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Resumen

Las personas sordas y con dificultades auditivas utilizan el lenguaje de señas para comu-

nicarse a través de expresiones faciales, gestos y señales visuales, los cuales son esenciales

para superar las barreras de comunicación y participar plenamente en la sociedad. Al

hablar de la comunicación en lenguaje de señas, nos referimos a un canal de comunicación

visual compuesto por gestos de las manos y expresiones faciales, con sus propias reglas de

pronunciación, orden de palabras y estructura de oraciones.

Con los recientes avances en visión por computadora y aprendizaje profundo, los sis-

temas de reconocimiento y traducción de lenguaje de señas implementan redes neuronales

convolucionales (CNN), traducción automática neuronal (NMT) o transformadores de

visión (ViT) como arquitecturas para la detección y clasificación. Debido a las potentes

aplicaciones de los ViT, este trabajo propone el uso de una arquitectura de transformador

para realizar tareas de reconocimiento y traducción en la traducción continua de lenguaje

de señas (CSLT). Incorporamos un módulo de representaciones bidireccionales de codifi-

cador de transformadores (BERT) preentrenado como codificador y añadimos una función

de activación novedosa llamada local winner-takes-all (LWTA) en el módulo decodificador.

El modelo se entrenó con el conjunto de datos RWTH-PHOENIX-Weather 2014 T, se

evaluó utilizando protocolos de señas a texto (S2T) y se analizó con las métricas BLEU.

La evaluación con la métrica BLEU-4 arrojó un valor de 23.83, superando en un promedio

de 2.1 puntos a los modelos de referencia ejecutados y comparados en este trabajo.

Palabras clave:

Traducción de Lenguaje de Señas, Reconocimiento de Lenguaje de Señas, Transformador

de Visión, Traducción Continua de Lenguaje de Señas, Ganador-Toma-Todo Local, Rep-

resentaciones de Codificador Bidireccional de Transformadores.
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Abstract

Deaf and hard-of-hearing individuals use sign language to communicate through facial ex-

pressions, gestures, and visual signals, which are essential for overcoming communication

barriers and participating fully in society. When we discuss sign language communica-

tion, we refer to a visual communication channel composed of hand gestures and facial

expressions, with its own rules for pronunciation, word order, and sentence structure.

With recent advances in computer vision and deep learning, sign language recogni-

tion and translation systems implement convolutional neural networks (CNNs), neural

machine translation (NMT), or vision transformers (ViTs) as architectures for detection

and classification. Due to the powerful applications of ViTs, this work proposes using a

transformer architecture to perform recognition and translation tasks for continuous sign

language translation (CSLT). We incorporate a bidirectional encoder representations from

transformers (BERT) module pre-trained as an encoder and add a novel activation function

called local winner-takes-all (LWTA) in the decoder module.

The model is trained on the RWTH-PHOENIX-Weather 2014 T dataset, evaluated

using sign-to-text (S2T) protocols, and assessed with BLEU metrics. The BLEU-4 metric

evaluation reports a value of 23.83, exceeding the baseline models tested and compared in

this work by an average of 2.1 points.

Keywords:

Sign Language Translation, Sign Language Recognition, Vision Transformer, Continuous

Sign Language Translation, Local Winner-Takes-All, Bidirectional Encoder Representa-

tions From Transformers.
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Chapter 1

Introduction

1.1 Background

In a world that is becoming more interconnected, good communication is crucial for en-

couraging inclusivity and guaranteeing equal opportunities for everyone. However, those

who are deaf or have hearing impairments face persistent difficulty in attaining efficient

communication, which not only impacts their personal life but also hinders their ability to

access education, employment, and social engagement.

The World Health Organization reports that around 430 million individuals, comprising

5% of the global population, experience total hearing impairment [1]. By 2050, it is esti-

mated that the number of people with hearing loss worldwide will exceed 700 million. To

surmount these obstacles, civilizations characterized by a significant prevalence of hearing

impairment have wholeheartedly adopted sign language as a distinctive means of conveying

and exchanging information. Sign languages exhibit distinct grammatical and syntactic

norms that vary significantly across different countries, demonstrating that sign languages

are not identical.

Sign language is a nonverbal communication tool primarily used in gestures, motions,

and facial expressions for persons who are deaf or hard of hearing. It creates a complex and

varied language system, including about three hundred sign languages used worldwide [2].

In contrast, studies to standardize sign language, such as the “Gestuto“ project [3], which

seeks to create a consistent sign language with easily learnable gestures, the complicated

interaction of several sign languages has made it difficult to create uniform grammatical

1
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rules.

Because of these difficulties, technology has become a primary tool for facilitating

communication within the deaf community. This technology primarily involves using and

exploring physical devices and computer vision systems [3].

Research shows that conventional techniques for sign language recognition used external

hardware equipment, such as the Kinect sensor, as shown in the research conducted by Aly

et al. [4], or sensor gloves, as explored in sign language recognition by Ahmed et al. [5].

Nevertheless, these techniques are costly and impractical for consumers’ daily contacts.

Recent research has shown that there has been a transition to using vision systems

rather than hardware devices. An instance of this transition is seen in the research con-

ducted by Sakshi et al [6], whose publication introduces a computer vision system that

utilizes convolutional neural networks (CNNs) to interpret sign language by recognizing

hand gestures. Morocho-Cayamcela et al. [7] suggested enhancing the precision of ASL

alphabet prediction by refining two CNNs (AlexNet and GoogLeNet) using atypical com-

pensating approaches and transfer learning. Lomas et al. [8] conducted a study that

examined the effectiveness of CNNs in recognizing sign language. The study also focused

on mitigating overfitting problems by employing transfer learning methods. In addition, a

groundbreaking sign language transformer was created by Camgoz et al. [9] has introduced

revolutionary transformer-based methods for translating sign language from start to finish.

Given these researches in the sign language field discussed above, a new field that

explores translation tasks is the Neural Machine Translation (NMT) task.

Considering the prior research and developments in sign language, a new and promising

avenue of exploration is the application of NMT to the domain of sign language. NMT

is a machine translation task between languages where deep neural network (DNN) mod-

els [10], CNNs, and specific NMT architectures [11] have been utilized. These models

have significantly enhanced translation quality, often complemented by natural language

processing (NLP) techniques.

These methodologies have played a pivotal role in achieving comprehensive translations,

as demonstrated by studies such as the work by Camgoz et al. [12], which introduces the

neural sign language translation (NSLT) models and the sign language production by

Rastgoo et al. [13] using NMT models.

Information Technology Engineer 2 Graduation Project
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Beyond traditional language translating, NMT handles the particular difficulties of

translating sign language in recognition and generation. This technology has benefited

many facets of sign language, from recognition to translation to jobs involving sign language

interpretation.

Vision transformers (ViT) [14] have marked a significant turning point in artificial

intelligence since they have transformed machine perception and interpretation of visual

input. Designed chiefly for processing sequential data such as text, these ViT represent a

development of the original transformer architecture. Transformer architecture has been

modified and refined in ViT to excel in visual tasks.

As mentioned earlier, transformer topologies’ adaptability has resulted in their appli-

cation in several artificial intelligence fields, from natural language processing to computer

vision [9, 15]. These transformer implementations have made particularly noteworthy

strides in sign language research.

Transformer structures have established the state of the art in many vision-related

activities within sign language research. These chores cover sign language translation,

sign language into written or spoken language and sign language recognition, in which

computers learn to recognize and interpret sign language motions. Additionally, tasks re-

quiring sign language interpretation, hand gesture detection, facial expression recognition,

real-time interpretation, and even sign language generation have seen great success for

transformer-based models.

One remarkable development within the transformer architecture domain is the inte-

gration of stochastic transformers into the realm of end-to-end sign language translation,

as pioneered by Vosku et al. [13]. This innovative approach combines the effectiveness of

stochastic modeling with the transformer’s ability to understand complex patterns in sign

language.

When translating sign language into words, researchers often use something called

“glosses”. These are quick, written notes that capture the meaning of a sign in regular

language. Studies include work by Camgoz et al. [9] show that the integration of gloss

mid-level implementation inside transformer systems has shown its capacity to minimize

computational complexity and boost sign language translation (SLT) performance. These

developments have generated original Sign2Gloss2Text models that are different from the

Information Technology Engineer 3 Graduation Project
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conventional Sign2Text models. Transformer designs have expanded SLT technology to

unprecedented degrees by using annotations as an intermediary representation, enhancing

the accessibility and inclusivity of sign language communication for a larger audience [16,

9, 17].

Overall, sign language tasks like recognition, production, and translation have imple-

mented traditional and vision systems using novel architectures such as NMT and ViT.

