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Resumen 

La enfermedad de Alzheimer, un trastorno neurodegenerativo progresivo, representa un 

gran desafío para la salud a nivel mundial y tiene un profundo impacto en individuos, 

familias y sistemas de salud. Un diagnóstico temprano y preciso es esencial para un 

tratamiento y manejo efectivos. Este estudio se enfoca en utilizar redes neuronales 

convolucionales 3D para mejorar el proceso de diagnóstico del Alzheimer mediante 

escáneres de resonancia magnética, con el objetivo de aumentar la precisión de detección 

y contribuir a mejores resultados para los pacientes. Utilizando tecnologías avanzadas de 

imagen y redes neuronales, la investigación ofrece perspectivas prometedoras sobre 

métodos innovadores para detectar el Alzheimer. El rendimiento del modelo propuesto 

está respaldado por técnicas de preprocesamiento. El modelo alcanza una precisión de 

entrenamiento del 93.03%, con valores correspondientes de precisión, sensibilidad y 

AUC del 92.51%, 92.21% y 97.80%, respectivamente. La precisión del modelo se 

confirma aún más durante la validación, manteniendo una alta precisión del 88.05%, con 

precisión y sensibilidad ambas del 87.50%. 

Palabras Clave: Enfermedad de Alzheimer, Redes Neuronales Convolucionales 3D, 

Resonancia Magnética, Neuroimagen, Segmentación de Escáneres Cerebrales, 

Trastornos Neurodegenerativos.  



iii 
 

Abstract 

Alzheimer’s Disease, a progressive neurodegenerative disorder, presents a significant 

challenge to global health, profoundly impacting individuals, families, and healthcare 

systems. Early and accurate diagnosis is essential for effective treatment and 

management. This study focuses on the use of 3D Convolutional Neural Networks to 

enhance the diagnostic process of Alzheimer’s using MRI scans, aiming to improve 

detection accuracy and contribute to better patient outcomes. By utilizing advanced 

imaging and neural network technologies, the research offers promising perspective 

about innovative approaches for Alzheimer’s detection. The performance of the proposed 

model is supported by thorough pre-processing and augmentation techniques. The model 

achieves a training accuracy of 93.03% with corresponding precision, recall, and AUC 

values of 92.51%, 92.21%, and 97.80%, respectively. The accuracy of the model is 

further confirmed during validation, maintaining high accuracy at 88.05%, with precision 

and recall at 87.50%.  

Keywords: Alzheimer’s Disease, 3D CNNs, MRI, Neuroimaging, Brain Scan 

Segmentation, Neurodegenerative Disorders.
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Chapter 1 

Introduction 

Alzheimer’s disease (AD) stands as a challenge within the realm of public health and 

medical research. It is a progressive and complex neurological disorder that deteriorates 

cognitive functions, memory, and overall mental abilities. The irreversible nature of this 

condition profoundly affects not only those diagnosed but also places a considerable 

emotional, social, and economic burden on their families and society at large [1]. As the 

population ages, the occurrence of this illness, typically impacting individuals in later 

stages of life, is increasing. Therefore, urgent advances in diagnosis and treatment are 

necessary. 

Despite decades of research, AD continues to be a significant challenge for both 

clinicians and researchers. The complexity of the brain, the delayed appearance of 

symptoms, and the lack of precise diagnostic tests in the early stages of the disease make 

timely intervention and accurate diagnosis challenging [2]. Current treatments focus on 

alleviating symptoms and temporarily improving cognitive function, but they do not 

offer a cure or stop the disease's progression [2].  

In recent years, efforts to better understand AD have led to advances in biomarker 

research, neuroimaging techniques, and a deeper comprehension of the molecular 
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mechanisms involved in the disease process. However, the increasing prevalence of AD 

far exceeds the availability and pace of treatments and research [3].  

1.1 Problem Statement 

Current diagnostic methods for Alzheimer’s Disease face several challenges that slow 

the early and accurate identification of the condition. One significant challenge lies in 

the lack of methods capable of early detection, an essential factor in effectively 

managing the disease [2]. By the time symptoms become evident, irreversible damage 

to the brain may have already occurred. Additionally, the clinical presentation of 

Alzheimer’s varies widely among individuals, making it challenging to establish a 

standardized set of diagnostic criteria [4], [5]. This variability leads to delayed or 

inaccurate diagnoses, delaying the initiation of appropriate interventions. 

Imaging techniques, including Magnetic Resonance Imaging (MRI) and Positron 

Emission Tomography (PET) scans, are commonly used in diagnosis, but they have 

limitations. These techniques may lack the sensitivity to detect subtle changes in the 

early stages of the disease, and can sometimes produce false positives or false negatives, 

leading to potential misdiagnosis. Additionally, these techniques can be expensive, 

time-consuming, and may require specialized facilities and trained personnel, limiting 

their accessibility in certain regions or healthcare settings. Furthermore, some 

diagnostic procedures, like cerebrospinal fluid (CSF) analysis, are invasive and may not 

be suitable for routine screening due to their discomfort and potential risks. Moreover, 

CSF analysis can also be poorly available in community health facilities, further limiting 

its widespread utilization in diagnostic protocols [6]. Considering general medical 

practice and standard of care  the use of CSF or amyloid PET biomarkers have 

consistently led to the same conclusion: that the routine use of these biomarkers in 

clinical practice cannot be recommended [5]. 

Using Convolutional Neural Networks (CNNs) in current diagnostic methods for AD 

presents a promising avenue for addressing the challenges. Furthermore, 3D CNNs 

excel in processing three-dimensional data, providing a comprehensive analysis of 

structural changes in the brain [7], [8]. This capability is particularly advantageous for 

identifying subtle alterations in brain morphology that may occur in the various stages 

of Alzheimer’s. Additionally, 3D CNNs can automate the analysis process, reducing the 
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subjectivity associated with traditional cognitive evaluations and providing a more 

standardized and objective approach to diagnosis [8]. 

Integrating 3D CNNs into diagnostic protocols can enhance Alzheimer’s diagnostics by 

providing a tool that improves sensitivity, specificity, and objectivity in identifying the 

disease's manifestations. As technology continues to advance, the role of 3D CNNs in 

Alzheimer’s diagnosis holds great promise for transforming the landscape of 

neurodegenerative disease detection. 

1.2 Objectives 

1.2.1 General Objective 

Enhance detection of Alzheimer’s disease by combining segmentation of brain MRI 

scans into three tissue types (cerebrospinal fluid, white matter, and gray matter) with 

the analysis capabilities of a 3D Convolutional Neural Network. 

1.2.2 Specific Objectives 

• Create a 3D Convolutional Neural Network model tailored for analyzing T1-

weighted MRI scans to detect Alzheimer’s Disease. 

• Implement segmentation techniques during pre-processing of T1-weighted MRI 

scans to improve data quality and relevance for the 3D CNN model. 

• Assess the model's accuracy in diagnosing Alzheimer’s disease and compare its 

performance with traditional diagnostic methods.
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Chapter 2 

State of the Art 

2.1 Alzheimer’s Disease 

Alzheimer’s disease is a neurological disorder characterized by the gradual decline of 

cognitive function, particularly memory loss, and the inability to perform everyday 

activities. Named after the German psychiatrist Alois Alzheimer, who first identified 

the disease in 1906, Alzheimer’s has become a significant global health concern with 

profound societal implications [9]. The global prevalence of AD is on the rise, mainly 

due to aging populations in many countries. According to the World Health 

Organization, more than 55 million people worldwide are experiencing dementia in 

2023, with AD accounting for the majority [10]. Each year, nearly 10 million new cases 

are reported. With the aging population trend projected to continue, these numbers are 

anticipated to escalate, increasing the urgency for effective interventions, treatments, 

and preventive strategies. 

Alzheimer’s prevalence trends from 1990 to 2019 (Fig 2.1) depict a significant rise in 

the number of AD cases globally, with the prevalence in 2019 being 160.84% higher 

than that observed in 1990 [11].  



 
School of Biological Sciences and Engineering Yachay Tech University

 

5 

 

 
Figure 2.1 Global Prevalence of Alzheimer's Disease and Dementia (1990-2019). Number of people 

with Alzheimer's disease or other forms of dementia per 100,000 people aged age-standardized. Data 

sourced from Our World in Data [12]. 

In addition to the historical trend, the prevalence of Alzheimer's disease in 2019 (Fig 

2.2) provides insights into the current landscape of this condition. Countries such as 

Turkey, Bahrain, and Kuwait reported the highest prevalence rates, while India, Nigeria, 

and Pakistan had comparatively lower rates [11]. Some regions, including Taiwan, 

China, Japan, and China, saw rapid increases in prevalence rates, showing the need for 

targeted interventions and resource allocation in these areas [11]. On the other hand, 

countries like Luxembourg, Nigeria, and Spain experienced notable decreases in 

prevalence rates, indicating potential success in combating the prevalence of AD [11]. 

Understanding these patterns is key to developing effective healthcare interventions and 

strategies aimed at addressing the current impact of Alzheimer's disease worldwide. 

 
Figure 2.2 Global Prevalence of Alzheimer's Disease and Dementia (2019): Age-Standardized Cases 

per 100,000 People - Data sourced from Our World in Data [12]. 
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The impact of Alzheimer’s extends beyond individuals to their families, caregivers, and 

society at large. It is not merely a disease of memory; it affects a person's ability to 

reason, communicate, and carry out daily tasks. Families often bear a substantial 

emotional and financial burden, as the disease needs long-term care, leading to 

increased healthcare costs and stress on caregivers.  

Moreover, the escalating prevalence of AD globally presents an immense challenge for 

healthcare systems [13]. The intricate nature of the disease requires a detailed approach 

including medical and social care. From initial diagnosis through to long-term support, 

healthcare providers struggle with the many demands of Alzheimer’s, requiring 

innovative solutions and an evolution in care delivery models. This strain on healthcare 

infrastructure is particularly pronounced, especially with more elderly people needing 

care [13]. This emphasizes the need for careful planning and distributing resources to 

handle the increasing demand for Alzheimer’s care. 

Beyond the healthcare sector, the economic reverberations of Alzheimer’s are profound. 

The financial burden extends beyond direct healthcare costs, encompassing lost 

productivity and wages as individuals exit the workforce or reduce work hours to care 

for affected family members [14]. The World Health Organization indicates that in 

2019, dementia posed a global economic burden of 1.3 trillion dollars, and 

approximately half of these costs were associated with informal care [10]. However, 

when considering vascular dementia alongside Alzheimer's, the total rises to $2.8 

trillion, calculated in 2020 US$ [15]. Projections (Fig. 2.3) suggest a pronounced 

increase, with the global economic burden forecasted to reach $4.7 trillion by 2030, $8.5 

trillion by 2040, and $16.9 trillion by 2050. The largest proportional increases are 

expected in low-, lower-middle-, and upper-middle-income countries, while high-

income countries are less affected. These projections augment the urgent need for 

effective interventions and policies to address the escalating economic burden of AD 

and related dementias globally. 
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Figure 2.3 Estimated economic burden of Alzheimer’s Disease and related dementias by country groups 

(2019-2050), trillions of 2020 constant US$ [15]. 

Concurrently, research and development efforts are intensifying as the race to 

understand the complexities of Alzheimer’s becomes a focal point in medical research 

[13]. In addition to these efforts, It is increasingly important to make more people aware 

and break down the negative views linked to Alzheimer’s [13]. Reducing the societal 

taboo surrounding the disease can not only encourage early diagnosis but also create a 

more compassionate environment, enhancing support for those affected and their 

families. 

Alzheimer’s is a progressive disease, intensifying over time, with pace and declining 

abilities varying among individuals. As the disease advances, more neurons succumb to 

damage, impacting broader areas of the brain [3]. Consequently, heightened assistance 

from family, friends, and professional caregivers becomes imperative for individuals to 

carry out daily activities to ensure their safety. The trajectory of Alzheimer’s may also 

include changes in mood, personality, and behavior [14]. As the disease relentlessly 

progresses, the neuronal damage extends to vital brain regions governing essential 

bodily functions like walking and swallowing. Individuals eventually become bed-

bound, necessitating round-the-clock care [14]. The changes in the brain linked to 

Alzheimer's disease are the primary factors leading to dementia. These changes have 

widespread effects on memory, cognition, sensory perception, emotions, motor skills, 

and abilities. 
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The cellular basis of the brain changes associated with AD has been extensively studied. 

