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Resumen

Los gráficos por computadora son una de las ramas más amplias de estudio dentro de las

ciencias computacionales. Su objetivo principal es sintetizar una imagen de un modelo

2D o 3D, cuyo proceso se conoce formalmente como renderización. Uno de los métodos

más importantes de renderización 3D es el trazado de rayos, que se distingue por su ca-

pacidad de simular el comportamiento de la luz de forma realista. Para lograrlo, se apoya

principalmente en ramas como la radiometría y la geometría óptica, con el fin de modelar

correctamente el comportamiento de la luz cuando interactúa con superficies. Asimismo,

se toma en cuenta la teoría de microfacetas, la cual modela una superficie como una colec-

ción de pequeños espejos distribuidos aleatoriamente. La incorporación de estas nociones

en los gráficos por computadora se conoce como renderización basada en la física. Al ser

combinada con la técnica de trazado de rayos, se pueden simular de forma realista los

distintos comportamientos y efectos de la luz, tales como la reflexión, refracción, sombras,

sangrado de color, entre otros. Otro aspecto fundamental de los gráficos por computadora

es su interactividad, lo cual se logra mediante una cámara capaz de moverse dentro de la

escena, pudiendo observar distintas perspectivas mientras todo se renderiza en tiempo real.

La renderización en tiempo real es posible gracias al uso de la unidad de procesamiento

gráfico (GPU), la cual nos permite paralelizar la tarea de renderizado, generando varias

imágenes por segundo. Este trabajo incorpora los conceptos mencionados para implemen-

tar un renderizador de trazado de rayos en tiempo real, haciendo uso de OpenGL, una API

para el manejo de la GPU.

Keywords: Tiempo Real, Trazado de Rayos, Renderización Basada en la Física, Ilumi-

nación Global.
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Abstract

Computer graphics are one of the broadest fields of study within computer science. Its

main objective is to synthesize an image from a 2D or 3D model, a process formally known

as rendering. One of the most important 3D rendering methods is ray tracing, which is

distinguished by its ability to simulate the behavior of light realistically. To achieve this,

it primarily relies on fields such as radiometry and optical geometry, in order to accurately

model the behavior of light when it interacts with surfaces. Additionally, the microfacet

theory is taken into account, which models a surface as a collection of small mirrors ran-

domly distributed. The incorporation of these concepts into computer graphics is known

as physically-based rendering. When combined with ray tracing, various light behaviors

and effects, such as reflection, refraction, shadows, color bleeding, among others, can be re-

alistically simulated. Another fundamental aspect of computer graphics is its interactivity,

which is achieved through a camera capable of moving within the scene, allowing different

perspectives to be observed while everything is rendered in real time. Real-time rendering

is made possible by using the graphics processing unit (GPU), which allows us to paral-

lelize the rendering task, generating several images per second. In conclusion, this work

incorporates the aforementioned concepts to implement a real-time ray tracing rasterizer

using OpenGL, an API for managing the GPU.

Keywords: Real-Time, Ray Tracing, Physically Based Rendering, Global Illumination.
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Chapter 1

Introduction

1.1 Background

Computer graphics comprise an extensive branch of study focused on developing algo-

rithms, methods, and techniques for computer-based image synthesis. One of the major

research areas is rendering, which describes the process of generating an image from a set

of data. This data could represent anything from a time series of air pollution levels to a

single frame in a 3D animated movie, or the layout of a user interface for a web browser.

As such, graphics can be categorized into 2D and 3D according to the data they depict.

In the realm of 3D graphics, rendering is further divided into two main approaches: pho-

torealistic and non-photorealistic [3, 13]. Photorealistic rendering aims to recreate reality

as closely as possible by considering all visual aspects of light and the objects in the scene

imitating the photography process. In turn, non-photorealistic rendering takes a more cre-

ative approach, using multiple artistic styles to produce simplified, stylized, or illustrative

representations of 3D models.

Although non-photorealistic rendering presents vast opportunities for exploration, pho-

torealism is widely valued across numerous industries [3, 13]. In film, animation, and visual

effects, photorealistic rendering enables balancing the lighting of virtual elements added

during production [14]. Architectural visualization also leverages photorealism to recreate

realistic indoor and outdoor lighting, enhancing the visual aspect of architectural designs

[13]. Product advertising benefits significantly as well, allowing for lifelike renderings of

1



future products, while reducing costs by providing a controlled environment where mate-

rials, lighting, and setups can be easily adjusted [13]. Photorealism in flight and driving

simulations is essential to ensure proper atmospheric conditions or accurate street lighting

[14]. The video game industry has also evolved largely, where photorealistic rendering has

become crucial to create increasingly immersive 3D worlds [3, 13, 14].

Accurately simulating light and its different phenomena is central to photorealistic ren-

dering, as it is essential for achieving a convincing level of realism. Light itself is particularly

intriguing due to its wave-particle duality, meaning it can behave both as waves and as par-

ticles [15]. This complexity becomes even more evident when considering light interactions

(absorption, reflection, or transmission) with objects in an environment. Such interactions

determine how we can distinguish objects by their colors and the characteristics of their

constituent materials. Additionally, these interactions give rise to shadows, reflections, and

refractions, which produce various effects on surfaces as light bounces or bends. With this

in mind, the question arises: How can light and its interactions be simulated?

A widely discussed concept in modern computer graphics and photorealistic rendering is

ray tracing. This technique, which has been studied for several decades, offers an alternative

solution to the rendering problem. Its origins can be traced back to 1967 when Appel [16]

introduced a method to determine the visibility of the contour lines that define a surface.

Appel’s approach involved shooting rays through the facets of a 3D object to identify which

ones were visible from a given viewpoint. This foundational idea paved the way for more

advanced rendering techniques, enabling the accurate depiction of 3D objects from different

perspectives.

In 1971, Goldstein and Nagel [17] proposed a ray tracing method that introduced a

new way to render 2D images of 3D scenes using three essential components: a camera,

a light source, and the objects in the scene. This approach mirrors how real cameras

operate, where light rays bouncing off of objects pass through the lens and are captured

on photographic film forming the image. The primary difference lies in the direction of

the rays: in ray tracing, rays are cast from the camera’s viewpoint into the 3D scene

to identify objects within the line of sight. The resulting images displayed the facets of

the three-dimensional objects shaded according to the camera’s perspective and the light

source’s position. This advancement laid the groundwork for further research in ray tracing
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and photorealistic rendering, where the light physical principles became crucial in achieving

realistic results.

Today, ray tracing is known as a solution for photorealistic rendering that generates

realistic representations of shadows, reflections, refractions, and direct/indirect lighting,

among other phenomena [18, 19]. These effects collectively create captivating photorealis-

tic visuals, where its high level of detail enhances the meaning and realism in simulations,

animation frames, advertisements, product designs, and architectural models, to name a

few use cases. Recently, ray tracing has also become integral to augmented and virtual

reality [20, 21]. The inclusion of photorealism in augmented and virtual devices ensures

realistic visuals of the 3D environments that are created with these technologies. Photore-

alism in these technologies allows for realistic visualizations of 3D environments, benefiting

various fields, such as healthcare, where VR simulations of surgeries can support training

and assist during procedures [22, 23].

Other sectors leveraging photorealism with augmented and virtual reality include auto-

motive [24], architecture and construction [25, 26], and industrial design [27]. Ray tracing’s

impact across various applications, technologies, and industries is critical, adding depth

and realism to visual representations, which enhances the clarity and meaning of the visu-

als. An additional key to achieving photorealism is physically based rendering (PBR), a

field in computer graphics dedicated to simulating the interaction of light with materials

in accordance with physical laws [3, 11]. Combined with ray tracing, PBR more accu-

rately models how light reflects off surfaces, capturing details like reflections, refractions,

roughness, and color in a realistic way [11]. Consequently, advancements in photorealistic

rendering through PBR and ray tracing are driving forward innovations in multiple fields,

setting new standards for any visual application where photorealism is essential.

1.2 Problem Statement

Interactive computer graphics are an essential part of any visual application or system,

enabling users to interact in real-time with graphical elements and observe responses to

their inputs. Rendering is closely linked to interactivity, as any adjustments in the 3D scene

require re-rendering to display the changes. These changes might include adjusting light
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conditions, shifting the camera, repositioning 3D models, or replacing the object colors

and materials. Consequently, the generation time of the newer image depends largely on

the rendering algorithm, scene complexity, and hardware specifications. Longer rendering

times directly impact system interactivity, reducing responsiveness.

Real-time rendering aims to generate highly interactive graphics by rapidly synthesizing

images of a 3D scene [3, 12]. During interaction, viewers respond to the current image,

and their input influences the next generated image. This rapid rendering-interaction cycle

creates a dynamic experience, enhancing viewer immersion. The rate at which images

are generated is measured in frames per second (FPS), with 1 FPS indicating minimal

interaction. From 6 FPS onwards, the viewer’s sense of interactivity becomes noticeable

[3]. Movies, for example, are shot at 24 FPS but use a shutter system to display each frame

multiple times, reducing flickering [3, 13]. Video games generally target a frame rate of 30

FPS, but as response latency becomes critical, frame rates may exceed 60 FPS [28]. In

virtual reality, the IEEE 3079 standard recommends at least 90 FPS for interactive content

in head-mounted displays [29].

The benefits of real-time rendering are extensive: it enables immediate layout and

lighting adjustments, rapid prototyping, adaptable pre-visualization for film and television,

and virtual environment creation [13]. Additionally, it reduces lengthy rendering times

and enhances the realism of interactive architectural visualizations, immersive gaming,

and virtual reality experiences. As such, the combination of real-time and photorealistic

rendering allows for highly interactive and realistic graphics across diverse applications.

This level of performance is made possible through graphics acceleration hardware. To

illustrate, a common introductory resource for ray tracing is "Ray Tracing in One Weekend"

by Peter Shirley [30], where a CPU-based ray-tracing renderer is built from scratch. Upon

completion of the rendering process, a single frame or image of the 3D scene is generated.

However, as the scene complexity increases, rendering a single frame can take seconds,

minutes or hours to complete.

One approach to reducing rendering times is to parallelize the ray-tracing code to lever-

age the multiple cores of modern CPUs. While this can lower rendering times, it remains

insufficient for achieving interactive, real-time graphics. Early solutions attempted to dis-

tribute the ray-tracing workload across multiple processors or computer clusters, using
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specialized communication protocols to ensure efficient data distribution and task paral-

lelization [31–33]. However, these solutions had limitations due to high implementation

costs and limited consumer accessibility, making them less feasible for widespread use.

The paradigm shifted significantly with the introduction of graphics processing units

(GPUs). Research in computer graphics advanced rapidly, with real-time and photoreal-

istic rendering seeing substantial progress. The thousands of cores in a GPU, along its

SIMD (Single Instruction, Multiple Data) architecture, can handle the massive number of

computations required by ray tracing algorithms, drastically reducing rendering times [34–

36]. With advancements in GPU architectures and technologies, such as NVIDIA’s RTX

series, real-time ray tracing has become possible even in complex applications like video

games, virtual reality, high-fidelity simulations, film and television, design, among others

[36, 37]. In this sense, GPUs have driven a complete revolution in computer generated

graphics, improving photorealism and real-time rendering techniques.

The primary APIs for interacting with GPUs include OpenGL [38], DirectX [39], Vulkan

[40], Metal [41], and CUDA [42]. Among these, OpenGL and DirectX are the most widely

recognized due to their long-standing presence in the computer graphics industry. How-

ever, DirectX is a proprietary Microsoft API, restricting its use to Microsoft platforms

only. Similarly, Metal and CUDA are proprietary APIs developed by Apple and Nvidia,

respectively. This leaves OpenGL and Vulkan as the main cross-platform, open-source

solutions. Vulkan, developed by the Khronos Group, is the successor to OpenGL and was

designed to address the limitations of OpenGL. As a lower-level API, Vulkan offers greater

control over GPU processes, leading to improved performance [43].

In summary, key aspects necessary for understanding interactive computer graphics

have been covered. But what is their relevance in the context of ray tracing? One key

objective in ray tracing is to generate a large number of frames that accurately simulate

realistic lighting effects in a 3D environment, ensuring smooth interactions despite camera

movement. In the current context, one can assume that rendering frames from a ray tracing

renderer using the GPU will suffice, but this is not entirely optimal. Moreover, mastering

and implementing all the state-of-the-art techniques for ray tracing requires significant

time and effort. Therefore, this work focuses on the core principles necessary to develop a

real-time ray-tracing renderer.
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1.3 Objectives

1.3.1 General Objective

The main objective of this work is to implement a real-time ray-tracing renderer that

handles realistic lighting in a scene. In doing so, it is expected to provide an interac-

tive system that allows the visualization of different lighting effects independently of the

camera’s position and perspective of the 3D world.

1.3.2 Specific Objectives

• Handle common ray-tracing primitives such as spheres and triangles. Provide support

for loading triangular meshes of 3D models in the wavefront.obj format.

• Optimize ray-primitive intersection operations using an acceleration structure.

• Incorporate physically based rendering (PBR) techniques to approximate the phys-

ical appearance of object materials under the incidence of light to their real-world

counterparts.

• Provide a solution to the global illumination problem to render the scene with realistic

lighting by means of path tracing.
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Chapter 2

Theoretical Framework

2.1 The Pinhole Camera Model

To understand the ray tracing components, we should take a step back into what is known

as the pinhole camera model. Angel and Shreiner [1] describe this type of camera model,

illustrated in Figure 2.1, as an enclosed box with a photographic film at one side of the

box and a small pinhole at the center of the opposite side. The incoming light rays that

pass through the pinhole and hit the film will generate the image that captures the scene

but rotated by 180°. As such, it is observed that point f is the projection of point p onto

the photographic film.

Figure 2.1: Pinhole camera model illustrating how incoming light rays produce the final
inverted image.
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Figure 2.2: Vertical field of view representation.

Considering that the angles are congruent, the coordinates of the projected point f are

calculated as follows. Let f = (fx, fy,−d) and p = (px,py,pz), then:

fx

−d
= px

pz

→ fx = −px · d
pz

fy

−d
= py

pz

→ fy = −py · d
pz

The pinhole camera model also introduces the concept of the field of view, which is

the largest possible angle the camera can observe from the world. Although it can be

measured horizontally or diagonally, it is often calculated vertically. The vertical field of

view (FOVy) is illustrated in Figure 2.2, and is given by:

FOVy: θ = 2 · tan−1
(
h/2
d

)

2.2 Modification of the Pinhole Camera

Despite the pinhole camera model being an interesting model, it requires some adjustments

to become a suitable model for ray-traced rendering. Glassner [7] explains these modifica-

tions in detail, the new model is illustrated in Figure 2.3. First, the film plane is moved

in front of the pinhole and receives the name of the viewport. The second distinction is

that the pinhole will now be renamed to the eye. The eye represents the camera in the 3D

scene with its coordinate system depending on its position and viewing direction.

Another concept introduced is that of a pixel. An excellent article to get more insight

into this concept is the one by Smith [44]. Simply put, a pixel could be depicted as a small
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Figure 2.3: Modification of the pinhole camera model for computer graphics that exhibits
the eye of the viewport as a grid of pixels.

rectangular window in the viewport. In turn, the viewport represents a discretization of

the continuous space of photographic film as a grid of pixels. Therefore, if the pixel acts

like a small window into the scene, what would be the best color to represent the objects

visible through it?

A suitable solution is associating a small region of photographic film with a pixel. Once

all the light rays have covered the pinhole and struck the small area of the film, the film

will have accumulated enough rays to display a portion of the visible image. Consequently,

an acceptable approximation for representing with a single color a pixel in the viewport

will be to average the different colors of the light rays that hit it. Nonetheless, what are

light rays and how can their colors be combined?

2.3 The Behavior of Light

Previously, it was mentioned that light could behave as both a wave and a particle. Young

et al. [45] presented an overview of this topic. Energy transmitted by light waves is con-

densed into packets denominated photons. As such, although a wave model adequately

describes the propagation of light, a particle behavior correctly explains the emission and

absorption of light, and bodies whose particles are in thermal motion generate electromag-

netic radiation, specifically thermal radiation. When particles have reached high enough
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temperatures, a body becomes luminescent and emits light.

Visible light can be explained by considering the wave model once again. Electromag-

netic waves are propagated at a given frequency related directly to their wavelength. The

visible light wavelengths range from about 380 to 750nm. During light propagation, a

wavefront represents the instant when all wave points are at the same phase (position of

the wave cycle relative to the origin). Rather than specifying the direction of light propa-

gation with wavefronts, a ray is used. A ray represents no other than the path followed by

photons, or a line perpendicular to the wavefronts of a wave.

2.4 Perception of Color

From the above, the following statements are drawn. Light sources and their interactions

with an environment cause objects to be visible. The energy emitted by light sources

travels in the form of photons. However, the frequency at which light waves propagate

determines the emitted color. This brings us to the question of how we can perceive color.

Kalloniatis and Luu [46] along with Land [47] provide a good explanation of the subject,

an overview is given below.

When light rays reach the eye’s retina as photons, these are processed by two photore-

ceptor cells known as rods and cones. Rods are sensitive to dim light allowing visibility

under low light conditions. In contrast, cones are specialized for color discrimination in

bright light conditions. Cones are divided into three categories based on their wavelength

sensitivity to cover all the visible color spectrum of light. S-cones are sensitive to blue

light and have a sensitivity peak at 440nm. M-cones are sensible to green colors peaking

at a frequency of 535nm. Finally, L-cones are sensitive to the higher frequencies of light

radiation (red colors) with their sensitivity peak at 565nm.

The capacity of cones to perceive different light wavelengths enables the so-called

trichromatic human color vision [46]. The response of cones to light wavelengths together

with the visible light spectrum is illustrated in Figure 2.4. Therefore, the combination

of several wavelengths allows us to perceive different colors such as yellow, which is the

response of M-cones and L-cones to wavelengths around 570nm and 585nm, or cyan which

triggers the response of S-cones and M-cones to wavelengths between 580 and 590nm.
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Figure 2.4: Visible Light Spectrum and Cone Response to Light Wavelengths. The visible
light spectrum was adapted from [4]. The cone response was adapted from [5], the real
cone curves are presented in the original paper.

However, the physical theory of color representation and reproduction is complex [48]. In

consequence, many models have been created to give a proper representation of a color.

Within computer graphics applications, the model used is known as the RGB color

model [49]. This model defines a color using a triple whose components are the three

additive colors red, green, and blue, thus its name. In doing so, the RGB color model

reproduces humans’ trichromatic color vision [50]. The model is formally represented as

a cube in 3D space (see Figure 2.5) with normalized red (1, 0, 0), green (0, 1, 0), and blue

(0, 1, 0) colors in the corners next to the origin corner. The origin corner represents the lack

of color or black (0, 0, 0), whereas white (1, 1, 1) in contrast, is the complete contribution

of the three. Other colors are obtained by combining red, green, and blue in different

quantities. As an example, this shade of orange is given by (1.0, 0.8, 0.0) or this purple

variant is represented as (0.66, 0.5, 1.0).
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Figure 2.5: The RGB color model representation.

2.5 Tracing Rays

The concepts reviewed until now allow us to understand the physical behavior of light.

Its purpose is fundamental in ray tracing to implement or approximate light concepts or

their interactions. For instance, a proper mathematical definition could now be given to

describe a light ray. Based on the particle model of light, Shirley et al. [51] define a ray as

a line interval in 3D space. The parametric form of a three-dimensional line is given by

p(t) = (1− t)a + tb, ∀t ∈ R

and represents a weighted average of points a = (ax, ay, ab) and b = (bx,by,bz). In

programming terms, it represents a function that receives as a parameter t and returns

a point p along the line formed by the points a and b as illustrated in Figure 2.6. An

alternative representation is to use a point and a vector. Such variation, allows us to

define the origin of a ray as a point o = (ox,oy,oz), where o = a, and a normalized vector

d = b− a
||b− a||

as the direction of our ray. Therefore, a ray could be expressed as:

p(t) = o + td, ∀t ∈ R
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Finally, for ray tracing a ray is also constrained by an interval t ∈ [tmin, tmax] that defines a

range for the intersections that are valuable during the rendering process. In other words,

if a ray intersects an object at a point p(t) with t /∈ [tmin, tmax] then such object will not

be rendered or its interaction will not be accounted for.

Figure 2.6: Parametric line form by the points a = (0, 2, 3) and b = (3, 2, 0).

Earlier it was discussed that the ray-tracing rendering process involves averaging all the

light rays’ colors intersecting a pixel. This poses a new problem in the rendering process

which requires discovering the rays that intersect the viewport pixels. The solutions that

were initially proposed are known as Forward and Backward Ray Tracing [7].

The forward variant follows the path of photons originating from the light source.

Consider the example in Figure 2.7, where three photons are emitted. The first photon

hits the red wall and bounces toward the metal sphere, but on its last bounce, it is lost in

the scene. The second photon hits the gray back wall but unexpectedly bounces off and

is also lost. The third photon is emitted, reaching the gray back wall first, bouncing into

the gray floor, and when reflected off gets to intersect a pixel at the viewport. The photon

paths presented raise a question: what will happen if none of them reach a pixel?

The previous example demonstrates the main drawback of forward ray tracing. Because

photons can take infinite paths, and many will never reach the viewport. In consequence,

the rendered image may present multiple missing pixels. One solution would be to increase

the number of photon samples (at the cost of rendering time) until the user considers it
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Figure 2.7: Forward ray tracing variant that shows some photons will never reach the
viewport. The Cornell box render belongs to [6].

an acceptable image. These issues are addressed by approaching the rendering process

from an inverse perspective. Instead of following the photons since they originated from

the light source, a better solution is to backtrack them as if they had already reached the

viewport. The previous concept gives place to what is known as backward ray tracing.