These technologies have pushed the boundaries of sign language research and significantly

improved accessibility, inclusivity, and communication for the deaf and hard-of-hearing

communities worldwide. Furthermore, the fusion of traditional sign language methodolo-

gies with cutting-edge AI and machine learning techniques shows promising results, as seen

in studies that have utilized NLP models within the NMT framework or the utilization of

Stochastic transformers.

1.2 Problem Statement

Neural machine translation models require much input data to achieve better inference per-

formance. In particular, sign language recognition and translation tasks face the recurring

data scarcity problem. Due to the laborious nature of sign language production, insufficient

sign language datasets are available. We employ the latest transformer implementations

in the sign language field to address these challenges. Specifically, we incorporate novel

techniques, such as using pre-trained models as encoders and stochastic transformers, with

the replacement of traditional rectified linear unit (ReLU) units by local winner-take-all

(LWTA) as the activation function. Research in this field focuses on solving the costly

production of sign language data and getting better performance results of sign translation

metrics.

1.3 Objectives

1.3.1 General Objective

To implement a robust sign language transformer to achieve better BLEU metric results

with an optimal architecture by leveraging new implementations, such as efficient activation
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functions, and taking advantage of natural language processing models, like pre-trained

models.

1.3.2 Specific Objectives

• Integrate pretrained models as encoders to enhance the understanding and processing

of sign language inputs.

• Implement stochastic transformers with LWTA activation functions to improve model

performance and efficiency.

• Evaluate and optimize different model configurations to identify the most effective

architecture for sign language translation.

• Develop a transformer architecture that performs the translation task without inter-

mediate gloss application.

Information Technology Engineer 5 Graduation Project



Chapter 2

Theoretical Framework

2.1 Computer Vision

2.1.1 Overview

Visual perception is a straightforward way to understand the environment and its behavior,

although other senses also play a role. Humans deduce spatial information faster from their

visual senses. Distance, depth, and volume are readily identifiable to us. This capacity to

understand visual info helps us to move and interact with our surroundings.

Computer vision aims to develop systems that can process, comprehend, and make

decisions based on visual data. In a nutshell, computer vision aims to replicate human

vision ability by enabling machines to interpret and understand visual information from

the surrounding environment. Using techniques such as image recognition, object detec-

tion, and depth estimation, computer vision systems can analyze visual inputs and make

informed decisions. These systems are employed in various applications, from autonomous

vehicles and facial recognition to medical imaging and augmented reality, demonstrating

their potential to revolutionize multiple fields, provide accurate analysis, and save time

[18].

In practice, one example of computer vision is segmenting neuron structures from mi-

croscopic images. This task has been addressed using CNNs, particularly the U-Net archi-

tecture proposed by Ronneberger et al. [19]. Automating this process reduces the need for

human experts, leading to significant time savings.

Computer vision has been the most active application area within deep learning research
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in the last few years. Despite recent advances, understanding human-level images remains

a significant challenge.

2.1.2 Computer Vision Tasks

Computer vision involves various tasks that allow machines to process and interpret visual

data. Key tasks within this field include:

Image Classification

Image classification is a core component of computer vision. It involves assigning a label

or category to an entire image. Deep learning, mainly through CNNs, has significantly

advanced this field. Image classification is vital in various fields, such as recognizing objects

in photographs, diagnosing medical conditions, and sorting images into specific categories

(Fig 2.1).

Object Detection

Object detection goes beyond image classification by identifying objects within an image

and determining their location using bounding boxes. This means it can locate and classify

multiple objects in an image. This task is crucial for applications such as autonomous

driving, where systems must detect and pinpoint entities like pedestrians, other vehicles,

and obstacles. Popular techniques for object detection include Faster R-CNN [20], YOLO

[21], and SSD [22].

Semantic/Instance Segmentation

Semantic segmentation involves labeling each pixel in an image with a class of the object,

allowing for a detailed understanding of the image content. Instance segmentation extends

beyond semantic segmentation by identifying and differentiating between individual in-

stances of the same category. For example, in Figure 2.1, the instance segmentation image

demonstrates how to distinguish different objects even if they belong to the same group.

It clearly outlines each object—the cat in red, the dog in blue, and the duck in green.

This task is particularly beneficial for applications like medical imaging (e.g., differenti-

ating various tissue types) and autonomous driving (e.g., interpreting road environments).
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Architectures like U-Net [19], R-CNNs [23], F-CNNs [24], SegNet [25], and DeepLab [26]

are commonly used for image segmentation.

Figure 2.1: Computer vision tasks include identifying objects (classification), locating ob-
jects (localization), finding multiple objects (detection), and precisely outlining individual
objects (segmentation). Taken from [27].

These and other proposed computer vision tasks aim to describe space through visual

resources accurately. In particular, the tasks discussed above form the basis of computer

vision and are integral to developing systems that can interpret and interact with the visual

world.

2.1.3 Convolutional Neural Networks (CNNs)

Inspired by the human brain’s visual processing system, CNNs introduced by LeCun et al.

[28], have become a popular and powerful tool for handling complex visual tasks applied to

computer vision systems [18]. CNNs are a deep learning model that handles data arranged

in grids like images and videos. As the name suggests, this type of neural network uses a

mathematical operation called “convolution.”

A CNN architecture has several types of blocks and layers:

• Convolutional Layer: Considered the most essential layer of CNNs [27, 18], the

convolutional layer extracts meaningful features from the input image through the

convolutional operation that sets filters to the input image, producing feature maps

that capture spatial hierarchies of features, such as edges, textures, and patterns

[29]. Each filter slides over the input image and performs a dot product operation,

highlighting specific patterns in the data.
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• Pooling Layers: Due to increasing network dimension across each layers, the pool-

ing layers helps to reduce the spatial dimensions of the feature maps, retaining the

most important information while discarding less critical details. Pooling layers re-

duce the computational load and controlling overfitting. The most common type is

max pooling, which takes the maximum value from a set of pixels within a defined

window [29].

• Fully Connected Layers: Once the input image passes through the convolutional

and pooling layers, the features extracted from this process are consolidated into a

fully connected layer. Fully connected layers are typically used at the network’s end

to classify based on the extracted features.

• Activation Function: In the hidden layers, the CNN weights pass through a non-

linear activation function, allowing the model to learn the relationship between the

input and the output. A widely used activation function is the ReLU. ReLU adds

nonlinearity to the model, enabling it to learn complex patterns by converting the

input into an output spanning zero to positive infinity [27].

This Figure 2.2 graphically explains the CNN architecture from the input layer to the

output layer.

Figure 2.2: Typical CNN architecture illustrating the flow from the input layer through
convolutional layers for feature extraction, followed by fully connected layers for classifica-
tion, and ending with the output layer for prediction. Taken from [29].
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CNN architectures like AlexNet [30], VGGNet [31], and ResNet [32] have set new per-

formance standards in various computer vision competitions, highlighting the exceptional

capabilities and strong performance of CNNs in tackling complex visual problems.

2.2 Vision Transformers (ViT)

2.2.1 Transformer

A pivotal moment in deep learning occurred in 2017 with the introduction of the trans-

former architecture by Vaswani et al. [15] from Google. This groundbreaking work, titled

“Attention Is All You Need,” revolutionized natural language processing by applying self-

attention mechanisms to handle sequence data without recurrent networks. The perfor-

mance results obtained from this work also demonstrated efficiency through faster training

and reduced computational costs via parallelization [18].

Comparative studies between LSTM, RNN, and Transformer architectures have con-

cluded the superior performance of the Transformer [33, 34, 35]. The Transformer archi-

tecture achieves stable results with faster training due to parallelization and the attention

mechanism. These studies also highlight the limitations of RNNs in handling long-term

dependencies [36, 33].

Transformer Architecture

This architecture’s general composition is self-attention mechanisms, positional encodings,

and encoder/decoder blocks. The following items explore each stage of the transformer

architecture clearly.

• Positional Encoding: Since transformers do not inherently understand the order

of input tokens, positional encodings store the position of a token in a dense vec-

tor, preserving the order of the input sequence. The resulting matrix of positional

encodings, denoted as PE, is mathematically defined as follows:

P Ep,i =


sin

(
p/10000i/d

)
if i is even

cos
(
p/10000(i−1)/d

)
if i is odd

(2.1)
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where p is the position of the token in the sentence, ith is the dimension of the

encoding, and d is the embedding dimension [18].

• Self-Attention and Multi-Head attention Mechanism: This mechanism allows

the model to weigh the importance of different parts of the input sequence when

making predictions, enabling it to capture long-range dependencies. In the encoder,

the features vector of positional encoding passes to scaled dot-product attention

equation in the attention block, as follows the equation:

Attention(Q, K, V ) = softmax
QKT

√
dk

 V (2.2)

where Q represents the query matrix, K represents the key matrix, V represents

the value matrix, KT is the transpose of the K matrix, and dk is the dimensionality

of the key vectors.

