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Juárez González Bryan Patricio

Tutor:
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Resumen

Ecuador presentó un pico de casos de COVID-19 en enero de 2022, con 890,541 casos con-
firmados y 35,658 muertes. Además, la influenza y la neumońıa, no relacionadas con el
COVID-19, estuvieron entre las cinco principales causas de muerte en Ecuador de 2019 a
2020. Chamorro y su equipo mencionaron que los métodos de radiograf́ıa de tórax y to-
mograf́ıa computarizada de tórax se utilizan para diagnosticar el COVID-19. Sin embargo,
Wong et al. dicen que las radiograf́ıas de tórax no son tan sensibles como las tomograf́ıas
computarizadas de tórax para detectar el COVID-19. Esto es cierto solo cuando no se
utiliza inteligencia artificial. En el art́ıculo de Tahir et al., informan que los modelos que
utilizan U-net y redes neuronales obtienen sensibilidades por encima del 99% y una es-
pecificidad perfecta del 100% utilizando U-Net ++ y ResNet18 con 33,920 imágenes de
radiograf́ıas de tórax. Un sistema de detección rápida de los śıntomas podŕıa haber ayudado
a priorizar a los pacientes que necesitaban unidades de cuidados intensivos, reduciendo un
porcentaje significativo de muertes. En nuestro trabajo, hemos demostrado que la in-
teligencia artificial combinada con radiograf́ıas de tórax puede tener una precisión binaria
por encima del 98% de predicción utilizando transfer learning con las redes neuronales
Xception, VGG16 y VGG19. Utilizamos un total de 27,052 imágenes de radiograf́ıas de
tórax, divididas en las clases COVID, Opacidad Pulmonar, Neumońıa Viral y Normal. Bal-
anceamos el conjunto de datos y utilizamos otras técnicas de optimización. Utilizamos las
plataformas Google Colab y Kaggle para compilar los códigos con GPUs T4. Obtuvimos
un excelente puntaje F1 del 98.53% para el modelo de transferencia de aprendizaje VGG19
utilizando las clases COVID y Normal. VGG19 fue entrenado y probado en clasificación
multiclase, obteniendo un puntaje F1 por encima del 89%. Hemos demostrado que VGG19
y otros modelos pueden ser herramientas muy útiles para hospitales públicos y privados
para ayudar en el diagnóstico del COVID-19. El trabajo futuro podŕıa incluir la mejora
de nuestros resultados de rendimiento utilizando un conjunto de datos más grande y la
segmentación U-net.

Palabras Clave: Inteligencia artificial, COVID-19, redes convolucionales,
visión por computadora, neumońıa, rayos-X de pecho, transferencia de apren-
dizaje, Xception, VGG16, VGG19, U-net.
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Abstract

Ecuador presented a peak of COVID-19 cases in January 2022, with 890,541 confirmed
cases and 35,658 deaths. Also, influenza and pneumonia, not related to COVID-19, were
among the top 5 causes of death in Ecuador from 2019 to 2020. Chamorro and his team
mentioned that chest X-rays and chest CT scan methods are used to diagnose COVID-
19. However, Wong et al. say that chest X-rays are not as sensitive as chest CT scans
for detecting COVID-19. This is true only when AI is not used. In the article by Tahir
et al., they report models using U-net and neural networks obtaining sensitivities above
99% and a perfect specificity of 100% using U-Net ++ and ResNet18 using 33,920 chest
X-ray images. A rapid detection system of the symptoms might have helped prioritize
patients who needed intensive care units, reducing a significant percentage of deaths. In
our work, we have demonstrated that AI combined with chest X-rays can have a binary
accuracy above 98% of prediction using transfer learning Xception, VGG16, and VGG19
neural networks. We used a total of 27,052 chest X-ray images, divided into COVID, Lung
Opacity, Viral Pneumonia, and Normal classes. We balanced the dataset and used other
optimization techniques. We used the Google Colab and Kaggle platforms to compile
the codes with T4 GPUs. We obtained an excellent F1-Score of 98.53% for the VGG19
transfer learning model using COVID and Normal classes. Vgg19 was trained and tested
on multiclass classification, obtaining an F1-Score above 89%. We have demonstrated that
VGG19 and other models can be very useful tools for public and private hospitals to help
with the diagnosis of COVID-19. Future work might include improving our performance
results using a larger dataset and U-net segmentation.