It involves the accumulation of beta-amyloid fragments into clumps outside neurons 

(beta-amyloid plaques) and the abnormal hyperphosphorylation of the tau protein, which 

leads to the formation of tangles inside neurons (tau tangles) (Fig. 2.4) [16]. These 

alterations precede the damage and the destruction of neurons, known as 

neurodegeneration, a crucial element in Alzheimer’s pathology [3]. The roles of beta-

amyloid and tau in Alzheimer’s are distinctive. Beta-amyloid plaques and accumulations 

may hinder neuron-to-neuron communication, impacting synapses [16]. Tau tangles 

inside neurons obstruct nutrient transportation, which is vital for neuron function and 

survival [3]. The complete understanding of the sequence of events or exact mechanisms 

is still unclear [16]. 

 

Figure 2.4 Comparative Illustration of Healthy vs. Diseased Brain in Alzheimer’s Disease. 

Other Alzheimer 's-associated brain changes involve inflammation and decreased brain 

volume (atrophy). The presence of toxic beta-amyloid and tau proteins activates 

immune system cells called microglia, attempting to clear these proteins and cellular 

debris [17]. Chronic inflammation may ensue when microglia struggle to keep pace, 

contributing to atrophy caused by cell loss [17]. Compounded by diminished glucose 

metabolism, normal brain function is further compromised [14]. 
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Advancements in research have enable the measurement of these brain changes, 

incrementing the understanding of the disease's pathology. Identifying abnormal beta-

amyloid and tau levels in CSF and utilizing PET for imaging has become instrumental 

in diagnosing and understanding Alzheimer’s [18]. These accumulations serve as 

biomarkers, measurable biological changes indicating the presence or risk of AD. Such 

advancements not only enhance our understanding of Alzheimer’s but also offer 

potential avenues for early detection and intervention, essential elements in efforts to 

combat this neurodegenerative disorder. 

2.1.1 Importance of Early Diagnosis 

The significance of early and accurate diagnosis in Alzheimer’s disease goes beyond 

clinical identification, serving as a starting point for effective intervention and 

management strategies. The timely recognition of Alzheimer’s not only provides 

knowledge about the condition and the patient but also gives avenues for targeted 

interventions capable of mitigating the progression of the disease.  

Early diagnosis facilitates the initiation of treatments, enabling healthcare providers to 

introduce therapeutic strategies that include medications, cognitive rehabilitation, and 

lifestyle modifications [4]. This approach, made for the individual's evolving needs, 

aims not just to treat symptoms but to create a comprehensive care plan that fits the 

individual’s situation. Importantly, this encompasses not only the medical dimension 

but also the psychosocial and emotional aspects, acknowledging the profound impact 

Alzheimer’s has on both individuals and their families. 

Beyond just direct medical treatment, an early diagnosis is the foundation for care 

planning [19]. It gives families a head start to plan and handle Alzheimer’s challenges, 

from legal and financial considerations to long-term care preferences [20]. This 

planning, based on early diagnostic, gives power to individuals and their families to 

make informed decisions. Moreover, it also opens doors to education and support 

services for caregivers, which can significantly ease the burden and stress associated 

with caregiving, enhancing the overall quality of life for individuals with Alzheimer’s 

and their support systems [20]. 
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Participation in clinical trials and research studies represents another facet of the early 

diagnosis paradigm [21]. Individuals identified early with AD can contribute to the 

advancement of scientific understanding while gaining access to experimental 

treatments and therapies that may hold promise for altering the course of the disease. 

This dual role as contributors to medical knowledge and beneficiaries of new 

interventions shows the big potential of early diagnosis. 

Beyond the clinical and research realms, early diagnosis serves as a shield against 

potentially reversible causes of cognitive decline [22]. By identifying factors such as 

medication side effects, depression, or vitamin deficiencies, healthcare professionals 

can offer interventions to address these specific issues, offering an individualized 

approach to care. 

2.1.2 Diagnosis Approaches  

Diagnosing AD involves various approaches to identify its progression and stages. One 

way to understand this is by recognizing the continuum of the disease, which spans from 

an asymptomatic phase with biomarker evidence of AD (preclinical AD) through mild 

cognitive impairment (MCI) and mild behavioral impairment (MBI) to the eventual 

development of AD dementia [4]. Various staging systems, with differing definitions 

for each stage, have been established to categorize AD across its progression (Fig. 2.5). 

 

Figure 2.5 Stages of Alzheimer’s Disease Progression according to Different Classifications. Adapted 

from Porsteinsson A.P. et al. [4]. 
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Traditional diagnostic methods for Alzheimer’s disease involve a comprehensive and 

multifaceted approach, including clinical assessments, cognitive tests, and 

neuroimaging. These methods are necessary for detecting and confirming the presence 

of Alzheimer’s, especially in the early stages when interventions may be more effective. 

Table 2.1 summarizes the recommended steps to support each stage of the diagnosis 

process. 

Step 1: Detection 

• Gather comprehensive patient and family history 

• Incorporate caregiver insights 

• Review medical and disease history 

• Document medication regimen 

• Assess lifestyle factors 

Step 2: Evaluation 

and Differentiation 

• Conduct blood tests for comprehensive analysis 

• Consider genotyping for genetic predispositions 

• Perform neurological and physical examinations 

• Administer cognitive assessments 

• Evaluate functional abilities  

• Assess behavioral symptoms  

• Utilize imaging techniques  

Step 3: Diagnosis 

• Employ advanced diagnostic tools: 

- Amyloid PET imaging 

- Analysis of CSF markers: Aβ42, p-tau, and t-tau levels 

- Calculate CSF Aβ42/Aβ40 ratio 

Step 4: Treatment 

and Management 

• Implement symptomatic treatments such as Ach inhibitors and 

NMDA receptor antagonists 

• Recommend lifestyle modifications to support cognitive 

health 

• Provide social work support and resources for caregivers 

• Encourage participation in clinical trial registries for potential 

therapeutic advancements 

Table 2.1 Phases in the AD Diagnostic Process, accompanied by the Recommended Steps. Adapted 

from Porsteinsson A.P. et al. [4]. 
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2.1.2.1 Physical Examination and Blood Analyses 

A thorough physical examination and blood analyses play important roles in the 

diagnostic process for AD by identifying potential underlying medical conditions and 

reversible causes of cognitive impairment. During the physical examination, which 

includes mental status and neurological assessments, clinicians can detect conditions 

like depression and search for signs indicative of stroke or other neurological disorders 

[23]. Additionally, checking diet, medication history, blood pressure, temperature, 

pulse, and cardiovascular health can provide helpful information into a patient's overall 

health and potential contributors to cognitive decline. Blood tests are essential for ruling 

out treatable conditions that may mimic Alzheimer's or dementia symptoms, such as 

vitamin B12 deficiency or thyroid disease [24]. Recommended blood analyses are 

summarized in Table 2.2. Furthermore, genetic testing may be considered in individuals 

with a family history of early-onset Alzheimer's or dementia, with some clinics offering 

ApoE genotyping services and consumer tests becoming increasingly accessible for 

those interested in assessing their genetic risk for Alzheimer's disease [4]. 

Test Measurements Abnormal results Dementia/AD relation 

Complete Blood 

Count with 

Platelet Count 

- RBC 

- WBC 

- Platelets 

- Hb 

- Anemia (low RBC or 

Hb)  

- Infection (elevated 

WBC)  

- Thrombocytopenia (low 

platelets) 

Anemia may contribute 

to cognitive decline; 

infections may indicate 

underlying inflammation 

or infection-related 

cognitive impairment. 

Serum Creatinine 

and Urea 

Concentration 

- Creatinine  

- Urea  

- Acute or chronic kidney 

disease (elevated 

creatinine and urea) 

Kidney dysfunction may 

lead to metabolic 

disturbances affecting 

cognition. 

Glucose and 

Glycated 

Hemoglobin 

- Blood sugar 

levels 

- HbA1c 

- Diabetes mellitus 

(elevated fasting glucose 

or HbA1c) 

Diabetes and 

dysglycemia are 

associated with 

cognitive impairment 

and increased risk of 

AD. 

Lipid Profile 
- Cholesterol  

- Triglyceride  

- Dyslipidemia (elevated 

total cholesterol, LDL, or 

triglycerides) 

Dyslipidemia is 

associated with 

increased risk of 

vascular cognitive 

impairment and AD. 

Albumin Albumin 
- Liver disease (low 

albumin) 

Liver dysfunction may 

impact cognitive 
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function through 

metabolic disturbances 

and inflammation. 

Liver Assessment 

with 

Transaminases 

and Prothrombin 

Time 

- AST 

- ALT 

- PT 

- Liver disease (elevated 

ALT or AST)  

- Coagulopathy 

(prolonged PT) 

Liver dysfunction may 

affect cognitive function 

through metabolic 

disturbances and 

inflammation. 

Electrolyte 

Measurement 

- Sodium  

- Potassium  

- Calcium  

- Electrolyte imbalances 

(hyponatremia, 

hyperkalemia, 

hypocalcemia) 

Electrolyte imbalances 

can lead to cognitive 

impairment and 

confusion. 

Thyroid 

Hormones 

- TSH 

- FT4 

- T3 

- Hypothyroidism 

(elevated TSH, low FT4)  

- Hyperthyroidism (low 

TSH, elevated FT4) 

Thyroid disorders can 

affect cognition and 

mimic symptoms of 

dementia. 

Vitamin B12 and 

Folic Acid 

Measurement 

- Vitamin B12 

- Folate 

- Vitamin B12 deficiency 

(low B12)  

- Folic acid deficiency 

(low folic acid) 

Deficiencies in vitamin 

B12 and folic acid can 

cause cognitive 

impairment and 

dementia-like 

symptoms. 

Erythrocyte 

Sedimentation 

Rate and C-

Reactive Protein 

- ESR 

- CRP 

- Inflammatory 

conditions (elevated ESR 

or CRP) 

Chronic inflammation is 

associated with 

increased risk of 

cognitive decline and 

AD. 

Screening Tests 

for Main 

Infections 

- Syphilis 

- HIV 

- Hepatitis B 

- Hepatitis C. 

- Positive test results 

indicate active infection, 

which may require 

further evaluation and 

treatment 

Certain infections, such 

as HIV and syphilis, can 

directly affect the brain 

and cognitive function, 

leading to dementia-like 

symptoms. 

Table 2.2 Suggested routine laboratory tests in the diagnosis of dementia [25], [26]. 

2.1.2.2 Cognitive Testing 

Cognitive testing is an important component of Alzheimer’s diagnosis, aiming to 

determine various aspects of cognitive function. These tests measure memory, attention, 

language skills, and executive function. Well-established tests, such as the Mini-Mental 

State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA), are 

commonly employed [27]. These assessments provide quantifiable data and help 

evaluate the severity of cognitive impairment. Discrepancies between an individual's 

current cognitive performance and their baseline or expected abilities contribute to the 
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diagnostic criteria for AD. Table 2.3 summarizes and compares commonly used 

cognitive tests. 

Test Score 
Questions or 

Items 

Time 

(min) 
Characteristics 

MMSE 

Lower scores indicate 

greater cognitive 

impairment. 

30 5-10 

- May have limitations 

in identifying 

impairments in 

executive functioning. 

- Minimal training 

requirements. 

- Paid test 

MoCA 

Lower scores indicate 

greater cognitive 

impairment. 

30 10 

- More sensitive than 

MMSE, particularly in 

detecting MCI. 

- Minimal training 

requirements. 

- Paid test 

Mini-Cog 

Scored out of 5, with 

3 points for recall and 

2 points for the clock-

drawing task. Lower 

scores suggest 

cognitive impairment. 

3 recall items, 

plus clock-

drawing task 

2-3 

- Involves recalling 

three items from a list 

and drawing a clock 

- Brief assessment 

- Easy to interpret 

- No training 

requirements. 

AD8 

Higher scores 

indicate more 

cognitive impairment. 

8 2-3 

- Informant 

questionnaire 

- Brief assessment for 

cognitive impairment 

IQCODE 

Scored on a Likert 

scale, with higher 

scores indicating 

greater cognitive 

decline. 

Varies (26-

30) 
10 

- Measures decline 

from premorbid level 

- Informant 

questionnaire 

Table 2.3 Comparison of Cognitive Screening Tests [4], [23], [27], [28]. 

2.1.2.3 Functional Testing 

Functional testing assesses a patient's daily activities by evaluating their instrumental 

activities of daily living (IADL), which encompass essential tasks for independent living 

such as cooking, shopping, and managing finances. These activities may become 

impaired during the early stages of cognitive decline, particularly in neurodegenerative 

diseases. While some decline in instrumental activities of daily living performance is 

expected with normal aging, significant impairments are strongly associated with AD. 