Once the Q, K , and V word input sentences are passed through an attention mech-

anism, the result feeds into the normalization layer, obtaining self-attention weights.

This process is repeated to form the Multi-head attention block, expressed by the

following mathematical expression:

MultiHead (Q, K, V ) = Concat ( head1, . . . , headh) W O

where headi = Attention
(
QW Q

i , KW K
i , V W V

i

)
(2.3)

where W represents all the matrices of learnable parameters.

• Feed-Forward Network and Normalization Layer: Each transformer block

incorporates a feed-forward neural network to process the information derived from

the attention mechanism further. These networks typically consist of two linear layers

with a ReLU activation in between [15]. Layer normalization ensures that the data

going into each layer is similar in size, which helps the model learn better. Residual

connections create shortcuts in the network, allowing information to skip over some

layers. This makes it easier to train profound models.

Information Technology Engineer 11 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

Like the encoder, the decoder block comprises multi-head attention blocks, normal-

ization layers, and feed-forward networks. However, the decoder also receives input from

the encoder block’s output. The target sentence words also pass through a word embed-

ding process before entering the masked multi-head attention block [18]. These steps are

repeated until the word prediction is obtained.

The following image shows the transformer architecture proposed by Vaswani et al.:

Figure 2.3: The transformer design consists of an encoder and a decoder, both of which have
multi-head attention and feed-forward layers. Positional encodings are incorporated into
the input and output embeddings. The encoder transforms the input into intermediate
representations, while the decoder utilizes these representations along with the shifted
outputs to generate predictions. Taken from [18].
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2.2.2 Vision in Transformer

First introduced by Dosovitskiy et al. [14], vision transformers (ViT) (Fig 2.4) adapt the

transformer architecture (Fig.2.3) to process images as input data for computer vision tasks

such as image classification.

Following the same structure as the transformer architecture (Fig.2.3), the ViT archi-

tecture proposes the following new modules:

• Patch and Positional Embedding: The input image is divided into fixed-sized

squares or patches. These patches are mathematically transformed into numerical

representations called patch embeddings. Similar to word embeddings in the trans-

former architecture, positional encodings are added to these patch embeddings to

provide information about the spatial positions of the patches within the image,

preserving the spatial relationships for image understanding [14].

• Self-Attention Mechanism: Like the traditional transformer (Fig.2.3), the self-

attention mechanism enables the model to establish relationships among all patches

during prediction, capturing dependencies and contextual relationships within the

image.

• Classification Head: The output from the final transformer block is passed through

a multi-layer perceptron (MLP) head, which typically involves a fully connected layer

to produce the final predictions [14].

ViTs have shown competitive performance on various benchmarks, sometimes surpass-

ing traditional CNNs in tasks such as image classification, object detection, and segmenta-

tion [37]. Transformer architectures in vision systems have become a hot topic for research.

Due to the evident advantages of ViTs, new benchmark results are increasingly composed

of transformer architectures.

The next image show the ViT architecture proposed [14].
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Figure 2.4: The Vision Transformer (ViT) architecture involves partitioning an image into
patches, applying linear projection to them, incorporating positional embeddings, and then
passing them through a transformer encoder. The ultimate representation is transferred
to a Multilayer Perceptron (MLP) head for categorization. Taken from [14].

2.3 Natural Language Processing (NLP)

2.3.1 Overview

Natural language processing (NLP) is a multidisciplinary field of artificial intelligence that

facilitates the interaction between computers and human language. NLP aims to enable

machines to understand, interpret, and generate human language in a meaningful and

valuable manner [38]. NLP encompasses text categorization, language translation, speech

recognition, and sentiment analysis tasks. NLP is divided into two subfields: natural

language understanding (NLU), which focuses on analyzing the semantics or intended

meaning of text, and natural language generation (NLG), which concentrates on generating

text by a machine.

Different NLP models, such as sequence-to-sequence models, utilize recurrent neural

networks and excel at language translation. Autoregressive models have significantly ad-

vanced NLP capabilities by sequentially generating text, expanding the field’s potential.

Transformer models, leveraging self-attention, capture complex language structures.

From the introduction of the transformer architecture with the attention mechanism

[15] and the application of transfer learning in LSTM (ULMFiT) [39] in 2018-2019, ad-
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vancements in NLP have accelerated, resulting in powerful and efficient NLP systems.

Models such as bidirectional encoder representations from transformers (BERT) [40] and

generative pre-trained transformer (GPT) [41] have established new standards in various

NLP tasks [42, 43], showcasing the effectiveness of transformers in comprehending and

generating human language.

2.3.2 NLP Pipeline

Preparing raw text data for NLP analysis involves crucial steps like text pre-processing and

feature extraction [40]. Following the flow of Figure 2.5, from data acquisition, the text

pre-processing pipeline begins with tokenization, where the text is split into smaller units

called tokens. This is followed by normalization, which involves converting all characters to

lowercase, removing punctuation, and performing stemming and lemmatization to reduce

words to their root or base forms. Stop words, which are common words like “the,” “is”,

and “in” that do not add significant meaning, are also removed to focus on more meaningful

words.

After text pre-processing, feature extraction converts tokens into numerical represen-

tations. Techniques for this conversion include bag of words (BoW) [44], term frequency-

inverse document frequency (TF-IDF) [45], and advanced word embeddings [46]. This

sequence of processes results in clean, organized data that can be effectively used in NLP

models.

Data adquisition Text Preprocessing Tokenization Normalization

StopwordsFeature extractorModeling

Figure 2.5: NLP pipeline illustrating the steps of data acquisition, text pre-processing,
tokenization, normalization, stopwords removal, feature extraction, and modeling.

2.3.3 Neural Machine Translation (NMT)

Neural Machine Translation (NMT) utilizes neural networks to translate entire sentences

simultaneously. Unlike traditional statistical machine translation methods, NMT excels at
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capturing complex language patterns and dependencies, producing more fluid and human-

like translations [47]. NMT architectures typically consist of encoder-decoder frameworks

with attention mechanisms, embeddings, and classification layers.

Evaluation Metrics in Neural Machine Translation

Evaluating the quality of translations produced by NMT models is essential to determine

their effectiveness. One of the most widely used metrics for this purpose is the Bilingual

Evaluation Understudy (BLEU) score [47, 48]. The BLEU metric, introduced by Papineni

et al. [49], measures the similarity between a machine-generated translation and one or

more reference translations by calculating the precision of n-grams, which are contiguous

sequences of n words.

The BLEU score is calculated using the following formula:

BLEU = BP × exp
 N∑

n=1
wn log Pn

 (2.4)

where BP is the Brevity Penalty to account for short translations, wn is the weight for

n-gram, and Pn is the precision of n-grams; and N represents the maximum n-gram length

considered, generally up to 4.

In BLEU scoring, BLEU-1 (Unigram Precision) measures individual word accuracy,

while BLEU-2 to BLEU-4 evaluate coherence through sequences of 2 to 4 words. Table 2.1

provides examples of these n-gram types, illustrating how each BLEU score level captures

increasingly complex language patterns with longer sequences.

Table 2.1: N-gram types used in BLEU scores with examples.

BLEU Score N-gram Type Example

BLEU-1 Unigram (1-gram) “The”, “weather”, “is”, “sunny”
BLEU-2 Bigram (2-gram) “The weather”, “weather is”, “is sunny”
BLEU-3 Trigram (3-gram) “The weather is”, “weather is sunny”
BLEU-4 4-gram “The weather is sunny”

Higher BLEU scores indicate better translation quality by reflecting a closer match

to the reference translations. The BLEU score ranges from 0 (no overlap) to 1 (perfect

match) [49]. For ease of interpretation, these values are generally multiplied by 100 and
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presented as percentages. Typically, a score above 30% is considered good, while scores

above 50% suggest high-quality translations approaching human-level performance [50, 51].

This metric is widely recognized for providing an objective and quantifiable measure of

translation accuracy and fluency, making it a standard in machine translation evaluation

[52, 53, 54]

In addition to BLEU, other metrics like WER and SER are essential for evaluating sign

language recognition models. WER, adapted from speech recognition, measures word-level

errors in model output [55, 56, 57, 58, 59, 60, 9, 61], while SER specifically assesses sign

recognition accuracy [62]. In translation tasks, metrics such as ROUGE and METEOR are

also commonly used; ROUGE evaluates n-gram overlap, emphasizing recall and precision,

while METEOR rewards semantic similarity by considering stemming and synonyms [63,

59, 57, 11, 60, 16, 64, 62].

In the context of sign language translation, using these metrics is crucial for assessing

how effectively the NMT model translates visual gestures into coherent and accurate text.