Backward ray tracing involves sending rays from the camera’s eye into each pixel. The

first object a ray hits after intersecting a pixel is interpreted as one stop in the photon’s path

as if it came from a light source. This guarantees that each pixel will contain information

about the scene based on the camera’s perspective. Furthermore, the backward variant

makes four distinctions of light rays to render a scene. Glassner [7] presents them as eye

rays, illumination rays, reflection rays, and transparency rays. Eye rays carry the light

directly from the light’s source to the camera’s eye whereas illumination rays transport

light to an object’s surface. In contrast, reflection rays transport the light bouncing off a

surface. Lastly, transparency rays transmit the light of those rays that have refracted from

a surface.
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Figure 2.8: Backward ray tracing variant that illustrates the different types of rays based
on Glassner’s [7] description. The Cornell box render belongs to [6].

Figure 2.8 presents each type of ray described. The first ray corresponds to an eye

ray since it is incident directly on the ceiling light. After hitting the wall, the second ray

bounces directly off the light source, thus becoming an illuminating ray. The third ray

hits the metal sphere and is reflected by the red wall. In turn, the red wall receives the

light from an illuminating ray. Once refracted, the fourth ray enters the glass sphere and

is refracted again after hitting another point inside it, to reach the blue wall. In turn, the

hit point on the blue wall receives its light from an illumination ray.

It must be emphasized that the mathematical definition of any ray described is the

same, however, their direction is modified depending on the surface they interact with. In

other words, an object’s material determines the propagation of incident light rays.
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2.6 Matrix Transformations

So far, aspects of the functionality of a ray-tracing camera model have been reviewed.

However, some mathematical tools are required to implement this camera model. Such

tools are known as matrix transformations which alter the geometry and perspective of

objects. The transformations required for our renderer are presented below:

• Scaling allows changing an object’s size in each dimension. For example, to scale a

vector it is multiplied by a scaling matrix as follows:

Scaling Matrix

Sx 0 0 0

0 Sy 0 0

0 0 Sz 0

0 0 0 1


·

v

x

y

z

1


=

Scaled v

Sx · x

Sy · y

Sz · z

1



• Translation involves changing an object’s position on any axis. For instance, to

translate a vector it is multiplied by a translation matrix, as shown below:

Translation Matrix

1 0 0 Tx

0 1 0 Ty

0 0 1 Tz

0 0 0 1


·

v

x

y

z

1


=

Translated v

x+ Tx

y + Ty

z + Tz

1



• Rotation alters the current perspective of an object by rotating it against a specific

axis. There are three basic rotation matrices to rotate a vector by an angle θ around

a specific axis often abbreviated as Rx(θ), Ry(θ), and Rz(θ). These however are

defined based on the orientation of the axes in three-dimensional space. Therefore,

following a right-hand orientation, the rotation of a vector by any of these matrices
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is defined as follows:

Rx(θ)

1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1


·

v

x

y

z

1


=

v rotated around X axis

x

cos θ · y − sin θ · z

sin θ · y + cos θ · z

1


Ry(θ)

cos θ 0 sin θ 0

0 1 0 0

− sin θ 0 cos θ 0

0 0 0 1


·

v

x

y

z

1


=

v rotated around Y axis

cos θ · x+ sin θ · z

y

−sin θ · x+ cos θ · z

1


Rz(θ)

cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1


·

v

x

y

z

1


=

v rotated around Z axis

cos θ · x− sin θ · y

sin θ · x+ cos θ · y

z

1


All of these transformation matrices could be chained together by matrix multiplica-

tion. Careful though, as matrix multiplication is not commutative which changes the final

transformation of our object depending on the order taken. A common rule of thumb is

to first scale (S), then rotate (R), and finally translate (T) an object, where the order of

transformations is applied from right to left (T ×R× S × object).

Translation Matrix

1 0 0 2

0 1 0 1

0 0 1 3

0 0 0 1


·

Rx(π/2)

1 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 1


·

Scale z-axis

1 0 0 0

0 1 0 0

0 0 2 0

0 0 0 1


·

v

2

3

−1

1


=
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Translation Matrix

1 0 0 2

0 1 0 1

0 0 1 3

0 0 0 1


·

Rx(π/2)

1 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 1


·

v1

2

3

−2

1


=

Translation Matrix

1 0 0 2

0 1 0 1

0 0 1 3

0 0 0 1


·

v2

2

2

3

1


=

v3

4

3

6

1



2.7 Homogeneous Coordinates and Projective Space

It follows from the above that all transformation matrices have different functions, but

they all share something in common, a fourth row and a fourth column whose purpose

has not been discussed. It may initially seem unnecessary when working only with scaling

and rotation transformations. However, the reason relies on translations. An object can

be translated by adding a translation vector to each of its vertices, as shown in Figure 2.9.

Yet, a translation could no longer be chained as a matrix multiplication. For this reason,

homogeneous coordinates appear in the scene to unify translation, rotation, and scaling as

matrices [52].

As mentioned in [52], homogeneous coordinates were introduced by Mobius allowing

calculations of graphics and geometry only possible in projective space. From [53], a point

p is defined in the Euclidean space E2 as a point with coordinates (x′, y′) or as a point

Figure 2.9: Result of applying a translation vector v = (4, 1,−5) to a cube.
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in homogeneous coordinates given by (x : y : w)T with w ̸= 0 such that x′ = x/w and

y′ = y/w. At this point, one question is presented, why are these coordinates called

homogeneous? Such an explanation can be inferred from the following examples:

Homogeneous E2

(1 : 2 : 3) →
(

1
3 ,

2
3

)

(2 : 4 : 6) →
(

2
6 ,

4
6

)
=
(

1
3 ,

2
3

)

(4 : 8 : 12) →
(

4
12 ,

8
12

)
=
(

1
3 ,

2
3

)
... ...

(1a : 2a : 3a) →
(

1a
3a,

2a
3a

)
=
(

1
3 ,

2
3

)

From the above, it is clear that all the homogenous points (1 : 2 : 3), (2 : 4 : 6), (4 : 8 :

12), . . . represent the same point (1/3, 2/3) in E2. The same concept can be extended to E3,

where a point or vector will be denoted by four components in homogeneous coordinates,

(x : y : z : w). Redirecting our attention to matrix transformations T , it is observed that

the selection of T4j = [0, 0, 0, 1] and Ti4 = [0, 0, 0, 1]T is not random. Neither is to set w = 1

in the homogeneous coordinate representation of a point or vector. Such configuration

allows the resultant point or vector in homogeneous coordinates of our transformation to

be the same in E3 as w = 1.

Shafarevitch [54] gives the formal definition of a projective space as follows: Let V be

a vector space of dimension n+ 1 over the field k. The set of lines (that is, 1-dimensional

vector subspaces) of V is called the n−dimensional projective space, and denoted by P(V )

or Pn. If we introduce coordinates ξ0, · · · , ξn in V , then a point ξ ∈ Pn is given by n + 1

elements (ξ0 : · · · : ξn) of the field k, not all equal to 0; and two points (ξ0 : · · · : ξn) and

(η0 : · · · : ηn) are considered to be equal in Pn if, and only if, there exists λ ̸= 0 such that

ηi = λξi for i = 0, · · · , n. Any set (ξ0 : · · · : ξn) defining the point ξ is called a set of

homogeneous coordinates for ξ.

A common association of projective space is the problem of lines at infinity. Coxeter [55]
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mentions that two parallel lines in Euclidean space will never intersect even if they extend

to infinity, however, when considering projective space they can intersect. For example,

when observing a straight railroad line it appears that the two parallel rails converge at

a point on the horizon. On the other hand, Hartley and Zisserman [56] comment that in

computer graphics, the projective space P3 is used to represent a 3D scene of the real world.

As a result, the rendered frames/images represent nothing more than the projection of the

3D objects in the scene onto a 2D plane that lies within the two-dimensional projective

space.

2.8 The View Frustum

Recalling the modification of the pinhole camera reviewed in Section 2.2, it is time to

introduce the view frustum. The view frustum represents the region of space containing all

objects visible from the camera’s perspective [1, 8]. This region is represented by a six-face

volume as illustrated in Figure 2.10. The volume comprises a near plane and a far plane

located at z = −n and z = −f respectively from the camera’s position based on its local

coordinate system. A third plane, the projection plane, is positioned at z = −h from the

camera’s location between the near and far planes. Notice that the viewport resides at the

projection plane. The rectangular shape of the view frustum is given by the aspect ratio s

computed from the viewport’s dimensions as s = width/height = (r − l)/(t− b).

The distance h separating the viewport from the camera’s eye is called the focal length

[8, 30]. As the focal length increments, the field of view gets narrower while lowering allows

for a larger view of the scene. Therefore, by varying the value of h a zoom-in/zoom-out

effect is obtained. In addition, the angle formed by the left and right faces corresponds to

the horizontal field of view FOVx. Meanwhile, the bottom and top faces form the angle

for the vertical field of view FOVy. Following the parameters presented in Figure 2.10 the

vertical and horizontal fields of view are calculated as follows:

FOVx = 2 tan−1 s

h
and FOVy = 2 tan−1 1

h
.
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Figure 2.10: View frustum volume comprised of a near plane (green) and a far plane (gray),
with the projection plane (blue) in between. Each plane is perpendicular to the viewing
direction of the camera. Adapted from [8].

2.9 Coordinate Systems

The concept of coordinate systems is essential to properly render a scene from the camera’s

perspective in a 3D world. De Vries [2] does a good job explaining this concept. In

summary, the coordinates of the objects, world, and view position should be transformed

to determine the pixel coordinates in the final frame. The coordinate spaces of a rendering

engine are presented in Table 2.1. Matrix transformations are employed to transition from

one space to another, a detailed description of these matrix transformations is presented

below.

The Model Matrix

The objects in world space are positioned by applying a model matrix to the local coordi-

nates of objects. The model matrix consists of chaining rotations, scaling, or translation

transformations to set the elements within the scene as desired. As observed in Figure 2.11

for instance, a model matrix can scale down an object, rotate it, and finally translate it

21



Table 2.1: Coordinate Spaces used in 3D Rendering [1, 2]
.

Coordinate
Space Description

Local Space Coordinate space relative to the object. Often the origin coordinate of
an object’s 3D model is (0, 0, 0).

World Space Refers to the coordinates where the objects are positioned to comprise
the scene world.

View Space Also referred to as the camera or eye space, it corresponds to the view
of the world and its objects from the camera’s perspective.

Clip Space Defines the range of all visible coordinates, coordinates outside this
range are clipped, hence the name.

Screen Space This space corresponds to the final mapping of pixels that represent
the clip space of our scene from the camera’s position and perspective.

Figure 2.11: Model matrix transformation of a cube into world space comprised by: (1)
scale down transformation, (2) rotation, and (3) translation.

into world space.

The View Matrix

The view matrix corresponds to the transformation applied to transition from world space

to view space, providing the desired perspective from the camera’s position and target

direction [8]. The view matrix is computed from the camera’s local coordinate axes: for-

ward γ, right α, and up β [2]. The forward axis is the normalized vector from the target

to the camera’s position, γ = ||cpos − tpos||. The right vector α is computed from the

cross product between the forward vector γ and the canonical basis vector j = (0, 1, 0),

α = j × γ. Lastly, the up vector β, local to the camera’s coordinate system, is obtained
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from the forward and right vectors cross product as β = γ×α. Consider that these vectors

are computed following the right-hand rule convention for orienting the three-dimensional

axes. Figure 2.12 presents the local coordinate axes of the camera.

Figure 2.12: Camera’s coordinate axes formed by the right, up, and forward vectors ac-
cording to its angle of view.

The view space defines the world coordinates based on its coordinate system [1]. To do

so, the view matrix comprises a translation matrix and a rotation matrix. Gambetta [57]

provides an interesting analysis of the view matrix transform when the camera’s coordinate

system is not considered. Gambetta shows that keeping the camera fixed while translating

and rotating the world in the opposite direction has the same effect as moving and rotating

the camera in the world. If the camera’s coordinate axes and world coordinate axes have

the same orientation and scale but differ in their origin, then there is a translation vector

that defines the transformation from one coordinate system to the other. Therefore, a

point in world space can be expressed in view space coordinates by adding the opposite

translation vector. Figure 2.13 illustrates the representation of the same point in the world

coordinate system (red) and the view coordinate system (green).

The same intuition could be derived for the rotation of a coordinate system. Figure 2.14

shows two coordinate systems, the RGB coordinate axes belong to the world space whereas

the black coordinate axes belong to the view space. Both coordinate systems share the

same origin and scale and because the camera’s target is the point p = (0, 0,−1) in world

space the orientation of both coordinate axes is equal. Therefore, the point p = (0,−1,−1)

has the same coordinates in the world and camera space.
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Figure 2.13: Transformation of one coordinate system to another given by the translation
vector t = (3, 1, 0). The point p = (0, 0,−1) in the world coordinate system has the
representation p = (0, 0,−1)− (3, 1, 0) = (−3.− 1,−1) in the view coordinate system.

Figure 2.14: Rotation of the camera coordinate system by an angle of 45◦ respect to the y
world space axis, followed by a rotation around the x-axis of 35.26◦.

If the camera’s target becomes the point a = (1, 0,−1) as shown in Figure 2.14, then

the camera’s vectors change: γ = norm((0, 0, 0) − (1, 0,−1)) = (−1/
√

2, 0, 1/
√

2), α =

norm(j× γ) = (1/
√

2, 0, 1,
√

2), and β = norm(γ×α) = (0, 1, 0). As noticed, the camera’s

β vector remains the same, but γ and α have changed. The angle between the canonical

vector i = (0, 0, 1) and the forward vector γ = (−1/
√

2, 0, 1/
√

2), is of 45◦ clockwise. In

other words, the camera’s coordinate axes have rotated 45◦ clockwise around the y-world

space axis. The camera vectors themselves comprise the rotation matrix for rotating the

camera coordinate system, without considering homogeneous coordinates it is defined as

follows:
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Ry =


cos 45 0 sin 45

0 1 0

− sin 45 0 cos 45

 =


1/
√

2 0 1/
√

2

0 1 0

−1/
√

2 0 1/
√

2


To determine the view space coordinates of point p = (0,−1,−1) lying in world

space, it is multiplied by the rotation matrix Ry, such that pV = Ry · (0,−1,−1)T =

(−1/
√

2,−1,−1/
√

2). The same analysis can be done if our target direction changes

again as shown in the last part of Figure 2.14, where the camera’s target direction is

point (1,−1,−1). The new camera vectors are: γ = norm((0, 0, 0) − (1,−1,−1)) =

(−1/
√

3, 1/
√

3, 1/
√

3), α = norm(j × γ) = (1/
√

2, 0, 1/
√

2), and β = norm(γ × α) =

(1/
√

6,
√

2/3,−1/
√

6). The angle between the previous and current forward vector is

θ = cos−1((−1/
√

2, 0, 1/
√

2) · (−1/
√

3, 1/
√

3, 1/
√

3)) ≈ 35.26◦. These vectors form a new

rotation matrix that rotates the camera regarding world space 45◦ around the y-axis and

then ≈ 35.26◦ or ≈ 0.62 radians around the x-axis.

R =


1 0 0

0 cos 35.26 − sin 35.26

0 cos 35.26 cos 35.26

 ·


cos 45 0 sin 45

0 1 0

− sin 45 0 cos 45



=


1 0 0

0
√

2/3 −1/
√

3

0 1/
√

3
√

2/3

 ·


1/
√

2 0 1/
√

2

0 1 0

−1/
√

2 0 1/
√

2



=


1/
√

2 0 1/
√

2

1/
√

6
√

2/3 −1/
√

6

−1/
√

3 1/
√

3 1/
√

3


From the previous examples, it is noticed that to change the camera position around

world space we applied a translation transformation. The motion column in the translation

matrix is formed by the negative vector t = (tx, ty, tz) to transition from the world space

origin to the camera’s position. In turn, a rotation transformation is applied to change the

target direction of the camera. This rotation matrix is formed by the vectors forming the

camera’s coordinate axes Therefore, the view matrix transformation comprises a translation

and a rotation matrix as presented below.
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Figure 2.15: Top and side views of the frustum according to the view space coordinates of
the camera. Adapted from [9].

V =



αx αy αz 0

βx βy βz 0

γx γy γz 0

0 0 0 1


·



1 0 0 −tx
0 1 0 −ty
0 0 1 −tz
0 0 0 1


=



αx αy αz −α · t

βx βy βz −β · t

γx γy γz −γ · t

0 0 0 1


The Perspective Projection Matrix

The projection matrix transforms coordinates from view space into clip space. The pro-

jections mentioned in the literature are perspective projection and orthographic projection

[2, 8, 58]. Perspective projection looks to replicate the effect where objects farther away

appear smaller from the view position [2]. In contrast, orthographic projections show ob-

jects the same size independently of distance [58]. This is useful in modeling, architecture,

and engineering applications to depict the real dimensions of structures and components.

However, perspective projection reproduces how depth perception works in human vision

improving the realism of moving a camera around the scene.

The view frustum covered previously is related to perspective projection [8]. It allows

projecting view space coordinates into clip space considering the camera’s perspective. The

projection matrix is built by considering the view frustum with the projection plane equal

to the near plane. Figure 2.15 presents a top view and a side view of the frustum. The

ratio of similar triangles is employed to find the coordinates of a projected point into the

near plane [1, 9]. Let’s start by finding xp and yp.
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xp

xv

= −n
zv

yp

yv

= −n
zv

xp = −n · xv

zv

= n · xv

−zv

yp = −n · yv

zv

= n · yv

−zv

The division of both terms by −zv is known as perspective division and allows objects

farther away from the camera to be represented smaller than those that are closer [8].

Furthermore, notice that after multiplying a view space coordinate by the projection matrix

the result in clip space is still expressed in homogeneous coordinates. Therefore a clip space

coordinate is divided by its w homogeneous component to be mapped into the range [−1, 1]

that comprises a space known as normalized device coordinates (NDC) [2]. The division

by the w component is known as perspective division. After applying the perspective

projection matrix and perspective division, the view frustum has been transformed into

the canonical view volume whose coordinates are in NDC space [8].

Projection Matrix ·



xv

yv

zv

wv


=



xc

yc

zc

wc


→


xc/wc

yc/wc

zc/wc

 =


xNDC

yNDC

zNDC



Because xp and yp are inversely proportional to −zv, then the wc becomes −zv and the

fourth row of the projection matrix becomes:



· · · ·

· · · ·

· · · ·

0 0 −1 0


·



xv

yv

zv

wv


=



xc

yc

zc

wc


The clip space values of xc and yc are computed based on their mapping to NDC

coordinates considering the linear relation where [l, r]→ [−1, 1] and [b, t]→ [−1, 1] [8, 9].
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xNDC = 1− (−1)
r − l

· xp + ϕ

→ 1 = 2r
r − l

+ ϕ (substitute (xp, xn) for (r, 1))

→ ϕ = 1− 2r
r − l

= r − l
r − l

− 2r
r − l

→ ϕ = r − l − 2r
r − l

= −r − l
r − l

= −r + l

r − l

∴ xNDC = 2xp

r − l
− r + l

r − l
Figure 2.16: Mapping xp to xn

yNDC = 1− (−1)
t− b

· yp + ϕ

→ 1 = 2t
t− b

+ ϕ (substitute (yp, yn) for (t, 1))

→ ϕ = 1− 2t
t− b

= t− b
t− b

− 2t
t− b

→ ϕ = t− n− 2t
t− b

= −t− b
t− b

= − t+ b

t− b

∴ yNDC = 2yp

t− b
− t+ b

t− b
Figure 2.17: Mapping yp to yn

Then the values of xp and yp can be substituted based on their view space representation

calculated previously, such that:

xNDC = 2xp

r − l
− r + l

r − l

=
2 · n · xv

−zv

r − l
− r + l

r − l

= 2n · xv

(r − l)(−zv) −
r + l

r − l

=

2n
r − l

· xv

−zv

+

r + l

r − l
· zv

−zv

=
(

2n
r − l

· xv + r + l

r − l
· zv

)
︸ ︷︷ ︸

xc

/− zv

yNDC = 2yp

t− b
− t+ b

t− b

=
2 · n · yv

−zv

t− b
− t+ b

t− b

= 2n · yv

(t− b)(−zv) −
t+ b

t− b

=

2n
t− b

· yv

−zv

+

t+ b

t− b
· zv

−zv

=
(

2n
t− b

· yv + t+ b

t− b
· zv

)
︸ ︷︷ ︸

yc

/− zv

The numerators of the previous terms represent the xc and yc coordinates of a point in

clip space. After applying perspective division, dividing the terms by −zv, the coordinates

are mapped into their canonical view volume representation xNDC and yNDC . Recalling our
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previous form of the projection matrix, the first and second rows could now be expressed

as: 

2n
r − l

0 r + l

r − l
0

0 2n
t− b

t+ b

t− b
0

· · · ·

0 0 −1 0


·



xv

yv

zv

wv


=



xc

yc

zc

wc


Finally, the third row to compute zc is left to discover. Notice that zv is projected into

−n, but there is the need for a unique z-value that accounts for clipping and depth testing

[9, 59]. Moreover, because zc does not depend on xv or yv, the wv component is employed

to find zc. The variables that we need to solve for are A and B such that:



2n
r − l

0 r + l

r − l
0

0 2n
t− b

t+ b

t− b
0

0 0 A B

0 0 −1 0


·



xv

yv

zv

wv


=



xc

yc

zc

wc



and,

zNDC = zc

wc

= Azv +Bwv

−zv

= Azv +B

−zv

(wv = 1 in view space)

Because the view space z-coordinate should also be transformed into NDC space, the linear

relation [−n,−f ]→ [−1, 1] is employed to find A and B as follows.


−An+B

n
= −1

−Af +B

f
= 1

→


−An+B = −n

−Af +B = f

After solving the system of equations, A = −f + n

f − n
and B = − 2fn

f − n
. Thus, it follows

that

zn =
−f + n

f − n
zv −

2fn
f − n

−zv
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and finally, the standard perspective projection matrix [59] is expressed as



2n
r − l

0 r + l

r − l
0

0 2n
t− b

t+ b

t− b
0

0 0 −f + n

f − n
− 2fn
f − n

0 0 −1 0


Screen Space

Once our coordinates are in NDC space, the only step left is to map them into their screen

space representations. This process depends on the rendering pipeline, for instance in the

rasterization pipeline [60, 61], the NDC coordinates are mapped into screen coordinates

using a viewport transformation [2]. However, if we recall the ray-tracing rendering process

in its backward variant, a ray is sent into the center of all viewport pixels. Notice carefully

that in ray tracing the rendering process is inversed, that is, starting from screen space

the objective is to reach world space coordinates. Moreover, defining the previous matrix

transformations and coordinate spaces from a rasterization viewpoint helps to grasp the

concepts more easily.