Commonly used functional assessments are summarized in Table 2.4. 
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Test Score  
Questions 

or Items 

Time 

(min) 
Characteristics 

FAQ 

Ranges from 0 

(independent) to 

30 (dependent) 

10 5-10 

Highly reliable assessment 

for evaluating functional 

ability, focusing on a 

range of daily living 

activities. 

A-IADL-

Q 

5-point Likert 

scale (individual 

items) 

47-70 

Depends 

on the 

version of 

the test. 

Less influenced by 

demographic factors. Can 

be sensitive to early stages 

of the disease. 

FAST 

Yes/No for 

presence of 

behavioral 

concerns 

28 10-15 

Identifies functional and 

behavioral problems 

through multiple 

informant reports.  

Table 2.4 Comparison of Functional Screening Tests [4], [23], [29]. 

2.1.2.4 Behavioral Testing 

Patients suspected of having Alzheimer's disease often exhibit various behavioral 

symptoms, including as anxiety, depression, apathy, psychosis, and agitation [30]. These 

symptoms, especially prevalent in the early stages of the disease, not only contribute to 

poor long-term outcomes but also impose significant burden on caregivers and distress 

patients and their families. Clinicians are necessary for the task of distinguishing 

behavioral and psychiatric symptoms caused by neurodegenerative diseases like AD 

from those deriving from alternative causes, such as mood disorders [23]. To assess 

neuropsychiatric symptoms in patients with suspected early-stage AD, clinicians 

commonly employ the tests summarized in Table 2.5.  

Test Score  
Question 

or Items 

Time 

(min) 
Characteristics 

GDS 

0 to 3 scale. 

Higher scores 

represent the 

presence of more 

depressive 

symptoms 

15 or 30 5-10 

Self-reported questionnaire used to 

assess depression specifically in older 

adults. Questions target the individual's 

recent mood, with a specific emphasis 

on the past week. 

NPI-Q 

1 to 3 scale. 

Higher scores 

indicate higher 

degree of 

behavioral 

disturbance 

12 5 

It is a structured interview conducted 

with an informant to assess the 

presence and severity of symptoms 

across 12 behavioral domains. 

Table 2.5 Comparison of Functional Screening Tests [4], [31].  
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2.1.2.5 Neuroimaging 

Advancements in neuroimaging technologies have significantly enhanced the 

diagnostic capabilities for AD. Table 2.6 shows a summary of neuroimaging tests 

frequently used in AD. 

Neuroimaging 

Test 
Brain Areas Characteristics Modality 

MRI  Whole brain 

High-resolution images of brain 

structure can detect brain 

atrophy, especially in the 

hippocampus. 

Structural 

fMRI  
Brain Activity 

Regions 

Measures brain activity by 

detecting changes in blood flow. 
Functional 

CT  Whole brain 
Quick imaging can show gross 

structural abnormalities. 
Structural 

PET  
Hippocampus, 

Amyloid Plaques 

Can detect beta-amyloid plaques 

and tau tangles, which are 

hallmarks of Alzheimer’s 

disease. 

Molecular 

SPECT  
Cerebral Blood 

Flow 

Shows blood flow to tissues and 

organs. 
Functional 

DTI  
White matter 

tracts 

Maps white matter tracts and can 

show connectivity loss in the 

brain. 

Structural/ 

Functional 

Table 2.6 Common Neuroimaging Tests used for Alzheimer’s Disease, brain areas they focus on, 

characteristics, and imaging modalities [24]. 

MRI and Computed Tomography (CT) scans provide detailed images of the brain's 

structure, aiding in the identification of atrophy and other abnormalities [32]. These 

imaging techniques assist in ruling out other potential causes of cognitive decline, such 

as tumors or vascular issues. 

PET scans utilizing specific tracers can highlight areas of the brain with abnormal beta-

amyloid deposits, one of the hallmark features of Alzheimer’s [33]. Additionally, 

fluorodeoxyglucose (FDG)-PET scans measure glucose metabolism in the brain, 

helping identify regions with decreased activity, which is indicative of neuronal 

dysfunction [34]. These neuroimaging methods give important details about the 

structural and functional changes associated with Alzheimer’s, supporting a more 

accurate diagnosis. 
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2.1.2.5.1 Magnetic Resonance Imaging 

MRI operates on the principles of nuclear magnetic resonance, utilizing the behavior of 

atomic nuclei within a magnetic field. In the context of Alzheimer’s disease, MRI 

provides very detailed information about the structural changes occurring in the brain, 

showing clear signs of shrinking, abnormal protein buildup, and other aspects of the 

disease. 

The MRI process involves exposing the body, in this case, the brain, to a strong 

magnetic field and radiofrequency pulses. The interaction of these components with 

hydrogen atoms, abundant in the human body due to the prevalence of water, results in 

the emission of signals [35]. The detection and interpretation of these signals form the 

basis of MRI images. Notably, the contrast between different types of tissues within the 

brain enables the visualization of anatomical structures with remarkable detail. Figure 

2.6 shows the different planes of the brain on a T1-weighted MRI, and the Figure 2.7 

shows the slices of a brain in the axial plane. 

 

Figure 2.6 Different planes from OASIS 3 displayed in FSLeyes. A) Sagittal Plane. B) Coronal Plane. 

C) Axial Plane. 

 

Figure 2.7 Axial View of Sequential MRI Brain Scan Slices from OASIS 3 - Lightbox Display in 

FSLeyes. 
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In the context of Alzheimer’s, various MRI sequences are employed to distinguish 

different aspects of the disease's structural alterations. Table 2.7 summarizes the MRI 

sequences commonly used on the brain. 

MRI Sequence Imaging Characteristics Application 

T1-Weighted 

(Fig. 2.8A) 

- High spatial resolution 

- Anatomical detail 

- CSF appears dark 

- White matter appears light 

- Anatomical studies 

- Assessment of brain atrophy 

- Lesion detection 

T2-Weighted 

(Fig. 2.8B) 

- High contrast for fluid 

- CSF appears bright 

- White matter appears dark 

- Detection of edema and 

inflammation 

- Evaluation of white matter lesions 

- Identification of acute stroke 

T2*-Weighted 

(Fig. 2.8C) 

- Sensitive to magnetic 

susceptibility 

- Hemorrhages and calcifications 

appear dark 

- Can show iron deposits and 

microbleeds 

- Detection of blood degradation 

products 

- Imaging of iron deposition in 

neurodegenerative diseases 

- Evaluation of small vascular 

lesions 

FLAIR  

(Fig. 2.8F) 

- Suppresses fluid signal 

- CSF appears dark 

- Lesions near CSF spaces are 

highlighted 

- Multiple sclerosis plaque detection 

- Identification of subtle brain 

lesions 

- Chronic stroke assessment 

DWI  

(Fig. 2.8E) 

- Sensitive to the diffusion of 

water molecules 

- Acute stroke lesions appear 

bright 

- Early stroke detection 

- Differentiation between cytotoxic 

and vasogenic edema 

GRE  

- Susceptibility to magnetic field 

inhomogeneities 

- Blood products and 

calcifications appear dark 

- Detection of hemorrhage 

- Identification of vascular 

abnormalities 

- Iron deposition studies 

SWI  

(Fig. 2.8D) 

- Enhanced sensitivity to blood 

products and iron 

- Venous structures and iron 

appear dark 

- Detection of micro hemorrhages 

- Venous angiography 

- Traumatic brain injury assessment 

MRA  

- Visualization of blood flow 

without contrast agents 

- Blood vessels appear bright 

- Non-invasive vascular system 

evaluation 

- Aneurysm and vascular 

malformation detection 

fMRI  

- Detects changes in blood 

oxygenation 

- Highlights areas of brain 

activity 

- Brain function mapping 

- Pre-surgical planning 

- Research into brain disorders 

Table 2.7 Summary of MRI Brain Sequences: Imaging Characteristics and Clinical Applications [27]. 
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Figure 2.8 Comparison of Axial Plane MRI Sequences in Brain Imaging Displayed in FSLeyes: A) T1-

Weighted, B) T2-Weighted, C) T2*-Weighted, D) SWI, E) DWI, F) FLAIR. 

In essence, the nature of Alzheimer’s pathology needs a specific approach, and MRI, 

with its diverse sequences, emerges as a versatile tool. By combining anatomical and 

functional information, different MRI sequences contribute to a comprehensive 

understanding of Alzheimer’s, aiding in early diagnosis, disease monitoring, and the 

creation of targeted interventions. As technological advancements continue, MRI 

continues to be a vital tool in discovering and understanding the structural changes in 

the brain caused by AD, offering hope for improved diagnostics and more effective 

therapeutic strategies. 

2.2 Overview of Neural Networks 

2.2.1 Introduction 

Neural networks, popular in artificial intelligence and machine learning, are designed 

to emulate the information processing capabilities witnessed in the human brain. These 

networks, inspired by their biological counterparts, are comprised of interconnected 

nodes, or artificial neurons, arranged into layers [36]. Much like biological neurons, 

these artificial counterparts receive input signals, process them through weighted 

connections, and produce an output signal, enabling the network to learn and make 

predictions. 

The neural network's architecture involves distinct layers, beginning with the input 

layer, where external data or features are presented [36]. Hidden layers, nestled between 

the input and output layers, perform the bulk of the information processing, similar to 

the complex neural circuits in the human brain. The output layer then generates the final 
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result, which could be a classification, prediction, or any other desired outcome. This 

layered organization mirrors the hierarchical structure of the human brain and facilitates 

the network's capacity to capture intricate patterns within data. 

The learning process in neural networks revolves around adjusting weights and biases 

[37]. Weights, analogous to synaptic strengths in biological systems, determine the 

influence of one node on another. During training, these weights are modified to 

optimize the network's performance, reflecting a form of artificial synaptic plasticity 

[38]. Biases, additional parameters within nodes, introduce flexibility, allowing the 

network to adapt and learn representations from the data. 

Activation functions introduce non-linearity into the network. This non-linearity is 

essential for modeling complex relationships within data, similar to the activation of 

biological neurons [39]. Sigmoid, hyperbolic tangent, and rectified linear unit (ReLU) 

are common activation functions that determine whether a node should activate based 

on the weighted sum of inputs and biases. 

Essentially, neural networks combine computational power with biological inspiration. 

They consist of interconnected nodes organized into layers, each emulating the 

functionality of biological neurons. The weighted connections and activation functions 

allow these artificial systems to learn and adapt, mirroring the plasticity observed in 

biological synapses. As artificial neural networks continue to evolve, inspired by the 

intricate workings of the human brain, they give new possibilities in the realm of 

artificial intelligence, propelling advancements and innovations across diverse domains. 

2.2.2 Mechanism of Neural Networks 

The forward propagation process in neural networks is the mechanism by which input 

data is processed layer by layer, culminating in the generation of an output [40]. This 

sequential flow of information through the network shows how neural networks predict 

or classify data accurately. This forward propagation process lays the groundwork for 

predictions; however, it is the backpropagation algorithm that refines the network's 

predictive capabilities through iterative learning. Backpropagation is a fundamental 

mechanism that adjusts weights and biases to minimize the discrepancy between the 

network's predictions and the actual output during the training phase [40]. 
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After the forward propagation process generates predictions, the computed output is 

compared to the true target values. The resulting error, often quantified using a loss or 

cost function, serves as a measure of the disparity between the predicted and actual 

outcomes [41]. Backpropagation operates by propagating this error backward through 

the network, layer by layer, adjusting the weights and biases to reduce prediction errors 

systematically. 

The essence of backpropagation lies in the chain rule of calculus, which enables the 

computation of gradients for each weight and bias with respect to the overall error [38]. 

Gradients represent the rate of change of the error concerning the corresponding weight 

or bias. The weights and biases are then adjusted in the opposite direction of these 

gradients, nudging the network parameters to minimize the error [38], [41]. 

Mathematically, the weight update can be expressed as a learning rate multiplied by the 

gradient of the error with respect to the weight [42]. The learning rate controls the step 

size of these updates, preventing the algorithm from overshooting the optimal parameter 

values. This iterative process continues over multiple epochs, refining the network's 

parameters to converge toward a state where the error is minimized. 

Notably, activation functions introduce non-linearity into the network during the 

forward propagation process. These functions determine whether a neuron should 

activate based on the weighted sum of inputs and biases [39]. This non-linearity is 

crucial for tasks involving non-linear patterns, allowing the network to learn and 

represent intricate features and correlations in the input data. 