2.3.4 Pre-trained NLP

Due to the increasing number of parameters in deep learning models, robust and exten-

sive datasets are essential for practical training. A groundbreaking development in NMT

models is the introduction of pre-trained models. These models alleviate the dependency

on massive amounts of task-specific data by providing strong initial representations, accel-

erating training, aliviate overfitting, and often improving overall performance [65].

2.3.5 Bidirectional Encoder Representations from Transformers
(BERT)

Introduced by Devlin et al. [66] in 2018, BERT is a machine learning model designed to

create deep contextual representations directly from unlabeled text data. It has become

revolutionary due to its improved performance and ability to solve various NLP tasks

[67, 68, 69].

BERT comprises two main frameworks, as shown in the Figure 2.6: pre-training and

fine-tuning. The pre-training framework involves training BERT on large datasets to ac-
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quire contextualized word embeddings, which capture the meaning of words based on their

context within sentences. This framework allows BERT to predict the following sentence

or the missing word in a sentence. Fine-tuning involves adapting the pre-trained BERT

model to a specific task (sentiment analysis, speech-to-text translation, masked language

modeling) using labeled data. Unlike traditional transformers that use separate encoder

and decoder blocks, BERT employs a single encoder block to handle pre-training and

fine-tuning tasks.

Figure 2.6: The BERT framework involves two main steps: pre-training and fine-tuning.
Pre-training includes masked language modeling (MLM) and next sentence prediction
(NSP) tasks. Fine-tuning adjusts the model to perform well on specific tasks by train-
ing it on labeled data. Taken from [66].

2.4 Sign Language in Computer Vision

In sign language communication, computer vision uses technology tools to lower the com-

munication barrier separating deaf people from hearing ones. Hand gesture identification,

depth detection, 3D model recognition, deep learning-based recognition tasks, and pose-

based methods [10] are among the several computer vision techniques routinely investigated

to improve systems for sign language categorization and detection.

There are two main approaches to sign language recognition and translation: physical

devices and vision-based systems.

Physical devices like gloves and sensors record hand and finger motion and location.
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For instance, Tao et al. [70] employed american sign language gesture recognition using a

Kinect sensor. Likewise, Aly et al. [71] captured hand motion using a principal component

analysis network on the Kinect sensor. These gadgets convert bodily motions into digital

data that is fit for analysis and interpretation as sign language. These devices are effective

but often inconvenient and costly, which hinders their use.

Cameras and computer vision algorithms are employed in vision-based systems to ana-

lyze and comprehend sign language. For instance, Hu et al. [72] proposed the SignBERT+

framework, which captures gestures using hand estimation from sign videos. Another no-

table work is the “Sign language transformer” by Camgoz et al. [9], which proposes a pure

vision system for end-to-end sign language translation and recognition using transformer

architecture. Figure 2.7 shows the proposed sign language model. These systems analyze

sign videos and employ various methods to understand and convert the signs into text or

spoken language. Vision-based systems are more user-friendly and accessible since they do

not require additional hardware beyond a standard camera.

Figure 2.7: The authors Camgoz et al. have presented an end-to-end sign language trans-
former. The novel model employs spatial embedding to recognize sign language and word
embedding to translate spoken language. It utilizes transformer encoders and decoders to
connect both tasks. Taken from [9].
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Chapter 3

State of the Art

3.1 Sign Language Recognition

Sign language recognition involves the process of recognizing and translating sign language

gestures into written or spoken language. This task combines computer vision and natural

language processing techniques. The primary evaluation metric in this task is the word

error rate (WER).

To evaluate advancements in sign language translation, researchers rely on established

benchmarks. Among these, RWTH-PHOENIX-Weather 2014 (proposed by koller et al.

[73]) and RWTH-PHOENIX-Weather 2014 T (proposed by Camgoz et al. [12].) are widely

used.

Capturing hand gestures and facial movements in sign language involves understanding

complex temporal relationships. Learning the spatial sequence in a recognition task is a

novel approach proposed by Min et al. [74], introducing the “Deep Radial Embedding”

method. This method effectively captures complex temporal relationships. Similarly, Hu

et al. [72] introduce SignBERT+, which captures hand pose information. This model

implements a pre-trained BERT model that effectively captures gesture state and spatial-

temporal position, allowing it to learn robust representations. Due to the dynamic nature

of sign language, human body trajectories are also considered to identify a sign. Hu et al.

[75] explore this idea by creating “correlation maps” or the correlation network (CorrNet)

that compare nearby frames, essentially tracking hand and face movements. This allows

CorrNet to gain a more complete understanding of the signs being conveyed, achieving

20
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superior accuracy on standard datasets. In this context, it is important to interpret all sign

sequences captured from sign language videos over time. Lu et al. [76] introduced TCNet,

which integrates a trajectory module to track hand and face movements across video frames

and a Correlation Module to highlight significant areas within each frame. TCNet method

has the ability to capture extended sign sequences, highlighting the potential of integrating

trajectory and correlation data for future SLR improvements.

Regarding the field of continuous sign language recognition (CSLR), novel models have

been proposed, such as the work by Hao et al. [12]. They introduced the Self-mutual

knowledge distillation (SMKD) method. SMKD leverages a two-stage architecture, enforc-

ing the visual and contextual modules to capture long-term dependencies. By incorporating

SMKD, the authors demonstrated the importance of the visual information treatment.

The current state of the art in CSLR is led by the work proposed by Ahn et al. [77]. To

achieve effective spatial and dynamic feature extraction, they utilize the SlowFast network,

which employs a two-pathway design: a “slow lane” that captures the broader context of

the signs and a “fast lane” that focuses on the finer details of rapid hand motions. This

dual-path approach helps gain a more comprehensive understanding of the sign language

process, ultimately demonstrating that their network outperforms previous methods on

the PHOENIX14, PHOENIX14-T, and CSL-Daily datasets.

On the other hand, there is a broad range of sign language categories, with a particu-

larly interesting field of study being the ankara university turkish sign language (AUTSL)

Dataset [78]. The next work represents the top benchmark result reported on the “Test

Set Recognition Rate” metric. Ryumin et al. [79] implemented two deep neural networks

for sign gesture recognition and audio-visual speech recognition, taking into account the

audio, visual, and speech scenery. Although this work does not entirely focus on sign lan-

guage applications, the efforts to implement an efficient computer vision system for gesture

recognition are evident.
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Table 3.1: Summary of sign language recognition related works.
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3.2 Sign Language Translation

Sign language translation involves generating spoken language sentences from sign lan-

guage video representations. Recent advancements in sign language translation leverage

the use of ViT to address traditional machine translation challenges, achieving significant

improvements in accuracy and performance in this field.

Deep learning approaches to sign language translation can be categorized into three

main type: using just computer vision, using physical devices, or combining both for

a comprehensive system. Nowadays, computer vision system applications are popular

because it’s flexible and gives great results.

Being part of the first category, the frozen pre-trained transformer proposed by De

Coster et al. [56] presents a novel implementation in the SLT field. To address the issues

of limited training data and overfitting, the authors leveraged pre-trained language mod-

els. They consolidated a sign language transformer architecture by freezing parameters to

prevent overfitting. This approach benefits from the knowledge encoded in the pre-trained

models. The authors reported improved results using sign to text (ST2) translation pro-

tocols, as evidenced by higher BLEU metric scores.

A common topic of discussion is the use of traditional intermediate representations,

such as gloss notation. Zhou et al. [80] propose a gloss-free transformer architecture called

“Gloss-free SLT based on visual-language pre-training” (GFSLT-VLP). By leveraging vi-

sual language pre-training, the authors developed a model that can directly map visual sign

language input to textual output without the need for intervening gloss representations.

The results demonstrate an enhancement in their model’s performance.

Similarly, Voskou et al. [52] share the proposal of not using explicit glosses. They

introduce a novel transformer architecture, called the stochastic transformer, which in-

corporates stochasticity and competition among neurons to improve model performance.

By using linear competing units and stochastic weights, the authors achieve a robust and

efficient model.

Focusing on sign language recognition and processing, Chen et al. [81] employ a novel

two-stream network framework. One stream processes raw video data, while the other

handles keypoint information extracted from the video. By combining these two streams,
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the model effectively captures both low-level visual features and high-level semantic in-

formation. The results of this paper, reported on the “papers with code” state-of-the-art

platform, place this model in second position in the best benchmark results for the BLEU-4

metric.

The best BLEU-4 benchmark was reported by the work of Guan et al. [82], achieving

state-of-the-art performance on the PHOENIX14-T dataset. The multi-stream keypoint at-

tention network (MSKA) was the model proposed, built entirely with attention mechanism

modules. These modules focus on keypoint information extracted from video sequences,

utilizing multiple streams to process different aspects of the keypoint data, such as hand,

face, and body movements.