The rendering process starts by transforming the viewport pixel coordinates into its

NDC space representations. Considering a viewport of 1920x1080 pixels (width × height),

a pixel (i, j) where 0 <= i < width and 0 <= j < height has the following NDC represen-

tation.

xNDC = 2i− width
width , yNDC = 2j − height

height , zNDC = −1

Notice that, i and j are transformed to be in [−1, 1]. Additionally, zNDC = −1 because the

viewport will be positioned at the near plane. Moreover, recall that perspective division is

performed to transition from clip space to NDC space. As such, the w clip space component

is set to 1 representing that perspective division has already been applied. In this regard,

a clip space coordinate is represented as (xNDC , yNDC , zNDC , 1). Once in clip space, each

coordinate is transformed by the inverse projection matrix into a view space coordinate.

Finally, the inverse view matrix transforms every view space coordinate into its world space

representation.
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Figure 2.18: Coordinate spaces based on the ray tracing rendering process.

The overall ray tracing rendering process is presented in Figure 2.18. The model matrix

is not considered in this pipeline, as the objects should rather be correctly placed into world

space before sending rays into the scene. In any rendering pipeline, an object’s model is

represented by a 3D mesh of polygons often triangles [2, 60]. As such, when loading a

model’s mesh the model matrix should be applied to it. All the loaded meshes comprise

the scene that will be rendered.
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Chapter 3

State of the Art

Ray tracing has seen significant advancements in recent years, with improvements across

various areas. Among these are hybrid rendering pipelines that integrate rasterization

with ray tracing to optimize performance, and acceleration structures that minimize ray-

intersection operations, enhancing speed and efficiency. Dedicated ray tracing hardware

has also emerged, specialized for real-time rendering, while denoising techniques have been

developed to reduce noise in complex renders. As performance improves, new methods

have been introduced to model an even broader range of materials. However, a deep un-

derstanding of many of these techniques requires foundational knowledge and experience in

computer graphics and is beyond the scope of this work. Thus, this chapter provides a sum-

mary of some key advancements for further exploration after reviewing the fundamentals

covered here.

3.1 Hybrid Ray Tracing Rendering

One of the initial proposals of hybrid rendering was introduced by Beck et al. [62], who

developed a CPU-GPU Real-Time Ray Tracing framework. The framework starts with a

shadow map pass, a geometry identification pass, and a blur pass all performed in GPU.

The triangle IDs resulting from the geometry pass are encoded as an RGB color in a

framebuffer, along with the value of the shadow map pass stored in the alpha channel.

The blur pass is used to modify the alpha channel to delimit the shadow boundaries. The

resultant framebuffer is received by the CPU in which a ray-tracing algorithm generates
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the reflection and refraction rays. Finally, using the Phong shading model (discussed in

Section 4.8), the final render is obtained.

Sabino et al. [63], in turn, propose a GPU-only hybrid pipeline combining both ras-

terization and ray tracing. In the first stage using deferred rendering [64, 65], a G-Buffer

containing geometry information such as positions, normals, texture coordinates, and ma-

terial parameters is computed. This stage avoids computing the initial ray-primitive inter-

section pass to determine object visibility. The second stage is responsible for computing

shadows using the information of the G-Buffer and the light positions generating a shadow

buffer. In the third stage, the effects of reflections and refractions are computed using a

ray-tracing algorithm generating a third buffer. Finally, the last stage involves combining

the buffers of each stage to render the final image.

A third solution is the PICA PICA real-time ray tracing experiment [66] showcasing

self-learning agents in a procedurally generated 3D world. PICA PICA combines the com-

mon rasterization pipeline with the modern compute and ray tracing pipelines [36, 67, 68].

The rendering pipeline consists of eight stages, starting with computing a G-buffer with

rasterization to subsequently compute a direct shadows buffer using a ray tracing algo-

rithm or the rasterization process as well. Using a computer shader (discussed in Section

4.1) the effect of direct lighting is computed. The effects of reflections and global illumi-

nation, stages five and six, are then added by using either the ray tracing pipeline or the

compute pipeline. Similarly, the effects of ambient occlusion and transparency/translu-

cency are generated by ray tracing or compute pipelines. The last stage corresponds to

post-processing, generating the final render.

There are several more examples of hybrid rendering such as HART [69], RenderMan

[70], Unity High-Definition Render Pipeline [71], Unreal Engine 4 [72], the combination of

Blender’s EEVEE and Cycles rendering engines [73], among others. By combining these

methods, hybrid rendering pipelines achieve a balance where rasterization handles the bulk

of straightforward scene rendering, while ray tracing is selectively applied for effects that

benefit most from its physical accuracy. This selective approach allows for photorealistic

results with much lower computational cost compared to fully ray-traced rendering. As

hardware and software optimizations continue to evolve, hybrid rendering is poised to

become an integral part of achieving ever more immersive and realistic virtual experiences.

33



3.2 Acceleration Structures

Ray-intersection operations are some of the most performance-intensive tasks in ray tracing,

as they determine object visibility within a scene and are required for shading calculations.

With a fixed number of primitives n, a single ray-intersection test has a time complexity

of O(n). However, considering the full viewport, multiple rays per pixel, and potential ray

bounces, the computational load becomes prohibitive for real-time applications. To address

this, acceleration structures are used to minimize intersection tests through two primary

approaches: spatial subdivision (e.g., grid-based structures, k-d trees) and primitive sub-

division (e.g., bounding volume hierarchies, or BVH) [74–76]. A formal introduction to

these approaches is presented in the Methodology chapter, whereas this section discusses

the improvements and variations of today’s methods for further reading.

In contemporary GPU-based ray tracing, the bounding volume hierarchy (BVH) is

the standard acceleration structure due to its efficient memory footprint, parallelization

capabilities, compact traversal, rapid construction, and adaptability to dynamic geometry

[67, 68]. The most common variant, an axis-aligned bounding box (AABB) BVH that

uses the surface-area heuristic (SAH) for partitioning, significantly reduces the number of

intersection tests and has inspired numerous enhancements to improve performance further

[11]. One early improvement was introduced by Lauterbach et al. [77], who developed the

linear BVH (LBVH) construction algorithm. This approach uses the GPU for parallel

processing, organizing primitives using Morton codes [78]. Later, Pantaleoni and Luebke

[79] extended this by combining LBVH with the surface-area heuristic to optimize the

upper levels of the tree, an approach known as hierarchical LBVH (HLBVH).

Garanzha et al. [80] introduced a simpler and faster variant of HLBVH by incorporating

the SAH binning algorithm [81]. Karras [82] proposed a different method, creating a par-

allel algorithm to build the entire LBVH structure using binary radix trees as foundational

elements. Karras’s approach includes an additional step to compute bounding boxes, which

increases the overall cost of BVH construction. To address this, Apetrei [83] developed

a method to simultaneously construct the topology and assign bounding boxes, reducing

construction time. In turn, Chitalu et al. [84] introduced a binary ostensibly-implicit tree

structure instead of a binary radix tree. This approach encodes the BVH topology as
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binary representations, allowing the identification of missing nodes in a complete binary

tree. Consequently, implicit nodes can be mapped to compact memory locations, resulting

in fast construction while remaining memory-efficient and computationally light.

The bounding volume used to partition the primitives also impacts the number of

intersections tests, as a loose fit may result in unnecessary ray-intersection operations.

The discussed approaches reduced this effect to some extent by assigning each primitive

its own axis-aligned bounding box (AABB). An alternative approach is to employ different

bounding volumes to achieve a tighter fit. One of the early alternatives was the use of

oriented bounding boxes (OBB), introduced by O’Rourke [85]. Although OBBs provide a

compact fit, the method initially proved slow. Gottschalk [86] improved on this by using

principal component analysis (PCA) to approximate the OBB. Later, Chang et al. [87]

developed an approach to compute minimal volume OBBs through a hybrid optimization

algorithm that searches the space of rotation matrices. Larsson and Källberg [88] proposed

the di-tetrahedron OBB (DiTO) algorithm, which balances bounding volume quality and

performance, offering a more efficient alternative compared to the previous approximation

methods.

Discrete orientation polytopes bounded by k hyperplanes (k-DOPs) are another com-

pact bounding volume for geometry [89]. As k increases, the hyperplanes form a convex

polyhedron that tightly encloses a primitive. Klosowski et al. [90] proposed one of the ini-

tial methods for constructing BVHs using k-DOPs, aimed at improving collision detection

efficiency. Later, advanced this idea by introducing velocity-aligned DOPs (VADOPs),

bounding volumes based on k-DOPs that demonstrated real-time performance in dynamic

collision detection. Nonetheless, constructing BVHs with k-DOPs and the surface-area

heuristic remains challenging, as calculating the surface area of a polytope with many

faces is computationally expensive [91].

Recent approaches leverage k-DOPs as building blocks for constructing oriented bound-

ing boxes (OBBs) For instance, Vitsas et al. [92] employ the di-tetrahedron-OBB algorithm

to generate a representative set of points for the underlying geometry, then select a tightly

fitting OBB, where the di-tetrahedron represents a polytope. Sabino et al. [93] propose a

different method, utilizing orthogonal discrete orientation polytopes (ODOPs) to store the

mesh’s topological features, allowing straightforward conversion to an OBB. Káčerik and
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Bittner [91] revisited the use of k-DOPs for BVH construction, introducing an optimized

algorithm that uses the surface-area heuristic (SAH) to improve topology. Their method

incorporates the parallel locally ordered clustering (PLOC) algorithm [94] to compute a

fast, exact evaluation of the surface area for a 14-DOP. Although this method requires more

construction time and memory than an AABB-based BVH, it achieves a 2.5x increase in

ray tracing speed.

3.3 Denoising Techniques

The increased realism in complex scenes brought by modern ray tracing algorithms comes

at the cost of high rendering times for noise-free images. Examples of these algorithms

include Path Tracing [95], Bidirectional Path Tracing [96], and Metropolis Light Transport

[97]. These algorithms are employed to transport light from one point of the scene to

another, simulating the complex interactions of light with surfaces, including reflection,

refraction, and scattering. Path Tracing, for instance, traces rays from the camera into

the scene, following their paths as they bounce off surfaces until they reach a light source

or exit the scene [11, 36]. Bidirectional Path Tracing enhances this approach by tracing

rays both from the camera and from light sources, meeting in the middle to handle difficult

lighting scenarios such as caustics better [11, 96]. Metropolis Light Transport, on the other

hand, uses a more sophisticated approach by focusing sampling efforts on important light

paths, effectively reducing noise and increasing efficiency in scenes with complex lighting

[11, 97].

Incorporating these techniques in real-time rendering is not feasible because of the mul-

tiple path samples required to compute realistic lighting. Because of the limited number of

samples that can be generated in a real-time renderer, denoising techniques are introduced

[3, 36]. These techniques aim to mitigate the noise in low-sample renders by predicting and

correcting pixel values based on surrounding pixel information, temporal data from previ-

ous frames, or by using machine learning and deep learning methods trained to reduce noise

patterns. As explained by Bako et al. [98] and Firmino et al. [99], the most well-known

denoising techniques belong to the class of non-linear image space filters. Non-linear filters

adapt to the local distribution of noise levels in pixels [100], allowing them to effectively
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reduce noise in complex regions of an image while preserving important features such as

edges and detail [101]. Some of these filters include bilateral filtering [102], anisotropic

diffusion [103], À-Trous wavelet transform [104], and guided filtering [105].

More advanced methods involve a series of filtering stages to further reduce noise while

maintaining realism. Some of these techniques include Spatiotemporal Variance-Guided

Filtering (SVGF) [106], adaptive SVGF [107], and Reservoir-based Spatiotemporal Im-

portance Resampling (ReSTIR) [108]. SVGF improves upon traditional variance-guided

filters by incorporating temporal accumulation, spatiotemporal luminance variance, and

a wavelet filter to reduce noise while preserving high-frequency details [106]. Adaptive

SVGF enhances this method by analyzing previously generated frames to reconstruct an

adaptive temporal gradient, thereby reducing lag and ghosting [107]. Finally, ReSTIR

utilizes a reservoir-based approach to resample and redistribute light paths, optimizing

sampling efficiency and enhancing the accuracy of light simulation across both space and

time [108, 109].

In recent years, there has also been the inclusion of machine learning and deep learning

methods specifically trained to reduce the noise in frames. For instance, Chaitanya et al.

[110] developed a denoising autoencoder that receives noisy frames as input and recon-

structs them by removing the noise present. Bako et al. [98] trained a convolutional neural

network to learn the relationship between noisy and reference frames using a dataset of

several frames from the film Finding Dory, which contains various effects. In turn, the

approach taken by Xu et al. [111] uses a generative adversarial network (GAN) and a con-

ditioned feature modulation technique to integrate auxiliary information into the network

and produce a noise-free frame. A more complex architecture is introduced by Hofmann

et al. [112], which comprises a dual autoencoder to handle the noise of direct and indirect

lighting separately, a special noise function for the reconstruction of specular highlights,

and a relativistic discriminator to improve sharp details.

3.4 Summary

Current innovations in ray tracing rendering span a wide range of disciplines, including

computer science, mathematics, and physics. Discussing every aspect of these advance-
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ments is challenging due to the highly specialized nature of the concepts involved. For

example, integrating deep learning techniques into ray tracing algorithms requires a thor-

ough understanding of both light transport principles and neural network design. Similarly,

progress in hardware acceleration demands knowledge of GPU architecture and parallel

computing. Despite covering the basics of light transport, physically based rendering, and

shading models in the following chapter, these only scratch the surface of modern ray

tracing and computer graphics.
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Chapter 4

Methodology

In this chapter, we will cover all the concepts for implementing a ray-tracing renderer.

Although some programming requirements are required, relevant and useful sources will

be provided for you to understand every implementation aspect.

4.1 Implementation Details

Real-time rendering is only appreciable if interaction with all the components of a scene

is granted. Luckily, this is possible by working with a highly parallelizable processor like

the GPU, that allows us to render multiple frames of our scene per second. Working

with a GPU, however, is not straightforward, primarily because each GPU has a different

architecture. Furthermore, GPU’s resource access depends largely on the drivers provided

by the company that designs the architecture, where NVIDIA [113] and AMD [114] are

two of the largest GPU companies in the world. Since the drivers for each GPU are

architecture-dependent, a standard API is required to access GPU resources.

Perhaps one of the most known APIs/specifications is OpenGL [38], which defines

standardized mechanisms to access GPU resources across multiple platforms. Providing

standardized mechanisms ensures that GPU resources can be used regardless of the differ-

ence in drivers/controllers in each architecture. Such mechanisms are written by the GPU

manufacturers taking into consideration the OpenGL specification. Likewise, being cross-

platform offers an important advantage over other platform-specific APIs such as DirectX

[39] or Metal [41] since the programs created can be run on different operating systems
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including some modifications. In this regard, the following work will be implemented com-

pletely in OpenGL. Table 4.1 shows a complete list of the implementation details of the

renderer. Moreover, a repository with the ray tracing renderer and all the code examples

derived from this section are available in a GitHub repository that contains all the details

about installation and usage, see Appendix A for the link.

Learning about computer graphics, and specifically about OpenGL may look com-

plicated at first, but there are several online resources available. One of the best online

resources referenced already is that of Joey de Vries [2] who provides an extensive guide for

learning OpenGL. Another well-recognized resource is the OpenGL Programming Guide

[61] also known as the Red Book. Regarding video tutorials, I will recommend the YouTube

series of The Cherno [116], Michael Grieco [117], and GetIntoGameDev [118]. It must be

emphasized that this work does not cover the OpenGL API as it will require a complete

chapter or even more to cover the essentials. Nonetheless, all the references provided in

this chapter will serve as an additional source to help you understand better the different

concepts presented.

4.1.1 Shaders and the Rasterization Pipeline

Before introducing the rendering pipeline used in this work, the concept of shaders must

be presented. As Lengyel [8] comments, the processing a GPU does during rendering is de-

termined by a series of operations defined within the rendering pipeline. These operations

can, for example, transform the primitives that make up the scene, refine the 3D model

meshes, generate realistic lighting conditions, apply textures, etc [3, 61]. The instructions

that detail how those operations are performed are specified within programs denominated

shaders which execute in the GPU. Shader instructions are defined using C-like shading

languages, for instance, OpenGL uses the OpenGL Shading Language (GLSL) whereas

DirectX uses the High-Level Shading Language (HLSL) [3, 61]. Furthermore, shader in-

structions are highly optimized to take advantage of the parallelization offered by GPUs.

Several types of shaders are already defined within the rendering pipeline, however, our

interest is focused on only three, vertex, fragment, and compute shaders. It is important

to emphasize that vertex and fragment shaders belong to the rasterization pipeline, yet

40



Table 4.1: Implementation details of the renderer including general development aspects,
platform support, and libraries.

Aspect Description
Programming
Language

The complete implementation is developed under the C pro-
gramming language standard using the C99 version.

Platform Support The renderer and all code examples created can be compiled to
run both on Linux and Windows.

Compilers

Both the Clang and GNU gcc compilers can be employed to
generate the binaries in Linux. Generating binaries on Windows
requires installing MinGW, which is a development environment
for creating native Windows applications using the GNU gcc
compiler.

Build Automation

CMake 3.27.0 is employed to generate the corresponding build
files while make is used for build automation. In Windows,
the mingw32-make tool is employed to build and generate the
binaries.

OpenGL version Version 4.6 of the OpenGL specification is used.

GLFW

Cross-platform library for OpenGL and Vulkan that provides an
API for creating windows, contexts, and surfaces, while offering
support for inputs and events. GLFW manages the OpenGL
context required for rendering and, as such, handles the version
of OpenGL to be used.

GLAD Generates a loader to dynamically load function pointers at
runtime to be used within the OpenGL context created.

CGLM
Highly optimized math library written in C for working with
2D/3D math operations. It includes SIMD versions of different
functions.

Tinyobjloader-c
Lightweight header-only C-library for loading triangular meshes
of 3D models in the wavefront.obj format. The library is easy
to use and was incorporated easily into the renderer.

Camera Model

The camera model was implemented following all the notions
described in the Coordinate Systems section of Chapter 2. In
addition, De Vries [2] devotes an entire chapter to the implemen-
tation of the rasterization camera model, which can be easily
adapted for the ray-tracing renderer.

Random Number
Generation

The PCG hash function [115] was implemented in GLSL for
random number generation in the GPU.
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their function in our pipeline will be discussed later. If you recall the section on coordinate

systems reviewed in Chapter 2, the rasterization pipeline goes from world space into screen

space. Such operations can be covered within the vertex shader and fragment shader.

Vertex shaders as their name suggests process the vertices comprising the primitives of

the models that are going to be rendered [61]. A model matrix transformation is applied to

the vertices of the 3D models comprising the scene if needed. Otherwise, their coordinates

are considered to be already in world space. The vertex shader then transforms the vertices

coordinates to their corresponding view-space representation. Color, normals, and texture

attributes are also passed to vertex shaders which in turn redirect them to the following

rendering stages until the fragment shading stage.

The primitive assembly stage then generates the corresponding primitives, where tri-

angles are often the selected primitive [2]. This stage is automatically handled by the ras-

terization pipeline. The generated primitives are then passed to another automatic stage

known as clipping. In this stage, primitives whose coordinates are outside the viewport

are clipped [1]. The output of this stage is then processed by the rasterizer for fragment

generation, where the clipped primitives are mapped to their corresponding pixel positions

[2, 61]. In addition, during rasterization, attributes such as color and texture coordinates

specified at the vertices are interpolated across the surface of the primitive [2]. This inter-

polation determines the attribute values in each fragment ensuring the correct blending of

colors and proper mapping of textures within the primitive.

Subsequently, the generated fragments are then processed by the fragment shader to

determine their final color [8, 61]. During this stage, different effects can be incorporated

to enhance the realism of the rendered scene such as lights, shadows, bloom effects, etc. A

commonly used shading model to account for light is the Phong model [119] which will be

discussed later. Finally, the checking and blending stage involves the final processing of the

individual fragments before generating the final frame [61]. This stage includes depth test-

ing to determine which fragment is in front, discarding those that are occluded by others.

It also includes color blending of the fragments at the boundaries of the primitives, which

ensures proper layering of the overlapping objects [2]. See Figure 4.1 for an illustration of

the rasterization pipeline.
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Figure 4.1: Rasterization pipeline for rendering a simple triangle. Because the coordinates
are within the viewport the clipping stage is not illustrated.

4.1.2 Ray Tracing Pipeline

Earlier, it was mentioned that compute shaders were also of interest for the pipeline of

this work. However, these were not mentioned at all in the rasterization pipeline, why is

that? Traditionally, GPUs were used primarily for rendering, but as computational tasks

became more demanding, the perspective changed. The parallelization capabilities offered

by GPUs were taken into account, and new parallel algorithms were developed to solve

tasks faster. Such tasks are commonly enclosed under the category of general-purpose

computing on graphics processing units (GPGPU) [2].

The paradigm employed by GPUs to process data in parallel is known as single in-

struction multiple data (SIMD) [120], where a set of operations is applied independently

to the data being processed. Furthermore, the functions describing the operations to be

performed are denominated kernels, an example being the fragment shader [2, 121]. Two

well-known frameworks for GPGPU computing are CUDA [42] specific for NVIDIA GPUs

and OpenCL [122] which is a cross-platform API that supports different hardware and GPU

architectures. An alternative solution is compute shaders which date before the launch of

GPGPU-specific solutions [43, 61, 121].
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Figure 4.2: Workgroup hierarchy used to instantiate compute shaders and parallelize a
task.

Compute shaders are graphic APIs’ solution to enable GPGPU computing in an isolated

single-stage pipeline [61, 121]. Despite their isolated execution, they can still communi-

cate with the common rendering pipeline by employing different data storage structures.

