(
γ

4

)2
+ 4V 2,

from which we get, after evaluating in T (E) and dividing by γ:

T (E±) = 8

(
V
γ

)2

1
4 + 4

(
V
γ

)2
+
(

ϵ1−ϵ2
γ

)2 ,

we highlight the behavior of T (E±) if
∣∣∣V

γ

∣∣∣ → 1:

T (E±) = 8
1
4 + 4 + (ϵ1−ϵ2)2

V 2

, (4.4)

which is dependent of V as follows: T (E±) ≈ 0 if |V | < |ϵ1 − ϵ2| and T (E±) ≈ 2 ≡ Tmax

if |V | ≫ |ϵ1 − ϵ2|. Additionally, we highlight the behavior of T (E±) if
∣∣∣V

γ

∣∣∣ ≫ 1 (no matter

the values for ϵ1(2)) that is independent of V :

T (E±) ≈ 8
4 = 2 ≡ Tmax, (4.5)

and the behavior of T (E±) if
∣∣∣V

γ

∣∣∣ ≪ 1 (no matter the values for ϵ1(2)) that is also indepen-
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dent of V :

T (E±) ≈ 0. (4.6)

Therefore, from the behavior of Eqs. (4.3)-(4.6) concerning
∣∣∣V

γ

∣∣∣ and ϵ1(2), we conclude

that the transmission peak values T (E±) depend on V only if
∣∣∣V

γ

∣∣∣ ≈ 1 and ϵ1 ̸= ϵ2, because

we observe that 0 < T (E±) < Tmax, according to Eq.(4.4). Meanwhile, we have that

T (E±) ≈ 0 for
∣∣∣V

γ

∣∣∣ ≪ 1 (no matter the values for ϵ1(2)), according to Eq.(4.6). Conversely,

according to Eqs. (4.3) and (4.5), we see that T (E±) = Tmax will be constant for the

remaining cases. Specially we notice that if
∣∣∣V

γ

∣∣∣ ≫ 1 then T (E±) = Tmax = 2 will be

constant no matter whether site energies are the same (ϵ1 = ϵ2) or not (ϵ1 ̸= ϵ2). If so, we

can call T (E±) = Tmax as resonance and E± as resonance energies.

We can physically understand the influence of
∣∣∣V

γ

∣∣∣ on Tmax if we use the semi-classical

analogy of a damped-driven oscillator system. If so, the spectral broadening (γ) can be re-

lated to friction (dissipation) into an environment (the metal contacts) [50]. Depending on

the strength γ of the coupling to this environment, we will have three cases: underdamped,

critically damped, or overdamped [50]. Thus, well-defined transmission resonances can only

be found in the underdamped limit, corresponding to a weak/intermediate coupling to the

electronic baths (i.e. |V | ≫ |γ| and |V | > |γ| respectively). On the contrary, if the coupling

with the environment γ is very large (i.e. |V | ≪ |γ|), then Tmax → 0 because the concept

of resonance is not anymore relevant, and the system interacting with the electrodes loses

its ”identity”. We will, therefore, consider only the underdamped case |V | ≫ |γ|. If so, we

can drop the difference between energy sites and, from now on, consider by assumption

only the case when they are the same, i.e. ϵ1 = ϵ2 = 0meV as our reference point because

in the underdamped limit, the transmission profile will be quite similar no matter whether

ϵ1 = ϵ2 or ϵ1 ̸= ϵ2.

4.1.1 Contact polarization influence

Next, let’s analyze the effect of the electrode polarization on the transmission (both total

and per spin channel). If we consider pL and pR to vary, we need to include the contact

(L/R) and spin (σ) dependence in the transmission. So, when we assume the underdamped

case
∣∣∣V

γ

∣∣∣ ≫ 1 and ϵ1 = ϵ2 = 0meV , the transmission per spin channel Tσ(E) and total
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transmission T (E) = T↑(E) + T↓(E) will have the shapes shown in Fig.4.2.

Figure 4.2: Landauer transmission for the double-dot model (ϵ1 = ϵ2 = 0meV , ∆ = 0meV ,
γ = 0.5meV and V = 4γ) for different polarization values pα. The solid line represents the
total transmission profile while the dashed/dash-dot is for the spin up/down transmission.

We notice that Fig.4.2a) shows T↑(E) has the same shape as T↓(E), and T = T↑ + T↓

follows the same profile as Fig.4.1a) due to the zero polarization. In panel b), since the

polarizations are the same (pL = pR = 0.5), T = T↑ + T↓ has the same shape as panel a)

despite T↑(E) is broader around the resonances in comparison to T↓(E). Lastly, in panel

c), we notice that the resonance values for Tσ(E) decrease, and thus for T (E) as well,

because the polarizations now are opposite (pL = 0.5 , pR = −0.5).

We can explain analytically this behavior by considering the Landauer transmission

per spin channel derived from Eq.(3.7) if ϵ1 = ϵ2 = 0meV and ∆ = 0:

Tσ(E) = γσ
L γ

σ
R V

2[
E2 −

(
1
2

)2
γσ

L γ
σ
R − V 2

]2
+
(

E
2

)2
(γσ

T )2
,

the resonance energies per spin channel Eσ
±:

Eσ
± = ±

√√√√(1
2

)2

γσ
L γ

σ
R + V 2, (4.7)

and therefore, T σ
max ≡ Tσ(Eσ

±):

T σ
max = γσ

L γ
σ
R V

2(
γσ

T

2

)2 (
Eσ

±

)2 , (4.8)

where γσ
α = γ

2 (1 + σ̂pα), with σ̂ = {+,−} for spin up and down respectively.
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If we consider pL = pR = 0, the broadening becomes:

γσ
α = γ

2 ,

⇒ γσ
Lγ

σ
R =

(
γ

2

)2
,

⇒ γσ
T = γ,

while the transmission expression Tσ(E) becomes:

T↑(↓)(E) =

(
γ
2

)2
V 2[

E2 −
(

γ
4

)2
− V 2

]2
+
(

γ
2

)2
E2

, (4.9)

lastly, T σ
max is, after dividing by γ and considering the underdamped limit |V | ≫ |γ|:

T ↑(↓)
max =

(
V
γ

)2

(
1
4

)2
+
(

V
γ

)2 ≈ 1,

we conclude the transmission per spin channel will have the same broadening γ and reso-

nance T ↑(↓)
max = 1 and thus Tmax = 2.