Taking information from the sign language recognition state-of-the-art section, the Sign-

BERT+ model developed by Hu et al. [72] once again excels in the task of sign language

translation. Through several experiments, the authors evaluated and reported results for

continuous sign language translation, demonstrating a high score of 25.70 in BLEU-4 eval-

uation. Due to the implementation of self-supervised pretraining and fine-tuning, this

framework achieves new state-of-the-art performances in the sign language field.

Now, considering the How2Sign dataset (american sign language dataset by [83]), the

first baseline framework reported on this dataset is the work proposed by Tarrés et al.

[84]. The authors propose a Transformer-based model trained on I3D video features to

translate sign language into text. The I3D serves as a feature extractor that tokenizes the

input video stream to feed the proposed transformer architecture. This work establishes a

baseline for studying and exploring more alternatives for sign language frameworks using

the How2Sign dataset.
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Table 3.2: Summary of sign language translation related works.
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Chapter 4

Methodology

4.1 Phases of Problem-Solving

4.1.1 Description of the Problem

Related works in end-to-end sign language translation [52, 11, 56, 72] highlight significant

issues with dataset size and gloss production in machine translation tasks. There are only a

few publicly available large-scale datasets in sign language production [85]. The complexity

of grammatical and linguistic production in this field presents a major barrier to creating

enriched datasets [56, 52]. Mid-level representations (glosses) included in SLT datasets are

particularly laborious to obtain in large corpora data. Gloss annotations require expert

knowledge and extensive manual effort, which limits the scalability of creating comprehen-

sive datasets. This scarcity of gloss annotations limits the domain coverage of translation

datasets, thereby hindering real-world applications [86].

4.1.2 Analysis of the Problem

The creation of gloss sequences is labor-intensive and time-consuming, requiring expert

knowledge to accurately annotate each sign. Furthermore, video preprocessing in sign lan-

guage translation poses additional challenges as it involves complex computer vision tasks

to accurately capture and interpret the dynamic gestures in the videos. These challenges

contribute to the overall difficulty of developing robust sign language translation systems.

To overcome these challenges, solutions are being implemented to address the limitations

of weak datasets [11, 56], improve hand gesture recognition [72], enhance sign language
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production [63, 12, 67], and manage computational costs in real-time video analytics [68].

4.2 Model Proposal

Inspired by the stochastic transformers with linear competing units proposed by Voskou et

al. [52], the pre-trained transformers for neural sign language translation introduced by De

Coster et al. [11, 56], and the first sign language transformer that integrates recognition

and translation into a unified framework by Camgoz et al. [9], our model aims to build a

robust transformer architecture as shown in Figure 4.1.

Pre-trained BERT

Multi-Head
Attention

Add & Norm

Feed Forward

Add & Norm

Frame
Extraction

Feature
Extraction

Masked Multi-
Head Attention

Add & Norm

Encoder-Decoder
Attention

Add & Norm

Dense
LWTA Layer

Feed Forward

Sign Language Video

Word
Embedding

Output
(morgem im osten und sudosten ...)

N×
N×

Encoder

Decoder

Spatial Embedding

[start]
pos0

[morgen]
pos1

[im]
pos14

PE

PE

Figure 4.1: This is an overview of our proposed architecture for sign language translation,
which uses a BERT encoder and stochastic transformers with LWTA activation imple-
mented in the decoder.
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4.2.1 Spatial Embedding & Word Embedding

For our model proposal, we begin by employing spatial embedding and word embedding

techniques to handle video frames and target spoken language words, respectively.

Spatial Embedding

The input modality involves obtaining a series of features from complete video frames.

These features are extracted on a per-frame basis from a pre-trained inception network

[87] using a 2D CNNs [12]. Each video frame xt is processed through the pre-trained

CNN to generate a feature vector ft getting a sequence of feature vectors {f1, f2, . . . , ft}

as follows:

ft = SpatialEmbedding(xt) (4.1)

Word Embedding

In sign language translation, word embedding converts target spoken language words into

numerical representations. Initially, words are represented as high-dimensional, sparse one-

hot vectors. These vectors are then projected into a lower-dimensional dense space using

a fully connected layer, resulting in dense vectors {g1, g2, . . . , gu}, expressed as:

gu = WordEmbedding(yu) (4.2)

where yu is the one-hot vector.

Integration with Positional Encoding

In the transformer architecture, it is essential to employ positional information within

sequences to maintain the context. The spatial embedding ft and word embedding gu

representations obtained from the CNN are passed through a positional encoding (PE)

method, as shown below:

f̂t = ft + PE(t) (4.3)
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ĝu = gu + PE(u) (4.4)

The spatial embeddings f̂t are fed into the transformer encoder, while the word embed-

dings ĝu are fed into the transformer decoder.

4.2.2 Encoder

Instead of a traditional encoder transformer module, we use a pre-trained language model,

BERT, combined with the encoder module to perform machine translation from sign lan-

guage. The encoder consists of 4 blocks: multi-head attention, add & norm, feed forward,

and add & norm.

Pre-trained Transformer: BERT

While sign language data is often limited, this model leverages pre-trained language models

to enhance the encoder module’s learning process [88, 56, 11, 69]. Since pre-trained models

like BERT are typically trained on written text data, adaptations might be necessary for

sign language translation.

We employ a pre-trained BERT model in the encoder. The spatial embeddings (f̂t) are

fed into this encoder. BERT, trained on large text datasets, converts these embeddings

into contextually rich representations. These are processed through multi-head attention

mechanisms, allowing the model to focus on different input parts and capture diverse

features for sign language translation. The multi-head attention mechanism is expressed

in this equation 2.2.

The following equation illustrates how the BERT encoder transforms the spatial em-

beddings:

ĥt = BERT(f̂t, PEt) (4.5)

Here, t denotes the time step (frame index), f̂t represents the spatial embedding for

frame t, PEt is the positional encoding for frame t (if used), and ĥt denotes the contextually

enriched representation produced by the BERT encoder.
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4.2.3 Decoder

Once the encoder model was defined, we began to design the decoder transformer archi-

tecture. The decoder consists of six blocks: masked multi-head attention, add & norm,

encoder-decoder attention, add & norm, dense LWTA layer, and feed forward.

To generate the output sequence, the decoder processes the target spoken language

words, which are first converted into word embeddings ĝu. These embeddings are input

into the masked self-attention layer of the decoder. The masked self-attention mechanism

ensures each position in the decoder can only attend to previous positions, preserving the

autoregressive property.

The output from the masked self-attention layer is then passed through subsequent

layers of the decoder, ultimately generating the translated spoken language sentence.

The decoder module includes a dense LWTA layer [52] above the encoder-decoder at-

tention layer, as shown in Figure 4.1. This replaces the traditional deterministic activation

functions in encoder/decoder modules, such as ReLU layers, where the activation is given

by:

f(x) =


x if x > 0

0 otherwise
(4.6)

This novel activation function has been implemented in data modeling and dataset

construction, replacing the ReLU layer implementation. It promotes generalization, im-

proves robustness, and enhances performance, achieving superior results in neural machine

translation tasks, sign language translation tasks, meta-learning, and network robustness

[89, 85, 90, 55, 91].

Stochastic Transformer: Local Winner-Take-All

Local Winner-Take-All Networks

To establish local competition among neurons, we consider a network N with n input

neurons (x1, . . . , xn) and n output neurons (y1, . . . , yn). The network N is divided into B

blocks arranged in layers: N = {B1, B2, . . . , BB}, where each block Bi (for i = 1 to B)

consists of m neurons: Bi = {Ni1, Ni2, . . . , Nim}, where Nij represents the j-th neuron in
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the i-th block.

Each block Bi produces an output vector yi based on local interactions among neuron

activations:

yi = g(a1
i , a2

i , . . . , am
i ), (4.7)

where g(·) is the interaction function within each block.

The activation aj
i of the j-th neuron in block i is given by:

aj
i = f(wT

ijui), (4.8)

where ui is the input vector to block i from the previous layer, wij is the weight vector for

neuron j in block i, and f(·) is a non-linear activation function.

The resulting activations yi serve as inputs to the next layer.

yj
i =


aj

i if aj
i ≥ ak

i , ∀k = 1, . . . , m

0 otherwise.

(4.9)

This study employs a winner-take-all function, detailed graphically in Figure 4.2.