Likewise, there are several forms to map data to a compute shader, the main one used

in this work is a Image2D variable [61], to which the ray-traced rendered frame will be

saved. Whereas in the rendering pipeline task parallelization is automatically handled, in

compute shaders the parallelization of a task is more explicit.

Compute shaders are parallelized using workgroups, where each workgroup represents

a collection of GPU threads also referred to as invocations [2]. Figure 4.2 illustrates the

hierarchy or workgroups, where the total number of threads employed for a task comprises

the global workgroup. Local workgroups, in turn, comprise a subset of these threads that

can communicate and share memory locally. The organization of a global and a local

workgroup is three-dimensional, however, our problem has only 2 dimensions as the final

output of the ray tracing renderer is an image. Defining the number of threads to be used is

done by calling the glDispatchCompute(groups_x,groups_y,groups_z) function [2, 61].

For instance, if the rendered image size is 1920 × 1080 pixels, the number of threads per

local workgroup can be set to x = 4, y = 8, and z = 1, as there is no need for the third

dimension. This means each local workgroup will handle 4 pixels in the x-axis and 8 pixels

in the y-axis. In this sense, the number of local workgroups to process all the pixels of the
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image across each dimension is

x = 1920/4 = 480

y = 1080/8 = 135

z = 1.

Therefore, the global workgroup has 480×135 = 62400 local workgroups with 1920×1080 =

2073600 threads in total. Specifically, on NVIDIA GPUs, the number of threads per

local group is 32 to properly parallelize tasks [120]. In this regard, the previous example

represents a possible combination to ensure 32 threads per local group. The ray tracing

pipeline employed in this work, see Figure 4.3, is separated into two parts:

• Compute Shader Pipeline

1. Initialization Stage: All the details regarding the scene to be rendered must be

defined. This includes the primitives or complete 3D models, the details of the

camera (position, target direction, coordinate axes), the acceleration structure

to speed the rendering of each frame, and binding the Image2D variable to

which the rendered frame will be stored. The concept of acceleration structure

is reviewed later in this chapter.

2. Compute Shader Stage: The ray tracing rendering of a scene is handled by

a compute shader. For each pixel of the image to be rendered, a ray will be

emitted for each pixel of the scene from the camera’s position. Every ray emitted

is handled independently by only one thread/invocation of a local group. During

this stage, the shading and lighting of a scene are computed with the details

discussed later in this chapter. Finally, every instance of the computer shader

writes its output to its corresponding pixel in the Image2D variable.

• Rasterization Pipeline Because the image cannot be displayed directly by itself,

the rasterization pipeline is used to render the image on the screen. To do so, a large

enough triangle covering the entire viewport is defined. The generated image is then

bound as a texture that will be mapped onto the rendered triangle, thus displaying

the ray-traced rendering.
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– Vertex Shader: The triangle vertices are passed to a vertex shader responsible for

positioning the triangle such that the ray-traced rendered frame will be displayed

correctly. Considering that OpenGL defines coordinates in NDC space [2, 61],

the triangle vertices used to cover the entire viewport are (-1,-1,0), (3.0,-1.0,0.0)

and (-1.0,3.0,0.0). The texture coordinates for mapping the generated image of

the compute shader to the triangle are also passed, these are (0.0,0.0), (3.0,0.0),

and (0.0,3.0)

– Fragment Shader: The output image of the compute pipeline is bound to a tex-

ture and then mapped accordingly to the triangle vertices. Since the generated

frame matched the size of the viewport in NDC coordinates, a texture wrapping

technique known as clamp-to-border [2, 61] is used to properly wrap the triangle

with the texture of the ray-traced rendered image.

Figure 4.3: Ray tracing pipeline for rendering a scene. The compute shader pipeline
is used to render a ray-traced frame. The frame is stored as an image and bound to
a texture. Finally, using the rasterization pipeline, the texture containing the rendered
image is mapped to a triangle that covers the entire viewport and then displayed on the
screen
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4.2 Primitive Rendering

4.2.1 Sphere Rendering

The first primitive that is going to be covered is the sphere. Because of its simplicity

of definition and implementation, it has become the Hello World of ray tracing by many

authors [30, 57, 60, 123]. The implementation by Shirley [30] is the most appealing in

terms of how to render a sphere. The equation of a sphere S with radius r and centered

at the origin is given by,

x2 + y2 + z2 = r2

The previous definition can also be thought of as if a point p = (x, y, z) lies on the sphere’s

surface then x2+y2+z2 = r2, it is inside when x2+y2+z2 < r2, or outside if x2+y2+z2 > r2.

Following, the general equation of a sphere also considers its center position c = (cx, cy, cz)

becoming,

(cx − x)2 + (cy − y)2 + (cz − z)2 = r2

Notice that, the vector from point p to the center c is given by c−p, which allows rewriting

the sphere general equation in terms of the dot product of c− p.

(cx − x)2 + (cy − y)2 + (cz − z)2 = (c− p) · (c− p) = r2

Rendering a sphere requires determining the surface points at which incoming rays intersect

it. That is, given a ray p(t) = o + td, we want to know whether or not it intersects the

sphere in the scene. If it does, then there exists some t for which p(t) satisfies the sphere

equation, and it belongs to the scene. Based on these considerations it follows that:

(c− p(t)) · (c− p(t)) = r2

→ (c− (o + td)) · (c− (o + td)) = r2

→ (−td + (c− o)) · (−td + (c− o)) = r2

→ t2d · d− 2td · (c− o) + (c− o) · (c− o)− r2 = 0
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Figure 4.4: Ray-sphere intersection illustrating no solution, one solution, or two solutions.

From the previous result, all the dot products are reduced to scalars and the only unknown

term is t. The previous result is a quadratic equation, ax2 + bx+ c = 0 that can be solved

using the quadratic formula
−b±

√
b2 − 4ac

2a

where a = d ·d, b = −2d · (c−o), and c = (c−o) · (c−o)− r2. Based on the discriminant

∆ = b2 − 4ac there could be two real solutions (∆ > 0), one real solution (∆ = 0), or no

real solution (∆ < 0) as illustrated in Figure 4.4. An additional step is to simplify the

quadratic formula by assuming that b = −2h such that,

−b±
√
b2 − 4ac

2a =
−(−2h)±

√
(−2h)2 − 4ac

2a

= 2h±
√

4h2 − 4ac
2a

= 2h± 2
√
h2 − ac

2a

= h±
√
h2 − ac
a

.

From the definition of b = −2d · (c− o), it follows that h = −b/2 = d · (c− o). Appendix

B presents the code implementation for rendering our first ray-traced sphere.
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4.2.2 Triangle Rendering

In modern computer graphics, an object’s model is commonly represented by a 3D triangu-

lar mesh [2, 57]. The current GPU rendering pipeline (rasterization) is highly optimized to

handle triangular meshes efficiently [3, 43, 61]. The reason for using primarily triangles is

because of their ease of representation, being the simplest polygon with three vertices and

always planar (all three vertices lie on the same plane) [60]. To render our first triangle,

an intersection algorithm must be implemented to determine if a ray hits the triangle in

the scene.

The algorithm that is going to be implemented was developed by Möller and Trumbore

[10] being one of the fastest methods to determine a ray-triangle intersection. Based on

[60], given a triangle with vertices a, b, and c, a point q = (1− t)a + tb with 0 ≤ t ≤ 1 is

on the line segment formed by a and b. Likewise, a point r = (1− s)q + sc = (1− s)(1−

t)a +(1−s)tb+sc with 0 ≤ s, t ≤ 1 is on the line segment between q and c. The previous

can be defined in terms of a function T : [0, 1]× [0, 1]→ R2 such that,

T(s, t) = (1− s)(1− t)a + (1− s)tb + sc, 0 ≤ s, t ≤ 1,

and whose image is exactly the triangle formed by the vertices a, b, and c. This represents

a parameterization of the triangle in terms of s and t. Furthermore, the coefficients of the

parameterized triangle have a special property.

(1− s)(1− t) + (1− s)t+ s = (1− s)((1− t) + t) + s

= (1− s) + s

= 1.

From the above, it follows that combinations of multiple points are defined only when the

coefficients sum to 1. Thus, any point lying inside the triangle can be written as

p = ua + vb + wc,

where the terms u, v, and w are known as the barycentric coordinates of p regarding the
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triangle with vertices a, b, and c. Moreover, because u+ v + w = 1 and u, v, w ≥ 0, then

w = 1− u− v, which allows one to rewrite the parameterized triangle function as

T(u, v) = (1− u− v)a + ub + vc

= a + u(b− a) + v(c− a)

Rendering a triangle is similar to the sphere case, where the rays that intersect it

must be found. Computing the intersection point is done by establishing the equality

p(t) = T(u, v) such that,

o + td = a + u(b− a) + v(c− a)

o− a = −td + u(b− a) + v(c− a).

The latter can be expressed in terms of a matrix multiplication where the three known

vectors (−d,b− a, c− a) are multiplied by the three unknown scalars (t, u, v) as follows,

[−d (b− a) (c− a)]


t

u

v

 = o− a

Möller and Trumbore [10] explain that the term o− a translates the triangle to the origin

(the first vertex is at the origin). The inverse of the matrix M = [−d, c − a, c − a], in

turn, transforms the triangle into a unit triangle lying in uv-space (See Figure 4.5). Let

e1 = b−a, e2 = c−a, and f = o−a, then the solution to determine the values of (t, u, v)

is obtained by using Cramer’s rule [124],


t

u

v

 = 1
|−d e1 e2|


| f e1 e2|

| − d f e2|

| − d e1 f |

 .

Moreover, the determinant of a 3 × 3 matrix comprised of the column vectors j =

(j1, j2, j3), k = (k1,k2,k3), and l = (l1, l2, l3), is given by the scalar triple product −(j ×
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Figure 4.5: Visual representation of Möller and Trumbore algorithm for ray-triangle inter-
section. Adapted from [10].

l) · k = −(l× k) · j [125]. Then, the equation to determine (t, u, v) can be rewritten as,


t

u

v

 = 1
(d× e2) · e1


(f × e1) · e2

(d× e2) · f

(f × e1) · d

 = 1
g · e1


h · e2

g · f

h · d

 ,

where g = d×e2 and h = f ×e1. These terms are reused to speed up the computation of

the triangle intersection. The complete implementation for rendering a ray-traced triangle

can be found in the examples directory of the main repository or follow the direct link

presented in Appendix C.

4.2.3 Axis-Aligned Bounding Box/Ray Intersection

Boxes are an interesting primitive in ray tracing, defining the surface of a hollow rectangular

parallelepiped often referred to as voxels [126]. Moreover, a box could be either a primitive

itself having an orientation (OBox) or being axis-aligned (AABox) to the axes of a Cartesian

coordinate system. Its second form is contention or bounding, that is, enclosing some other

primitive referred to as an oriented bounding box (OBB) or an axis-aligned bounding box

(AABB) [127, 128]. The purpose of defining a bounding box will be revealed later, for the

moment the ray intersection algorithm will be presented.

The method to determine the intersection of a ray with an AABB is that of the slab

introduced by Kay and Kajiya [129]. Following the description presented in [11, 130], an
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Figure 4.6: Ray-box intersection presenting the two intersections with the AABB. The
AABB is represented by its minB and maxB (B stands for bound) coordinates following a
left-hand orientation of the coordinate axes.

n−dimensional AABB is just the intersection of n axis-aligned intervals denominated slabs.

For instance, the axis-aligned planes x0 and x1 enclose the interval [x0, x1] with the space

between them called a slab. An AABB is usually represented by its bound coordinates

minB = (xmin, ymin, zmin) and maxB(xmax, ymax, zmax). Figure 4.6 illustrates the intersection

of a ray with an AABB.

Given a ray p(t) = o + td, the values t0 and t1 for which the ray intersects the AABB

must be computed. This implies finding the t0 and t1 values for each axis-aligned slab.

Additionally, the parametric t value at which a ray intersects the plane ax+by+cz+d = 0

can be determined by substituting the ray’s equation into the plane’s equation.

a(o + td) + b(o + td) + c(o + td) + d = 0

→ t = −d− (a, b, c) · o
(a, b, c) · d .

Depending on which axis the plane is aligned on, the other components are canceled.

That is, for the plane x0, a = 1 while b and c are just 0, such that:

t = x0 − ox

dx

,

with d = −x0. Then, the vectors tNear and tFar contain the corresponding t0 and t1 values
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for all the axis-aligned slabs.

tNear =
(
xmin − ox

dx

,
ymin − oy

dy

,
zmin − oz

dz

)
,

tFar =
(
xmax − ox

dx

,
ymax − oy

dy

,
zmax − oz

dz

)
.

Subsequently, the tmin and tmax vectors are computed as follows:

tmin = min(tNear, tFar)

tmax = max(tNear, tFar).

To handle situations where the ray direction is negative along an axis, we calculate the

tmin and tmax vectors. This is because, for a negative direction, the first t value calculated

will be larger than the second t value. Finally, the maximum component of tmin and the

minimum component of tmax are found, these values being t0 and t1 respectively.

t0 = max(tmin)

t1 = min(tmax)

All these computations represent the slab method and allow us to determine if the

ray intersects the AABB. Figure 4.7 shows a visual representation of the slab method

for a 2D bounding box (BB) for three of the possible cases. In the first case, t0 = t1,

the ray starts by intersecting the lines y0 and y1, to then intersect the lines x0 and x1.

The parametric t values for which the ray intersects the slabs formed by these lines are

represented in the intervals [ty0, ty1] and [tx0, tx1] with ty1 = tx0. Because the direction

of the ray is non-negative in neither axis, tmin = (tx0, ty0) and tmax = (tx1, ty1). Lastly,

t0 = max(tx0, ty0) = tx0 and t1 = min(tx1, ty1) = ty1, which means that t0 = t1 and the ray

has hit a corner of the bounding box.

In the second case, t0 < t1, the order in which the ray intersects the lines forming

the BB are x0, y0, x1, and y1. Looking closely, the intervals formed by the parametric

t-values of the x and y slabs intersect (see Figure 4.7). The vectors tmin and tmax are

(tx0, ty0) and (tx1, ty1) respectively, with t0 = max(tmin) = ty0 and t1 = min(tmax) = tx1.
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Figure 4.7: Visual representation of the slab method to determine the intersection of a ray
with a 2D bounding box (BB). Three cases are presented, a) the ray hits a corner of the
BB b) a ray intersects the BB at two points, and c) the ray does not intersect the BB.

As a result, t0 < t1 and the ray has intersected the BB at two points. Lastly, there is the

case in which the ray does not intersect the BB. The ray intersects the x slab within the

parametric interval [tx0, tx1] and the y slab in the interval [ty0, ty1]. Then, tmin = (tx0, ty0)

and tmax = tx1, ty1 and consequently t0 = ty0 and t1 = tx1. From Figure 4.7 it is noticed

that the t intervals of both slabs do not intersect and more importantly, t0 > t1.

In summary, the slab method specifies that a ray-box intersection occurs when all slab

intervals intersect, that is when t0 ≤ t1. In simpler words, an intersection happens when

the maximum entry point (the latest entry into any slab) is less than or equal to the

minimum exit point (the earliest exit from any slab).

4.3 Intersection Acceleration

Ray tracing can generate realistic 3D renderings with plenty of details when combined

with other techniques. One of these methods, as mentioned by Fujimoto et al. [131], is

a global illumination setting rather than local illumination which accounts for multiple

light behaviors (will be discussed later). However, they also mention that in a cost/perfor-

mance comparison ray tracing falls behind traditional rendering methods. Whitted [132]
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acknowledges this by demonstrating that the most expensive ray tracing operation is ray

intersection calculations, which account for 75 percent of total rendering time and reach

95 percent as the complexity of the scene increases. Later on, Rubin and Whitted [133]

further explored this aspect by demonstrating that the rendering time of the ray tracing

algorithm increased linearly as the number of primitives in the scene increased. At this

point, the main drawback of ray tracing is clear, testing if a ray intersects a primitive and

which one is closer is computationally too expensive.

Since 1980, considerable research began to be developed to accelerate ray intersection

operations and reduce the number of intersection tests. One of the initial proposals was

by Rubin and Whitted [133], who introduced an acceleration structure to subdivide the

primitives of a scene into a hierarchy of subspaces using rectangular parallelepiped. The

top level of this hierarchy is the largest subspace containing all subsequent smaller par-

allelepipeds. This hierarchical subdivision reduces the number of intersection tests since

the ray is only tested with the primitives of the smallest subspaces it intersects. Kay and

Kajiya [129] improved on this idea by introducing bounding volume hierarchies (BVH),

in which the scene primitives are enclosed in a volume consisting of 7 slabs. These are

then grouped into a larger bounding volume based on proximity, forming a hierarchical

tree structure. Consequently, the number of intersection tests is reduced, since the ray is

only tested with the primitives of the leaf nodes and will stop if it fails to intersect the

bounding volume of the interior nodes.

Currently, the landscape of acceleration structures for ray tracing is divided into two

main approaches: spatial subdivision and primitive subdivision [11]. Spatial subdivision

methods divide the space surrounding an object into smaller regions using planes and assign

its primitives to the subspaces they overlap with. Testing for a ray-primitive intersection is

only done against the primitives of those subspaces the ray passes through. Some methods

under this category include uniform grids [131], octrees [134], kd-trees [74], binary space

partition (BSP) trees [135], and their different variations. Primitive subdivision, on the

other hand, comprises methods that subdivide the primitives of a scene into bounding

volumes (e.g., spheres, AABB, OBB, etc.), with the BVH algorithm being a clear repre-

sentative of this category. Meister et al. [76] provide a comprehensive survey on BVHs for

ray tracing including their different variants.

55



Over the years, the two most used acceleration structures have been ADAPTIVE kd-

trees and BVHs. As a result, an ongoing discussion over which method is better has devel-

oped with different works discussing the matter [34, 75, 136]. Meister et al. [76], however,

highlight four important characteristics of BVHs. These include a predictable memory

footprint, robust and efficient querying of branch intersections, scalable construction al-

gorithms that enable fast, highly optimized, or hybrid BVHs, and support for dynamic

geometry in animated scenes, leveraging their fast construction algorithms. Furthermore,

NVIDIA RTX GPUs are highly optimized for BVH traversal by making use of its RT

(Ray Tracing) cores [137]. Likewise, Vulkan and DirectX12 use BVHs as their acceleration

structures in their ray-tracing pipelines [67, 68].

4.4 Bounding Volume Hierarchies

After the previous introduction, the acceleration structure selected for this work’s ray-

tracing renderer was the bounding volume hierarchy (BVH). The implementation follows

mainly the description provided by Pharr et al. [11] and Meister et al. [76] while also

recurring to other authors for some specific explanations and details.

As discussed earlier, a BVH is a primitive subdivision algorithm that reduces the num-

ber of intersection tests by dividing primitives into a tree hierarchy of disjoint sets. Figure

4.8 shows both the scene’s primitive subdivision into bounding volumes and its resultant

tree hierarchy. Primitives are located at the leaf nodes of the tree. The root node repre-

sents the largest bounding volume that encompasses the entire scene, while the internal

nodes represent intermediate bounding volumes that enclose their respective child nodes.

Testing for a ray-primitive intersection requires checking against the bounding volumes at

the internal nodes. Consequently, if a ray does not intersect an internal node, the subtree

below it is omitted reducing the number of intersection tests.

An important characteristic of BVHs is that primitives are only instantiated once, that

is, there are no duplicates as in other acceleration structure methods [11]. In consequence,

its memory space requirements are bounded, needing a maximum of 2n− 1 nodes, n is the

number of primitives, to represent a binary tree hierarchy. The number of leaf and internal

nodes is n and n− 1 respectively. Furthermore, the number of total nodes can be reduced
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(a) (b)

Figure 4.8: Bounding Volume Hierarchy for a scene comprised of two spheres and three
triangles (a) For each primitive, a bounding box is computed and then these are added
together based on proximity forming a larger bounding volume. The largest bounding
volume encloses all other bounding volumes of the scene. The example also shows the
intersection of two bounding volumes enclosing the purple and cyan triangles. (b) The
bounding volume tree hierarchy with the root node representing the largest bounding
volume, followed by the internal nodes, and finally the leaf nodes containing the primitives.

if multiple primitives are stored at the leaf nodes.

4.4.1 BVH Construction

Meister et al. [76] mention two approaches for BVH construction, top-down and bottom-

up. In the top-down approach, the root node containing all the primitives is divided into

two subsets, which are then assigned to the node’s two children respectively. This process is

repeated recursively until the termination conditions are met, these usually are a maximum

tree depth or a maximum number of primitives per node. The bottom-up method is rather

considered a clustering algorithm. Initially, each primitive’s bounding volume is treated as

an individual cluster. The clusters are then merged by proximity into a larger bounding

volume whose surface area is the minimum to enclose them.

The implementation given by Pharr et al. [11] follows a top-down construction inspired
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in turn by Wald [81] and Gúnther et al. [34]. In summary, a top-down construction has

three steps: 1) computing the AABB for each primitive, 2) building the tree hierarchy

using a split function, and 3) converting the tree into an array-based representation that

is easier to traverse and does not require recursion. However, steps two and three can be

merged into one, directly computing an array representation of the three as done in [138].

4.4.2 Primitives Bounding Boxes

Computing a bounding box depends on the complexity of the primitive, for a sphere or

a triangle it is straightforward. Recalling from earlier, an AABB can be represented by

its minB and maxB bound coordinates. As such, the AABB that tightly encloses a sphere

with center c = (cx, cy, cz) and radius r is given by:

SphereAABB :
minB = (cx − r, cy − r, cz − r)

maxB = (cx + r, cy + r, cz + r).

In turn, for a triangle with vertices a = (ax, ay, az), b = (bx,by,bz), c = (cx, cy, cz)

the AABB is computed using the component-wise min and max operations as follows,

TriangleAABB :
minB = min(min(a,b), c)

maxB = max(max(a,b), c).