The neural network learns from the training data by adjusting weights and biases during 

backpropagation while considering the non-linear activation functions and improving 

its generalization ability [41]. The adaptability of this learning process, combined with 

the non-linear activation functions, enables neural networks to capture complex 

patterns, making them versatile tools across various artificial intelligence applications. 

The teamwork of forward propagation, backpropagation, and activation functions 

highlights the network's ability to autonomously adapt and optimize its predictive 

capabilities over successive training iterations. 
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2.2.3 Types of Neural Networks 

2.2.3.1 Perceptron 

The perceptron is a basic type of neural network used for classifying data into two parts 

[43]. It works by multiplying input signals with weights, summing them up, and then 

passing this sum through a function that decides the output. If the sum is above a certain 

threshold, the perceptron activates an output; otherwise, it does not. Perceptrons are 

mainly used in simple tasks like image recognition [44], [45], [46], but they are limited 

to solving linear problems and form the basis for more complex neural network models. 

The architecture of a perceptron closely resembles that of a single-layer feedforward 

neural network. 

2.2.3.2 Feedforward Neural Networks 

Feedforward Neural Networks (FNNs) (Fig. 2.9) represent the simplest form of neural 

networks. In this architecture, information flows in a unidirectional manner, starting 

from the input layer through one or more hidden layers and culminating in the output 

layer [43]. Each node in a layer is connected to every node in the subsequent layer, with 

each connection having a weight that influences the signal. Activation functions, such 

as the sigmoid or ReLU, introduce non-linearity, enabling the network to learn complex 

relationships. Training involves adjusting these weights based on the error between 

predictions and actual outputs using optimization algorithms like gradient descent.  

 

Figure 2.9 Basic Architecture of a Feedforward Neural Network 
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FNNs serve various applications across different domains. In finance, they are 

employed for credit scoring and risk assessment [47], [48]. In marketing, FNNs aid in 

customer segmentation and predicting market trends [49]. Moreover, FNNs find utility 

in voice and speech recognition systems, contributing to advancements in natural 

language processing and understanding [50], [51]. 

2.2.3.3 Convolutional Neural Networks 

CNNs (Fig. 2.10.) revolutionized image processing tasks. The key feature is the 

convolutional layer, where filters systematically slide over input data to detect features 

like edges and textures. Pooling layers reduce spatial dimensions, retaining essential 

information [52]. Fully connected layers follow, making decisions based on learned 

features. CNNs leverage parameter sharing and hierarchical feature learning, reducing 

the number of parameters compared to fully connected networks. This design makes 

CNNs efficient in image-related tasks by capturing local patterns and spatial hierarchies. 

 

Figure 2.10 Basic Architecture of a Convolutional Neural Network 

CNNs have become the foundation of image-related applications. In medical imaging, 

CNNs are commonly used for tasks such as image classification, object detection, and 

segmentation of anatomical structures [53], [54]. They have broad applications in facial 

recognition technology, image-based search engines, and autonomous vehicles for real-

time object detection and scene understanding [55], [56]. 

2.2.3.4 Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) (Fig. 2.11) are designed for sequential data, such 

as time series or natural language. Unlike FNNs, RNNs have connections looping back, 

allowing them to maintain hidden states and capture temporal dependencies [57]. Each 

step in the sequence processes input alongside information from the previous step. 
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However, traditional RNNs struggle with vanishing gradients, limiting their ability to 

capture long-term dependencies [57]. This led to the development of Long Short-Term 

Memory Networks (LSTMs) and Gated Recurrent Units (GRUs), which address these 

issues with specialized memory cells and gating mechanisms. 

 

Figure 2.11 Basic Architecture of a Recurrent Neural Network  

RNNs are prominently employed in natural language processing applications. In 

machine translation, RNNs contribute to understanding context and generating coherent 

translations [58]. In speech recognition systems, RNNs help capture the sequential 

nature of audio data, enhancing accuracy [59]. Additionally, RNNs find applications in 

predicting stock prices and analyzing time series data [60]. 

2.2.3.5 Autoencoders 

Autoencoders (Fig 2.12) are unsupervised learning models with an encoder-decoder 

architecture. The encoder compresses input data into a latent representation, and the 

decoder reconstructs the original data [61]. The model aims to recreate the input 

accurately, encouraging the learning of efficient representations.  



 
School of Biological Sciences and Engineering Yachay Tech University

 

25 

 

 

Figure 2.12 Basic Architecture of an Autoencoder 

Autoencoders have diverse applications in unsupervised learning scenarios. In anomaly 

detection, autoencoders identify irregular patterns by learning the normal distribution 

of data [62]. They are also used in data denoising reconstructing clean data from noisy 

inputs [63], [64]. Autoencoders contribute to dimensionality reduction in feature 

learning, aiding in efficiently representing high-dimensional data [65], [66]. 

2.2.3.6 Generative Adversarial Networks 

Generative Adversarial Networks (GANs) (Fig. 2.13) consist of a generator and a 

discriminator engaged in a competitive game. The generator creates synthetic data, and 

the discriminator evaluates its authenticity [67]. The adversarial process drives both 

networks to improve iteratively. GANs are powerful in generating realistic data, making 

them useful in tasks like image synthesis, style transfer, and data augmentation. 

However, training GANs can be challenging due to their adversarial nature. 
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Figure 2.13 Basic Architecture of a Generative Adversarial Network 

GANs are primarily known for their applications in image synthesis. In the arts, GANs 

contribute to creating unique and realistic paintings [68], [69]. In the gaming industry, 

GANs generate lifelike characters and environments [70], [71]. GANs also play a 

crucial role in data augmentation, enhancing the diversity of datasets for training robust 

machine learning models [72], [73]. 

2.2.4 Applications of Neural Networks in Medical Imaging 

Neural networks have revolutionized the field of medical imaging, offering unparalleled 

advancements in the analysis, interpretation, and diagnosis of various medical 

conditions. By efficiently processing large volumes of imaging data, neural networks 

enable more accurate and faster diagnoses, enhancing patient care and treatment 

planning. Their ability to learn from examples and improve over time has made them 

particularly valuable in identifying patterns and anomalies in complex imaging data that 

might be indiscernible to the human eye. This capacity for deep learning and pattern 

recognition is commonly used in areas such as tumor detection [74], [75], organ 

segmentation [76], [77], and disease progression monitoring [78], [79].  

The introduction of CNNs has further transformed medical imaging. CNNs, with their 

specialized architecture, are great at handling image data, making them ideal for tasks 

like image classification, segmentation, and enhancement. Their layered structure 

allows them to automatically and adaptively learn spatial hierarchies of features from 
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images, leading to more robust and precise interpretations in various medical imaging 

modalities such as MRI, CT scans, and X-rays. Therefore, CNNs have become an 

important technology in modern medical imaging, pushing forward the capabilities of 

automated and accurate medical diagnostics. 

2.3 Review of 3D CNNs in Alzheimer’s Diagnosis 

2.3.1 Introduction to 3D CNNs 

A 3D CNN (Fig. 2.14) represents a sophisticated evolution of the traditional 2D CNN 

architecture, created specifically to process volumetric data such as 3D images or video 

sequences. While 2D CNNs excel in spatial feature extraction from images, 3D CNNs 

extend this capability to three-dimensional structures, making them excellent candidates 

to perform tasks involving spatial and temporal dimensions [8]. The fundamental unit 

of a 3D CNN is the 3D convolutional layer, where three-dimensional filters traverse 

through the entire volume, capturing features across three dimensions. This allows the 

network to comprehend intricate patterns within volumetric data, which gives an 

understanding of spatiotemporal relationships. 

 

Figure 2.14 Basic Architecture of a 3D Convolutional Neural Network 

The distinctive advantage of 3D CNNs lies in their suitability for processing volumetric 

data. Traditional 2D CNNs may struggle to grasp the complexities of volumetric 

information, especially in domains like medical imaging [8]. Medical imaging 

modalities, such as CT or MRI, produce three-dimensional datasets where structures 

span multiple slices. The 3D convolutional layers in these networks recognize spatial 

patterns that cover the depth, width, and height of the volumetric data. The improved 

representations learned by 3D CNNs allow medical professionals to learn about the 



 
School of Biological Sciences and Engineering Yachay Tech University

 

28 

 

complex spatial details of anatomical structures, resulting in more precise and 

personalized medical interventions. 

2.3.2 Application of 3D CNNs in Alzheimer’s Diagnosis 

The application of 3D CNNs in Alzheimer’s diagnosis represents a significant 

advancement in medical imaging technology. Utilizing the detailed spatial information 

from MRI scans, 3D CNNs are capable of accurately identifying and classifying the 

various stages of AD [80]. This approach uses the power of deep learning to analyze 

complex imaging data, offering a promising tool for early detection and better 

understanding of this neurodegenerative condition. The integration of 3D CNNs in 

Alzheimer’s diagnosis exemplifies the growing impact of artificial intelligence in 

enhancing diagnostic accuracy and patient care in neurology. 

One notable study [81], conducted in 2019, employed a 3D autoencoder model trained 

on the ADNI dataset. This study achieved an impressive accuracy of 0.93, showcasing 

the potential of deep learning techniques in accurately diagnosing Alzheimer's disease 

from MRI scans. Similarly, a study from 2023, referenced by [82], implemented a model 

comprising 5 convolutional layers and 44 channels, utilizing the ADNI dataset. 

Although specific preprocessing details were not found, the model achieved a notable 

accuracy of 0.87, indicating promising results in Alzheimer's disease classification. 

In contrast, a study conducted in 2020 [83] utilized the OASIS dataset to train a 3D 

CNN architecture inspired by VGG-16. Despite employing the same dataset, this model 

yielded a lower accuracy of 0.69, highlighting the variability in performance observed 

across different model architectures and datasets. Another study [84] using the OASIS 

dataset was conducted in 2021. The model achieved an AUC of 0.78, underscoring the 

importance of comprehensive pre-processing techniques in optimizing model 

performance. 

Furthermore, studies such as the one referenced by [85] in 2019, which utilized 12 

repeated blocks of 3D CNNs on the ADNI and Milan datasets, demonstrated exceptional 

results with an accuracy of 0.98. This study exemplifies the potential of deep learning 

models, particularly when leveraging complex architectures and diverse datasets. 
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2.3.3 Analysis and Future Directions 

The strengths of existing studies in applying 3D CNNs for Alzheimer’s diagnosis via 

MRI data are quite significant. Firstly, many of these studies have showcased high 

accuracy and specificity in disease detection, which are required for reliable diagnostic 

tools. This is evidenced by the impressive accuracy rates seen in models like the CBIR 

and 3D CNN with 12 blocks architectures. 

Furthermore, the advanced data processing capabilities of 3D CNNs allow for a detailed 

analysis of complex brain structures. This aspect is particularly important given the 

intricate nature of Alzheimer ’s-related changes in the brain, which often require precise 

detection methods. Additionally, the versatility of the architectures used in these studies 

is notable. The use of various strategies like capsule networks and the incorporation of 

transfer learning shows the adaptability of 3D CNNs to different datasets and diagnostic 

requirements. 

However, the application of 3D CNNs in Alzheimer's diagnosis faces several challenges 

and shortcomings: 

1. There is a significant dependency on high-quality, large-scale MRI datasets, 

which are not always available or consistent across different healthcare settings. 

This variability can impact the accuracy and reliability of the models. 

2. The generalizability of these models to diverse populations and clinical 

environments remains a concern, as they often perform well on specific datasets 

but may not replicate the same results in different settings. 

3. The complexity and computational intensity of 3D CNNs require substantial 

hardware resources, which may not be feasible in all healthcare institutions, 

especially in resource-limited areas. 

These challenges highlight the need for ongoing research and development to refine and 

adapt 3D CNNs for broader, more effective use in diagnosing of Alzheimer’s disease. 
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Chapter 3 

Methodology 

3.1 Dataset 

The use of neural networks for diagnosing Alzheimer's disease has gained significant 

attention because they can effectively handle complex data. Well-known datasets are 

available for training and testing neural network models in this area, covering diverse 

populations, imaging methods, and clinical evaluations. This provides researchers with 

useful tools for creating precise diagnostic algorithms. 

A commonly used dataset for AD diagnosis is the Alzheimer's Disease Neuroimaging 

Initiative (ADNI) [86]. ADNI is a longitudinal multicenter study that collects extensive 

neuroimaging, genetic, and clinical data from individuals with AD, MCI, and healthy 

controls. With its rich dataset that includes structural MRI, fMRI, PET imaging, 

cerebrospinal fluid biomarkers, and cognitive assessments, ADNI enables researchers to 

develop neural network models capable of accurately distinguishing between different 

cognitive states and predicting disease progression. 