Input Layer LWTA Layer 1 LWTA Layer 2 Output Layer

x1

x2

x3

a1
1

a2
1

a3
1

a4
1

a1
2

a2
2

a3
2

a4
2

y1

y2

B1

B2

B3

B4

Figure 4.2: Local Winner-Take-All (LWTA) networks are composed of three layers: input,
LWTA, and output. Within each LWTA layer, neurons are organized into clusters, with
only the neuron exhibiting the highest level of activation in each cluster being chosen to
transmit its signal to the subsequent layer.
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Stochastic Local Winner-Take-All

Now, let x ∈ RJ be the input vector with J features. We consider a three-dimensional

matrix W ∈ RJ×B×U representing the related weights, where B is the number of blocks and

U are the linear competing units used. Following the Voskou et al. [52] LWTA approach,

the activations hb,u of each uth linear unit within the bth block are computed as follows:

hb,u =
J∑

j=1
wj,b,u · xj ∈ R (4.10)

These activations are then passed through a softmax function to obtain the concate-

nated activation probability values.

Introducing the principles of stochastic competition, the output vectors y ∈ RB·U

of the competition encoded by LWTA layers are passed through a discrete latent vector

ξb ∈ one hot(U) that corresponds to the winner unit among the U components. Thus, the

winner unit determined by the stochastic LWTA operation is represented as:

yb,u = ξb,u

J∑
j=1

(
wj,b,u · xj

)
∈ R (4.11)

yb,u = ξb,u · hb,u (4.12)

where hb,u represents the linear activation of the uth unit in block b before applying the

one-hot encoding, ξb,u is the element of the one-hot encoded vector indicating the winning

unit within block b, and yb,u is the activation of the winning unit in the b-th block after

incorporating the stochastic competition.

The winner unit indicator ξb shows that a unit with higher linear activation has a

greater chance of being selected as the winner. This creates a data-driven competition

within an LWTA block, where the probability of winning increases with the unit’s linear

output. This relationship is mathematically represented by the discrete distribution given

in Equation 4.13.

q (ξb) = Discrete

ξb | softmax
 J∑

j=1

[
wj,b,u

]U

u=1
· xj


 (4.13)
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The LWTA stochastic mechanism introduces sparsity in neural activations by allow-

ing only the most competitive units to be active. This reduces computational load and

improves generalization by mitigating overfitting. This approach captures more discrimi-

native features from the input data, which is crucial for handling the intricate details in

sign language videos.

4.3 Experiment

4.3.1 Dataset Description

A crucial component of our end-to-end sign language translation model is the selection

of an appropriate sign language dataset for recognition and translation tasks. For this

work, the RWTH-PHOENIX-Weather 2014 T dataset was selected. Introduced by Cam-

goz et al. [12], this dataset is a comprehensive parallel corpus of German sign language

translations based on the Phoenix-2014 Dataset [92]. It includes sign-gloss annotations,

sign language videos, and corresponding German translations, all derived specifically from

weather forecast broadcasts on a German public television station.

The RWTH-PHOENIX-Weather 2014 T dataset includes:

• Videos: 684 video sequences recorded between 2009 and 2011, each with a resolution

of 210 x 260 pixels and a frame rate of 25 frames per second. These videos capture

weather forecasts presented by sign language interpreters.

• Segments: The dataset is divided into three subsets: training with 7,096 segments,

development with 519 segments, and testing with 642 segments, to facilitate system-

atic training and evaluation of models.

• Sentences: It consists of 8,257 parallel sentences in German sign language, each

paired with its corresponding German text translation.

• Gloss Composition: Each sentence is annotated with glosses, which are textual

representations of the signs used. The dataset includes 1,066 unique glosses for train-

ing, 393 for development, and 411 for testing. These glosses represent the different

signs used across the dataset.
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• Vocabulary Size: The dataset comprises 1,066 unique glosses for sign language and

2,887 unique words for German text, supporting extensive translation and recognition

tasks.

• Frames: A total of 947,756 frames are included, providing detailed visual data for

each second of the signing process. These frames are divided into 827,354 for training,

55,775 for development, and 64,627 for testing, ensuring a comprehensive dataset for

model training and evaluation.

4.3.2 Metric Evaluation

The BLEU metric is used as the primary reference for assessing the performance of our

sign language translation model during the training and validation stages. Throughout our

evaluation, we track BLEU-1, BLEU-2, BLEU-3, and BLEU-4 scores, focusing on BLEU-4

due to its higher accuracy in reflecting translation quality. This focus on BLEU-4 allows

us to ensure that our model captures individual words or short phrases accurately and

maintains the coherence and meaning of longer text segments.

4.3.3 Translation Protocols

Further evaluation protocols such as sign to text (S2T), gloss to text (G2T), sign to gloss to

text (S2G2T), and sign to gloss and text (S2(G+T)) have been proposed for sign language

experimental evaluations. These protocols aim to better evaluate and improve translation

models by considering various stages and representations in the translation process. Due

to our proposed SLT transformer architecture, we use the S2T protocol instead of G2T,

S2G2T, or S2(G+T). Implementing the BERT pre-trained encoder bypasses the need for

gloss annotations by directly mapping sign language videos to spoken language text. This

means the model bypasses the sign language representation to text without intermediary

gloss representation.

4.3.4 Implementation

The main code was developed as a new adaptation of the JoeyNMT toolkit [93], combining

the pre-trained transformers by [11, 56] and the stochastic transformer by [52] for sign
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language translation. This modified version integrates the pre-trained BERT encoder with

a decoder transformer utilizing the LWTA activation function. It was implemented in the

PyTorch framework, and the results and graphical visualizations were produced using the

TensorBoard framework.

The computational resources used in this experiment included an NVIDIA RTX 3060

6GB GPU, 24GB RAM, and a Ryzen 9 6900HS processor. The programming environment

was set up using Visual Studio Code.

4.3.5 Experimental Setup

Baseline Models

To compare the performance of our model, we run and compare it with the following

baseline models:

• Stochastic Transformer Networks by Voskou et al. [52] (S. Transformer)

• Leveraging Frozen Pretrained Written Language Models by De Coster et al. [11, 56]

(FP. Transformer)

Following the S2T translation protocols, these models were executed locally using the

computational resources described above. Table 4.1 explains the configuration settings

used for the baseline models and our transformer configuration. These baseline config-

urations were taken from the best benchmark results obtained from the S2T Stochastic

and BERT2RND experiments by [52, 56]. Essential values in our architecture, such as the

LWTA units, were selected based on [52], where several experiments demonstrated that

the value 4 was the most efficient, achieving the best BLEU score reported in 2022. BERT

configuration values [11] are based on the best BLEU-4 values reported in 2021, obtained

from three experiments combining BERT and MBART models.

Information Technology Engineer 35 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

Table 4.1: Transformer configuration settings.

Settings FP. Transformer S. Transformer Our model

Data

Feature Size 1024 1024 1024
Max Sentence Length 400 400 400

Training

Eval Metric BLEU, ROUGE, CHRF BLEU BLEU
Optimizer Adam Adam AdamW
Learning Rate 0.0003 0.001 0.001
Batch Size 32 32 64
Epochs 5000000 500 80

Model

Encoder
Type BERT Transformer BERT
Pretrained Name bert-base-uncased - bert-base-uncased
Layers 2 2 1
Attention Heads 12 8 12
Embedding Size 768 512 768
Hidden Layer Size 768 512 768
Feed-Forward Size 2048 2048 3072
Dropout 0.1 0.2 0.3
Decoder
Type Transformer Transformer Transformer
Layers 3 2 2
Attention Heads 8 8 8
Activation - LWTA Dense LWTA
LWTA Competitors - 4 4
Embedding Size 768 512 768
Hidden Layer Size 768 512 768
Feed-Forward Size 2048 2048 2048
Dropout 0.1 0.2 0.3

Training and Evaluation

During the training and evaluation stages, the learning rate establishes the early stopping

of the model. The training stage stops if the model does not achieve better results. Due to

computational resource constraints, the final result underwent training with checkpoints

established at each step, following the configuration described by [93].
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Training Setup

Key configurations and parameters are outlined below.

Data Configuration: The input data feature size is set to 1024, and the maximum

sentence length is 400 tokens. Glosses input are discarded.

Training Parameters: We use BLEU as the primary evaluation metric. The AdamW

optimizer adjusts the model’s weights with a learning rate 0.001. A batch size 64 enhances

computational efficiency, and the model is trained for 80 epochs.

Encoder: Our encoder utilizes a pre-trained BERT model (bert-base-uncased) to lever-

age rich contextual representations. It consists of one layer with 12 attention heads, an

embedding size of 768, and a hidden layer of 768. The feed-forward layers are sized at

3072, with a dropout rate of 0.3 to prevent overfitting.

Decoder: The decoder is based on the Transformer architecture with two layers and

eight attention heads. It employs a dense LWTA activation function with four competitors

to promote sparsity and improve generalization. The decoder shares the same embedding

size (768), hidden layer size (768), and feed-forward size (2048) as the encoder, with a

dropout rate of 0.3.
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Chapter 5

Results and Discussion

This chapter presents the results of our model’s performance. The transformer configura-

tion values were adjusted throughout the training and evaluation stages to achieve optimal

performance. In the first section, we show the comparison results of baseline models. The

second section details the results of various experiments based on configuration changes.