4.4.3 Split Methods to Construct a BVH

As discussed in [11, 76], there are three methods on how to partition a BVH tree node,

spatial median split, object median split, or a cost-based function split. The spatial median

split partitions the bounding box along a specific axis assigning the primitives of each

side to the corresponding left or right child node. In contrast, the object median split

sorts the primitives along an axis and then partitions them into two children nodes with

approximately the same number of primitives. This method is useful when all primitives

lie on the same side of the spatial splitting plane or all its centroids are located at the

same point. Pharr et al. [11] explain both of these methods more in-depth providing their

corresponding implementations.
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The two methods covered depend largely on the scene configuration and often generate

partitions that are not optimal [11]. As a result, more nodes are visited having a direct

impact on time traversal as more intersection tests are performed. Goldsmith and Salomon

[139] proposed a heuristic approach where the probability of a ray intersecting a bounding

volume depends on its surface area. MacDonald and Booth [140] later formalized the

method known as the surface area heuristic (SAH). The SAH estimates the performance

of an acceleration structure based on the cost traversal of internal nodes, leaf nodes, and

primitive nodes.

Meister et al. [76] mention that the cost of traversing a BVH is estimated based on the

number of operations required to find the first ray intersection. Given the BVH tree with

root N , its cost function is defined by the recurrence equation:

c(N) =


cT +

∑
Nc

P(Nc|N)c(Nc) if N is an interior node

cI |N | otherwise

where c(N) is the cost of traversing the subtree with root node N , cT is the cost of

traversing an internal node, Nc is a child of node N , P(Nc/N) is the conditional probability

of intersecting node Nc after having intersected node N , and |N | is the number of primitives

contained in the subtree with root node N . The values of cT and cI are implementation-

specific constants and express the average cost of ray-primitive intersection for a traversal

step [76, 81].

Furthermore, based on [11], the probability of traversing a child node is computed

using geometric probability notions [141]. Specifically, given the convex volume N of the

parent node, which encloses the convex volume NL of its left child node, the conditional

probability [142] of the ray intersecting the NL node after having intersected the N node

is given by the ratio of their surface areas (SA).

P(NL|N) = SA(NL)
SA(N)

where SA = 2 × (w × h + w × d + h × d) of the bounding volume. Replacing this result

into the recurrence equation and after unrolling it (finding its closed form), the following
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is obtained,

c(N) = cT

∑
Ni

SA(Ni)
SA(N) + cI

∑
Nl

SA(Nl)|N |
SA(N)

where Ni and Nl represent the interior and leaf nodes of a subtree with root node N .

Constructing an efficient BVH involves minimizing its cost of traversal. Unfortunately,

this translates into a global optimization problem to find an optimal node topology with

most of the algorithms being exponential regarding the number of primitives [143]. Wald

et al. [144], however, proposed a local greedy approximation for a recursive top-down

construction that yields excellent results. An explanation follows based on the description

provided by Pharr et al. [11].

The SAH cost function assumes that at any time instance, a leaf node could be created

for the current space region and its primitives. Therefore, if a ray traverses this region, an

intersection test will be performed for all its primitives having a cost of

n∑
i=1

tisect(i)

with n being the total number of primitives and tisect(i) the time required to test for ray

intersection with the i-th primitive. An alternative is to partition the region in two, where

testing for a ray intersection has a cost of

c(L,R) = ttrav + P(L|N)
|L|∑
l=1

tisect(l) + P(R|N)
|R|∑
r=1

tisect(r),

where ttrav is the time of traversing an internal node and determining which child node

the ray intersects, P(L|N) and P(R|N) are the conditional probabilities oh intersecting

a child node after intersection the parent node N , ri and li are the primitive indices in

each child respectively, and |L| and |R| the total number of primitives of each child. For

a given subtree, a collection of n primitives can be split between the two child nodes in

2n − 2 possible ways excluding the empty cases. Therefore, the procedure is to partition

each node of the BVH tree recursively, starting with the largest bounding volume, into two

child nodes while seeking the partition at the minimum cost.

An observation in BVH construction is that primitives are usually partitioned by an

axis-aligned plane across one of the three axes (x, y, or z). Furthermore, evaluating the
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minimum cost of the |N | − 1 partition planes separating each primitive along an axis

may still be costly, specifically at the largest bounding volume nodes that contain a larger

amount of primitives [76]. As a result, Wald et al. [144] proposed a method known

as binning, in which the axis is divided into b equally-extended bins to which primitive

centroids are projected. If a centroid lies in the partition plane of one bin, the primitive is

assigned to the next bin. The cost function is then evaluated only at the splitting planes

of each bin. Finally, the possible stop conditions are when |N | < 2 or when the minimum

cost partition cmin(L,R) is higher than creating a leaf with cost
|N |∑
i=1

tisect(ni).

The BVH tree implementation of this work follows the top-down approach using the

SAH heuristic and the binning partitioning scheme. The code for constructing the BVH

acceleration structure is located within the scene.c file in the main repository. Follow the

link provided in Appendix D for more details. It should be noted that the costs of ttrav

and tisect were set based on the results of Pharr et al. [11]. In this way, ttrav was set to 0.5,

and tisect(i) was set to 1.0 for all primitives based on the notion that the cost of traversing a

node, testing for AABB intersection, is less costly than testing for a primitive intersection.

4.5 The Global Illumination Problem

All the previous methods and code implementations presented earlier are the basics of

ray tracing and are often encompassed under ray casting. Ray casting focuses mainly on

determining object visibility across a pixel rather than global illumination [132]. However,

what is global illumination and how is it related to 3D rendering? In 3D rendering, a scene

is comprised of different objects, each having a size, location, and material, as well as the

position and characteristics of light sources. Creating a photorealistic render of a scene

should account for the behavior of light and its effect on the materials that comprise an

object’s surface [14].

Light propagates into a scene, reflecting, refracting, casting shadows, and scattering.

Global illumination accounts for all the light bouncing off objects and indirectly illuminates

other objects [14, 145]. For example, the sun’s rays can refract through a window onto a

kitchen countertop and then reflect off the cabinets or wall. These interactions may also

cast a shadow behind a flower pot on the countertop, or the light may refract through the
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flower pot if it is made of glass, illuminating other objects as well. Therefore, all these

objects are not illuminated directly by a light source, but indirectly by the multiple paths

that light rays can follow [146]. In summary, global illumination considers both direct and

indirect illumination across the scene.

Computing global illumination, however, is a complicated task that is solved by com-

bining physics and statistics. The following sections are devoted to presenting the theory

and notions used to solve this problem.

4.6 Radiometry

Global illumination algorithms aim to determine the steady-state distribution of light prop-

agating in a scene, that is, the balance between direct and indirect light interactions [14].

The physical quantities needed for these calculations come from radiometry. Radiometry is

the area of study concerned with the measurement of electromagnetic radiation, including

light [2]. Photometry, in turn, is responsible for quantifying the perception of light energy

(based on the human’s visual system) as summary values obtained from weighted sums of

radiometric measurements [14, 60]. Some of the mathematical and radiometric concepts

required are discussed below.

• Solid Angle

Whereas in 2D the angular extent is simply the angle between two directions with

the same origin, the solid angle is the angular extent representation in 3D. As such,

the solid angle is measured as the area A of a patch projected onto a sphere, divided

by the squared radius of the sphere [147].

ω = A

r2

Similar to its 2D counterpart, the solid angle is unitless, but the term steradians

(sr) is employed to differentiate it from other unitless metrics. The differential solid

angle can be derived from Figure 4.9, in which by fixing the angle θ and varying φ, a

circle of radius r sin θ is traced. Noticed that for an infinitesimal variation of rdφ, the

circular arc length is r sin θdφ. Then, by considering an infinitesimal small variation
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Figure 4.9: Representation of the differential solid angle for a sphere of radius r.

rdφ, the area formed by these variations of the angles can be expressed as,

dA = (r sin θdφ)(rdθ) = r2 sin θdθdφ

where dA denotes the differential area of an infinitesimal small patch projected into

the sphere. Considering the definition of solid angle, the differential solid angle can

be expressed as

dω = dA

r2 = sin θdθdφ.

Computing the solid angle involves integrating the differential solid angle over a

region of the unit sphere. Therefore, by integrating the differential solid angle over

the complete hemisphere, that is 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π it follows that,

ω =
∫ 2π

0

∫ π

0
sin θdθdφ

= −
∫ 2π

0
[cos θ]

∣∣∣π
0
dφ = −

∫ 2π

0
(−1− 1)dφ

= 2
∫ 2π

0
dφ = 2[φ]

∣∣∣2π

0
= 2(2π − 0)

= 4πsr

where 4πsr represents the total solid angle of a unit sphere.

• Radiant Energy

Radiant energy can be understood as the amount of energy carried by photons emit-

ted from a light source t [11, 147]. It is denoted by Q(t) and is measured in Joules
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(J). In this regard, a photon of wavelength λ carries energy,

Q = hc

λ
,

where c represents the speed of light 299, 472, 458 m/s, and h corresponds to Planck’s

constant, h ≈ 6.626× 10−34 m2 · kg · s−1 [45].

• Radiant Flux

Radiant flux or radiant power, denoted as Φ(t) represents the total amount of energy

reflected/absorbed by unit time and is measured in watts (W ) ( 1W = 1J/s) [11, 147].

Radiant flux is represented as

Φ(t) = dQ(t)
dt

.

Moreover, integrating radiant flux over a range of time gives the total radiant energy.

Q =
∫ t1

t0
Φ(t)dt.

• Radiant Intensity

For a point light source centered at the unit sphere (r=1), the amount of radiant flux

reflected per solid angle is referred to as radiant intensity (I) [11, 14, 147], Figure

4.10 presents an illustration of this concept. As such, radiant intensity is represented

as

I = dΦ
dω

with its units being (W/sr). Note that for the hemisphere of directions, the radiant

intensity is just,

I = Φ
4π .

• Irradiance

Irradiance is the incident radiant flux as a function of surface position p and is

denoted as E(p). In other words, irradiance is understood as the amount of light
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Figure 4.10: Radiant intensity (I) of a light source.

received per unit surface area [2, 14, 147]. As such, it is calculated as the derivative

of radiant flux regarding a differential surface area, such that,

E(p) = dΦ(p)
dA

,

with its units being (W/m2). Moreover, when integrating irradiance over a differential

surface area centered at p, the radiant power is obtained.

Φ =
∫

A
E(p)dA.

Consider the example presented in Figure 4.11 in which a light source is located at

a point l emitting I watts per steradian in all directions. The goal is to compute the

irradiance at a surface patch located at p. The angle θ formed between the normal n

of the surface patch and the direction vector of the light source is l′ = l−p, with its

length being r = ||l′||. However, if the surface normal does not point at q, the notion

of foreshortening must be considered. Foreshortening represents the reduction of the

projected area as seen from a particular point. Notice that as the differential surface

normal n rotates away from the normalized direction vector l′, the surface patch as

observed from point q becomes smaller. That is, the solid angle is projected into a

smaller area of a sphere centered at q and radius r = ||l′||, with the projected area
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Figure 4.11: Irradiance incident to an infinitesimal patch S with area dA.

said to be foreshortened. Therefore, for differential surface area dA with a normal n

rotated an angle θ away from l′, the solid angle becomes

dω = dA cos θ
r2

where dA′ = dA cos θ represents the foreshortened differential area. In this regard,

from the definition of radiant intensity and the notion of foreshortened area, the

surface patch located at p receives an irradiance of

E(p) = dΦ(p)
dA

= Idω

dA
= I

dA

dA cos θ
r2 = I cos θ

r2 .

From this result, it is observed that the illumination received by a surface, its irradi-

ance, is inversely proportional to the square of the distance from the light source. In

other words, as the distance between the light source and the surface patch increases,

the irradiance decreases. Likewise, as the normal of the surface patch rotates away

from the direction vector bml′, the radiant intensity at the surface will be smaller.

Therefore, when the surface patch is oriented perpendicular to the direction of the

light source, the maximum irradiance is obtained. As the surface patch inclines to-

wards the grazing angle, the irradiance decreases until it reaches zero.
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• Radiant exitance

Radiant exitance or radiosity (B), is the exiting radiant power per unit surface area

[14]. In this regard, light received at the surface of an object is associated with

irradiance, and light reflected from a surface, as a function of surface position p, is

linked to radiant exitance. As such,

B(p) = dΦ(p)
dA

.

• Radiance

Irradiance and radiant exitance determine the differential radiant power per differ-

ential surface area at a point p. Nonetheless, these quantities do not consider the

directional distribution of power. Consequently, the radiometric quantity that mea-

sures irradiance or radiant exitance for a differential solid angle is known as radiance

(L). As such, radiance is a measure of incident/reflective radiant power by a sur-

face in a particular direction. In this regard, it is a function of position p and a

normalized direction vector d, denoted as L(p,d). An important consideration is

that radiance is defined for a surface perpendicular to the normalized direction of

incidence/reflection di/do and can be derived from irradiance or radiant exitance as

follows,

L(p,di) = dE(p)
cos θidω

, cos θi = n · di

L(p,do) = dB(p)
cos θodω

, cos θo = n · do.

Another notation will be Li(p,di) and Lo(p,do) to denote radiance due to incident or

reflective radiant power respectively. In terms of flux, radiance is defined as radiant

power per unit foreshortened surface area per unit solid angle (W ·m−2·sr−1) [14, 147],

such that,

L(p,do) = d2Φ
dA cos θdω , cos θ = n · do.

Likewise, radiant exitance represents the integral of surface radiance across the hemi-
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Figure 4.12: Radiance representation in terms of radiant flux defined as the radiant power
per unit foreshortened surface area per unit solid angle along the direction of reflection do

sphere of reflective directions. The same follows for irradiance, representing the in-

tegral of surface radiance across all the incident directions. Therefore, it follows

that,

B(p) =
∫
do∈Ω

L(p,do) cos θodω,

E(p) =
∫
di∈Ω

L(p,di) cos θidω,

where Ω represents the hemispheres of either reflective or incident directions around

point p. Finally, the radiant power can also be integrated from radiance as follows,

Φ =
∫

A

∫
do∈Ω

L(p,do) cos θodωdA.

Among all radiometric quantities, radiance becomes essential in rendering. The color

visible through a pixel is directly proportional to the radiance at the surface point

visible through that pixel.

4.6.1 Light Source Representation

Representing light sources in a scene requires defining their attributes, primarily the shape.

In this sense, there are several models of light sources, such as point, distant (or directional),
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spotlight, area, and environmental, among others [11]. Perhaps the most known model is

the point light source, represented by a 3D point in space that illuminates in all directions

[2, 60]. A distant light could be understood as a point light located at infinity and is

characterized by all its rays being parallel, meaning, it has no position but rather a direction

[2, 11]. A clear example is the Sun, which although it is not located at infinity, its light

rays reach the Earth as if they were parallel due to their great distance, appearing to have

the same direction.

Spotlights are a variation of point lights, emitting light in a cone of directions originating

at a point [2, 11]. These are represented by an origin (position of the light source) and

a direction called the spot direction [2, 12]. Area lights, in turn, could be represented

by polygons, polygon meshes, or the surface area of volumes such as spheres or cylinders

[11, 12, 60]. Finally, infinite area lights encompass light sources that surround the entire

scene [11]. These are especially useful for simulating the lighting of an environment, such

as the sky, casting light into the scene from every direction. A derivation of infinite area

lights is known as image infinite lights, or more broadly, image-based lighting [11, 148].

In this scenario, the objects in a scene are illuminated by the incoming light of images

mapped to a volume, such as a sphere or cube, covering the scene.

4.6.2 Light-Surface Interactions

Surface materials interact with light in different ways, some are mirror-like while others are

diffuse (scatter light in different directions) [14]. The material’s color depends largely on

which wavelengths it absorbs and which wavelengths it reflects [147]. Generally speaking,

light can be absorbed by a surface with an angle ψ at a point p and can exit at a position

q ̸= p with an angle θ [14]. A function describing this behavior of light is known as

bidirectional surface scattering reflectance distribution function or BSSRDF [11]. Materials

can also emit light at different wavelengths and after a time period, accounting for two

phenomena known as fluorescence and phosphorescence respectively [14].

Assuming that light is reflected, exits at the same point of incidence, with the same

wavelength, and at the same time, allows for the definition of a simpler function known as

a bidirectional reflectance distribution function (BRDF) [11, 14, 147]. If the light is instead
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refracted by the material the function is known as bidirectional transmission distribution

function (BTDF) [11, 60].

4.6.3 Reflectance and BRDF

Ganovelli et al. [12] provide an important connotation, explaining that surface reflec-

tion can be described with two properties, reflectance or a BRDF. Hemispherical surface

reflectance or simply reflectance, denoted as ρ, determines the ratio of reflected radiant

power to incident radiant power, Φo/Φi, or also as the ratio of radiant exitance to incident

irradiance, B/E. However, reflectance is direction-independent, that is, it does not con-

sider the incident direction of irradiance nor the reflected direction of radiant exitance. In

consequence, this property is only useful for diffuse materials.

Directional hemispherical reflectance, on the other hand, takes into account materials

that reflect light as a function of incident direction. In this regard, to differentiate it from

reflectance, it is denoted with the same symbol ρ but as a function of an incident direction

di such that,

ρ(di) = B

Edi

.

Finally, there are materials whose reflected radiance is not uniform across the hemisphere

of directions Ωo and is dependent on the incident direction of irradiance. As such the

function that describes this surface is bidirectional regarding the incident and reflected

directions. This function is formally known as the bidirectional reflectance distribution

function (BRDF). Formally, a BRDF at a point p is defined as the ratio of differential

radiance reflected towards an exciting direction do regarding the differential irradiance

incident to the differential surface area at p through a differential solid angle with direction

di.

BRDF: fr(p,di,do) = dL(p,do)
dEdi

(p)

Based on the relation between differential irradiance and reflected radiance, that is,

dEdi
(p) = L(p,di) cos θidω,
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Figure 4.13: Bidirectional Reflectance Distribution Function (BRDF) formed by the zenith
angles, θi and θo, and the azimuth angles, θi and θo. A BRDF fr is said to be 4-
dimensional, but can also be represented in terms of the direction vectors di and do,
such that fr(θi, θo, θi, θ0) = fr(do,di)[11, 12].

the formal definition of a BRDF can be rewritten in terms of radiance only,

fr(p,di,do) = dL(p,do)
L(p,di) cos θidω

.

A relation between directional reflectance and a BRDF can be derived based on its

formal definitions and previous radiometric quantities; consider the differential surface

area at point p implicit.

ρ(di) = B

Edi

=

∫
do∈Ω

L(do) cos θodω

Edi

=
Edi

∫
do∈Ω

fr(di,do) cos θodω

Edi

=
∫
do∈Ω

fr(di,do) cos θodω.

Continuing, BRDFs that take into consideration the physical properties of energy are

known as physically-based. In this regard, physically-based BRDFs comply with two prop-

erties, reciprocity, and energy conservation [11]. Reciprocity imposes that the BRDF value
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is independent of the incident and emitting directions, meaning that if the direction vec-

tors di and do are switched the BRDF value remains the same. This property is formally

known as Helmholtz reciprocity and is denoted as

fr(di,do) = fr(do,di).

Second, the law of conservation of energy states that energy can neither be created nor

destroyed, but only transformed from one form to another [45]. Accordingly, a physically-

based BRDF ensures that the radiant power reflected over all directions is less than or

equal to the radiant power incident to the surface [11]. The formal concept as explained

in [14] can be expressed as

∫
do∈Ω

fr(di,do) cos θodw ≤ 1.

4.6.4 Diffuse and Specular Reflections

For a given irradiance distribution, a diffuse material’s reflected radiance is independent

of the reflected direction [14, 147]. That is, the reflected radiance of a diffuse material is

constant, fr(di,do) = fr = constant, in all directions having a matte aspect [147]. Purely

diffuse materials follow Lambert’s cosine law, which states that the reflected radiance of

a diffuse surface is directly proportional to the cosine of the angle between the surface

normal and the direction of the incident light [12]. Recall from earlier, that materials

whose reflections are direction-independent are properly explained by the reflectance ρ

property. Taking this into account and building on the directional reflectance BRDF, it

Figure 4.14: Diffuse, specular, and glossy reflections.
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follows that,

ρ = ρ(di) =
∫
do∈Ωo

fr(di,do) coso θdω =
∫

Ω
fr cos θdω

= fr

∫ 2π

0

∫ π/2

0
cos θ sin θdθdφ = fr

∫ 2π

0
dφ ·

∫ π/2

0
cos θ sin θdθ

= fr

∫ 2π

0
dφ ·

∫ 1

0
udu, u = sin θ, du = cos θdθ

= fr · 2π ·
u2

2
∣∣∣1
0

= frπ

meaning that the BRDF for a diffuse material is ρ/π.

Specular reflections, in turn, account for the direction-dependent component of light

[14]. Surfaces that reflect light with the same angle of incidence are known as ideal specular

surfaces and act like mirrors. Taking into account the optics of light [45], the reflection

direction r (often referred to as mirror reflection direction) of an ideal specular surface is

computed based on the incident direction di and the normal n at the surface as

r = 2(n · di)n− di.

For non-ideal specular surfaces, also known as glossy surfaces, the specular direction in

which light is reflected is partially diffused forming a small lobe of possible directions

centered around the reflective direction r [12]. Formulating a BRDF that correctly shapes

the physical behavior of specular materials is complicated and will be discussed below.

Lastly, Figure 4.14 presents an illustration of how diffuse, fully specular, and glossy surfaces

reflect light.

4.7 The Rendering Equation

Global illumination, as previously mentioned, is intended to compute the steady state of

the light distribution in a scene. Additionally, the reflection properties of a surface can be

approximated by a BRDF. In this sense, and building on the definitions of radiance and

the BRDF, the rendering equation determines the radiance of the reflected surface along a
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specific viewing direction. The rendering equation was formally introduced by Kajiya [95]

and is fundamental for solving the global illumination problem.

The hemispherical formulation of the rendering equation provides an intuitive intro-

duction following the concepts reviewed earlier [14]. The total outgoing radiance leaving

a surface at a point p towards a direction do can be expressed as the sum of the emitted

radiance of the surface denoted as Le(do) and the reflected radiance Lo(do), such that,

L(do) = Le(do) + Lr(do).

From the definition of a BRDF, it follows that,

fr(di,do) = dLr(do)
L(di) cos θidω

→ dLr(do) = Li(di)fr(di,do) cos θidω

→ Lr(do) =
∫
di∈Ω

L(di)fr(di,do) cos θidω.