We can make the analogous for pL = pR = 0.5:

γ↑
L(R) = 3

4γ, γ
↓
L(R) = 1

4γ,

γ↑
Lγ

↑
R =

(
3
4γ
)2

, γ↓
Lγ

↓
R =

(
1
4γ
)2

,

γ↑
T = 3

2γ, γ
↓
T = 1

2γ,

⇒

T ↑
max =

(
V
γ

)2

(
3
8

)2
+
(

V
γ

)2 ≈ 1,

T ↓
max =

(
V
γ

)2

(
1
8

)2
+
(

V
γ

)2 ≈ 1,

we notice that the transmission -up component will be broader than the spin down because

γ↑
T > γ↓

T and the resonance in the total transmission will be the same as panel a) because

Tmax = T ↑
max + T ↓

max = 2.

We also make the analogous for pL = 0.5, pR = −0.5:

γ↑
L = γ↓

R = 3
4γ, γ

↓
L = γ↑

R = 1
4γ,

γ↑
Lγ

↑
R = γ↓

Lγ
↓
R = 3

16γ
2,

γ↑
T = γ↓

T = γ,

⇒

T ↑
max = 3

4

(
V
γ

)2

(
1
2

)2 ( 3
16

)2
+
(

V
γ

)2 ≈ 3
4 ,

T ↓
max = 3

4

(
V
γ

)2

(
1
2

)2 ( 3
16

)2
+
(

V
γ

)2 ≈ 3
4 ,

Nanotechnology Engineer / Physicist 48 Graduation Project



School of Physical Sciences and Nanotechnology Yachay Tech University

we conclude that the transmission for spin up and spin down will have the same broadening

(γ↑
T = γ↓

T ) and resonance (T ↑
max = T ↓

max). However, the difference now is that Tmax = 3
2 =

1.5 because T ↑(↓)
max = 3

4 = 0.75.

We can summarize the influence of the previous and additional polarization values on

the transmission peaks by considering Eq.(4.8):

T σ
max = γσ

Lγ
σ
R(

γσ
T

2

)2
V 2(
Eσ

±

)2 ,

which, after applying the weak/intermediate coupling with the electronic baths, simplifies

to:

⇒ T σ
max = γσ

Lγ
σ
R(

γσ
T

2

)2 , (4.10)

that is dependent of the spectral broadening values γσ
L, γσ

R and γσ
T . Since we know that

polarization term pα controls the spectral broadening, we obtain the Table 4.1 after using

Eq.(4.10) for a variety of polarization term values.

Table 4.1: Max. amplitude for different polarization values

pL pR γ↑
Lγ

↑
R γ↓

Lγ
↓
R

(
γ↑

T

2

)2 (
γ↓

T

2

)2
T ↑

max T ↓
max Tmax

0 0
(

γ
2

)2 (
γ
2

)2 (
γ
2

)2 (
γ
2

)2
1 1 2

0.5 0.5
(

3
4γ
)2 (

1
4γ
)2 (

3
4γ
)2 (

1
4γ
)2

1 1 2
1 1 (γ)2 0 (γ)2 0 1 0 1
0.5 -0.5

(
3
16γ

2
) (

3
16γ

2
) (

γ
2

)2 (
γ
2

)2
0.75 0.75 1.5

1 -1 0 0
(

γ
2

)2 (
γ
2

)2
0 0 0

1 0
(

γ2

2

)
0

(
3
4γ
)2 (

γ
4

)2 8
9 0 8

9

Therefore, if we consider for instance, the extreme case pL = 1 and pR = 0 which

corresponds to the flow of only one spin channel from the L-electrode and of both spin

channels from the R-electrode, we will have the profile from the Fig.4.3. We can see in

4.3a) that T ↑
max = 0.89 while in panel b) T ↓

max = 0 and therefore in c) Tmax = 0.89 because

according to the Table 4.1: T ↑
max = 8

9 ≈ 0.89 and T ↓
max = 0.

We can interpret the polarization as connected to the magnetization of the contact but

also to the spectral broadening. This means that the magnetic alignment of the contacts

controls the density of states around the Fermi energy because of the mean lifetime. So,
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Figure 4.3: Landauer Transmission for the linear double dot model (ϵ1 = ϵ2 = 0meV ,
∆ = 0meV , γ = 0.5meV and V = 4γ) for polarization pL = 1 and pR = 0 in an energy
interval of [−4, 4]meV . The transmission is divided into spin channels: a) for spin up, b)
for spin down, and c) for the total contribution of a) and b). Transmission near the Fermi
energy is allowed only for one spin channel.

if we set the same polarization for both contacts (e.g. spin up 0 < p < 1), we will see

that the electronic density of states with spin-up alignment in both contacts will increase

or decrease according to p. This increment/decrement is expressed in the total lifetime

per spin channel γσ
T , e.g. the first three rows in Table 4.1. Another way to understand

this is if we can think that pα controls the rate of tunneling of electrons, with a given

spin alignment, between the contacts and the scattering zone around the Fermi energy.