In the final section, we present our model’s translation prediction results.

5.1 Baseline Models Comparison

We compared our model’s performance to two baseline models: a Frozen Pre-trained Trans-

former (FP Transformer) and a Stochastic Transformer (S Transformer). The training

process for each model took approximately 7 hours and involved 8,000 training/evaluation

steps. Notably, training for the FP Transformer stopped early (at step 4900) due to a lack

of improvement.

Table 5.1 summarizes the maximum BLEU scores (BLEU-1 to BLEU-4) achieved by all

three models. Our model consistently outperforms the baselines across all BLEU metrics,

achieving a BLEU-1 score of 51.48, surpassing the FP Transformer (46.65) and S Trans-

former (48.82). Similarly, in BLEU-2 and BLEU-3 scores, our model leads, demonstrating

its ability to capture individual word translations (unigrams) and short phrases (bigrams,

trigrams). The most significant advantage of our model is evident in the BLEU-4 score

(23.83), highlighting its effectiveness in capturing the nuances and contextual depth cru-

cial for accurate sign language translation. In contrast, the FP Transformer (20.79) and S

Transformer (22.67) fall short in this metric.
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Table 5.1: Evaluation metric results (BLEU Scores) from baselines models.

Baseline Evaluation
models BLEU-1 BLEU-2 BLEU-3 BLEU-4

FP Transfomer 46.65 33.05 25.60 20.79
S Transformer 48.82 35.68 27.89 22.67

Our model 51.48 37.38 29.12 23.83

The stochastic transformer network does not display training results when running the

main code from the official repository. This is the primary reason why Table 5.1 only shows

evaluation results.

Figures 5.1 to 5.4 visually represent the BLEU scores. While the S Transformer initially

exhibits a rapid rise in BLEU-4 (Figure 5.4), our model demonstrates a more consistent

upward trend throughout training, achieving the best performance across all BLEU met-

rics. Our model’s approach, which incorporates a dense LWTA activation function in the

decoder and a pre-trained BERT encoder, has proven to be highly effective in capturing

the complexities of sign language translation. This observation underscores the impressive

capabilities of our model.

Figure 5.1: BLEU-1 score during the evaluation stage.
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Figure 5.2: BLEU-2 score during the evaluation stage.

Figure 5.3: BLEU-3 score during the evaluation stage.
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Figure 5.4: BLEU-4 score during the evaluation stage.

Baseline studies [52, 56] using the S2T approach report BLEU-4 scores of 22.25 and

23.65 for the FP Transformer and S Transformer, respectively. However, when we im-

plemented these models with our computational resources, we obtained different results,

as shown in Table 5.1. These variations likely stem from differences in computational

resources and the specific setup environments used in our experiments compared to the

previous studies.

5.2 Train and Validation Results

Throughout our model’s training and validation process, we generated the reduced Ta-

ble 5.2 for the BLEU metric scores. Due to the extensive data, the table displays results

for every 500 steps only.

Our sign language translation model, configured as shown in Table 4.1, demonstrates

consistent improvement in both training and validation BLEU scores (BLEU-1 to BLEU-4)

throughout the training process, as evidenced by the results in Table 5.2. This indicates

effective learning from the training data and good generalization to unseen data. For

instance, at step 7200, we achieved training/validation BLEU-4 scores of 30.58/23.83,

respectively.
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Table 5.2: Reduced BLEU Scores in Training and Validation Stages.

Step BLEU-1 BLEU-2 BLEU-3 BLEU-4

Train Valid Train Valid Train Valid Train Valid

0 18.50 18.50 5.38 5.42 1.82 0.84 0.53 0.00
500 29.15 29.58 15.67 15.99 9.01 9.44 5.73 6.21
1000 36.83 36.66 22.64 22.29 14.90 14.97 10.56 10.82
1500 42.35 40.64 28.36 26.70 20.34 19.06 15.55 14.55
2000 44.90 43.09 31.25 29.36 23.17 21.59 18.17 16.84
2500 44.85 44.06 32.59 31.09 24.76 23.65 19.83 18.99
3000 48.30 45.59 34.68 31.87 26.51 24.05 21.30 19.30
3500 49.80 47.55 36.33 33.71 28.21 25.83 22.95 20.93
4000 51.98 48.19 38.56 34.61 30.42 26.84 25.11 22.06
4500 53.89 49.29 40.50 35.42 32.30 27.43 26.85 22.50
5000 54.37 49.73 41.08 35.94 34.45 28.17 27.50 23.29
5500 55.01 49.83 41.48 36.67 35.46 28.10 28.56 23.12
6000 55.14 49.45 41.97 35.84 36.14 28.13 28.23 23.25
6500 56.39 50.61 43.17 36.60 37.32 28.60 29.37 23.55
7000 55.70 50.22 42.64 36.48 34.46 27.90 28.87 22.87
7200 57.81 51.48 44.57 37.38 36.26 29.12 30.58 23.83
7500 57.67 50.75 44.71 36.81 36.51 28.68 30.89 23.54
8000 57.67 50.69 44.71 36.64 36.51 28.46 30.89 23.36

Graphically, Figures 5.5 and 5.6 display the BLEU scores on training and validation

data across 8,000 training steps. As expected, the training BLEU scores (Figure 5.5) exhibit

a steady rise across all metrics (BLEU-1 to BLEU-4), indicating successful learning from

the data. The validation BLEU scores (Figure 5.6) demonstrate a similar positive trend to

the training scores (Figure 5.5), albeit at a slightly lower rate. This difference reflects the

model’s exposure to unseen data during validation, testing its generalization capabilities.

Nevertheless, the validation scores still reach significant values (BLEU-1 ∼ 50, BLEU-4

∼ 20), highlighting our model’s robustness in translating sign language under different

conditions.
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Figure 5.5: Consolidated training BLEU scores.

Figure 5.6: Consolidated validation BLEU scores.
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5.3 Model Training Loss Analysis

Figure 5.7: Training loss graphic.

Figure 5.7 shows the training loss of our machine learning model over 8,000 steps. The

loss initially decreases rapidly and then stabilizes as the model captures data patterns

and reaches diminishing returns. Fluctuations are present due to the stochastic training

process. The loss curve suggests that the model is approaching optimal performance, but

we identified the need for techniques such as early stopping and regularization to prevent

overfitting and ensure generalization.

5.4 BLEU-4 Metric score

To achieve translation precision in longer sign sequences, the BLEU-4 metric is the primary

focus of our analysis. Figure 5.8 shows training scores (blue line) steadily increasing, indi-

cating effective learning from the data. The initial rapid rise signifies the model capturing

basic patterns, while the later slowdown suggests refinement in understanding more com-

plex patterns. Validation scores (green line) initially improve but then plateau, suggesting

potential overfitting. The widening gap between training and validation scores further

underscores this issue.
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Despite the plateau in the validation curve, the high BLEU-4 scores demonstrate good

generalization capability, highlighting the effectiveness of our proposed model approach.

Figure 5.8: Training and validation BLEU-4 scores.

5.5 Overfitting

In the initial configuration and testing of our proposed model, a concerning trend emerged

in the training and validation results.

Figures 5.9 to 5.11 display the progression of BLEU-4 scores during the training and

validation phases in the initial research stage. We observed a substantial gap between the

training and validation curves in the first testing stages (see Figures 5.9 and 5.11), which

suggested overfitting. This issue likely arose due to the scarcity of sign language data

resources, which affected the model’s ability to generalize. To mitigate this, techniques

such as frozen layers [11, 56], conditional sentence generation [94], and the implementation

of pre-trained models [72, 68] were proposed.

The overfitting issues observed in initial testing were effectively resolved by implement-

ing the optimized settings in Table 4.1. Incorporating a pre-trained BERT encoder and a

dense LWTA layer in the decoder reduced the gap between training and validation BLEU-4
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scores (see Table 5.2 and Figure 5.10), indicating improved generalization and robustness

in sign language translation.

Figure 5.9: BLEU-4 score progression - Test 1.

Figure 5.10: BLEU-4 score progression - Test 2.
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Figure 5.11: BLEU-4 score progression - Test 3.

5.6 Translation Prediction Results

Our evaluation examined the sign language translation model trained using the JOEY

NMT framework [93]. For the PHOENIX14T German dataset, the produced or predicted

sentence must be translated into English.