Then, the rendering equation can be expressed as

L(do) = Le(do) +
∫
di∈Ω

fr(di,do)L(di) cos θidω.

Nonetheless, if the surface material does not emit light (i.e. it is not a light source) then

the surface emitted radiance term can be ignored. In addition, if the only light source in the

scene is a point light source, the integral through the hemisphere of incoming directions is

omitted, since there is only one direction of incoming light, further simplifying the model.

Under such assumptions, the rendering equation can be rewritten as,

L(do) = L(di)fr(di,do) cos θidω.

4.8 Shading Models

The route followed in this work introduces different concepts important to ray tracing,

such as the radiometric quantities of light and their relation with the global illumination

problem. Understanding each topic is essential and will allow us to finally implement
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shading models incorporating the reviewed concepts to light up the objects presented in

the scene.

4.8.1 Phong Model

The most popular shading model was introduced by Phong [119], which was empirically

designed and provides a good balance between simplicity and realism in terms of rendering.

The Phong model is comprised of three components, ambient, diffuse, and specular,

L = kaLa + kdLd + ksLs,

where the constants ka, kd, and ks define the color and reflection properties of the material.

For instance, setting ka = 0, kd = 1, ks = 0 means that the surface is entirely diffuse, while

ka = 0, kd = 0.7, ks = 0.3 means that the surface is partially diffuse and partially specular

which can simulate a surface like varnished wood. However, the model is not physically

based, as the sum of all components may be greater than 1, failing to follow the law of

conservation of energy. This is observed when accounting for the ambient component, used

to replace the effect of indirect illumination by a constant radiance term Lambient that looks

to simulate the inter-reflections of light between the objects in the scene [12, 60].

The diffuse component considers that the reflected radiance is dependable only on the

incident direction. As such, the maximum reflected radiance occurs when the incident

radiance direction di is perpendicular to the surface, and declines as the angle between

the surface normal increases, which can be formulated as cos(θ) = n · di. Then the diffuse

radiance term can be expressed as:

Ldiffuse = Li cos(θ).

Specular reflections, as mentioned previously, depend both on the incident and reflection

directions of radiance. Ideal specular surfaces reflect light only along the mirror direction

r whereas glossy surfaces reflect light along a lobe of possible directions centered at r. A

clear example of an ideal specular surface is polished metal as it reflects light only around

the mirror direction. In rendering, the interest lies in those reflections that are visible
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to the camera and have direction v = c− p
||c− p||

, where c represents the camera location

in world coordinates and p is the surface point from which radiance is reflected. In this

regard, Phong formulated the specular radiance along the direction vector v as,

Lspecular = Licos(θ)ns ,

where θ is the angle between the viewing direction v and the mirror reflection direction r.

The term ns > 1 is known as shininess, and models the specular highlight falloff, meaning

the larger its value the closer the specular reflection is to the mirror reflection [12, 119]. In

simpler words, the shininess term ns determines how wide the specular lobe is, with higher

values narrowing the lobe of reflections to that of the only mirror reflection r. Then the

Phong model can be written as,

L = kaLa + Li(kd(n · di) + ks(r · v)ns).

There is a missing piece in this puzzle, where is the color component? Recall that

visible light propagates in the form of waves with different wavelengths. When considering

the electromagnetic spectrum of light, a wavelength is associated with a specific color

perceived by the three cone photoreceptors (S-blue, M-green, and L-red) in our eyes. In

computer graphics, the RGB model represents color as perceived by our eyes using a triplet

of normalized values between 0 and 1, each representing the intensity of the red, green,

and blue wavelengths.

In this way, in rendering radiance being wavelength dependent is treated as a triplet

of RGB colors, L = (LR,LG,LB) [12, 60]. Additionally, for the Phong model, each

component (ambient, diffuse, and specular) is given a specific color expressed as an RGB

triplet (ca, cd, and cs) such that,

L = kacaLa + Li(kd(n · di)cd + ks(r · v)nscs).

For example, a grey ambient color (0.6,0.6,0.6) , an orange diffuse color (1.0,0.6,0.0)

, and a white specular color (1.0,1.0,1.0). Moreover, by setting the coefficients of each

component to be ka = 1, kd = 0.8, ks = 0.2 and La = Li = (1.0, 1.0, 1.0), the Phong model
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Figure 4.15: Blinn-Phong model where the half vector h prevents from calculating the
reflection vector r.

output radiance can be expressed as,


LR

LG

LB

 =


0.6

0.6

0.6

+ (n · di)


0.8

0.48

0.0

+ (r · v)ns


0.2

0.2

0.2

 .

4.8.2 Blinn-Phong Model

Blinn [149] improves upon the work of Phong by introducing an important optimization to

the model. From Figure 4.15 it is noticed the direction vector h represents the normalized

half vector between di and v and is computed as,

h = di + v

||di + v||
.

Observe that, when the view direction v is equal to the mirror direction r, the half-vector

h is equal to the normal vector n. In other words, the angle ψ formed between the normal

vector n and the half-vector h is a measure of how distant the viewing direction v from the

mirror direction r. Therefore, the mirror reflection vector r can be omitted, and instead

the dot product n · h is employed to compute the specular term of the Phong shading

model.

L = kacaLa + Li(kd(n · di)cd + ks(n · h)nscs).
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4.9 Physically Based Models

From the Phong model, it is known that a surface illuminated from an incident direction will

reflect light across all directions with a max peak around the mirror direction. Nonetheless,

several observations showed that for rough surfaces the mirror direction was not the peak

direction [60]. Because the Phong model is empirical, the reflection properties of the

rendered surfaces may differ from their real counterparts [12]. The solution is to turn to

the field of geometrical optics in physics and adapt the physically based models already

developed. One of these models was developed by Torrance and Sparrow [150] and describes

off-mirror peaks for both metallic and non-metallic surfaces. However, before describing

this model, an introduction to the Fresnel equations is given that will become handy later.

4.9.1 The Fresnel Equations

The Fresnel equations describe the reflection and refraction of light as it travels from one

medium to another, from air to water for instance [11, 60]. When considering light’s

waveform propagation, it can be differentiated into polarized and unpolarized light [45].

Polarized light can be associated with waves whose oscillation occurs along a specific axis-

plane perpendicular to the direction of travel, whereas in unpolarized light, waves oscillate

at random angles but still perpendicular to the direction of travel [45]. The Fresnel equa-

tions, as such, relate the amplitude of the reflected light wave to that of the incident light

wave. This proportion is determined based on the indices of refraction of the participating

media, η1 and η2, and the angle of incident light θi and refracted light θt also referred to

as transmitted light [11]. The Fresnel equations are then divided into,

R∥ =
∣∣∣∣∣η1 cos θi − η2 cos θt

η1 cos θi + η2 cos θt

∣∣∣∣∣
2

R⊥ =
∣∣∣∣∣η1 cos θt − η2 cos θi

η1 cos θt + η2 cos θi

∣∣∣∣∣
2

where R∥ and R⊥ account for the reflectance of parallel and perpendicular polarized light

regarding the point of incidence (boundary of the two media). To differentiate them from

the reflectance term ρ reviewed earlier, these are referred to as Fresnel reflectance terms.
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The angle of refracted light is computed based on Snell’s law [45] which states that the

ratio between the incident sine angle and refraction sine angle is equal to the ratio of the

index of refraction of the second medium with regard to the first medium:

sin θi

sin θt

= η2

η1

which is also expressed as,

η1 sin θi = η2 sin θt.

Nonetheless, polarized light is imperceptible for humans or cameras if not using a spe-

cialized polarized filter [11]. In this way, because unpolarized light is the superposition of

multiple polarized waves, the reflectance of unpolarized light is expressed as the average

of R∥ and R⊥,

R = R∥ +R⊥

2 .

An alternative to computing the Fresnel equation for unpolarized light is to use the ap-

proximation developed by Schlick [151] which is formulated as,

F = R0 + (1−R0)(1− cos θ)5.

The term R0, often referred to as base reflectance, represents the surface material’s specular

reflectance at normal incidence, that is when the incident light is perpendicular to the

surface. For dielectrics or non-metals (e.g., wood, glass, plastic), the base reflectance term

is computed as:

R0 =
(
η2 − η1

η2 + η1

)2

.

where η1 is often set to be the index of refraction in vacuum (which is 1), and η2 is the index

of refraction of the medium with which light interacts. The base reflectance term for metals

is computed differently, as it involves complex values. In this sense, when considering these

materials in rendering, a table of pre-calculated R0 values for different materials is used.

Since specular reflectance is wavelength dependent, it can be encoded with an RGB triplet

representing the proportion of red, green, and blue light perceived by our eyes [3]. Table

4.2 shows some common base reflectance values for different materials.
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Table 4.2: Base reflectance F0 values for different materials. Each value is expressed as a
normalized RGB triplet in the ’Linear’ column and its respective integer 8-bit representa-
tion in the ’Texture’ column. Values with just one term indicate a triplet with the same
value in all components. Moreover, only one value was picked for those materials whose
reflectances are represented in ranges. All values were obtained from [2, 3].

Material Linear Texture Color

Water 0.02 39
Skin 0.028 47

Fabric 0.04-0.056 56-67
Plastic/Glass 0.04-0.05 56-63

Gems 0.05–0.08 63–80
Diamond-like 0.13-0.20 101–124

Iron (0.56, 0.56, 0.57) (198, 198, 200)
Copper (0.95, 0.64, 0.54) (250, 209, 194)
Gold (1.00, 0.78, 0.34) (255, 229, 158)

Aluminum (0.91, 0.92, 0.92) (245, 246, 246)
Silver (0.97, 0.96, 0.91) (252, 250, 245)

4.9.2 Torrance-Sparrow Model

The Torrance-Sparrow model is based on the theory of microfacets [3], which represents a

surface as a collection of tiny mirrors randomly oriented. If a small differential area on a

surface is considered, the normal of that differential patch is said to be n. However, when

considering the microfacet aspect, the normal n represents the average alignment of the

microfacet normals and is referred to as the macroscopic normal [152].

The Torrance-Sparrow model considers that the microfacets are in pairs forming a “∨”

shape and can have different slopes [3, 60]. Furthermore, the diffuse component of the

reflected light is the result of multiple inter-reflections between the microfacets, while the

specular component is associated with those microfacets whose normals are aligned with

the h vector [149]. In this way, the specular component of the BRDF can be expressed as

the combination of four factors,

Ls = DGF

4(n · l)(n · v) .

The D term represents the distribution of microfacet normals in the surface, G accounts for

the effect by which microfacets shadow or mask each other, and F is the Fresnel equation
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for unpolarized light [12]. The division by 4(n · l)(n ·v) accounts for both the incident and

reflected projected areas of radiance. The representation of the D used in the Torrance-

Sparrow model is the Gaussian distribution

D = e−(γc)2
.

As such, the D component represents the statistical distribution of microfacet normals

oriented at an angle γ of the average normal n. Remember that the specular reflection of

interest is that for which the microfacet normals are oriented with the half vector, then

γ = cos−1(n ·h). The c factor represents the standard deviation of the distribution and is

a surface material property [149].

The termG is known as the geometrical attenuation factor. It describes how microfacets

can block some of the reflected light reducing the outgoing radiance causing a masking

effect, or can block some of the incoming radiance at a point causing a shadow effect.

Figure 4.16 presents a surface both at the macroscopic level as a smooth line and at the

microscopic level comprised of different microfacets, the effects of masking and shadowing

are also illustrated. Continuing, the G term is then a value between 0 and 1, representing

the fraction of light that remains after masking and shadowing effects, which is 1 when all

the incident radiance is reflected [12]. The G term is then computed as,

G1 = 2(n · h)(n · v)
v · h

,

G2 = 2(n · h)(n · l)
v · h

, l = di

G = min(1, G1, G2)

where G1 accounts for the masking effect and G2 for the shadowing effect. Blinn [149]

provides a good explanation of how both components are calculated. Finally, the Fresnel

equation F term used in the Torrance-Sparrow model differs from the one reviewed earlier,

having the following form,

F = 1
2

(g − c)2

(g + c)2

(
1 + (c(g + c)− 1)2

(c(g − c) + 1)2

)
,
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Figure 4.16: Microfacet representation of a surface based on the Torrance-Sparrow model.
The incident radiance direction di is represented as l. The masking effect is shown on the
left side while the shadowing effect is on the right side, notice that l and v are interchanged
but h remain the same.

where

c = h · v

g =
√
n2 + c2 − 1.

If the light incidence is normal, c = 1 and g = n, where n represents the second medium’s

index of refraction. As such, it can be computed from the formula of base reflectance by

considering that the first medium corresponds to a vacuum.

R0 = (n− 1)2

(n+ 1)2

→ n = 1 +
√
R0

1−
√
R0

4.9.3 Cook-Torrance Model

In the following years, Cook and Torrance [153] adapted the physically based Torrance-

Sparrow model into computer graphics. This model considers that surfaces are not ideal

Lambertian nor ideal specular, but rather a linear combination of both. In this respect,

it also considers glossy reflections, following the idea that a surface is a set of distributed

microfacets. This approach in the difference of specular reflections can be employed to

simulate different materials. Plastics, for example, specularly reflect light with the same

spectral distribution as the light source, while metals tint the reflected light with their
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color. The model is also comprised of three components (ambient, diffuse, and specular),

and is formally expressed as

L = Laρa + Li(kdfr,d + ksfr,s(di, v))(n · di)dω.

The values of kd and ks represent the proportion of the diffuse and specular radiance

reflected, where kd + ks = 1. The ρa term accounts for the indirectly received light of the

ambient as a reflectance value. The terms fr,d and fr,s represent the diffuse and specular

BRDFs of the model. Recall from earlier, that the BRDF of a diffuse material is direction-

independent and reflects light uniformly across the hemisphere of directions. It is defined

as fr,d = ρd/π, where ρd denotes diffuse reflectance of the material. The specular BRDF

in turn, is the one developed in the Torrance-Sparrow model, this being,

fr,s = DGF

4(n · l)(n · v) .

Thus, the Cook-Torrance BRDF is defined as fr(di,v) = kdfr,d + ksfr,s(di, v). Recall the

Fresnel equation term F , calculated as,

F = 1
2

(g − c)2

(g + c)2

(
1 + (c(g + c)− 1)2

(c(g − c) + 1)2

)
,

where c = n · v, g =
√
n2 + c2 − 1, and n =

1 +√ρs

1−√ρs

. Note that the specular reflectance

at normal incidence is represented in the literature as R0 or F0, however, to maintain

consistency across the notation used, it will be more congruent to define it as ρs. The

same change in notation can be applied to the Fresnel-Schlick approximation.

Different physical BRDFs derive from the Cook-Torrance BRDF, using alternative func-

tions to compute the specular component. Table 4.3 presents different functions employed

to calculate each component of the specular BDRF. Moreover, these variations are often

based on the metalness-roughness workflow [2, 3], which specifies the characteristics of a

material in terms of its metalness and roughness. The metalness property m is either 0

or 1, where m = 0 denotes a dielectric material and m = 1 is a metallic material. On the

other hand, the roughness parameter r determines the degree of distribution of microfacets

on the surface, which affects the sharpness of the specular highlight [3]. It is defined as a
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value between 0.0 and 1.0, where r = 0.0 describes a perfectly smooth surface, and r = 1.0

is a rough surface.

Table 4.3: Alternative functions for computing the statistical distribution of microfacet
normals D, and the geometric attenuation factor G. For the computation of D, the vector
m represents the microfacets normals. When computing G, the vector s represents either
v or l to account for the effect of masking or shadowing, respectively. The value of α is
equal to the squared roughness.

Beckman [154] D(m) = 1
πα2(n ·m)2 exp

(
(n ·m)− 1
α2(n ·m)2

)
Trowbridge-
Reitz/GGX [155] D(m) = α2

π((n ·m)2(α2 − 1) + 1)2

GGX Anisotropic
[152] D(m) = 1

παxαy

1(x ·m)2

α2
x

+ (y ·m)2

α2
y

+ (n ·m)2

2

Neumann [156] G(l,v,h) = (n · l)(n · v)
max(n · l,n · v) .

Kelemen [157] G(l,v,h) = (n · l)(n · v)
(v · h)2 .

Smith-GGX [152]
G(s) = 2(n · s)

(n · s) +
√
α2 + (1− α2)(n · s)2

, such that,

G = G(l)G(v)

Schlick-GGX [158]
G(s) = n · s

(n · s)(1− k) + k
, k = α

2 , such that, G =

G(l)G(v)
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4.10 Path Tracing

Radiometry serves as the backbone of global illumination by explaining how light reflects

off surfaces, which is fundamental to understanding the rendering equation and its various

components. With radiometry established, we are now one step closer to solving the global

illumination problem. The final aspect to address involves the conveyance of light from

one point to another. To explore this, let us revisit the rendering equation while ignoring
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the emission term, such that,

L(do) =
∫
di∈Ω

fr(di,do)L(di) cos θidω.

The integral over the hemisphere of incident directions Ω implicitly accounts for all direct

and indirect incoming radiance, where

L(di) = Ldirect(di) + Lindirect(di).

As such, direct radiance accounts for light that is coming directly from a light source,

whereas the indirect component considers all incident radiance resulting from the different

inter-reflections of light from the other surfaces in the scene. Then, the rendering equation

can be split to account for direct and indirect radiance independently, such that,

L(do) =
∫
di∈Ω

fr(di,do)Ldirect(di) cos θidω +
∫
di∈Ω

fr(di,do)Lindirect(di) cos θidω.

This latter representation of the rendering equation can be simplified even more by as-

suming that there is a finite number of point light sources in the scene, which is expressed

as,

L(do) =
N∑

i=1
fr(di,do)Ldirect(di) cos θi +

∫
di∈Ω

fr(di,do)Lindirect(di) cos θidω.

Despite the different reformulations and simplifications, the rendering equation remains

difficult to solve due to the indirect component.

Path Tracing is one of the proposed solutions, introduced by Kajiya [95] along the ren-

dering equation. Path tracing is a probabilistic method that sends rays from the camera and

traces paths to a light source or until a determined number of bounces/inter-reflections is

reached. The method is based on Monte Carlo integration and is employed to approximate

the integral regarding the indirect radiance term [14, 28]. Monte Carlo integration consists

of selecting N random samples xi over the domain of the integral, where the probability

density function (PDF) [142] of selecting one sample is p(xi) such that,

∫
f(x)dx ≈ (b− a) 1

N

N∑
i=1

f(xi)
p(xi)

, a ≤ xi ≤ b.
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This notion can be applied to approximate the indirect term of the rendering equation,

resulting in the following,

∫
di∈Ω

fr(di,do)Lindirect(di) cos θidω ≈
1
N

N∑
i=1

(
fr(di,do)Lindirect(di) cos θidω

p(di)

)

where p(di) describes the probability density of selecting that direction in specific. In

this way, the problem is reduced to a finite number of sampling directions. However,

since Lindirect(di) is unknown, a ray is traced according to the surface’es BRDF[28]. Thus,

computing the rendering equation can be divided into two parts: determining the direct

incident radiance from a light source and tracing rays based on the surface’s BRDF to

account for indirect incident radiance. Later, we will see that when using an infinite area

light source, sampling directions for direct illumination becomes unnecessary.

4.10.1 Indirect Illumination

As previously discussed, the Monte Carlo integration method samples a finite number

of incident directions to approximate the contribution of all incoming indirect radiance.

However, sampling for incident directions requires considering the BRDF of the surface

material. Given the Cook-Torrance BRDF, a material can have diffuse and specular re-

flections, where the contribution of each is given by their respective coefficients kd and ks.

By using a physically-based BRDF, the indirect term of the rendering equation can be

rewritten as,

L =
∫
di∈Ω

(
kd
ρd

π
+ ks

NDF

4(n · l)(n · v)

)
L(di) cos θidω

=
∫
di∈Ω

kd
ρd

π
L(di) cos θidω +

∫
di∈Ω

ks
NDF

4(n · l)(n · v)L(di) cos θidω.

Dutre et al. [14] explain that sampling the previous form of the indirect term can be done

as follows:

1. Constructing a discrete PDF p(di) for three events, whose probabilities are q1, q2,

and q3, such that, q1 + q2 + q3 = 1. The three events determine which component of

the BRDF to be sampled, where q1 accounts for the diffuse component. q2 accounts
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for the specular component, and q3 can be considered the event of absorption.

2. The sampling incident direction is then computed either with p1(di) or p2(di), which

represent the PDF of the diffuse and specular BRDF components, respectively.

3. Select the event the sampled direction di represents, where the estimator is



kd
ρd

π
L(di) cos θi

q1p1(di)
, if event 1

ks
NDF

4(n · l)(n · v)L(di) cos θi

q2p2(di)
, if event 2

0, if event 3

Dutre et al. [14] also comment that an alternative is to consider the sampled direction

di to be generated by a single distribution and approximate the indirect radiance integral.

Then, the Monte Carlo estimator has the following form,

1
N

N∑
i=1


(
kd
ρd

π
+ ks

NDF

4(n · l)(n · v)

)
L(di) cos θi

q1p1(di) + q2p2(di)

 ,

where q1p1(di) + q2p2(di) accounts for the PDF of the entire estimator. In this regard,

selecting whether to sample a direction for the diffuse or specular component can be solved

by generating a random number ξ and sample diffusely if ξ < q1 or specularly otherwise.

Sampling a direction di for a diffuse material must follow Lambert’s law to contribute

to the reflected radiance [14, 28]. Remember that, Lambert’s law states that the radiance

reflected by a diffuse material is proportional to the cosine of the angle between the surface

normal and the direction of the incident light [12]. Then, the PDF p(di) for a diffuse

material should be cosine should be proportional to cos θi, reducing the number of sampled

directions that are close to the horizon of the hemisphere where cos θi = 0 [14]. Considering

the properties of a continuous PDF [142], the integral over the hemisphere of directions

should be equal to 1. In this sense, for a direction di sampled uniformly, p(di) will be

constant as any direction has the same probability of being sampled. However, the PDF
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should be proportional to the cosine of the angle, p(di) = C cos θi. Then, p(di) is integrated

over the hemisphere of directions to find the constant C, such that,

∫ π/2

0
p(di) cos θdω = 1

→
∫ π/2

0
C cos θdω = 1

→ C
∫ 2π

0

∫ π/2

0
cos θ sin dθdφ = 1

→ Cπ = 1

→ C = 1
π
.