Another widely utilized resource is the Australian Imaging, Biomarkers & Lifestyle 

(AIBL) study [87]. AIBL is a longitudinal study focused on identifying biomarkers for 
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AD using neuroimaging, genetics, and clinical assessments. The dataset includes MRI 

scans, PET imaging, genetic profiles, and cognitive scores from participants across 

various cognitive states. By incorporating data from AIBL, researchers can train neural 

networks to detect subtle changes in brain structure and function indicative of early-stage 

AD, thus facilitating early diagnosis and intervention. 

The European Prevention of Alzheimer's Dementia Consortium (EPAD) is another 

dataset that offers a significative amount of information about AD, in this case across 

diverse European populations [88]. This dataset includes neuroimaging data, genetic 

information, and clinical assessments from multiple European cohorts, enabling 

researchers to develop neural network models for to different ethnicities and genetic 

backgrounds. With the help of the EPAD dataset, researchers can explore the 

heterogeneity of AD presentation and progression, improving the generalizability of 

diagnostic algorithms. 

Other important source is the Open Access Series of Imaging Studies (OASIS) dataset 

which is the selected dataset for the present study. OASIS offers freely accessible 

neuroimaging datasets, including MRI and PET scans, from individuals with AD and 

healthy controls [90]. With its longitudinal design and extensive imaging sequences, 

OASIS enables researchers to track disease progression over time and develop neural 

network models capable of accurately diagnosing AD at different stages. Moreover, 

OASIS and its subsequent versions, such as OASIS 3, plays a key role in advancing our 

understanding of AD. 

The OASIS project began as an initiative to share neuroimaging data related to AD. The 

project's primary goal was to facilitate research by providing an open platform where 

researchers could access and analyze structural and functional brain imaging data from 

individuals with Alzheimer’s. The OASIS datasets have been instrumental in the 

development and validation of various neuroimaging techniques and algorithms for 

Alzheimer’s diagnosis and progression tracking [91], [92]. 

The OASIS 3 project a part of the Open Access Series of Imaging Studies, contributes 

valuable data to Alzheimer’s research.  OASIS 3 includes data from 755 cognitively 

normal adults and 622 individuals at various stages of cognitive decline, covering a wide 

age range from 42 to 97 years. This expansive dataset comprises 2,842 MR sessions, 
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encompassing a variety of sequences such as T1-weighted, T2-weighted, FLAIR, ASL, 

SWI, TOF, and BOLD. 

Many of these MRI sessions are complemented by volumetric segmentation files, 

processed through Freesurfer, which adds a valuable layer of detail to the data. The 

dataset includes PET imaging from different tracers totaling over 2,157 raw imaging 

scans. These scans are accompanied by post-processed files from the PET Unified 

Pipeline (PUP), further enhancing the dataset's utility for research in Alzheimer’s 

Disease and cognitive aging. 

In this study, individual MRI sessions were utilized separately rather than grouped by 

participant. Specifically, the analysis and findings of the research were solely based on 

the information derived from the T1-weighted imaging sequence, allowing for a detailed 

investigation into the structural aspects revealed by MRI scans. The study cohort 

consisted of individuals aged between 55 and 95 years. The distribution of age, gender, 

and diagnosis is depicted in Figures 3.1 and 3.2. 

 

 

Figure 3.1 Number of T1-weighted MRI Sessions by Age and Diagnosis in OASIS 3 Cohort. 
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Figure 3.2 Number of T1-weighted MRI Sessions by Gender and Diagnosis in OASIS 3 Cohort. 

3.2 Pre-processing 

The MRI data from the OASIS 3 project hosted on XNAT was downloaded and 

organized into a structured directory for efficient access during processing. FSL 

(FMRIB Software Library) was installed within the WSL environment.  

FSL is a comprehensive and widely utilized software package in the field of 

neuroimaging [93]. Developed by the Oxford Centre for Functional MRI of the Brain 

(FMRIB), FSL was specifically created for the analysis of functional and structural 

brain imaging data obtained through techniques such as MRI. This robust software suite 

offers a diverse set of tools and algorithms for tasks such as image pre-processing, 

registration, segmentation, and statistical analysis. FSL can extract meaningful 

information from complex neuroimaging datasets, helping researchers and clinicians in 

understanding the structure and function of the human brain. This open-source software 

has encouraged collaborative research efforts and has become a fundamental tool in 

various scientific investigations related to brain health, cognition, and neurological 

disorders [94], [95]. 

Before being fed into the neural network, all MRI scans go through a pre-processing 

pipeline. This pipeline encompasses a series of steps aimed at standardizing and 

enhancing the quality of the MRI data. The process is illustrated in detail in Figure 3.3, 

providing a visual representation of the stages within the FSL framework. The initial 

phase of the pre-processing workflow starts with reorienting the MRI scans to the 
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standard MNI (Montreal Neurological Institute) axis. This is followed by an automated 

trimming of the newly oriented images to optimize the image size. 

 

Figure 3.3 FSLeyes visualization of the stages of MRI Image Pre-processing in FSL: A) Original Scan, 

B) Registration to Standard Space, C) Skull Stripping, D) Tissue-Type Segmentation. 

Bias-field correction, an essential procedure to rectify inconsistencies in the magnetic 

field, known as RF/B1 inhomogeneities, is conducted using the FAST utility. This step 

is pivotal to normalizing variations in image intensity that could affect analytical 

accuracy. 

The images then undergo a two-stage registration to the standard MNI brain template 

(Fig. 3.4) to ensure precise anatomical alignment. The FLIRT function facilitates the 

initial linear registration, setting the foundation for spatial alignment, which is further 

refined by FNIRT, a tool that fine-tunes the fit via non-linear adjustments. Figure 3.4B 

shows the brain after registration to a standard. 
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Figure 3.4 FSLeyes visualization of T1-weighted MNI152 template A) Sagittal Plane. B) Coronal 

Plane. C) Axial Plane. 

The BET command, also part of FSL, is applied next to extract the brain from 

surrounding tissue (Fig. 3.2C), a step critical for isolating the area of interest. 

Subsequently, the FAST function segments the brain tissue (Fig. 3.2D) into gray matter 

(GM), white matter (WM), and CSF, allowing for detailed tissue analysis. 

Integral to the pre-processing is a stringent quality control process. This involves 

meticulous inspection of the images post-processing to validate the precision of each 

step. Tools like FSLeyes are instrumental in this phase, offering a visual interface for 

reviewing and confirming the quality and accuracy of the pre-processing workflow. 

Following the completion of Tissue-Type Segmentation in FSL, the segmented data is 

uploaded to Google Colab to take advantage of its GPU processing capabilities and 

drive storage access. The initial step in the code involves loading demographic and 

diagnostic information from an Excel file. Subsequently, the data is split into training, 

validation, and test sets, ensuring a balanced distribution of diagnostic classes. To 

address potential class imbalances, class weights are computed based on the training 

set. Mathematically the class weight for each class 𝑐𝑖 is calculated with the equation 3.1. 

𝑤𝑐𝑖
=

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠×𝑛𝑐𝑖

              (3.1) 

3.3 Data Generation and Augmentation 

A Data Generator is used to facilitate batch-wise feeding of the neural network during 

training. This generator handles data loading, balancing, and augmentation, providing the 

necessary inputs and corresponding labels for the model. The functions used during data 

generation are data loading, channel separation, and augmentation. 
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Three instances of the data generation are used as training, validation, and test 

generators. The training set generator includes an option for data augmentation, while 

the validation and test sets remain unaltered. These generators will be employed to feed 

data to the 3D CNN model during the training and evaluation phases. The data generator 

encapsulates a comprehensive data preparation pipeline, ensuring the model receives 

appropriately formatted and balanced input data for effective learning and evaluation. 

3.3.1 Data loading and 3-channel Representation 

The neuroimaging data in NIfTI format is loaded and processed, creating a 3-channel 

representation for each voxel (Fig. 3.5).  

 

Figure 3.5 Post-Segmentation MRI Tissue Classification: A) CSF Channel, B) GM Channel, C) WM 

Channel 

This representation is achieved by utilizing a mathematical formulation where each 

voxel in the segmented image is encoded across three channels, corresponding to the 

presence or absence of each class label. Mathematically, this can be expressed as 

follows: 

Let 𝑛 represent the total number of voxels in the segmented image. 
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For each voxel 𝑣𝑖 in the segmented image: 

𝑣𝑖 = (𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3)           (3.2) 

Where 𝑥𝑖1, 𝑥𝑖2 and 𝑥𝑖3 represent the presence (1) or absence (0) of the voxel belonging 

to class labels 1, 2 and 3, respectively. 

The 3-channel representation for each voxel can be created using the formula: 

Channel𝑗(𝑣𝑖) = {
1 if the voxel belongs to class 𝑗

 0 otherwise
    (3.3) 

For j = 1, 2, 3. 

3.3.2 Data Augmentation 

The augmentation is implemented to artificially increase the dataset size through 

transformations. The scaling and flipping functions effectively change the original 

image, resulting in either of these transformations as the augmented image.  

3.3.2.1 Scaling 

Scaling the image involves multiplying the spatial coordinates of each voxel in the 

image that we have after the channel separation by a specified scale factor 𝑠. 

Mathematically, the scaled image 𝐼′ is obtained by: 

𝐼′(𝑥, 𝑦, 𝑧, 𝑐) = 𝐼(𝑠𝑥, 𝑠𝑦, 𝑠𝑧, 𝑐)    (3.4) 

where 𝑥, 𝑦, 𝑧 represent the spatial dimensions of the image, and c represents the channel 

index.  

Next, the excess size resulting from the scaling operation is then calculated by 

subtracting the original size of the image from the size of the scaled image in each 

dimension. For each dimension 𝑑 (width, height, depth), the excess size 𝐸𝑑  is given by: 

𝐸𝑑 = 𝐼′𝑠𝑖𝑧𝑒𝑑
− 𝐼𝑠𝑖𝑧𝑒𝑑

               (3.5) 

To obtain the final augmented image, the excess regions resulting from scaling are 

trimmed, and the remaining central region is retained to match the original size. The 

start index 𝑆𝑑 for cropping in each dimension 𝑑 is calculated as half of the excess size: 

𝑆𝑑 =
𝐸𝑑

2
     (3.6) 
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The end index  𝐸′𝑑  for cropping in each dimension d is then calculated by adding the 

start index to the original size of the image in that dimension: 

𝐸′𝑑 = 𝑆𝑑 + 𝐼𝑠𝑖𝑧𝑒𝑑
                        (3.7) 

Finally, the augmented image 𝐼𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 is obtained by cropping the scaled image to 

the original size using the calculated start and end indices in each dimension: 

𝐼𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑(𝑥, 𝑦, 𝑧, 𝑐) = 𝐼′(𝑥′, 𝑦′𝑧′, 𝑐)              (3.8) 

This process ensures that the image is scaled while preserving its original size, and any 

excess regions resulting from scaling are trimmed to maintain the original dimensions. 

3.3.2.2 Flipping 

The flip transformation is performed along the axis 0, if 𝐷 represents the image and 𝐷′ 

represents the augmented image obtained after the operation, then foreach voxel 

(𝑥, 𝑦, 𝑧) in the original image: 

𝐷′(𝑥′, 𝑦′, 𝑧′, 𝑐) = 𝐷(𝑥, −𝑦, 𝑧, 𝑐)                  (3.9) 

Here, (𝑥′, 𝑦′, 𝑧′) are the coordinates of the corresponding voxel in the augmented image, 

where 𝑥′ and 𝑧′ remain unchanged and 𝑦′ is flipped to its negative value (−𝑦) 

3.4 3D CNN Architecture and Design 

This CNN model is designed for 3D image classification, taking input volumes of shape 

(91, 109, 91, 3), where 91x109x91 represents the spatial dimensions of the 3D image, 

and 3 denotes the number of channels. The model architecture consists of multiple 

layers to extract features and classify the input into one of two classes, making it suitable 

for binary classification tasks (Fig. 3.6). 

 

Figure 3.6. Architecture and design of the proposed 3D CNN Model 
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The input volume passes through a series of Conv3D layers, each performing 3D 

convolutions to extract spatial features from the input data. These convolutional layers 

are followed by LeakyReLU activation functions, which introduce non-linearity to the 

model. Batch normalization layers are applied after activation to normalize the 

activations and accelerate the training process. 

Max-pooling layers with a pool size of (2, 2, 2) are utilized to down sample the spatial 

dimensions of the feature maps, reducing computational complexity while retaining 

important features. Dropout layers with a dropout rate of 0.25 are inserted after each 

max-pooling layer to prevent overfitting by randomly dropping a fraction of input units 

during training. 