The model showed promise with straightforward sentences, accurately capturing the

overall meaning and translating common expressions (Tables 5.3, 5.4 and 5.10). This

demonstrates its potential for essential communication. However, there is room for im-

provement in handling complex sentences. The model struggled with specific geographic

references like place names and directional phrases (Tables 5.5, 5.6, and 5.7). Additionally,

it had trouble with nuanced weather conditions, particularly details like the sequence of

events and variations in visibility (Tables 5.8 and 5.9).

These results typically appear in models like ours. Previous works [11, 9] show the

same challenges with geographical information, specific numbers, and locations. Overall,

our model demonstrates good capabilities in translating standard phrases. We will focus

on enriching the training data with these specific aspects. This will allow the model to
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understand and translate complex sign language sentences better.

Spoken language translations

Text Reference: Von Dresden runter bis zum Alpenrand null bis minus sechs Grad im
Norden bleibt es aber frostfrei da haben wir es morgen auch wieder mild.

Translation: From Dresden down to the edge of the Alps, it’s zero to minus six degrees
in the north, but it stays frost-free so it’ll be mild again tomorrow.

Text Hypothesis: In Bayern sind nur einstellige Temperaturen an den Alpen im Norden
wird es im Norden wieder. milder

Translation: In Bavaria there are only single-digit temperatures in the Alps in the
north it will be again in the north.

Table 5.3: Generated spoken language translations by our sign model at the 7000th step.

Text Reference: Und nun die wettervorhersage für morgen donnerstag den
vierundzwanzigsten november.

Translation: And now the weather forecast for tomorrow, Thursday the twenty-fourth
of November.

Text Hypothesis: Und nun die wettervorhersage für morgen donnerstag den
vierundzwanzigsten november.

Translation: And now the weather forecast for tomorrow, Thursday the twenty-fourth
of November

Table 5.4: Generated spoken language translations by our sign model at the 7100th step.

Text Reference: Kuhle sieben grad heute nacht im allgäu bis sechzehn an der nordsee.
Translation: Cool seven degrees tonight in the Allgäu until sixteen on the North Sea.

Text Hypothesis: Kuhle sieben grad heute nacht am alpenrand sechzehn an der ostsee.
Translation: Cool seven degrees tonight on the edge of the Alps, sixteen degrees on the

Baltic Sea.

Table 5.5: Generated spoken language translations by our sign model at the 7200th step.
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Text Reference: Am tag dreizehn grad bei dauerregen und einundzwanzig grad am ober-
rhein.

Translation: On the day it was thirteen degrees with constant rain and twenty-one
degrees on the Upper Rhine.

Text Hypothesis: Am tag dreizehn grad an der ostsee und bis zu zwanzig grad an der see..
Translation: During the day thirteen degrees on the Baltic Sea and up to twenty degrees

on the sea.

Table 5.6: Generated spoken language translations by our sign model at the 7300th step.

Text Reference: Richtung osten kann sich ab und zu auch die sonne blicken lassen bevor
der regen am abend auch dort ankommt.

Translation: Towards the east you can occasionally see the sun before the rain arrives
there in the evening.

Text Hypothesis: Im osten scheint häufig die sonne später k nnen sich auch ein paar tropfen
bringen k nnen.

Translation: The sun often shines in the east, later it can also bring a few drops.

Table 5.7: Generated spoken language translations by our sign model at the 7400th step.

Text Reference: In der s dh hälfte weht der wind schwach aus unterschiedlichen richtungen
im norden m ig an den k sten frisch aus westlichen richtungen.

Translation: In the south half the wind blows weakly from different directions in the
north, moderately on the coast, fresh from westerly directions.

Text Hypothesis: Im s den schwacher bis niger wind aus s d bis s dwest an den k sten weht
er schwach bis m ig

Translation: In the south the wind is weak to moderate, from the south to the southwest
on the coast it blows light to moderate.

Table 5.8: Generated spoken language translations by our sign model at the 7500th step.
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Text Reference: Am sonntag nur noch wenig schnee im norden zeigt sich teilweise die
sonne.

Translation: On Sunday there is only a little snow left in the north and the sun is
partly visible.

Text Hypothesis: Am sonntag nur wenig schnee im norden viel sonne.
Translation: On Sunday only a little snow in the north and lots of sun

Table 5.9: Generated spoken language translations by our sign model at the 7600th step.

Text Reference: Ich wünsche einen schönen abend und machen sie es gut.
Translation: I wish you a nice evening and take care.

Text Hypothesis: Ihnen einen schönen abend und machen sie es gut.
Translation: Have a nice evening and do well.

Table 5.10: Generated spoken language translations by our sign model at the 7700th step.

5.7 Objectives and Results

Using a pre-trained BERT encoder and a decoder with dense LWTA activation functions,

we built a robust model that achieved a BLEU-4 score of 23.83. This score surpassed both

the FP Transformer (20.79) and the S Transformer (22.67), exceeding the benchmarks set in

2022. By incorporating the pre-trained BERT model, we enriched contextual embeddings,

which led to higher translation accuracy and improved BLEU scores across all metrics.

The use of dense LWTA layers enhanced the model’s ability to handle data variability,

resulting in better performance and generalization.

Table 5.11 provides a clear summary, linking each specific objective to its corresponding

result. This overview highlights the main achievements of our work and demonstrates our

contributions to the field of sign language translation.
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Table 5.11: Objectives and Corresponding Results.

Objectives Results Obtained

Implement a sign language trans-
former for better BLEU scores,
using efficient activation func-
tions and pre-trained NLP mod-
els.

Developed a robust translation model with a
BERT encoder and LWTA decoder, achiev-
ing a BLEU-4 score of 23.83, surpassing 2022
benchmarks.

Integrate pre-trained models as
encoders for enhanced sign lan-
guage processing.

Used BERT as an encoder for enriched con-
textual embeddings, leading to more accu-
rate translations.

Implement stochastic transform-
ers with LWTA for improved per-
formance.

Employed LWTA layers in the decoder, en-
hancing performance and data variability
handling.

Optimize model configurations to
find the best architecture.

Extensive testing identified optimal configu-
rations, achieving better BLEU scores.

Develop a model translating di-
rectly without intermediate gloss.

Built a model translating sign language
videos to spoken language without gloss,
matching linguistic structures.
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Chapter 6

Conclusions

In this work, we explore two main machine translation implementations: pre-trained mod-

ules fed into transformer architectures and stochastic processes, specifically stochastic

transformers. These implementations avoid using ground truth gloss sequences of sign

languages, achieving the best benchmark results in 2022. These novel implementations

help us to create and implement a sign language translation model that uses a pre-trained

model as the encoder and a decoder with dense LWTA layers.

For the spatial and word embedding process, the sign language videos are converted to

spatial vectors through CNN feature vectors, with positional encoding added in the final

process. Similarly, in the word embedding process, the target spoken language is converted

to dense vectors with positional encoding.

Leveraging the large corpus of data trained by pre-trained models, the encoder uses a

BERT pre-trained model, which creates enriched word embeddings that capture contextual

information. The decoder, enhanced with dense LWTA layers, further processes these

embeddings to generate accurate translations. This approach allows the model to benefit

from both spatial and textual contexts, improving the overall performance of sign language

translation.

Throughout the experimental stage, the optimal values were selected by finding the

most suitable parameters featured in previous works. This proposed sign language transla-

tion model was addressed using the PHOENIX14T German dataset, which is a benchmark

database in this research area. It is important to note that machine translation models

typically suffer from overfitting problems, making it a critical topic to address.
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The primary problems that arise in these models stem from the data source. Sign

language and spoken language have different grammatical and linguistic structures, making

the generation of sign language datasets a challenging and complex task. In a nutshell, the

lack of sign data is the main problem. Several alternatives, such as the implementation of

pre-trained models, new hand gesture frameworks, and new tokenization processes, have

been explored. We have adopted these alternatives to develop an optimal and improved

sign language translation model.

The results obtained from our model achieved better BLEU scores compared to the

pipeline models we evaluated. Training and evaluating our model against stochastic trans-

formers and pre-trained transformer models showed superior performance, particularly

in BLEU-4 with a result of 23.83 on step 7200. Please note that the experiments were

performed in a newly created environment using computational resources that we have

available.

Despite the good results obtained from our models, there is still room for optimization.

Freezing parameters, using transfer learning, or implementing new transformer models

focused on sign language tasks could enhance performance. The configurations set up in

our models can be modified and tested in other situations to achieve better results. Due

to the ease of implementation of transformers, changing the encoder or decoder modules

could help improve performance. Recent works propose changes in the information fed to

the encoder, such as sign videos where new hand gesture and video modeling techniques

have achieved the latest benchmark results.
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[50] S. Seljan, M. Brkić, and T. Vičić, “BLEU evaluation of machine-translated

English-Croatian legislation,” in Proceedings of the Eighth International Conference

on Language Resources and Evaluation (LREC’12), N. Calzolari, K. Choukri,
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