So, we can make spin filtering because the electron flow per spin channel is limited or

enhanced by pα, indicating the importance of the magnetization of the contacts during the

spin-dependent electron transport process.

4.2 T-shape model: Anti- and Fano- resonances

The linear double-dot model displayed for weak to moderate coupling to the metallic

contacts two well-defined transmission resonances separated by a gap controlled by the

inter-dot hopping (for equal on-site energies). At resonance, the total transmission reached

the maximum of two related to the degenerate spin-up and spin-down channels. We will

now see that the qualitative behavior of the T-shape junction differs in some respects from

the double-dot model; in particular, the phenomenon of quantum interference will appear

at certain energies.

The transmission function for unpolarized metallic contacts pL = pR = 0 and ∆ = 0 is
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shown in Fig.4.4. In panel a), we see that T (E) shows similar shapes as in Fig.4.1a) in the

weak/intermediate coupling regime. However, as we move to the strong coupling regime,

the gap remains (it does not disappear), in contrast to Fig.4.1a), where the gap vanishes

in the strong coupling regime. Afterward, we notice in panel b) T (E) also shows the same

behavior as Fig.4.1b) for the weak/intermediate coupling regime. However, additionally

to the gap conservation, we notice the resonances do not diminish as we go to the strong

coupling regime (they get preserved).

Figure 4.4: Transmission for T-shape model; when ∆ = 0meV , γ = 0.5meV and pα = 0.
For different values of hopping term V within an energy interval of [−4, 4]meV , we observe
distinct Quantum Interference profiles. a) When the site energies are equal, e.g., ϵ1 = ϵ2 =
0meV and V = 1 γ we have a case of antiresonance (symmetric shape). b) When the site
energies are not equal, e.g., ϵ1 = −0.5meV and ϵ2 = 0.5 meV and V = 1 γ we have a case
of Fano resonance (asymmetric shape).

We can explain analytically the effects of the coupling regime
∣∣∣V

γ

∣∣∣ and site energy {ϵ1, ϵ2}

over the resonances in T (E) by considering the explicit expression for the transmission from

Eq.(3.13) when we have unpolarized contacts pα = 0 and ∆ = 0:

T (E) = 2

(
γ
2

)2
(E − ϵ2)2[

(E − ϵ1)(E − ϵ2) − V 2]2 +
(

γ
2

)2
(E − ϵ2)2

, (4.11)

= 2

(
γ
2

)2

(
E − ϵ1 − V 2

(E−ϵ2)

)2
+
(

γ
2

)2
. (4.12)
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First, from Eq.(4.12), we can get Tmax if [3]:

E − ϵ1 − V 2

(E − ϵ2)
= 0,

from which we obtain the resonance energies (E±):

⇒ E± = ϵ1 + ϵ2

2 ±

√
(ϵ1 − ϵ2)2 + 4V 2

2 , (4.13)

that if we evaluate in T (E):

⇒ T (E±) = 2

(
γ
2

)2

(
γ
2

)2 = 2 = Tmax, (4.14)

we conclude that the resonances (Tmax = 2) are preserved regardless of the spectral broad-

ening strength and regardless the site energy values (see Fig.4.4) because the evaluation of

the resonance energies (4.13) over T (E) leads to Eq.(4.14) that does not explicitly depend

on the parameters:
{∣∣∣V

γ

∣∣∣ , ϵ1, ϵ2

}
.

In addition to the resonance energy conservation, we notice that within the energy

interval where the gap appears, there is an energy at which the transmission value is zero

(T (Eanti) = 0). We can explain this analytically by considering the numerator of Eq.(4.11):

(E − ϵ2) = 0 ⇒ Eanti = ϵ2, (4.15)

which is called antiresonance energy, then evaluating in T (E):

T (Eanti) = 0,

that also has no dependence on the site energies nor the strength of V or γ because the

numerical value is zero. Since the gap is located at T (Eanti) = 0, we conclude the gap

is preserved no matter the site energies nor the coupling strength
∣∣∣V

γ

∣∣∣ (see Fig.4.4). This

explains analytically why the gap does not disappear while variation in the site energies

and coupling regime are performed in the Fig.4.4 and the reason why it is present in the

Fig.4.4 but not in Fig.4.1.

Despite the resonances and antiresonance values being constant against variations, their

Nanotechnology Engineer / Physicist 52 Graduation Project



School of Physical Sciences and Nanotechnology Yachay Tech University

locations are dependent on both the site energy values and the strength of the intra-

dot hopping V because Eqs.(4.13) and (4.15) are dependent on these parameters. We

draw attention in Fig.4.4a) where the resonance-antiresonance profile is given according to

equations (4.13) and (4.15) when ϵ1 = ϵ2 ≡ ϵ:

E± = ϵ± V ,

Eanti = ϵ,
(4.16)

this means that the curve is symmetric with respect to the antiresonance no matter the

value of the intra-dot hopping V because the antiresonance energy is located at exactly the

middle of the two resonance energies according to Eq.(4.16). For panel b), the resonance-

gap profile is given according to the same equations, but when the site energies are not the

same:

E± = ϵ1 + ϵ2

2 ±

√
(ϵ1 − ϵ2)2 + 4V 2

2 ,

Eanti = ϵ2,

(4.17)

now, the curve is still symmetric with respect to the antiresonance for |V | ≫ |γ| but as

we approximate the intra-dot hopping to the spectral broadening (|V | ∼ |γ|), the curve

becomes asymmetric with respect to the antiresonance because according to Eq.(4.17) the

antiresonance energy is not located in the middle of the two resonances energies. Specifi-

cally E± are symmetric with respect to E = ϵ1+ϵ2
2 while Eanti = ϵ2, such difference is not

appreciated for larger intra-dot hopping values; however, the difference starts to become

appreciable as we diminish the value of the intra-dot hopping parameter V . Lastly, we call

such a remarkable asymmetric curve in Fig.4.4b) a Fano Resonance (FR) [3, 36].