Keywords: Artificial intelligence, COVID-19, convolutional networks, com-
puter vision, Pneumonia, chest X-ray, transfer learning, Xception, VGG16,
VGG19, U-net.
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Chapter 1

Introduction

1.1 Thesis Overview
In this introduction, the problem of a lack of tools and resources in Ecuador and all over
the world is shown. Also, the contribution to the community and the world by offering a
predictive tool using AI. The general and specific objectives were also defined, and all were
completed successfully. In the theoretical framework section, several concepts relating to
AI are defined to help the reader understand the tools we used in our work. In the state-
of-the-art, COVID and pneumonia tests are discussed. Moreover, the available and most
accurate neural networks are discussed. Also, transfer learning models are shown in the
state-of-the-art section, with some improvements in accuracy and F1-Score during the last
few years. In the methodology, the software we used and the hardware are explained. In the
results, metrics, a confusion matrix, and training graphs are presented. In the discussion of
results, several comparisons of the neural networks we used are made, making comments on
the performance of VGG19 in particular. Finally, in the conclusions, a summary of all the
work and the performance of our neural networks is shown, along with recommendations
and limitations.

1.2 The Pneumonia Outbreak Problem
A pneumonia outbreak of unclear cause was documented in Wuhan, Hubei Province, China,
in December 2019. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was
isolated as a result of respiratory sample inoculation extracted from human airway ep-
ithelial cells, Vero E6 and Huh7 cell lines. Genome analysis of the virus revealed it to
be a novel coronavirus related to SARS-CoV [1]. The SARS-CoV-2 virus produced a dis-
ease called COVID-19, which became highly contagious and spread rapidly throughout the
world, causing a global pandemic. The symptoms of the disease include fever, shortness of
breath, cough, headaches, and more, which lead to pneumonia and finally acute respira-
tory distress syndrome [2]. Scientists have been debating the origin of the new coronavirus
known as SARS-CoV2 since its discovery. There have been rumors that SARS-CoV-2 is
the result of experiments in the lab. Genetic evidence, however, refutes this theory and
demonstrates that SARS-CoV-2 did not originate from a previously identified viral back-
bone [3]. Similar to other respiratory viruses, SARS-CoV-2 primarily spreads through the
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respiratory system and is very effective and contagious. The main confirmed path of trans-
mission is droplet transfer [4]. Elisa and PCR tests were used to confirm the presence of
the virus in the early stages of the disease. PCR test obtained more sensibility compared
to Elisa. The Elisa targets were IgM and IgG immunoglobulins; for PCR were specific
regions of the SARS-CoV-2 virus genome [5]. Saliva secretions showed a higher presence of
the coronavirus than in other regions of the body. Also, ocular secretions were tested, and
contagion was found, thus suggesting a possible way of infection [6]. Ecuador presented a
peak of COVID-19 cases in January 2022, with 890,541 confirmed cases and 35,658 deaths
[7]. Also, influenza and pneumonia, not related to COVID-19, were among the top 5 causes
of death in Ecuador during 2019, according to INEC Ecuador government statistics [8].
The hospitals around the country were saturated with patients and improvising tents to
attend to infected patients Figure 1.1. A need for prevention measures and rapid diagnostic
tests appeared during the pandemic. One of the cheaper available tests was a chest X-ray.
It could diagnose the presence of the disease with significant sensibility [9].

Figure 1.1: Hospital saturated of patients in Quito-Ecuador during the pandemic. The
IESS hospital, located in the south of the city, had to improvise patient stretchers in a
cafeteria due to the increasing of COVID-19 infections [10].

1.3 Thesis Justification
So, a rapid detection system of the symptoms might have helped prioritize patients to enter
the intensive care unit, reducing a significant percentage of deaths. X-ray images allow the
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confirmation of pneumonia when the quick test gives a negative result but the patient has
symptoms of COVID-19.

In Ecuador, the public health system has many limitations. The lack of investment in
new equipment and the lack of qualified doctors to diagnose and treat COVID-19 disease
have created the need for alternative diagnostic tools. Artificial intelligence has proven
to be a very effective alternative when doctors are not available or an additional medical
opinion is needed to accurately confirm the presence of the disease. Computer vision offers
a way to create and test computer-trained models using large datasets that are prepared
by scientists and medical experts. The models can be deployed on several platforms to
predict the disease with a high level of accuracy using chest X-ray images. These models
are not limited to X-ray images since they can be trained with any type of medical images
helping in other types of disease diagnosis.

1.4 Contribution to Society
This work offers a model trained with the most advanced neural network techniques to
save time and important computer resources during the training and classification of chest
X-ray images. Also, we present the parameters to ensure the reproducibility of the work.
Moreover, techniques to optimize the dataset are presented. Moreover, the transfer learning
models can be used by other experts to deploy and offer a tool for the rapid diagnosis of
COVID-19. The publicly available Kaggle dataset [11] was used in this work.

1.5 Thesis Objectives

1.5.1 Work General Objective
The need for a tool to predict whether or not a patient had COVID-19 appeared during
the pandemic. Neural networks have proven to be very effective at learning complex image
patterns. So, chest X-ray images that have complicated structures were used in this work.
Our objective is to create and test state-of-the-art neural networks that have been used in
the prediction of COVID-19 using chest X-rays and try to replicate and possibly improve
the results that have been reported so far. Also, the models will be tested with different
classes, and the results will be reported to conclude which model is better. The trained
models could be used by Information Technology (IT) developers to create mobile apps
and websites that can aid in the diagnosis of COVID-19.