After the feature extraction process, the 3D feature maps are flattened into a 1D vector 

using a Flatten layer, enabling the transition to fully connected dense layers. Two dense 

layers with 64 neurons each are employed for further feature refinement and abstraction. 

LeakyReLU activation functions, batch normalization, and dropout (with a rate of 0.5 

for the last dropout layer) are applied to these dense layers to enhance model 

generalization and prevent overfitting. 

Finally, the output layer consists of a single dense layer with 2 neurons and a sigmoid 

activation function. This sigmoid activation function squashes the output between 0 and 

1, enabling binary classification. The output neuron values represent the model's 

confidence scores for each class, and a threshold (typically 0.5) is applied to assign the 

input volume to one of the two classes based on whether the output is above or below 

the threshold. Thus, the model effectively converts the input 3D image volume into a 

binary classification decision. 

3.4.1 Conv3D Layer 

The Conv3D operation in neural networks, also known as 3D convolution, is a 

fundamental operation used for extracting features from volumetric data such as video, 

medical imaging, or 3D spatial data. 

Mathematically, let's consider a 3D input tensor X with shape (D, H, W, Cin) where D is 

the depth or number of slices, H is the height or number of rows, W is the width or 

number of columns, and Cin is the number of input channels. 
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For simplicity, let's consider a single convolutional filter (or kernel) K with shape (dk, 

hk, wk, Cin, Cout,), where Cout is the number of output channels. 

The Conv3D operation involves sliding the convolutional filter K across the input tensor 

X and computing the element-wise multiplication between the filter and the 

corresponding input patch, followed by summing the results. This process is performed 

independently for each output channel. 

Mathematically, the Conv3D operation can be represented as: 

𝑌𝑖,𝑗,𝑘,𝑐 = ∑ ∑ ∑ ∑ 𝑋𝑖+𝑑,𝑗+𝑟,𝑘+𝑠,𝑚 × 𝐾𝑑,𝑟,𝑠,𝑚,𝑐
𝐶𝑖𝑛−1
𝑚=0

𝑤𝑘−1
𝑠=0

ℎ𝑘−1
𝑟=0

𝑑𝑘−1
𝑑=0   (3.10) 

Where: 

• 𝑌𝑖,𝑗,𝑘,𝑐 represents the value of the output tensor at position (i,j,k,c) 

• 𝑋𝑖+𝑑,𝑗+𝑟,𝑘+𝑠,𝑚 represents the value of the input tensor at position (i+d,j+r,k+s,m) 

• 𝐾𝑑,𝑟,𝑠,𝑚,𝑐 represents the value of the convolutional filter at position (d,r,s,m,c) 

The convolutional filter K is applied to every possible position in the input tensor X 

along the spatial dimensions (depth, height, width), and for each position, the element-

wise multiplication and summation are performed to compute the corresponding output 

value. 

This operation results in an output tensor Y with shape (Dout, Hout, Wout, Cout), where Dout, 

Hout, Wout, represent the dimensions of the output tensor, and Cout represents the number 

of output channels. 

The Conv3D operation performs a 3D convolutional operation on the input tensor X 

using a set of learnable convolutional filters K to extract features and produce an output 

tensor Y. 

3.4.2 LeakyReLU Activation 

The LeakyReLU activation function introduces a small slope for negative inputs, denoted 

by the parameter α, ensuring a non-zero output even when the input is negative. 

Mathematically, for any given input x, LeakyReLU computes the output as follows: 

𝑓(𝑥) = {
 𝛼𝑥      𝑖𝑓 𝑥 < 0

𝑥       𝑖𝑓 𝑥 ≥ 0
     (3.11) 
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In this formulation, when x is negative, the output is α times x, where α is typically set to 

a small positive value such as 0.01 or 0.1. This ensures that even for negative inputs, a 

fraction of the information is preserved, allowing gradients to flow during 

backpropagation and preventing the issue of neurons becoming "dead" or inactive. 

By incorporating this small slope for negative inputs, LeakyReLU addresses the 

limitations of traditional ReLU activation, enabling networks to learn more robust 

features and improving the overall training dynamics. Because the function behaves 

identically to ReLU for non-negative inputs, it retains the computational efficiency and 

simplicity associated with ReLU while mitigating its drawbacks. 

3.4.3 Batch Normalization 

Batch normalization (BatchNorm) is a technique that significantly enhances training 

stability and convergence rates. It addresses the issue of internal covariate shift by 

normalizing the activations of each layer within the neural network. 

The process begins with the input activations, denoted as x, which represent the output 

of a layer. BatchNorm then standardizes these activations by subtracting the mean (μ) 

and dividing by the standard deviation (σ) calculated over a mini-batch of data. This 

normalization step ensures that the input to each layer has a consistent distribution, 

regardless of variations in the input data. Mathematically, the normalized activations are 

computed as: 

𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑥) =
𝑥−𝜇

√𝜎2+𝜖
× 𝛾 + 𝛽     (3.12) 

Here, ϵ is a small constant added for numerical stability to prevent division by zero. 

Additionally, γ and β are learnable parameters that allow the model to scale and shift the 

normalized activations, respectively. These parameters are updated during training via 

backpropagation, allowing the model to adapt to the data distribution and optimization 

process. 

Batch normalization confers several benefits to the training process. First and foremost, 

it mitigates the vanishing/exploding gradient problem by ensuring that the input 

activations are maintained within a reasonable range. This leads to more stable gradients 

and accelerates convergence during training. Furthermore, by reducing the internal 
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covariate shift, batch normalization acts as a form of regularization, reducing the risk of 

overfitting and improving the generalization performance of the model. 

During inference, batch normalization ensures that the model behaves consistently across 

different mini-batches or input data sizes. This is achieved by computing the mean and 

standard deviation based on the entire dataset or using moving averages of mini-batch 

statistics collected during training. Consequently, the model produces reliable predictions 

regardless of the input data distribution. 

3.4.4 Max Pooling Layer 

MaxPooling3D is a key operation in 3D convolutional neural networks (CNNs) for down 

sampling input volumes while retaining critical features. It involves dividing the input 

volume into non-overlapping regions and selecting the maximum value within each 

region. Mathematically, if we denote the input volume as Vin, the operation of 

MaxPooling3D can be represented as follows: 

𝑉out = 𝑚𝑎𝑥𝑎,𝑏,𝑑𝑉𝑖𝑛(2𝑖 + 𝑎, 2𝑗 + 𝑏, 2𝑘 + 𝑑, 𝑐)            (3.13) 

where 𝑉out(𝑖, 𝑗, 𝑘, 𝑐) represents the output volume at position (𝑖, 𝑗, 𝑘) of channel c, and 

a, b, d iterate over the pooling window size (e.g., 2x2x2). 

This operation effectively reduces the spatial dimensions of the input volume by a factor 

determined by the pooling window size, while preserving the most salient features. By 

summarizing local information and discarding less relevant details, MaxPooling3D 

enhances the network's ability to capture high-level patterns and structures within 

volumetric data. 

The layer MaxPooling3D helps improve computational efficiency by reducing the 

number of parameters and computations required in subsequent layers. Additionally, it 

facilitates translation invariance, allowing the network to recognize features regardless 

of their precise spatial location within the input volume. 

3.4.5 Dropout Layer 

Dropout is a regularization technique used in neural networks during training to prevent 

overfitting. It works by randomly deactivating a fraction of neurons with a probability 

defined by the dropout rate. Mathematically, dropout can be represented as: 
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𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐼𝑛𝑝𝑢𝑡 × 𝑀𝑎𝑠𝑘              (3.14) 

Input represents the activations of a layer before dropout and Mask is a binary mask with 

the same shape as the input, where each element is randomly set to 0 or 1 with a 

probability defined by the dropout rate. 

During training, each element in the mask is independently set to 0 with a probability 

equal to the dropout rate, and to 1 otherwise. The activations are then multiplied element-

wise by the mask. This process effectively deactivates a fraction of neurons, forcing the 

network to learn more robust features that are not overly dependent on specific neurons. 

By randomly deactivating neurons, dropout introduces noise into the network and 

prevents co-adaptation of neurons, improving the model's generalization performance. 

During inference, dropout is typically turned off, and the activations are scaled by the 

inverse of the dropout rate to ensure consistent behavior. 

3.4.6 Flatten Function 

The "flatten" operation in neural networks is a simple reshaping operation that transforms 

multi-dimensional input into a one-dimensional array. 

Mathematically, let's say we have a multi-dimensional tensor X of shape (𝑛1, 𝑛2, … , 𝑛𝑘). 

After applying the "flatten" operation, the resulting one-dimensional array X′ is obtained 

by concatenating all the elements of X along a single dimension. 

If X is a tensor of shape (𝑛1, 𝑛2, … , 𝑛𝑘), then X’ will be a vector of length 

𝑛1 × 𝑛2 × … × 𝑛𝑘. 

In other words, the "flatten" operation preserves the order of elements in the original 

tensor but rearranges them into a one-dimensional sequence. 

Mathematically, the "flatten" operation can be represented as follows: 

𝑋’ = [𝑋[ 1, 1, … , 1], 𝑋[1, 1, … , 2], … , 𝑋[𝑛1, 𝑛2, … , 𝑛𝑘]]        (3.15) 

Here 𝑋[𝑖1, 𝑖2, … , 𝑖𝑘] represents the elements of tensor X at position (𝑖1, 𝑖2, … , 𝑖𝑘) 

This operation is commonly used in neural networks to transition from convolutional or 

recurrent layers, which typically work with multi-dimensional data, to fully connected 
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(dense) layers, which require one-dimensional input. It allows the network to flatten the 

spatial or temporal dimensions of the data and feed it into a dense layer for further 

processing. 

3.4.7 Dense Layer 

The dense layer, a core component in neural networks, operates by computing the output 

based on the input, weights, and biases, and applying an activation function to the 

resulting linear combination. 

Mathematically, the Output of the dense layer is represented as: 

Output = Activation(𝑊 ∙ Input + 𝑏)          (3.16) 

Here, Input denotes the input to the dense layer, W represents the weight matrix, and b is 

the bias vector. The weight matrix W dictates the contribution of each input feature to the 

output and has dimensions (ncurr, nprev), where ncurr is the number of neurons in the current 

layer and nprev is the number of neurons in the previous layer. Each element Wij in the 

weight matrix represents the weight connecting neuron i in the current layer to neuron j 

in the previous layer. The bias vector b provides each neuron with an additional 

parameter to control its output and has dimensions (ncurr,1), where each element bi 

represents the bias term associated with neuron i in the current layer. 

In the context of regularization techniques, a kernel regularizer can be applied to the 

dense layer to control the complexity of the model and prevent overfitting. One 

commonly used regularizer is L2 regularization, which penalizes large weights in the 

dense layer. Mathematically, the L2 regularization term is represented as: 

Regularization Term= 
𝜆

2
∑ 𝑊𝑖𝑗

2
𝑖,𝑗       (3.17) 

Here, λ is the regularization factor, and Wij denotes individual weights in the weight 

matrix W. 

Besides L2 regularization, there are other regularization techniques such as L1 

regularization, which penalizes the absolute values of the weights, and dropout, which 

randomly drops a fraction of neurons during training to prevent overfitting. 
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On the other hand, setting the activation function to 'sigmoid' in the dense layer constrains 

the output of each neuron to the range [0, 1]. The sigmoid function transforms the linear 

combination of inputs and biases into a probability-like output suitable for binary 

classification tasks. Mathematically, the sigmoid activation function is represented as: 

𝜎(𝑥) =  
1

1+𝑒−𝑥      (3.18) 

Here, x represents the input to the activation function. 

In summary, the dense layer computes its output based on the input, weights, and biases, 

and applies an activation function to introduce non-linearity. Regularization techniques 

such as L2 regularization can be applied to control the complexity of the model, while 

choosing appropriate activation functions like 'sigmoid' helps in achieving specific task 

objectives, such as binary classification. These mechanisms contribute to the overall 

performance and robustness of the neural network, enhancing its ability to generalize 

well to unseen data. 

3.5 Training and Validation 

The implementation of training and validation procedures incorporates an Early 

Stopping callback, a technique to monitor the validation loss during training and halt 

the process if there is no improvement for a specified number of epochs (patience). This 

is a preventive measure against potential overfitting, and the restore best weights 

parameter is used to ensure that the model reverts to the weights that resulted in the 

lowest validation loss. 

The actual model training is executed using the ‘fit’ function. The generator provides 

the training data, an instance of the data generation, which facilitates batch-wise data 

feeding during training. The number of steps per epoch and validation steps are carefully 

calculated based on the size of the datasets and the chosen batch size considering the 

augmentation.  