We can explain physically the positive and negative peaks in the transmission by con-

sidering the interaction between the discrete quantum states from the sites with the contin-

uous quantum states from the electrodes during the electron flow. Consequently, we have

a superposition between the quantum mechanical waves which will produce both quantum

interference (QI) effects i.e. constructive, where T → Tmax, and destructive, where T = 0.

As a result, Fano resonances (FR) appear in the ”critically damped and overdamped” limit

due to the interference between the bound states of the sites and the tunneling continuum
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states of the electrodes [36]. This behavior is different from the ”identity” loss presented in

the situation of the linear double dot. Additionally, we can conclude that the transmission

function will exhibit antiresonance or FR depending on the ratio between the difference in

the site energies (ϵ1, ϵ2) and the coupling term (intra-dot hopping) V , Eq.(4.18)[3]:

|ϵ1 − ϵ2|
|V |

. (4.18)

Antiresonance shape appears if the ratio is lesser than the unity (|ϵ1 − ϵ2|/|V | ≪ 1)

while Fano resonance appears for the opposite case (|ϵ1 − ϵ2|/|V | ≫ 1). Fano resonances

has been an object of intense studies in electron-transfer to molecular and thermoelectric

devices because, as we will see, they may lead to dramatic changes in the Seebeck coefficient

[36]. So, by assumption, we will take the site energies as ϵ1 ̸= ϵ2 and the intra-dot hopping

term as |V | ∼ |γ| to consider Fano resonance effects.

4.2.1 Contact polarization influence

Figure 4.5: Fano resonance for different values of polarization pα. Here, the solid line
represents the total transmission profile while the dashed/dash-dot is for the spin up/down
transmission. The parameters are: ϵ1 = −0.5meV , ϵ2 = 0.5meV , ∆ = 0, γ = 0.5meV
and V = 0.5 γ

Now, we treat the polarization effects over the transmission (pL ̸= 0 and pL ̸= 0).

So, when we follow the condition for the Fano resonance from Eq.(4.18), and we include

polarization effects, the transmission will exhibit the QI shapes from Fig. 4.5. We highlight

that in Fig.4.5a) the asymmetric curve is conserved for the total transmission. In panel

b), additionally to the asymmetric curve preservation in the total transmission, the up

component of the transmission shows a broader lineshape in comparison to the spin down
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component. Lastly, in panel c) the curves and broadening are preserved, but only the

positive peaks variate. Therefore, we infer the influence is practically the same as the

linear double dot case.

4.3 T-shape dimer model

The T-shape model showed not only two transmission resonances that stay stable against

site energy and hopping variations, but also the existence of a well defined antiresonance

transmission that is stable against the same variations as well. These resonances and an-

tiresonance perform quantum interference effects such as Fano resonance that is presented

when the difference between the site energies is greater than the intra-hopping strength

in the ”critically damped/overdamped” regime. Implying that the inclusion of monomers

that are not connected directly to the electron baths produces FR. Here, we will show that

the T-shape dimer model exhibits qualitatively the same QI peaks but also well defined

symmetric curves.

From Fig.3.3, we observe a combination between the double dot and T-shape model

(see Fig.3.1 and Fig.3.2), so the parameters are given based on the analysis from the

previous models. Since sites ϵ0
1 and ϵ0

2 are aligned with the contacts and mediated by

Figure 4.6: Quantum Interference profiles for the T-shape dimer model; when ϵ0
1 = ϵ0

2 =
0meV , ϵ1

1 = ϵ1
2 = 1meV ,∆ = 0meV , γ = 0.5meV , pα = 0 and V = 4γ; for different

values of intra-hopping ω.

the hopping V (called inter-hopping), we set the same site energies ϵ0
1 = ϵ0

2 = 0meV and

weak/intermediate environment-contact coupling V = 4γ to be similar to the linear double
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dot model. On the other hand, since sites ϵ1
1 and ϵ1

2 ensembles a T configuration with ϵ0
1 and

ϵ0
2 respectively, mediated by the hopping ω (called intra-hopping), we set ϵ1

1 = ϵ1
2 = 1meV

by convenience because it is the most simple setup that accomplishes the conditions from

the T model to obtain FR while ω is allowed to take any value because the resonance-

antiresonance stability against to the intra-hopping variations. Thus, the corresponding

Landauer transmission curve for these parameters and unpolarized electrodes pα = 0 is

shown in Fig.4.6.

We can see in Fig.4.6 the transmission for different values of intra-hopping. For large

values, the transmission shows 4 peaks mediated by a big gap that separates it into two

groups of peaks, each one almost similar to the double-dot case. While, |ω| ∼ |γ|, the gap

gets reduced while the symmetric peaks begin to get deformed until they produce Fano

resonances, for values |ω| ∼ |γ| which accomplish |ϵ1
i − ϵ0

i |/|ω| ≫ 1. After, the component

related to the T model is turned off when ω = 0, as a result the standard shape of a

transmission for double-dot model is performed (see Fig. 4.1). By assumption we will take

the case where FR appears (i.e., |γ| > |ω| > 0 ⇒ |V | ≫ |ω| > 0).