Thus, the normalized PDF for sampling directions on a diffuse surface is p(di) = cos θi/π =

(n · di)/π. Lastly, to generate a random direction di with a cosine distribution [28, 159]

the following steps are followed,

1. Generate two random number ξ1 and ξ2 between [0,1].

2. Generate φ between [0, 2π], φ = 2πξ1.

3. Generate z between [0, 1], z =
√
ξ2.

4. Let θ = cos−1 z.

5. Generate the random vector (cosφ sin θ, sinφ sin θ, cos θ).

6. Create a coordinate system centered around the normal vector n. For the tangent

vector t select any vectorµ non-parallel to n, such that,

t = µ× n

||µ× n||

The bitangent vector is then,

t = n× t.

7. Multiply the generated random vector with the coordinate system matrix to align it

around n.
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Continuing, sampling a di direction for a specular surface depends on the BRDF used.

In industry, Unreal Engine 4 [158] uses a combination of the Trowbridge-Reitz/GGX func-

tion, the Schlick-GGX function, and a modified version of the Fresnel-Schlick approxi-

mation to compute the D, G, and F terms, respectively. Disney [160], in turn, used to

employ a combination of a modified Trowbridge/Reizt function, the Smith-GGX func-

tion, and the Fresnel-Schlick approximation. For this work, the selected functions are

Trowbridge-Reitz/GGX for the D term, Schlick-GGX for the G term, and the Fresnel-

Schlick approximation for the F term.

Walter et al. [152] mention that sampling an incident direction accounting for the

BRDF microfacet model, first requires sampling a microfacet normal m and then using

it to generate an incident direction. The steps to sample a microfacet normal based on

[152, 159] are:

1. Generate two random numbers ξ1 and ξ2 between [0,1].

2. Generate φ between [0,2π] , ϕ = 2ξ1

3. Generate θ = arctan
 α
√
ξ2√

1− ξ2


4. Let the microfacet normal m = (cosφ sin θ, sinφ sin θ, cos θ).

5. Transform the generated random microfacet normal m from tangent space to world

space. This is done similarly to aligning the direction vector of a diffuse material to

the normal n.

Once the sampled microfacet normal m is computed, the direction of incident radiance is

computed following the direction of reflection, such that,

di = 2(v ·m)m− v.

Notice that D(m) determines the distribution of microfacet normals in the surface. As

such, when sampling bmm,

p(m) = D(m).
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However, when generating di from m, Walter et al. [152] mention that the probability of

the resulting direction should include the Jacobian of the half-vector transform given by
1

4(v · h) . Then, it follows that,

p(di) = D(m)(n · h)
4(v · h) .

Finally, the Monte Carlo estimator for sampling the BRDF following all aspects mentioned

can be written as,

1
N

N∑
i=1


(
kd
ρd

π
+ ks

NDF

4(n · l)(n · v)

)
L(di) cos θi

q1
(n · di

π
+ q2

D(m)(n · h)
4(v · h)

 .

An important feature of this approach, particularly when combined with path tracing,

is its ability to incorporate an infinite area light source surrounding the scene [30]. With

finite light sources, rays from the camera must reach the light source, which often requires

multiple inter-reflections or bounces. To manage this, incident directions can be sampled

based on the light source’s position and shape [28, 161]. Nonetheless, if a ray is occluded by

an object in that sampled direction a new direction must be sampled according to BRDF

for the object’s material [3, 14]. In this regard, a maximum number of bounces is specified

when implementing path tracing. An infinite area light source, in turn, provides consistent

illumination in all directions, considering a point directly illuminated if the ray bounces

only once. Points are indirectly illuminated if a ray undergoes multiple bounces, up to the

specified bounce limit. Therefore, this work employs only an infinite area light source for

consistent illumination while maintaining simplicity.

Moreover, at the beginning of this chapter, it was mentioned that a Image2D variable is

used to store the rendered frame. The Monte Carlo integration method better approximates

the solution to the indirect illumination integral as the number of samples increases. In

this sense, for every ray sent into the scene, the direction of the following bounce is sampled

randomly according to the BRDF. As a result, every rendered frame may differ from the

previous one depending on the sampled directions generated. Nonetheless, when averaging
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the computed radiance, that is, averaging the values of each pixel among all rendered

frames, the Monte Carlo integral is computed with not just one sample per pixel but

according to the number of frames generated.

To achieve this, a second Image2D variable is used to accumulate the summation re-

sults of the Monte Carlo integral, while the first Image2D variable displays the accumu-

lated results divided by the number of frames generated. Consequently, as the number

of frames increases, the approximation of the indirect term of the rendering equation im-

proves. However, if the camera position or the direction of the target changes, the content

of the accumulated Image2D variable is reset, since a different view of the scene is being

approximated. Therefore, as the camera moves, each rendered frame on the screen rep-

resents the Monte Carlo approximation of the indirect term integral with a single sample

per pixel.

4.11 Summary

During this chapter, the theory for the implementation of different concepts such as render-

ing primitives, acceleration of ray primitive intersection operations, and one of the solutions

for the global illumination problem have been discussed. Although several concepts have

been omitted due to lack of time, the references provided will help to clarify and deepen

your knowledge. In addition, the theory behind microfacet BRDFs and sampling is so

complex that it will take more than one chapter to explain all in detail. Despite these

difficulties, this chapter remains a good introduction to delve into the world of ray tracing

and physically-based rendering.
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Chapter 5

Results and Discussion

Throughout this chapter, the results of the different features of the ray-tracing renderer

will be presented. The main metrics are the frame rendering time in milliseconds and the

average frame rate per second (AvgFPS). The rendering time of a frame is calculated as

the delta time between the previous and current frame. The average frame rate per second

is computed as the total number of frames rendered divided by the total elapsed time.

The analysis will cover different rendering scenarios and will contrast the differences in the

use of an acceleration structure to speed up ray primitive intersection operations. Also,

the results will cover the effect of indirect lighting on the realism of a scene. The system

specifications on which the tests are performed are presented in Table 5.1.

Table 5.1: Specifications of the system on which the tests were performed

i7-9750H 16 GB 8 GB Arch Linux

CPU RAM GPU VRAM Operating
System

RTX 2070
Max-Q

5.1 Traversal of Bounding Volume Hierarchies

Traversing a bounding volume hierarchy (BVH) can be done in several ways. In this work,

two stack-based methods were implemented based on the description provided by Meister

et al. [76] and Pharr et al. [11]. Traversing a BVH using a stack is done using a while loop
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until no nodes are left in the stack. The first node added to the stack is the root of the

BVH. For each node, the first step is to check if the ray intersects it, otherwise, the loop

proceeds to remove the top node from the stack if it is not empty. If the node is a leaf, the

ray is checked against all its primitives. If the stack is not empty, the ray is checked with

the remaining nodes for a closer intersection.

The difference between the implemented algorithms lies in how to traverse an interior

node. In case the jumped node in the stack is an interior node, and it is intersected, then its

children must also be checked for intersection. As Pharr et al. [11] emphasize, it is desirable

to visit the node that the ray intersects first, in case a primitive intersection occurs that

reduces the tMax-value parameter of the ray. In this sense, the first algorithm computes

the t1 and t2 values for the intersection of the left and right child nodes, respectively. It

then pushes each node on the stack with the nearest one on top.

The second method avoids computing t1 and t2 by using the sign of the ray’s direction

vector along the axis for which primitives were partitioned for that interior node. Assuming

the ray’s sign along the partitioning axis is positive, then the first node to be traversed is the

left child, as its primitives belong to the right/bottom/back partition in three dimensions.

Conversely, if the ray’s sign is negative, then the right child is visited first since its primitives

belong to the right/top/front of the partition axis in three dimensions. This explanation

considers a right-hand orientation of the coordinate axes, if a left-hand orientation is used,

then the order of visiting the nodes along the z-axis is switched as it grows positively

towards the screen. These traversal algorithms will be referred to as DB for distance-based

and RDSB for ray-direction sign-based, respectively, and their pseudocode is presented in

Appendix E and Appendix F.

5.2 Spheres Rendering Comparison

The first analysis consists of rendering different scenarios with a given number of spheres.

In this sense, the objective is to analyze the rendering performance of multiple objects

at the same time rather than to analyze the realism of the scene. The test analyzes the

frame rendering times of each scenario without acceleration structure, and using a BVH

for which the DB and RDSB traversal algorithms will be tested.
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Table 5.2: Spheres Rendering Comparison - Testing Parameters

1920× 1080 10 s 5 45 No 2 11

Resolution Rendering
Time Runs FOVy

Camera
Movement Bounces BVH

Bins

(a) 100 spheres - A=10x10 (b) 200 spheres - A=20x10

(c) 500 spheres - A=25x20 (d) 1000 spheres - A=40x25

Figure 5.1: Representation of the four scenarios rendered for Test 1

The global parameters for the test are presented in Table 5.2. The rendered frames

will have a resolution of 1920× 1080 pixels, the total rendering time will be 10 s and each

rendering will be executed five times. The FOVy is set to 45◦ and is a common value when

rendering [2]. The camera is configured to be positioned in a specific point and viewing

direction, and no movement will be applied. The spheres across all scenarios are randomly

located within a delimited area. The materials of each sphere are also randomly generated,

with a 0.2 probability of being metal, and the remaining 0.8 being diffuse. The number

of bins into which primitives are partitioned to form the BVH is set to 11. As such, the

number of inter-reflections/bounces was set to two. Finally, the number of runs/executions

for each scenario was five to generate the results.

Test 1 compares four scenarios consisting of 100, 200, 500, and 1000 spheres where
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Figure 5.1 presents a random rendered scene of each scenario. Figure 5.2 presents the results

for frame rendering time whereas Table 5.3 shows the average frame rate per second (FPS)

for all cases across the 10 seconds of render time. As expected, not using an acceleration

structure directly affects each frame’s render times. In contrast, the difference between

the DB and RDSB algorithms is noticeable. Focusing on the results without acceleration,

it is observed that for 100 spheres, the average frame rendering time is 8.24 ms. Over 10

seconds of rendering time in five runs, 7749 frames were generated, meaning an average

of 154.98 FPS. However, as the number of spheres increases, the frame rendering times

grow drastically, averaging 87.53 ms per frame in the 1000-sphere scenario. As a result,

the frame rendering time for 1000 spheres is approximately 10.62 times longer than for 100

spheres. This translates to a reduction in average FPS from 154.98 to 11.42.

Regarding the comparison of BVH traversal algorithms, it is noticed that at rendering

100 spheres the RDSB method renders a frame 0.44 ms faster than the DB method, with

the difference in average FPS being 136.88. The gap is maintained when rendering 200

spheres, with the RDSB method rendering a frame in 0.93 ms on average compared to

the DB method. This difference in frame rendering times corresponds to a gap of 162.96
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8.24

16.74

40.84

87.53

2.27
3.21 3.30

4.13

1.83
2.28 2.48

3.11

Spheres Rendering Comparison - Test 1
Acceleration

NA
DB
RDSB

Figure 5.2: Average frame rendering time comparison for each scenario in the absence of
an acceleration structure (NA), using a BVH with the distance-based method (DB), and
employing the ray-direction sing-based traversal (RDSB). A logarithmic scale is used to
represent the results of the five runs.
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FPS between the two methods. In the 500 spheres scenario, the rendering times increase

slightly, with the DB method at 3.30 ms and the RDSB method at 2.48 ms. The reason of

this difference is that the area extent where the spheres are distributed covers less viewport

space in contrast to the 200 spheres scenario. This reduces the number of ray intersection

tests for those pixels in which no sphere is present.

Despite this difference in the distribution of spheres, the RDSB traversal algorithm is

still faster by 0.82 ms in rendering a frame as opposed to the DB method. Finally, for the

1000 sphere scenario, the difference is more noticeable, with the average render time of the

RDSB method being 1.02 ms faster. In terms of average FPS, the RDSB method achieves

410.76 FPS whereas the DB method generates 310.08 FPS, meaning that the increase in

FPS with the RDSB method is of approximately 32.47%.

From the results of Test 1, the cost of not using an acceleration structure resulted in

longer rendering times. However, the difference between the traversal algorithms can be

highlighted even more. To further emphasize their differences, four additional scenarios,

consisting of 2000, 5000, 8000, and 10000 spheres, were considered, as illustrated in Figure

5.3. The parameters of test II remained the same as those presented in Table 5.2. The

frame rendering time results are presented in Figure 5.4 and the average FPS of each

Table 5.3: Average FPS comparison across five runs for the sphere scenarios rendered in
Test 1.

Spheres Acceleration Avg FPS

NA 7749 154.98
DB 28149 562.98

RDSB 34993 699.86
NA 3815 76.30
DB 19913 398.26

RDSB 28061 561.22
NA 1558 31.16
DB 19338 386.76

RDSB 25764 515.28
NA 721 14.42
DB 15504 310.08

RDSB 20538 410.76

Total
Frames

100

200

500

1000
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(a) 2000 spheres - A=50x40 (b) 5000 spheres - A=100x50

(c) 8000 spheres - A=125x64 (d) 10000 spheres - A=125x80

Figure 5.3: Representation of rendered scenarios for Test 2

scenario is presented in Table 5.4. Compared to the 1000 spheres scenario from earlier,

rendering 2000 spheres with the DB algorithm shows a difference in frame generation time

of 3.08 ms. This represents approximately a 1.74 times increase in frame rendering times

for twice as many spheres. The RDSB method, in turn, has a difference of only 0.26 ms,

representing an increase of 1.08 times to render twice as many spheres. At this point, the

difference in the average FPS between both methods has become more pronounced, being

201.96 FPS.

As the number of spheres increases, the tendency continues although not exponentially.

In the 5000 sphere scenario, the difference in frame rendering times between the DB and

RDSB traversal algorithms is 5.86 ms, with the gap in average FPS being 161.68. Observing

the 8000 spheres scenario shows that the frame rendering time difference is 6.80 ms between

the two methods, resulting in a gap of 151.36 FPS. Finally, in the 10000 spheres scenario,

the frame rendering times decrease slightly due to the smaller area extent covered by the

spheres in the viewport contrary to the 8000 spheres scenario. Therefore, the rays sent

into these pixels will find no intersection, reducing the frame rendering times. As such,
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Figure 5.4: Average frame rendering time comparison for Test 2 using the DB and RDSB
traversal algorithms. The results represent the average across the five runs.

with the RDSB method, a frame is rendered in 4.80 ms as opposed to 11.41 ms with the

DB method.

In summary, Test 2 shows that the RDSB method is more beneficial than the DB

method where the difference becomes more noticeable as the number of objects in the

scene increases. Note, however, that the camera remains stationary and is positioned so

that all objects are visible, which requires it to be far away. As a result, frame rendering

Table 5.4: Average FPS comparison across five runs for the sphere scenarios rendered in
Test 2.

Spheres Traversal Avg FPS

DB 8822 176.44
RDSB 18920 378.40

DB 6137 122.74
RDSB 14227 284.54

DB 5404 108.08
RDSB 12972 259.44

DB 5534 110.68
RDSB 13234 264.68

Total
Frames

2000

5000

8000

10000
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times could be greatly affected if each ray intersects multiple BVH nodes or multiple

primitives at a leaf node. This occurs when the camera is positioned in front of several

objects covering the entire viewport and accounting for the effects of the BRDF becomes

more expensive.

5.3 Analyzing Global Illumination Effects

During this section, an analysis of global illumination and the features of the renderer will

be presented. As stated in Section 4.10, the implemented BRDF consists of a diffuse com-

ponent based on Lambert’s law and a combination of the functions Trowbridge-Reitz/GGx,

Schlick-GGX, and the Fresnel-Schlick approximation to compute the specular term. Be-

cause the implemented BRDF is based on microfacet theory, diffuse and specular reflections

are determined based on the distribution of microfacets along the surface. The parameter

that determines this distribution is the material’s roughness. As the roughness increases,

the material’s specular reflections decrease and become none when roughness equals one.

Likewise, at the end of Section 4.9, it was mentioned that for implementing a BRDF

the metal-roughness workflow is followed. It was also discussed that a material is either

dielectric or metallic, denoted by m = 0 and m = 1, respectively. However, for artistic

purposes, it is common to vary m in the range [0, 1] as done in Unreal Engine 4 [158] and

by Disney [160]. Figure 5.5 presents the different variations for a material rendered with

the implemented BRDF. In the first row (from bottom to top), it is noticed that as the

roughness increases, the reflections of light become diffuse as more light is scattered in

all directions. In the second row, the effect is the contrary, as the roughness decreases,

light is reflected specularly having a glossy finish. Finally, in the third row, as the value

of m increases, the material converts from a dielectric to a metal. However, representing a

metallic material requires setting roughness to 0.0 so that light can be reflected specularly.

The difference between a highly specular dielectric and a metal can be observed in

the third row, specifically when m = 0 and m = 1. At m = 0 the sphere represents a

grey specular dielectric, whereas at m = 1, the sphere has a grey metallic material. The

reflections of the below spheres on the specular dielectric have the color of the material

itself, grey. In contrast, the reflections in the metallic material are tinted by the metal
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color. From a programming perspective, this can be understood as multiplying the RGB

color representation of the below spheres by the RGB color representation of the metal.

As a result, the blue color of the second row and the purple color of the first row are

multiplied by the grey color of the metallic sphere resulting into a darker blue and

purple colors.

Figure 5.5: Differences between metallic, specular, and roughness properties in surfaces.

A common model for testing the features of a ray tracing renderer is the Cornell Box

model [162]. The model consists of a box in which walls can have different colors or

materials and objects are placed inside. This simple scene demonstrates the effects of global

illumination, such as inter-reflections/bounces, color bleeding, and soft shadows. In this

regard, Test 3 consists of a series of scenes to showcase the effects of global illumination

possible with the implemented BRDF. Table 5.5 presents the global parameters for the

following renders. All scenes will be rendered with a 1920 × 1080 resolution, with the

camera stationary and the FOVy value at 45◦. The rendering time of each scene will be

25 seconds and for the results, each scene will be rendered five times. Moreover, all scenes

will be rendered with one to four bounces to appreciate the difference in the effects.

Table 5.5: Global Illumination Comparison - Testing Parameters

1920× 1080 25 s 5 45 No 1-4 11

Resolution Rendering
Time Runs FOVy

Camera
Movement Bounces BVH

Bins

100



5.3.1 Color Bleeding

The first scenario presents the effect of color bleeding using diffuse surfaces. Figure 5.6 hows

a Cornell box with a red left wall, a blue right wall, and white remaining walls. In the one-

bounce case shown in Figure 5.6a, colors appear opaque and progressively darker toward

the back of the box, and no color bleeding occurs. As shown in Figure 5.6b, increasing the

number of bounces to two enhances the colors more and the depth of the box is no longer

as dark as in the previous case. Looking carefully the effect of color bleeding is already

present, yet is quite dim. However, when adding a third bounce (see Figure 5.6c), the

effect visibility is higher, where the color of the red and blue walls is now reflected on the

bottom, back, and the top box walls. Finally, as presented in Figure 5.6d, four bounces

cause the scene to become brighter overall. The red and blue walls have become more

shiny, and the color bleeding into the white walls is more pronounced and bright.

(a) 1 Bounce (b) 2 Bounces

(c) 3 Bounces (d) 4 Bounces

Figure 5.6: Color bleeding effect inside the Cornell box.
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5.3.2 Soft Shadows and Specular Reflections

The second scenario adds two objects inside the Cornell box as illustrated in Figure 5.7.

The first object is a diffuse yellow box on the left, while the second is a gray metal box on

the right. Starting with only one bounce (see Figure 5.7a), the overall colors are opaque

similar to the previous scenario. Despite this, the effect of soft shadows is already present

behind the diffuse and metal boxes. However, it seems that the metal box is not rendered

properly and is just a black box. This occurs because rays are only allowed to bounce once

after being sent from the camera. As a result, rays will reflect from the metal box into one

of the walls but will not get outside of the Cornell box. Consequently, it gives the effect

that light is not reaching the metal box indirectly. Nonetheless, when adding a second

bounce, Figure 5.7b, the rays reflected into the walls will be diffusely reflected outside the

(a) 1 Bounce (b) 2 Bounces

(c) 3 Bounces (d) 4 Bounces

Figure 5.7: Soft shadows and reflections caused by a yellow diffuse box and a gray metallic
box placed on the left and right, respectively, inside the Cornell box.
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box reaching the light coming from the overall scene. At this point, the soft shadows are

visible completely, yet the color reflected in the metal box is dim.

By increasing the number of bounces to three, Figure 5.7c, the overall brightness of

all objects improves, the colors reflected in the metal box are no longer dull and the soft

shadows are not as dark as in the previous rendering. Some color bleeding is being reflected

into the diffuse yellow box having a dim orange and green color due to the red and blue

walls, respectively. In addition, the soft shadows have acquired a color tint regarding the

objects they cover and are not gray anymore. Lastly, setting the bounce parameter to

four combines the color brightness reached in the diffuse-only scenario with all the objects

introduced as presented in Figure 5.7d. The yellow box has a more perceptible color

bleeding from the red and blue walls, having a brighter orange tone on the left face and

a greenish tone on the right face. Likewise, the orange and green color bleeding reflecting

on the floor has become more clear near the yellow box. And finally, the color reflections

of the surrounding walls in the metal box have turned brighter, whereas the soft shadow

tint has become more solid.

5.3.3 Combination of Effects

A third scene was created to combine all possible effects as illustrated in Figure 5.8. The

red and blue walls now have glossy reflections; the back wall features a grey metallic

material that acts like a mirror, and the metal box on the right has been replaced by a

diffuse white box. The initial render with only one bounce, Figure 5.8a, shows an overall

opaque scene, where the red and blue walls now have a darker hue compared to the previous

scenarios analyzed. This occurs because, although the red and blue walls have a glossy

finish, they are still dielectrics, meaning rays are still diffusely reflected. This allows some

rays to escape the box and reach the light coming from the entire scene. Additionally,

observe that a black silhouette appears in the metal wall in the back, due to the rays being

specularly reflected into the two boxes inside or the walls around.