The class weight parameter is set to address potential class imbalances in the training 

data. This is particularly important when dealing with datasets where certain classes 

may be underrepresented. In this case, the number of healthy patients is more significant 

than those with AD. 
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3.6 Evaluation Metrics 

The following plots and calculations offer a thorough analysis of the 3D CNN model's 

performance. The choice of these metrics and visualizations ensures a comprehensive 

evaluation across different aspects of classification. They collectively offer a detailed 

understanding of the model's strengths and weaknesses, aiding in the interpretation and 

fine-tuning of the neural network for optimal results. 

3.6.1 Loss and Accuracy Plots 

During the training process, the model generates visual representations illustrating both 

training and validation loss and accuracy over each epoch. These plots are critical for 

evaluating the model's learning trajectory and ability to apply that learning to new, 

unseen data.  

Training loss, calculated using a loss function 𝐿𝑡𝑟𝑎𝑖𝑛, quantifies the error between the 

model's predictions 𝑦̂ and the actual data 𝑦, with a downward trend indicating 

improvement. Mathematically, it can be represented as: 

𝐿𝑡𝑟𝑎𝑖𝑛 =
1

𝑁
∑ loss(𝑦̂𝑖, 𝑦𝑖)

𝑁
𝑖=1      (3.19) 

where N is the number of training samples, 𝑦̂𝑖 is the predicted output for the i-th sample, 

𝑦𝑖 is the true label for the i-th sample, and loss(∙) is the chosen loss function. 

Training accuracy, denoted as 𝐴𝑐𝑐𝑡𝑟𝑎𝑖𝑛, reflects the percentage of correct predictions 

made on the training data. It is calculated as the ratio of the number of correctly 

predicted samples to the total number of training samples. Mathematically, it can be 

represented as: 

𝐴𝑐𝑐𝑡𝑟𝑎𝑖𝑛 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
× 100%        (3.20) 

Conversely, validation loss 𝐿𝑣𝑎𝑙 and validation accuracy 𝐴𝑐𝑐𝑣𝑎𝑙 measure the model's 

error and predictive performance on a separate set of data not used during training. 

Validation loss and accuracy are calculated similarly to training loss and accuracy but 

using the validation data set. These metrics provide a gauge for the model’s 

generalization ability, indicating how well the model performs on unseen data. 
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3.6.2 Classification Metrics and Confusion Matrix 

The model calculates key classification metrics, including accuracy, precision, recall, 

and the F1 score [96]. These metrics provide helpful information about the model's 

performance and its ability to effectively classify instances. 

Accuracy (Acc) represents the ratio of correctly predicted instances to the total 

predictions made. Mathematically, it can be calculated as: 

𝐴𝑐𝑐 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
             (3.21) 

Precision (Prec) is the proportion of true positive predictions out of all positive 

predictions made, indicating the model's specificity. It is calculated as: 

𝑃𝑟𝑒𝑐 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
              (3.22) 

Sensitivity (Sens), recall or True Positive Rate, measures the proportion of actual 

positives that were correctly identified. It is calculated as: 

𝑆𝑒𝑛𝑠 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
             (3.23) 

Specificity (Spec) or True Negative Rate represents the proportion of actual negatives 

that were correctly identified and is calculated as: 

𝑆𝑝𝑒𝑐 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
             (3.24) 

The F1 score is the harmonic mean of precision and recall, providing a balance 

between them. It is calculated as: 

𝐹1 =  
2×𝑃𝑟𝑒𝑐×𝑆𝑒𝑛𝑠

𝑃𝑟𝑒𝑐+𝑆𝑒𝑛𝑠
              (3.25) 

The confusion matrix is a tabular visualization that delineates the correct and incorrect 

predictions across different classes. It consists of four metrics: True Positives (TP), True 

Negatives (TN), False Positives (FP), and False Negatives (FN). These metrics clarify 

where the model excels or falters in its predictions. 

These metrics collectively offer a nuanced view of the model's classification prowess, 

aiding in evaluating its performance and identifying areas for improvement. 
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3.6.3 ROC curve and AUC 

The Receiver Operating Characteristic (ROC) curve is a plot that evaluates the model's 

performance across various classification thresholds, showing the trade-off between 

sensitivity (true positive rate) and specificity (false positive rate) [96]. It is calculated 

by plotting the true positive rate against the false positive rate at different threshold 

settings. The Area Under the Curve (AUC) is a single scalar value summarizing the 

curve, with a higher AUC indicating a model's better discrimination between classes 

[96]. 

3.6.4 Precision-Recall Curve and Average Precision 

In the context of imbalanced classes, the Precision-Recall curve is particularly 

informative. It plots the precision (the accuracy of positive predictions) and recall (the 

ability to find all positive samples) for different threshold values [96]. The Average 

Precision (AP) score integrates the precision-recall curve to provide an overall 

effectiveness measure of positive predictions, especially useful when classes are 

imbalanced. 

The AP score reflects the weighted mean of precision achieved at each threshold, 

emphasizing the contribution of high-recall thresholds. It is calculated by computing the 

area under the precision-recall curve using methods such as numerical integration or the 

trapezoidal rule. 

𝐴𝑃 =  ∑ (𝑅𝑘 − 𝑅𝑘−1) × 𝑃𝑘𝑘      (3.26) 

Where 𝑅𝑘 and 𝑃𝑘 represent recall and precision at each threshold, respectively, and the 

sum is taken over all thresholds. Overall, the Precision-Recall curve and AP score 

provide valuable insights into the model's performance, particularly in scenarios with 

imbalanced class distributions.
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Chapter 4 

Results and Discussion 

4.1 Model Performance 

The 3D CNN model underwent a 30-epoch training process, culminating in impressive 

performance metrics. Upon completion of training, the model achieved a training 

accuracy of 93.03% with corresponding precision, recall, and AUC values of 92.51%, 

92.21%, and 97.80%, respectively. During validation, the model demonstrated 

robustness with an accuracy of 88.05%, precision of 87.50%, recall of 87.50%, and an 

AUC of 93.7% at epoch 30. Testing the model on an independent dataset resulted in an 

impressive accuracy of 91.01%, precision of 90.18%, recall of 87.83%, and an F1 score 

of 88.99%. The confusion matrix highlighted the model's ability to accurately classify 

instances, with 152 true negatives, 101 true positives, 11 false positives, and 14 false 

negatives. These outcomes collectively affirm the model's proficiency in discerning 

between classes and underscore its potential for meaningful clinical applications in the 

diagnosis of the targeted condition. 

4.2 Evaluation Metrics Analysis 

The evaluation metrics analysis begins by examining the progression of performance 

metrics across epochs during the training and validation of the 3D CNN model, as 
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depicted in Figure 4.1. The training accuracy consistently increased, reaching a peak of 

93.03% by epoch 30, showing the model's ability to progressively learn from the 

training data. Concurrently, precision and recall values for the training set demonstrated 

a consistent upward trend, showing the model's improved capacity to correctly identify 

positive instances while minimizing false positives. The AUC metric, an indicator of 

overall model performance, steadily rose to an impressive 97.80% after training. In the 

validation phase, the model exhibited good generalization capabilities, achieving an 

accuracy of 88.05%, precision and recall both at 87.50% and an AUC of 93.7% at epoch 

30. These trends collectively suggest that the model not only is good in learning from 

the training data but also performs robustly on unseen validation data, substantiating its 

potential for practical application in real-world scenarios. 

 

Figure 4.1 Performance Metrics Over Epochs for the Proposed Model: Training and Validation Loss, 

Accuracy, AUC, Precision, and Recall. 
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In evaluating the model's performance on the test set, the conventional threshold of 0.5, 

a standard choice for binary classification, is first considered. The results at this threshold 

reveal a commendable accuracy of 91%, indicating the proportion of correctly classified 

instances among the total. Precision, representing the positive predictive value, is high at 

90%, implying that when the model predicts an individual as having Alzheimer’s disease, 

it is accurate 90% of the time. The recall, or sensitivity, is 87.8%, signifying the model's 

ability to identify the majority of actual positive cases. The F1 score, balancing precision 

and recall, is 88.99%.  

Now, with a lowered threshold of 0.2, there are changes in the model's behavior. This 

adjustment is often needed+ in medical contexts, where minimizing false negatives 

(missed cases) is critical. The test accuracy remains high at 91%, but the recall increases 

to 87.8%, suggesting a reduction in missed positive cases. However, the precision 

decreases to 90.18%, indicating a higher rate of false positives. The F1 score remains at 

88.99%. Examining the confusion matrix (Fig. 4.2), we observe a trade-off: a decrease 

in false negatives (14 to 2) and an increase in false positives (11 to 24).  

 

Figure 4.2 Binary Classification Confusion Matrix Visualization 

An area under the ROC curve (AUC-ROC) and an area under the precision-recall curve 

(AUC-PR) of 0.96 suggests that the model has achieved high discriminative performance 

on the test set. The ROC curve (Fig. 4.3) represents the trade-off between true positive 

rate (sensitivity) and false positive rate. In contrast, the precision-recall curve focuses on 
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precision (positive predictive value) and recall (sensitivity). In both cases, an AUC of 

0.96 indicates excellent model performance, showcasing its ability to distinguish 

between different classes. This implies that the model's predictions align well with the 

ground truth labels, achieving a balance between identifying positive instances and 

minimizing false positives. Such high AUC values are indicative of a robust and reliable 

model, providing confidence in its effectiveness for the given classification task. 

 

Figure 4.3 ROC and Precision-Recall Curves Demonstrating Model Performance Metrics 

4.3 Limitations  

4.3.1 Dataset Limitations 

The dataset used in this project, derived from the OASIS 3 database, presents several 

limitations that warrant consideration. Firstly, the dataset exhibits class imbalance 

between healthy controls and individuals diagnosed with Alzheimer's disease. Such an 

imbalance may introduce bias during model training and evaluation, potentially leading 

to overestimation of the model's performance on the majority class while neglecting the 

minority class. Moreover, the OASIS 3 dataset, while widely utilized in Alzheimer's 

disease research, may lack diversity in terms of demographic characteristics, imaging 

protocols, and disease progression stages. This limited diversity can restrict the 

generalizability of findings, as the model may not effectively capture the heterogeneity 

present in broader populations. Additionally, the dataset is confined to T1-weighted MRI 

scans, overlooking potentially valuable information available in other modalities such as 

T2-weighted MRI or diffusion-weighted imaging. Consequently, the reliance on a single 

modality may limit the model's ability to extract comprehensive features relevant to 

Alzheimer's disease classification. 
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4.3.2 Preprocessing Limitations 

The preprocessing steps applied to the dataset before model training also entail certain 

limitations that necessitate scrutiny. Firstly, while utilizing FSL for brain segmentation 

is a common practice, it's crucial to recognize the potential for segmentation inaccuracies. 

The precision of this segmentation directly impacts the quality of the extracted features 

used for classification. Inaccurate segmentation may introduce noise or distortions into 

the data, compromising the model's ability to discern meaningful patterns. Additionally, 

although data augmentation techniques such as flipping or scaling were employed to 

enhance the diversity of the training dataset, it's essential to acknowledge the inherent 

trade-offs associated with these methods. While augmentation can effectively increase 

the variety of samples available for training, it may also introduce artificial patterns or 

distortions that diverge from the true underlying data distribution. This discrepancy 

between augmented and authentic data may impact the model's generalizability to unseen 

instances. Moreover, the augmentation process itself may not fully capture the variability 

present in real-world data, potentially limiting the model's robustness in handling diverse 

input scenarios. Furthermore, the choice of augmentation techniques and parameters 

must be carefully considered to strike a balance between augmentation efficacy and 

preservation of data integrity. Failure to appropriately calibrate these parameters may 

inadvertently bias the model towards certain data characteristics, undermining its ability 

to generalize effectively. Ultimately, while preprocessing serves as a preparatory step in 

model development, these limitations increment the importance of rigorous validation 

and sensitivity analyses to ensure the robustness and reliability of classification 

outcomes. 

4.3.3 Model Limitations 

The model employed in this study for binary classification presents several limitations 

that merit consideration. Firstly, while a Convolutional Neural Network (CNN) 

architecture, specifically a 3D convolutional network, is commonly utilized for image-

based tasks due to its ability to capture spatial dependencies, it may not be optimally 

suited for the size and complexity of the dataset. The chosen architecture, comprising 

multiple convolutional, activation, normalization, and dropout layers, introduces 

considerable complexity. However, this complexity may impose challenges, particularly 

when working with relatively limited datasets. Overly complex models run the risk of 
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overfitting, wherein the model learns to memorize noise or traits in the training data 

rather than capturing genuine underlying patterns. Moreover, the model's 

hyperparameters, including learning rate, dropout rate, and regularization strength, were 

not extensively tuned in this study. Suboptimal hyperparameter settings can hinder the 

model's performance and convergence, leading to subpar classification outcomes. 