We can understand physically the system by first considering the linear double dot

model. In this sense, the tunneling states during the electron flow will be more rich

and stable in the eigenstates of the system (energy resonances E±) because of the weak

electrodes-system coupling. Now, considering the T-shape model, Fano resonance appears

because the bound states from the sites will interfere with the mentioned tunneling states.

Consequently, this implies that we can add QI effects (e.g., Fano resonance) to a given

system by the addition of new sites that are not connected to the central tunneling path.

4.3.1 Contact polarization influence

If we include magnetic influence to the FR profile, i.e. pL ̸= 0 and pR ̸= 0, the transmission

will exhibit the shapes shown in Fig.4.7. We notice that the profiles exhibit the merging

of the Fano resonances into a single one for |ω| < |γ|. And, as it was mentioned before,

the polarization only changes the maximum amplitude and preserves the FR profile, as the

double-dot and T-shape configurations.

Finally, we can conclude that the extra degrees of freedom given by the spin (i.e.,

polarization and magnetic effects) will not affect the transmission (total and per spin
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Figure 4.7: Fano resonance for the T-shape dimer model; when ϵ0
1 = ϵ0

2 = 0meV , ϵ1
1 = ϵ1

2 =
1meV γ = 0.5meV , V = 4γ and ω = 0.5γ; for different values of polarization pα. Here,
the solid line represents the total transmission profile while the dashed/dash-dot is for the
spin up/down transmission.

channel) more than in the maxima flow rate and broadening. To put it another way, we

are making spin filtering based on the application of external magnetic fields.

4.4 Michaeli-Geyer Model: CISS effect

The T-shape dimer model shows a transmission profile that has Fano resonances in the

gap from the T-shape model and two well-defined resonances in the underdamped regime

from the linear double dot model. So far, we also notice that spin filtering is performed if

magnetic fields are applied in the electrodes, otherwise not.

We will now see a helical model from a simplified point of view. As a result, we see

qualitatively that spin filtering can be achieved not only through magnetic fields but also

through chiral (not necessarily helical) geometries.

The transmission profiles for the case where the electrodes have zero polarization,

also called non-magnetic (NM) electrodes, are shown in Fig.4.8 for the interval energy

of [−6, 6] meV . In panel a) from Fig.4.8, we observe two curves. The dashed line curve

(when L = 0) displays the same profile with two peaks at the eigenstates of the system

as the spin up component transmission from Fig.4.2a), while the solid line curve (when

L = +1) displays four peaks at the four eigenstates of the system in which two of them

have their maxima value at T↑ ∼ 0.9, while the remaining two at T↓ ∼ 0.1. In panel b) we

have the same behavior as a) but now for L = +1 the peaks T↓ ∼ 0.1 are at the energy

location where T↑ ∼ 0.9 in panel a), the same happens for T↓ ∼ 0.1 respect to T↑ ∼ 0.9. In
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Figure 4.8: Landauer transmission for the simplified chiral molecule [10] (n=2 lattice sites
case) for the angular momentum (L = 0,+1), ϵ1 = ϵ2 = 0meV , γ = 0.5meV , t = 7γ,
λ2 = 0.5 and B = −2. The transmission is divided into spin channels: a) for spin up, b)
for spin down, and c) for the total contribution of a) and b). When L = 0, we recover
the linear double dot case (dashed lines); for L = +1, we have the CISS effect due to the
coupling in the spin orbit term (solid line).

panel c) we have the curves produced by adding the previously curves. As a result, we see

that when L = 0 we recover the linear double dot case. Since the spin polarization results

from breaking time-reversal symmetry (TRS) upon selection of a given value L [10], we

will assume L = +1 as fixed from now on.

From the four peaks for L = +1 in T (E), we understand that each of the original

eigenstates from the system, that were 2, suffer a spin splitting despite no external magnetic

field is applied during the net current flow. We can explain physically such result by

noting the terms ±λ2LB in the main diagonal of Eq.(3.22) which plays a role analogous

to ∆ ̸= 0. So, one may guess that the spin-orbit interaction (SOI) involved is a type of

Zeeman splitting due to the presence of the effective magnetic field B, as we can observe

in Eq.(3.21). However, according to Ref. [10], B is derived from the projection of the spin-

orbit coupling (SOC) term from the 3-dimensional to the 1-dimensional effective model.

This SOC term in the 3 dimensional system comes from a generic scalar field, not necessarily

an electromagnetic one, which is constructed upon the Frenet frame coordinates, indicating

that B is endowed with a geometric origin tied to the holonomic constraints of the helical

path instead of the usual electromagnetic origin, e.g. electrons’ motion in the helical path.

Consequently, it is more appropriate to refer to B as a ”geometric” magnetic field rather

than an effective magnetic field. And, since this geometric magnetic field gets preserved in

the discrete simplified version as well (see Eq.(3.21)), we conclude that the dimer-like model
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inherits the geometric magnetic field of the complex 1D effective model, and such magnetic

field will not break the time-reversal invariance (TRS). Since this Zeeman splitting is not

produced by an standard external magnetic field as it usually is, we will refer to this as a

quasi-Zeeman splitting from now on.

Additionally, from the maxima values in the peaks for Tσ(E), we understand that during

the electron flow, particles with a given spin orientation are realigned in the opposite

direction due to the interaction between the geometric magnetic field and the intrinsic

dipole moment of the electrons. As a result, we see the chiral system will perform the

electron flow in a preferential spin orientation for a given eigenstate of the system, a spin

filtering process is happening. Such a phenomenon is the so called Chirality Induced Spin

Selectivity (CISS) effect.