Setting the number of bounces to two (see Figure 5.8b) introduces more color into the

scene; the glossy effect on the red and blue walls becomes evident, and some blue color

bleeding appears in the white diffuse box on the left. Turning our attention to the metal
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(a) 1 Bounce (b) 2 Bounces

(c) 3 Bounces (d) 4 Bounces

Figure 5.8: Combination of color bleeding, soft shadows, specular reflections, and glossiness
effects.

wall at the back, the black silhouette is no longer present as adding a second bounce allows

the rays to be diffusely reflected outside the box. As a result, the color of the red and blue

walls is now reflected in the metal wall. Nevertheless, the color reflections of the yellow

and white boxes are still black because once the rays specularly reflect into these objects

these are diffusely reflected again into the back of the Cornell box. On the other hand, soft

shadows have become evident behind the two diffuse boxes, being cast towards the red and

blue walls. However, because of the glossiness effect of the side walls, soft shadows merge

with the specular reflections of the diffuse boxes that appear in the red and blue walls.

Adding a third bounce, Figure 5.8c, shows the yellow color of the left diffuse box

reflected in the metal back wall although still dim. Likewise, the color bleeding of the red

and blue walls has become clear on the sides of the yellow box, and the blue color bleeding
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into the white box is more intense. Moreover, the glossiness effect of the red and blue walls

has become more solid, and the reflections of the diffuse boxes appear brighter. Increasing

the bounce number to four, as shown in Figure 5.8d, raises the brightness of all object

colors in the scene. The glossy effect of the red and blue walls is more vibrant, intensifying

the color bleeding into the yellow and white boxes. The orange and green hue is more

distinguishable on the yellow box, and the white box now has some blending of red and

yellow on its left, whereas the blueish tone on its right is stronger. Soft shadows have also

become more unified with the color bleeding and glossy aspect of the red and blue walls.

The colors of the side walls and boxes reflected in the metal back wall are also brighter.

As a result, the composition of all objects and the interaction of all effects combine for a

more realistic scene.

5.3.4 Performance Analysis

An analysis of the renderer’s performance will conclude this section. Figure 5.9 presents

the average frame rendering time of the different scenes in increasing order of bounces,

whereas Table 5.6 shows the average FPS for the corresponding 25 s of rendering time

across the five runs. In the first scene, it is noticed that the average frame rendering times

do not surpass the 4 ms mark. With a single bounce, the average frame rendering time is

1.82 ms, but adding a second bounce increases it to 2.30 ms on average. This represents a

relative increase of approximately 26.37% in average frame rendering time from one bounce

up to two. Contrasting these values with the average FPS results shows a loss of 114.76

frames when adding a second bounce, going from 549.82 FPS to 435.06 FPS.

The difference in frame rendering times between three and two bounces has increased

slightly, by 0.51 ms. The reason this increase is not more dramatic is that many rays

are diffusely reflected out of the box after the second bounce, leaving fewer rays to reflect

off another surface and requiring a third bounce to exit the box. Nonetheless, the drop in

average FPS remains significant, at 78.60 FPS. The same tendency is observed by rendering

the first scene with four bounces. The difference in frame rendering time compared to three

bounces is 0.53 ms, corresponding to a decrease of 57.51 FPS. As such, the overall increase

in brightness of the scene is caused by only a few rays. In summary, the cost of rendering
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Figure 5.9: Average frame rendering time comparison of the different scenarios of global
illumination. The results represent the average of the five executions for the three Cornell
box scenes presented earlier.

Table 5.6: Average FPS comparison of the global illumination scenes for the five runs.

Scene Bounces Avg FPS

1 68727 549.82
2 54382 435.06
3 44557 356.46
4 37369 298.95
1 38709 309.67
2 26533 212.26
3 19878 159.02
4 16323 130.58
1 40475 323.80
2 28353 226.82
3 21405 171.24
4 17163 137.30

Total
Frames

1

2

3

with four bounces compared to just one is substantial, with a difference in average frame

rendering time of 1.52 ms, resulting in a reduction of 250.87 FPS.

Adding two more objects into the scene increases frame rendering times higher, where
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the metal box at the right complicates calculations further. At only one bounce, the cost

of rendering the second scene is 3.23 ms, representing a relative increase of approximately

77.47% in the average frame rendering time against the first scene with only one bounce.

The tendency prevails when increasing the number of bounces. The difference between

two bounces and one is 1.48 ms, mainly because various incident rays into the metal box

are specularly reflected into one of the walls requiring an additional bounce to get out of

the Cornell box. A third bounce allows a ray to be reflected by the metal box again into

a diffuse wall or from a diffuse box back into the metal box. As a result, computing the

radiance for a pixel becomes more expensive, since rays can enter a cycle of inter-reflections.

Lastly, adding a fourth bounce increases the average frame rendering time to 7.66 ms.

This represents an increase of 4.43 ms in contrast to the render time with one bounce,

which is 3.23 ms. Moreover, when comparing the average FPS of rendering scene two with

one bounce to that with four, there is a reduction of 179.09 FPS, which is approximately

a 2.37 times decrease in FPS. As a result, the average FPS of rendering the current scene

has decreased considerably when compared to the first scene. One aspect observed in scene

two is the problem of the inter-reflection cycle. The rays incident on the metal box can be

specularly reflected onto the walls or the yellow diffuse box. This cycle can continue if the

rays are then diffusely reflected again onto the metal box.

The inter-reflection problem was slightly reduced in the third scene, where the right

metal box was replaced with a white diffuse material, and the back wall was changed to a

grey metallic material. Although setting the red and blue walls to have a glossy finish might

seem to contribute to the inter-reflection problem, the metallic back wall helps counteract

this effect to some extent. With one bounce, the average frame rendering time is 3.09 ms,

which is 0.14 ms longer than in scene two. This increase is partly because rays sent into the

right white box may diffusely reflect outside with the first bounce, requiring no additional

sampling direction as no further intersections occur. Another reason is that most rays sent

into the back metal wall specularly reflect outside the box on the first bounce. In contrast,

in the second scene, rays could diffusely reflect into the walls or one of the boxes, with

the metal box being particularly problematic. As a result, the difference in average FPS

between scenes two and three, rendered with one bounce, is 14.13 FPS.

Rendering scene three with two bounces extends the frame rendering time to 4.41 ms,

107



approximately 1.43 times longer than with one bounce. Consequently, the average FPS

drops significantly, with a decline of 96.98 FPS. When the number of bounces increases to

three, the average frame rendering time climbs to 5.84 ms, leading to a drop in FPS from

226.82 with two bounces to 171.24 FPS. Lastly, adjusting the bounce parameter to four

raises the average frame rendering time to 7.28 ms. The decrease in average FPS when

comparing the scene with four bounces to one bounce is 186.50 FPS. As a result, the FPS

with four bounces is reduced to roughly 2.36 times less than that with one bounce.

In conclusion, this section presents the global illumination effects possible with the

implemented BRDF. The first scene benefits from the fact that there are no more objects

inside the Cornell box so the number of illumination effects is reduced while keeping the

frame rendering time low as opposed to the other scenes. The second scene on the other

hand shows the highest frame rendering times due to the multiple inter-reflections caused

by the metal box on the right. This problem is controlled slightly in the third scene by

changing the right box material to be diffuse and the back wall to a metallic material. In

this way, many of the rays reflected from the metal wall have the opportunity to leave the

Cornell box with the next bounce. Therefore, it can be said that the position, orientation,

and material of the objects present in a scene can contribute to or affect the frame rendering

times of a scene and consequently the FPS generated.

5.4 Rendering a Complex Model

The Cornell box scenes presented above were simple, but the frame render times increased

dramatically with the number of bounces. To put it in perspective, the first scene consisted

of 10 triangles in total, 2 for each wall. The second and third scenes had 34 triangles in

total, 12 triangles for each box added. Therefore, the current Test will analyze the frame

rendering times of a more complex model formed by 7050 triangles. The model belongs to

Robin Butler [163] and is part of a collection of science fiction building models, being the

simplest of the three. Rendering a more complex model requires a much broader sampling of

incident directions according to all the different materials comprising the model. Moreover,

all the finer details comprising a specific part of a model are made of multiple triangles, and,

thus, the amount of ray-intersection operations increases drastically in some portions of
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the scene. Computations become more complicated depending on the model’s perspective

and how much of the viewport space it covers.

Table 5.7: Complex Model Rendering Parameters

1600× 904 1 min 5 90 No 1-4 5

Resolution Rendering
Time Runs FOVy

Camera
Movement Bounces BVH

Bins

In this way, the rendering parameters for this model were changed as illustrated in

Table 5.7. The resolution was reduced to 1600× 904 to increase the number of FPS. This

resolution ensures that the number of local x and y groups of the compute shader remains

integer by dividing the image pixels by 4 and 8 in each dimension, as specified during

Section 4.1. The rendering time selected was 1 minute. The FOVy value was increased to

have a larger perspective of the model without being too far from it, while the camera was

kept stationary. The number of bounces tested was 1 to 4, while the BVH number of bins

to partition the primitives into new nodes was set to 5. This number of bins generated the

best BVH for this model compared to other values. The scene was first rendered with a

normal map, and then with the respective number of bounces.

Figure 5.12 presents the renders of the model taken after a minute of rendering. The

rendering of the normal map can be found in Appendix G. The render with one bounce,

Figure 5.12a, shows an overall opaque scene, where the objects on the porch of the building

are barely visible. However, the stairs and porch access handrails are recognizable. Adding

a second bounce, Figure 5.12b, introduces some yellow color bleeding reflecting from the

ground onto the border walls and ceiling of the porch. The second bounce also allows more

rays to reach the objects on the porch, making visible the yellow cylinders and white boxes

on the left and right, respectively.

The third bounce, Figure 5.12c, brings more light into the porch allowing the objects to

become brighter. The yellow cylinders on the right have a metallic material, the door has

some white details, and, behind the white boxes, there is a tube connected to a black box

above them. Two pads are visible left to the doorframe that can be used to open the door.

The ground, the stairs, and the porch window frames have also gotten brighter. Finally,

as shown in Figure 5.12d, the fourth causes the porch depth to become clearer and reduces

109



the dark spots in the corners and window frames. When comparing all the renderings, the

differences are significant, and the one with four bounces shows the most detail.

The realism achieved with the above renders, however, pushes the performance of the

implemented renderer to its limits. Figure 5.10 shows the results of the average frame

rendering times whereas Table 5.8 shows the results of the average FPS after 60 seconds of

rendering. The normal map of the model has an average frame rendering time of 28.21 ms,

resulting in an average of 38.22 FPS for the five runs. These results already demonstrate

the computational expense of ray tracing a model with more than a thousand triangles.

Compared to the second scene of the Cornell box model discussed earlier, where at four

bounces the average frame rendering time was approximately 7.66 ms, rendering the current

model with no bounces takes 3.68 times more. When considering the BRDF effects with

one bounce, the average frame rendering time rises to 203.70 ms, which is approximately

7.22 times longer than with 0 bounces. This further highlights the significant increase in

computational cost when rendering the 7050 triangles of the model after including path

tracing and the BRDF sampling computations. Moreover, the impact on average FPS is

drastic, dropping to 5.27 FPS, making the renderer no longer interactive.

From this point onwards the performance drops even more, where at two bounces
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Figure 5.10: Average frame rendering time comparison of the science fiction building model
across the five runs.
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Table 5.8: Average FPS comparison of the science fiction building model renders across
five runs.

Bounces Avg FPS

0 11465 38.22
1 1581 5.27
2 872 2.91
3 622 2.07
4 512 1.71

Total
Frames

the scene already takes 367.67 ms on average to render a frame. When a new direction

is sampled, the BVH traversal must be computed again for the new ray’s direction to

determine if a primitive intersection occurs. Although traversing a BVH is less costly

than having no acceleration structure, it remains a significant operation, especially when

multiple rays have previously intersected a surface. With two bounces, the average FPS

reduces to 2.91, approximately 1.81 times less than the FPS generated with one bounce.

Increasing the number of bounces to three and four raises the frame rendering times to

514.45 ms and 624.49 ms, respectively. Because most rays are reflected into the scene’s

infinite area light source after the second or third bounces, the average frame rendering

times do not double. Consequently, as discussed in the previous section, the additional

details added to the scene with the subsequent bounces are only handled by a smaller

portion of rays. Rendering the scene with four bounces results in an average of 1.71 FPS,

with only 512 frames generated after five minutes of rendering.

5.5 Limitations

The first limitation of the renderer is regarding light representations. As outlined in section

4.6.1, implementing diverse light source representations is complex because, depending on a

light’s shape, a point may be illuminated from multiple incident directions. Consequently,

sampling for incident directions must account for the light source’s shape, requiring more

advanced sampling techniques [164–167]. A second aspect involves handling refractive or

transmissive materials, which requires implementing a Bidirectional Transmittance Distri-

bution Function (BTDF). A BTDF models how light passes through or refracts within
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transparent or semi-transparent materials, such as glass or water. Combining both func-

tions enables the renderer to simulate complex interactions where light partially reflects

and refracts at different angles, achieving a more realistic representation of materials that

are both reflective and transmissive [11, 60].

The third limitation concerns noise during camera movement, which appears as pixels

with null or unrelated information compared to neighboring pixels. Since incident direc-

tions are randomly sampled according to the BRDF, each frame generates ray paths distinct

from those of previous frames. Additionally, because path tracing relies on Monte Carlo

integration, pixel values across multiple frames are averaged to approximate the scene’s

steady-state illumination. In this regard, the renderer could benefit from implementing

the denoising techniques reviewed in the state-of-the-art chapter. A fourth area worth

exploring is aliasing, which refers to the jagged edges that can appear due to insufficient

pixel sampling. Figure 5.11 illustrates the aliasing problem: while increasing the pixel

resolution can make jagged edges less noticeable, the geometry will still have a discrete

representation. In the current setup, one ray is cast from the camera into the center of

each pixel at a specific image resolution. If an object’s geometry is small or located far

from the camera, it’s possible that no ray will intersect with the object’s surface, leading

to missing details in the rendered image.

There are several anti-aliasing techniques designed to smooth or hide the appearance of

jagged edges, three of them will be discussed below. Super-sampling anti-aliasing (SSAA),

for example, involves casting multiple rays per pixel and averaging the resulting color

Figure 5.11: Triangle shown on grids of three different resolutions. On the discrete grid,
the smooth geometry turns into stair steps denominated jaggies. No matter how high the
resolution, the jaggies will not disappear, but will only become smaller.
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values to determine the final pixel color, thereby reducing aliasing [7, 30]. Adaptive super-

sampling optimizes this process by casting additional rays only in regions with high con-

trast, reducing the computational load in areas of lower detail [134]. Finally, temporal

anti-aliasing takes a different approach by blending samples from both the current and

previous frames, with a slight camera jitter between them to ensure varied sample cov-

erage [168]. However, any anti-aliasing technique must be implemented with real-time

rendering performance in mind. In conclusion, the discussed limitations can be further

addressed in a future work as to increase the capabilities of the renderer.
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(a) 1 Bounce (b) 2 Bounces

(c) 3 Bounces (d) 4 Bounces

Figure 5.12: Renders of the science fiction building model.
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Chapter 6

Conclusions

Ray tracing is a challenging problem requiring a lot of optimization to accomplish real-

time rendering ensuring interactivity. Solving it mainly involves extensive knowledge of

mathematics as well as programming. However, the limited number of cores in a CPU offers

poor performance for generating multiple frames per second. In consequence, it is necessary

to utilize the high parallelism offered by a GPU, which requires learning an API to handle

it. This work uses OpenGL and compute shaders to generate images with ray tracing.

Achieving photorealism further demands an understanding of the physical properties of

light and its interaction with surfaces. In this sense, physics becomes a crucial aspect of

realistic scene rendering with ray tracing. Therefore, ray tracing combines different fields,

notions, and tools to create a fascinating solution for photorealistic rendering.

To familiarize the reader with the field of computer graphics, this work begins by intro-

ducing the key concepts required to implement a ray-tracing renderer. The first concept

covered was the camera and how to create a model suitable for ray tracing. Next, the topic

of light was addressed, including the notion of color and its computational representation.

After these, the relationship between a ray and the forward and backward ray tracing

models used to render an image was explained. This was followed by a discussion of the

essential mathematical tools needed to implement a camera within a scene. Finally, the

importance of coordinate systems was examined, highlighting their role in generating an

image from the camera’s perspective based on its position within the scene. With these

fundamentals established, a summary of the state of the art in ray tracing was provided,

leading to a discussion of the specific problems this work addresses.
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The first aspect covered in this work was a solution for rendering graphic primitives,

specifically spheres and triangles. Rendering these primitives with ray tracing requires

analyzing their mathematical representations along with that of the ray. An equation is

defined to determine the intersection points between the ray and the primitive, which con-

stitutes the solution to the problem. Various algorithms exist to find these solutions, with

some being more optimal than others. In this work, the optimal algorithms recommended

in the literature were implemented. While many other primitives can be added, spheres

are commonly used due to their simplicity in ray tracing, and triangles are essential for

constructing 3D models.

While primitive rendering is an essential feature, adding multiple objects to the scene

increases frame rendering times. The reason is that all rays sent from the camera into the

scene must be checked for a primitive intersection. As such, intersection operations increase

with multiple objects, and computational resources are wasted if no intersection is found.

The second problem addressed in this work was to provide an acceleration data structure

to reduce the number of intersection tests and increase the renderer’s performance. The

solution implemented is known as a bounding volume hierarchy (BVH), which encloses

groups of primitives into axis-aligned bounding volumes (AABB), forming a hierarchy

represented by a binary tree. The root node represents the bounding volume that encloses

all primitives, the internal nodes contain a subset of the primitives contained in a much

smaller bounding volume, and the leaf nodes contain either one primitive or a smaller

subset of primitives. This approach significantly reduces the number of ray intersection

operations, as primitives within a non-intersected AABB are skipped.

The third aspect implemented in the ray tracing renderer was a solution for the global

illumination problem to bring realistic lighting into the scene. Global illumination aims at

computing the steady state between direct and indirect illumination. Radiometry provides

the tools to measure light radiation, the most important being the bidirectional reflectance

distribution function (BRDF). When coupled with microfacet theory, a physically-based

BRDF can be created to model light reflection of surfaces, specifically dielectrics, and

metals. The last step was to convey light from one point to another using rays. Path

tracing was the solution implemented in this work to approximate the total radiance at a

surface point regarding the hemisphere of light incident directions. This technique is based
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on Monte Carlo integration to sample incident directions according to the implemented

BRDF and then approximates the color of the pixels to render the image.

The performance achieved with the implemented concepts depends primarily on the

scene and the number of objects within it. An average above 100 FPS was obtained with

simple scenes like the Cornell box, accounting for all global illumination effects possible

with the implemented BRDF. In this regard, the rendering process was in real-time and

highly interactive, allowing the camera to move smoothly across the scene and display

different perspectives. It was also observed that BVH traversal algorithms have a direct

impact on the renderer’s performance. Comparing the algorithms implemented in this

work showed that the ray-direction sign-based method was faster than the direction-based

method. However, the renderer’s performance drops significantly when several objects

are present. Accounting for both global illumination effects and multiple bounces dras-

tically reduces performance, making it no longer interactive, though still much faster if

compared to CPU rendering. Overall, the ray-tracing renderer remains solid for under-

standing real-time and physically-based rendering to generate photorealistic lighting in a

scene. Ultimately, this thesis presents several of the fundamentals of ray tracing laying the

foundation for a specialization in computer graphics.
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A Main GitHub Repository

https://github.com/Mateo-Coello/Real-Time-Ray-Tracing-in-OpenGL

B Ray Traced Sphere

https://github.com/Mateo-Coello/Real-Time-Ray-Tracing-in-OpenGL/tree/main/

examples/rt_sphere

C Ray Traced Triangle

https://github.com/Mateo-Coello/Real-Time-Ray-Tracing-in-OpenGL/tree/main/

examples/rt_triangle

D BVH Construction

https://github.com/Mateo-Coello/Real-Time-Ray-Tracing-in-OpenGL/blob/main/src/scene.c
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E Distance-Based Traversal

Algorithm 1 DistanceBased Traversal
1: function Traverse(BVH, ray)
2: root← BVH[0] contains all scene primitives
3: hit_info← none contains info regarding primitive hit
4: stack ← [root] stack starts with BVH root
5: t_Max←∞
6: while stack is not empty do
7: pop node of stack
8: t← intersect ray with node
9: if t← nearest_hit then

10: if node is not leaf then
11: t1 ← intersect ray with left_child
12: t2 ← intersect ray with right_child
13: if t1 > t2 then
14: push left_child into stack
15: push right_child into stack
16: else
17: push right_child into stack
18: push left_child into stack
19: end if
20: else
21: for each primitive in leaf do
22: t, primitive_info← intersect ray with primitive
23: if t < nearest_t then
24: hit_info← primitive_info
25: end if
26: end for
27: end if
28: end if
29: end while
30: return hit_info
31: end function
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F Ray-Direction Sign-Based Traversal

Algorithm 2 Ray Direction Sign-Based Traversal
1: function Traverse(BVH, ray)
2: root← BVH[0] contains all scene primitives
3: hit_info← none contains info regarding primitive hit
4: stack ← [root] stack starts with BVH root
5: dir_is_neg ← [dx < 0, dy < 0, dz > 0]
6: t_Max←∞
7: while stack is not empty do
8: pop node of stack
9: t← intersect ray with node

10: if t← nearest_hit then
11: if node is not leaf then
12: split_axis← node’s partition axis
13: if dir_is_neg[split_axis] > 0 then
14: push left_child into stack
15: push right_child into stack
16: else
17: push right_child into stack
18: push left_child into stack
19: end if
20: else
21: for each primitive in leaf do
22: t, primitive_info← intersect ray with primitive
23: if t < nearest_t then
24: hit_info← primitive_info
25: end if
26: end for
27: end if
28: end if
29: end while
30: return hit_info
31: end function
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