Additionally, the model's training duration, limited to 30 epochs in Google Colab, may 

have been insufficient for convergence or optimal performance attainment. Longer 

training durations or more sophisticated training strategies, such as learning rate 

scheduling, could potentially enhance model performance. Furthermore, while 

regularization techniques such as L2 regularization and dropout were incorporated to 

mitigate overfitting, their efficacy may vary depending on the dataset characteristics and 

model architecture. Inadequate regularization or improper tuning of regularization 

parameters may increase overfitting or fail to sufficiently constrain model complexity. 

Finally, the choice of activation functions, such as Leaky ReLU, and the sigmoid 

activation in the output layer, may impact the model's representational capacity and 

convergence properties. Different activation functions exhibit varying degrees of 

effectiveness in capturing non-linear relationships and mitigating issues like vanishing 

gradients. Thus, the selection of activation functions warrants careful consideration and 

empirical validation.  

While the chosen model architecture represents a common approach for image 

classification tasks, its performance and generalizability are contingent on several 

factors, including dataset characteristics, hyperparameter tuning, and regularization 

efficacy. Addressing these limitations through rigorous experimentation and 

optimization can lead to more robust and reliable classification outcomes. 

4.4 Comparison with Similar Studies 

When comparing the proposed model to other studies presented in the Table 4.1, it's 

essential to focus on the best results achieved by each model, particularly in terms of 

accuracy, sensitivity, specificity, precision, and AUC. Additionally, attention should be 

given to the similarity of preprocessing techniques employed in other studies. 

Among the listed models, the DenseNet and adapted ResNet model from 2020 achieved 

an accuracy of 0.88 and an AUC of 0.92, which are comparable to the results obtained 

by the proposed model. However, the proposed model outperformed the DenseNet and 



 
School of Biological Sciences and Engineering Yachay Tech University

 

55 
 

adapted ResNet model in terms of sensitivity (0.87 vs. 0.86) and precision (0.90 vs. not 

provided). Another notable model is the ResNet (Post-Fusion-A) from 2024, which 

attained an accuracy of 0.91, similar to the proposed model. However, the proposed 

model exhibited higher precision (0.90 vs. 0.91). 

Regarding preprocessing techniques, the DenseNet and adapted ResNet model, as well 

as the ResNet (Post-Fusion-A) model, employed similar preprocessing steps, including 

skull stripping or brain extraction. However, it's worth noting that the proposed model 

also utilized data augmentation techniques, such as flipping or scaling, which may have 

contributed to its performance improvement. 

Moreover, when comparing the proposed model to other models, particularly those 

utilizing the OASIS dataset, it's crucial to consider performance metrics and 

preprocessing techniques. One of the notable models in the table is the 3D CNN (inspired 

by VGG-16) from 2020, which reported an accuracy of 0.69. In contrast, the proposed 

model achieved a significantly higher accuracy of 0.91, indicating superior classification 

performance. While both models utilized the OASIS dataset, the proposed model's 

superior accuracy suggests that its architecture or preprocessing techniques may have 

been more effective. 

Another relevant comparison can be made with the 3D CNN model from 2021, also 

utilizing the OASIS dataset. This model reported an AUC of 0.78, lower than the AUC 

of 0.96 achieved by the proposed model. The considerable difference in AUC values 

suggests that the proposed model has better discriminatory power in distinguishing 

between healthy controls and individuals with Alzheimer's disease. 

Overall, while several models in the table achieved comparable results to the proposed 

model in terms of accuracy and AUC, the proposed model demonstrated good sensitivity 

and precision. Additionally, the inclusion of data augmentation techniques may have 

contributed to the improved performance of the proposed model compared to models 

with similar preprocessing techniques. Furthermore, the proposed model demonstrates 

superior performance compared to other models utilizing the OASIS dataset. This 

suggests that the proposed model's architecture and/or preprocessing techniques may be 

more effective in capturing relevant features for Alzheimer's disease classification from 

MRI data. 
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Table 2 4.1 Comparison of Binary Classification Models for Alzheimer's Disease Detection Using MRI Data
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Chapter 5 

Conclusions and Outlook  

In the realm of neurodegenerative diseases, Alzheimer’s disease is a significant 

challenge, affecting millions globally and causing a profound socio-economic impact. 

Therefore, there is a pressing need to improve diagnostic methods for Alzheimer's 

disease. Early and accurate diagnosis is paramount for timely intervention, offering a 

window of opportunity to implement strategies that may slow down the progression of 

the disease. In this context, the study explores the utility of T1-weighted MRI in 

Alzheimer’s diagnosis, focusing on binary classification as a practical approach given 

the computational constraints. 

Medical imaging, particularly MRI, has become a valuable tool in neuroimaging, 

providing detailed information about the brain and its structure. The non-invasiveness 

and high resolution of MRI make it indispensable in Alzheimer’s research. Its ability to 

capture structural changes and abnormalities in brain tissues allows for a better 

understanding of the disease progression, facilitating early detection and intervention. 

Consequently, advancements in MRI techniques contribute significantly to improving 

Alzheimer’s diagnosis. 

Pre-processing and data augmentation play an important role on increasing the efficacy 

of machine learning models for medical image analysis. The complexity and variability 

of medical images needs careful pre-processing to enhance the model's ability to detect 
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subtle patterns. Data augmentation further helps in diversifying the training dataset, 

promoting robustness and generalization. In Alzheimer’s diagnosis, these pre-processing 

steps are significant for extracting meaningful features and improving the model's ability 

to differentiate between healthy and affected brain structures. 

Segmentation, a principal characteristic of this model’s pre-processing pipeline, involves 

defining distinct brain regions. This process contributes to a better analysis, allowing the 

model to focus on specific areas implicated in Alzheimer’s pathology. By isolating 

relevant structures, the model potentially enhances diagnostic accuracy. The 

segmentation method used in this study was both easy to use and effective within time 

and computational constraints.  

The simplicity of the proposed model, rooted in binary classification shows the practical 

approach of the study. Despite its simplicity and training in limited number of epochs, 

the model demonstrates excellent results when compared with similar models.  

However, despite the study’s promise, it faces limitations that deserve attention. Firstly, 

the dataset used in the project from the OASIS 3 database presents challenges due to 

class imbalance and lack of diversity, potentially limiting the model's generalizability 

and feature extraction capabilities. Additionally, preprocessing steps such as brain 

segmentation using FSL and data augmentation techniques introduce complexities that 

require careful consideration to maintain data integrity and ensure model robustness.  

The model’s architecture, while commonly used, might not be optimally suited for the 

dataset's size and complexity. The complexity introduced by multiple layers may pose 

challenges, especially with relatively limited datasets, potentially leading to overfitting. 

Additionally, the proposed model's hyperparameters were not extensively fine-tuned, 

which could affect its performance and convergence. The limited training duration could 

also have prevented optimal performance. 

Furthermore, although the current study has identified several limitations, it still offers 

promising results. Therefore, the potential of the proposed model can be further explored 

through parameter tuning and validation techniques. Implementing grid search and k-

fold cross-validation would offer a more detailed understanding of the model's 

performance across diverse datasets, which in turn would offer possible avenues to 
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address the previously mentioned limitations. Additionally, considering the complexity 

of the OASIS 3 dataset, conducting training simultaneously on different MRI sequences 

could provide a better perspective, contributing to a robust and versatile diagnostic tool. 

The proposed model shows significant potential in diagnosing Alzheimer’s through T1-

weighted MRI scans. The urgency to improve diagnostic abilities for Alzheimer’s is 

emphasized by the significant impact of the disease. The study highlights the big role of 

MRI in providing detailed information of brain structures, with pre-processing steps such 

as segmentation and data augmentation contributing to the model's efficacy. While the 

simplicity of the model is acknowledged, its robust performance indicates its potential 

for further refinement. By integrating advanced techniques and exploring varied data 

augmentation methods, we can increment the model's diagnostic capacity, advancing 

toward more precise and dependable Alzheimer’s diagnoses. 

5.1 Future Work 

Looking toward the future, the landscape of Alzheimer’s diagnosis using neuroimaging 

offers a lot opportunities for improvement and refinement. Beyond the specific model 

proposed in this study, a more generalized approach to advancing diagnostic procedures 

involves the exploration of various strategies. 

Expanding data augmentation techniques stands out as a key avenue for improvement. 

While the study employed a set of augmentation methods, expanding the dataset to 

include an even bigger array of transformations, such as spatial deformations, color 

augmentations, and more, can enrich the dataset. By exposing the model to a variety of 

scenarios, the augmented dataset becomes more representative of the variability 

encountered in clinical settings, enhancing the model's adaptability. 

The evaluation of different pre-processing pipelines remains a vital aspect of enhancing 

diagnostic models. Beyond segmentation, which was a focal point in the proposed model, 

investigating alternative pre-processing techniques, including normalization, intensity 

correction, and feature extraction methods, can contribute to more refined and 

informative input for the model. Comparative analyses of these pre-processing strategies 

can show their respective impacts on model performance. 
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Moreover, expanding beyond binary to multi-class classification presents the realistic 

progression of Alzheimer’s disease. Considering the spectrum of disease severity allows 

for a finer categorization of patients, potentially enabling more personalized 

interventions. Additionally, the inclusion of more classes could shed light on the 

intermediate stages of the disease, aiding in the identification of early biomarkers. 

The enhancement of Alzheimer’s diagnosis through neuroimaging requires a thorough 

and forward-thinking approach. Advancements in data augmentation, pre-processing, 

dataset diversity, classification strategies, analysis levels, longitudinal studies, and 

predictive modeling collectively contribute to a comprehensive diagnostic framework. 

Continuous exploration and innovation in these dimensions hold the potential not only to 

improve models but to transform how Alzheimer’s diagnosis is approached, leading to 

more effective and personalized treatments. 

5.1.1 Web Application 

In addition to the findings and conclusions presented in this study, there are several 

avenues for future research and development that could further enhance the impact and 

usability of the proposed model. One such avenue involves the development of a web 

application (Fig. 5.1) aimed at facilitating interaction between healthcare professionals 

and patients based on the model's diagnosis. 
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Figure 5.1 Proposed Web Application, view of Home, About, Symptoms and Register pages. 

At the core of this proposal lies the development of a user-friendly web platform where 

physicians can easily upload MRI NIfTI files for analysis (Fig 5.2). Using the 

advancements in deep learning and medical imaging, the application will employ a 

trained model specifically designed for Alzheimer's disease diagnosis. Through the 

integration of this model, physicians will gain access to a sophisticated diagnostic tool 

capable of providing accurate and timely assessments based on MRI scans. 

 

Figure 5.2 Proposed Web Application, view of Physician Dashboard 

Upon accessing the web application, physicians will be greeted with a straightforward 

interface designed for an easy navigation. The platform will offer intuitive 

functionalities, allowing physicians to register patients and upload their MRI scans with 

ease.  Once the MRI scans are uploaded, the trained model will rapidly analyze the 
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images, extracting pertinent features and patterns indicative of AD. Employing state-of-

the-art CNNs, the model will deliver comprehensive diagnostic reports, detailing key 

metrics such as classification accuracy, sensitivity, specificity, precision, and AUC. 

These reports will serve as invaluable resources for physicians, aiding in informed 

decision-making and personalized patient care. 

Furthermore, the web application will extend its functionalities beyond diagnosis, 

catering to the needs of both physicians and patients. For patients, the platform will offer 

a personalized dashboard where they can access their diagnosis status, review past 

appointments, schedule future consultations, and access educational resources related to 

AD management (Fig 5.3).  

 

Figure 5.3 Proposed Web Application, view of Patient Dashboard 

Additionally, the web application will feature administrative tools, allowing healthcare 

professionals to manage patient records, track appointment schedules, and collaborate 

with colleagues.  

The proposed web application represents a tool in the realm of AD diagnosis and 

management. By utilizing deep learning and medical imaging, the application promises 

to transform the diagnostic process, enabling physicians to make timely and accurate 

assessments while empowering patients with personalized information of their health. By 

fitting into clinical routines and focusing on patients' needs, the web application is 

positioned to greatly influence how Alzheimer's disease is diagnosed and handled in 

clinical settings. 
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