The CISS effect implies that a chiral molecule, not necessary helical, can perform spin

filtering/polarization without the needed of a external magnetic field. Such polarization

can be quantified as follows. If we compute the total transmission T (E) for a case with

Figure 4.9: Spin Polarization (solid red line) and Landauer transmissions (dashed black
and blue lines) for ϵ1 = ϵ2 = 0meV , γ = 0.5meV , t = 7γ, λ2 = 0.5, B = −2 and L = +1.
TUP highlights the Transmission for pL = 1, pR = 0. TDOW N highlights the Transmission
for pL = −1, pR = 0.

Ferromagnetic-Nonmagnetic (FM-NM) contacts, i.e. pL = 1, pR = 0 and pL = −1, pR = 0;

we will obtain the transmissions TUP and TDOW N , respectively, which serve to compute

the percentage of spin polarization (SP ), Eq. (4.19), to measure the effectiveness of the
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chiral system to be a spin filter,

SP = TUP − TDOW N

TUP + TDOW N

· 100%. (4.19)

Fig.4.9 shows the profiles of TUP , TDOW N , and SP . We note that the maximum spin

polarization is approximately 60%, indicating that the chiral structure aligns the majority

of the total electron spins in the up orientation. Conversely, the minimum spin polarization

is around −60%, indicating a preference for the down orientation. In this regard, it is ob-

served that SP favors the up orientation for energy intervals corresponding to [−6,−4]meV

and [1, 3]meV where there are two of the four eigenstates of the system, while it favors the

down orientation for intervals corresponding to [−3,−1]meV and [4, 6]meV where there

are two remained eigenstates. However, an unexpected reversal in spin alignment prefer-

ence is noted at the energy resonances. It is important to mention that these behaviors

are smooth, indicating a gradual transition in SP alignment along the curve.

As conclusion, the Michaeli-Geyer model proves that the CISS effect consists of pro-

ducing a spin polarization in the continuous tunneling quantum states from the contacts

and a quasi-Zeeman splitting in the discrete quantum states from the sites due to the he-

lical geometry, that prefers to allow the passing of particles with a unique spin alignment

further than the other. Additionally, the results demonstrate that the linear-double dot

model can fully inherit the effects of the helical model (i.e., quasi-Zeeman splitting and spin

filtering). So, these results can be used for molecules with chiral centers or even include

new structures for the analysis and generalize such results to the helical system version.

4.5 Extended Michaeli-Geyer model: Fano resonance
and Spin Polarization

From the Micheli-Geyer model, we learn that chiral geometries can replicate the effects of

a magnetic field, such as the quasi-Zeeman splitting, which does not break the TRS, and

the spin filtering, which occurs when TRS is broken, all without the need to apply an ex-

ternal magnetic field. Additionally, we can quantify such effects with the spin polarization

percentage. Now, in this modified model, we will see qualitatively how the Fano resonance
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affects the spin filtering process.

We can see in Fig.4.10 the resulting transmission (per spin channel and total) profile

for the angular momentum L = +1 over the interval energy of [−6, 6]meV for the same

parameters given in Sec.4.4 and Sec.4.3. We can see the overall analysis is analogous

Figure 4.10: Landauer transmission (QI profiles) for the simplified chiral molecule [10]
(n=2 lattice sites case), including side dots, for the angular momentum L = +1: ϵ0

1 = ϵ0
2 =

0meV , ϵ1
1 = ϵ1

2 = 1meV γ = 0.5meV , t = 7γ, ω = 0.4γ, λ2 = 0.5 and B = −2. For
L = +1 we have the spin filtering due to the coupling in the spin orbit term. Additionally,
we have Fano resonances.

to the one performed in the Michaeli-Geyer model with respect to the linear double dot

model. Since for L = 0, we recover the T-shape dimer model case, where we notice the

appearance of Fano resonances as the result of the interaction between continuous and

discrete quantum states (more information see Ch.4.3), we thus drop such value from the

figure. So, when L = +1, we recover the profile of the chiral model presented in Fig.4.8

but including Fano resonances due to the inclusion of new sites ϵ1
i to the ”chiral” linear

double-dot configuration of ϵ0
i via intrahopping ω, which produces a destructive quantum

interference effect. We draw attention to the appearance of only one FR due to the small

value given to the intrahopping ω as it was mentioned in Ch.4.3.

As the previous section, we compute the total transmission T (E) for pL = 1, pR = 0

and pL = −1, pR = 0; to obtain TUP , TDOW N and SP . But in this case, we will study

whether FR affects the effectiveness of the chiral system as a spin filter. Fig.4.11 presents

TUP , TDOW N and SP profiles. We notice an abruptly increasing and decreasing of SP at

the same location for the FR in TUP and TDOW N .

Lastly, we can organize the behavior of the chiral-like dimers to be a spin filter in the
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Figure 4.11: Spin Polarization (solid red line) and Landauer transmissions (QI profiles) for
ϵ0

1 = ϵ0
2 = 0meV , ϵ1

1 = ϵ1
2 = 1meV γ = 0.5meV , t = 7γ, ω = 0.4γ, λ2 = 0.5 and B = −2.

TUP (dashed black line) highlights the transmission for pL = 1, pR = 0. TDOW N (dashed
blue line) highlights the Transmission for pL = −1, pR = 0.

Table 4.2. We can conclude that FR profile affects through the inclusion of a discontinuity

in the SP behavior. This discontinuity indicates that spin polarization can abruptly change

sign within an incredibly small energy interval.

Table 4.2: Spin filtering behavior for chiral-like dimers

SP Michaeli-Geyer Extended Michaeli-Geyer
Discontinuity ✓ ×

4.6 Thermopower analysis

We learned about electron and spin transport aspects of the dimer-like systems. The wire-

like dimer configurations showed that electron (charge) transport rates reach their maxi-

mum at energies that belong to the eigenstates of the system. Such eigenstates will change

depending on the coupling between monomer-monomer (hopping terms) and monomer-

electrodes (tunneling terms), producing QI phenomena like anti- and Fano resonances.

The chiral-like dimer configurations showed the preference of the electron transport in a

determined alignment (spin) at the same eigenstates for molecules that follow the men-
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tioned geometry. Now, we will address a related aspect that we have overlooked until now;

heat transport. The heat transport analysis is linked to the electron and spin transport

because it reflects how efficient they are. Generally, as heat transport increases, electron

transport decreases. However, under certain conditions, heat can enhance the electron,

and thus spin transport. Specifically, we want to deal with the Seebeck effect in the chiral

molecules with and without QI effects. So, we will qualitatively see the conditions and the

efficiency in which the heat flows produce charge and spin flows in chiral molecules and

whether this efficiency can be enhanced by including quantum interference (QI) effects.

Figure 4.12: Charge (red line) and Spin (blue line) thermopower for a) the Michaeli-Geyer
model based on TUP , b) based on TDOW N , c) the Michaeli-extended model based on TUP

and d) TDOW N . The analysis was performed under cryogenic conditions (approximately
T = 3K).

Fig.4.12 shows the Seebeck Coefficient (SC) S and its spin extension, the Spin Seebeck

Coefficient (SSC) Ss, for the Michaeli-Geyer model and its modified model upon the pre-

viously computed TUP and TDOW N for a range of energies around the fermi level µ. The

calculations where performed in the low-temperature regime, approximately near from the

liquid helium boiling point (T=4.2 K), where the quantum effects dominates. In panel

a) and c) we see that the red line curve, which states for S, has three peaks and three

valleys that are associated to regions between resonances of the TUP spectrum (see Figs.4.9
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and 4.11). The blue line curve, which states for Ss, has also peaks and valleys associated

to regions between resonances in TUP . For the remaining b) and d) panels we have the

same behavior, the peaks and valleys are associated to regions between resonances in the

transmission spectra TDOW N (see Figs.4.9 and 4.11).

Figure 4.13: Charge (orange line) and Spin (blue line) thermopower for a) the linear double-
dot model based on TUP , b) based on TDOW N , c) the T-shape dimer model based on TUP ,
and d) TDOW N . The analysis was performed under cryogenic conditions (approximately
T = 3K).

To understand the effect of the chiral geometry, we calculate numerically S and Ss for

the wire-like dimer configurations (see Fig.4.13). By comparing Fig.4.12 and Fig.4.13, we

observe that the chiral geometry has a significant impact on the efficiency of converting

heat to electric and spin currents (S and Ss) because the peaks and valleys of the wire-like

dimer configurations are generally around |S| ∼ |0.1|, whereas those of the chiral-like dimer

configurations are approximately |S| ∼ |0.2|, which is twice as large.

We conclude that chiral-like dimers can produce spin currents from temperature dif-

ferences through the Spin Seebeck effect (SSE), indicating their potential as thermal spin

filters. This result suggests possible applications from a design perspective. For example,

the array of laterally coupled double quantum dots (DQDs) studied by Fu et al. demon-

strated that, by applying an external magnetic field, the coupled DQD array can function
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as a perfect thermal spin filter [9]. Given that the DQD array does not need to be very large

for device applications and the relative facility of QDs structure fabrication, we may infer

a potential application of the extended Michaeli-Geyer model to approximate a system

of two laterally coupled DQDs but including, in some way, the chirality. This is because

the chirality of the system replaces the external magnetic field, yielding the spin filtering

behavior observed in the work of Fu et al. [9]. Alternatively, a generalization of this model

to a large helical path is also considered for approximating an array of laterally coupled

DQDs but forming a helical path. In any case, both ideas deserves further studies in future

works.

Now, in order to understand the effect of Fano resonances inclusion in the chiral-like

configuration, we must compare the S and Ss profiles in panels a) and b) with those in

panels c) and d) of Fig.4.12. For the S profile, we see that the Fano resonance has a small

impact on efficiency because, in c), we observe a finite discontinuity instead of the usual

valley seen in a), around the energies where FR appears in the transmission spectra, i.e.,

Eanti = ϵ1
n = 1,meV (see Fig.4.11). The same happens for the spin Seebeck coefficient in

which the discontinuity appears in the same interval energy. Such discontinuities change

the values in the efficiency from S = −0.2 and Ss = 0.1, see panel a), to S ≈ −0.15 and

Ss ≈ 0.5, see panel c). We find similar results if we compare b) with respect to d).

Consequently, since the maximum efficiency is obtained if |S| → 1 and |Ss| → 1, we

could conclude that the FR would not enhance the efficiency of the conversion of heat into

charge and spin currents in chiral-like dimer configurations. Actually, we assert that FR

would reduce the efficiency because |S| → 0 and |Ss| → 0 in the antiresonance energy

Eanti.

However, when comparing with other works (Refs. [9, 51, 52, 53]), we find different

results, as FR is generally expected to enhance the efficiency of this conversion. This in-

consistency may arise from the specific assumptions employed in each model. For instance,

in molecular junction devices, we find such efficiency increment when the FR is located

near the Fermi level [51]. In lateral quantum dots, the enhancement in the thermopower is

pronounced in the vicinity of the FR [52] and when we deal in a specific low-temperature

regime [9, 52]. Tunneling and hopping are also crucial factors, being that the coupling

between contacts/electrodes and the scattering system (represented by γ) must deal in the
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strong coupling regime, i.e. |γ| > |V | ⇒
∣∣∣V

γ

∣∣∣ < 1 [9, 52]. This is because, in the weak

coupling regime, strong correlations for the inter-dot hopping (V ) change the picture of

the physical properties in unexpected manners [51] that can be non-beneficial.

In conclusion, the limitation of the model in thermoelectric conversion due to FR arises

from selecting not only the weak coupling to the electron baths
(∣∣∣V

γ

∣∣∣ ≫ 1
)

in which the

”identity” loss is avoided but also a temperature regime that is not considered in the lateral

double quantum dots systems [9]. However, if we assume a strong coupling, although the

desired enhancement due to FR would be obtained, we will be subjected to the ”identity”

loss of the eigenstates of the system, as it is mentioned in the chapter 4.1.

Therefore, an appropriate choice of the tunneling parameter in our model is guided by

balancing the perspectives of the two coupling regimes. A suitable candidate is |V | > |ω| >

0, which corresponds to the intermediate coupling regime. In addition to the tunneling

choice, we have to consider an appropriate low-temperature regime. A suitable candidate

is 0.12K < T < 1.2K, temperature regimes utilized by Fu et al. for the DQDs array

[9]. In any case, the thermoelectric efficiency is significantly influenced by the tunneling

and specific low-temperature regimes, often overlooked aspects in this thesis that warrant

further exploration in future works.
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Chapter 5

Conclusions

In this thesis, numerical computations based on Green’s function formalism were performed

to obtain the transmission coefficients in dimer-like systems with both straight and chiral

geometries. These computations revealed that chiral-like dimers behave similarly to wire-

like dimers subjected to external magnetic fields, although these effects are induced solely

by the chiral geometry. Consequently, the computations were used to obtain the ther-

mopower S and spin thermopower Ss from where we saw qualitatively the effect of chiral

geometries over two-terminals transport processes in comparison to the wire geometry case.

We conclude that transport per spin channel from contacts depends on the magneti-

zation that controls the population of the electronic density of states near to the Fermi

energy for a given spin alignment, and such magnetization is modulated numerically by

the polarization term of the contacts. As a result, we obtain a spin polarization based on

the magnetization of the contacts.

From the electron transport between nonmagnetic contacts mediated by wire-like dimer

models, we highlight transmission shapes without quantum interference for the linear dou-

ble dot model and T-shape dimer model (for zero intrahopping value), and the opposite for

the T-shape model and T-shape dimer model (for non-zero intrahopping values). Specifi-

cally, if the intrahopping term is larger with respect to spectral broadening, the quantum

interference (QI) will exhibit a normal antiresonance pattern. For smaller intrahopping

terms with respect to spectral broadening but different from zero, the QI shape exhibits a

Fano resonance (FR) pattern. Fano resonances are special because they show the interac-

tion (superposition) between the continuous quantum states from the terminals (contacts)
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and the discrete quantum states of the sites. Therefore, we conclude that the inclusion

of sites not connected directly to the contacts (i.e., side sites) induces QI phenomena and

such phenomena can become FR due to the adequate tuning of the correlations given by

the intra- and inter-dot hopping.

Additionally, from the electron and spin transport between ferromagnetic and non-

magnetic contacts mediated by the simplified version of the Michaeli-Geyer model, we

observe that the chiral-like dimer model induces a quasi-Zeeman splitting due to the effec-

tive magnetic field inherited from the spiral model. This field does not break time-reversal

symmetry (TRS), but it is possible to break it upon election of an angular quantum number

and thus obtain spin polarization. Lastly, the inclusion of side sites in the modified model

introduces quantum interference (QI) phenomena. Specifically, Fano resonance appears in

the spin-polarized current as asymmetrical discontinuities.

Finally, although Fano resonances appear in both charge and spin transmission coeffi-

cients as abrupt discontinuities, we observe that their influence on thermopower and spin

thermopower is controlled. Additionally, these discontinuities have proven to shift the ef-

ficiency from values far from zero to values close to zero within the energy interval where

FR happens. In conclusion, we find that Fano resonances may decrease the efficiency of

chiral-like dimer models. However, such results have been proven in the weak tunneling

coupling regime and at T = 3K.

Our findings that were proven for dimer-like models can serve as a reference for in-

vestigations in molecules with chiral centers and even for helical molecules. However, for

helical systems, further investigations need to be performed to see whether such results can

be generalized to spiral geometries. Additionally, further investigation into both tunneling

coupling and temperature regimes is also needed to determine whether FR can enhance

efficiency. Finally, from a design standpoint, we can suggest possible approximations for

quantum dots systems in order to develop perfect thermal spin filters, which also needs

more investigations.
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[47] S. Datta, Quantum Transport: Atom to Transistor, 2nd ed. Cambridge

University Press, 2005. [Online]. Available: http://gen.lib.rus.ec/book/index.php?

md5=f3d69e2c70bc61c136337f786ae4042b

[48] K.-I. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa,

and E. Saitoh, “Observation of the spin seebeck effect,” Nature, vol. 455, no. 7214,

pp. 778–781, 2008.

[49] K. Michaeli and R. Naaman, “Origin of spin-dependent tunneling through chiral

molecules,” The Journal of Physical Chemistry C, vol. 123, no. 27, pp. 17 043–17 048,

2019.

[50] F. S. C. Jr., Waves (Berkeley Physics Course, Volume 3). Mcgraw-Hill

Book Comp., 1968. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=

0580745cb47c796dbb3963a7b6945367
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