1.5.2 Thesis Specific Objectives
• Prepare the dataset to be used during the training process.

• Design and create different neural networks using the transfer learning technique

• Determine the best parameters: epochs, learning rate, and optimizer to get the best
results.
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• Train and test different Deep learning models to perform the COVID classification
task.

• Determine the best neural network and test it in other datasets.

• Create trained models that can be used by other scientists without the need for the
training and validation process saving time and computer resources.

• Report and discuss the results.
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Chapter 2

Theoretical Framework

2.1 Overview of Artificial Intelligence Technology
Artificial intelligence (AI) is the most exciting and talked-about technology of the past
ten years. According to John McCarthy, it is the process of making intelligent machines,
especially by creating intelligent computer programs that mimic human intelligence [12].
AI is currently used in many industries, including business, healthcare, education, the mil-
itary, and manufacturing [13]. AI has various applications that revolutionize industries
and daily life. Machine Learning enables computers to learn and predict without explicit
programming [14], powering recommendation systems and predictive analytics [15]. Nat-
ural language processing facilitates human-computer interaction, as seen in chat-bots and
language translation [16]. Computer vision interprets visual data for tasks like object
and facial recognition [17]. Robotics involves developing intelligent machines, impacting
areas from industrial automation to robotic surgery [18]. Speech recognition converts spo-
ken language into text, used in voice assistants and speech-to-text systems [19]. Genetic
algorithms optimize processes through algorithms inspired by natural selection [20]. Rein-
forcement learning trains agents for sequential decision-making, as applied in game playing
and robotic control [21].

In medical diagnosis, AI is being widely used. In this article [22], searchers have used
machine learning techniques to detect early Alzheimer’s disease using MRI images and data.
Surgical robots can be trained using AI to achieve precise control of medical equipment
[22]. In breast cancer screening, AI can detect and classify breast lesions [23]. Using chest
tomography scans, machine learning algorithms can predict the probability of developing
lung cancer [24]. Real-time detection in combination with deep learning (DL) was used
in the diagnosis of basal cell carcinoma [25]. Machine learning and DL are used in the
detection of tuberculosis using chest X-ray images [26]. Also, DL is used to detect lung
cancer, pneumonia, lung opacity, and COVID-19 [27]. Convolutional neural networks,
transfer learning, generative adversarial networks, recurrent neural networks, and attention
mechanisms are techniques used in machine learning to detect patterns from images and
extract information from data [28]. Convolutional neural networks are widely used in image
processing and, recently, transfer learning which will be expanded further.
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2.1.1 Machine Learning as a Subset of Artificial Intelligence
Machine learning (ML), a subset of artificial intelligence (AI), involves developing algo-
rithms that allow computers to learn and make decisions without being explicitly pro-
grammed. This approach enables systems to improve and adapt based on experience or
data, finding applications in areas like image recognition, natural language processing, and
recommendation systems [29]. Depending on human supervision, ML can be divided into
three categories: unsupervised learning, supervised learning, and reinforcement learning
[30], [31]. Unsupervised learning is a type of machine learning where the algorithm works
with unlabeled data, aiming to discover patterns or structures without explicit guidance.
It involves two main tasks: clustering, grouping similar data points without predefined
categories, and dimensionality reduction, simplifying data by reducing the number of fea-
tures. This approach is valuable for exploring data structure, identifying hidden patterns,
and preparing data for further analysis. Common applications include clustering customers
based on behavior or reducing the complexity of datasets for more efficient processing [32].
In supervised learning, the algorithm is trained on a labeled dataset, which means the
input data is paired with corresponding output labels. The term supervised comes from
the idea that the process involves a teacher or supervisor providing the algorithm with
correct answers to guide its learning [33].

2.1.2 Applications of Deep Learning Algorithms
Deep learning is a subset of machine learning that involves artificial neural networks
(ANNs) with multiple layers (deep neural networks). Unlike traditional machine learning,
deep learning algorithms automatically learn hierarchical representations of data, extract-
ing intricate features from raw input [34]. The architecture, inspired by the human brain,
allows these networks to model complex relationships and patterns. Deep learning has
proven highly effective in tasks such as image and speech recognition, natural language
processing, and playing strategic games. Its ability to handle vast amounts of data and
automatically discover intricate patterns has contributed to significant advancements in
various fields, making it a key technology in modern AI applications [35]. DL involves the
use of ANNs. In deep learning, these neural networks have multiple layers, allowing them
to automatically learn hierarchical representations of data, which is a key distinguishing
feature from traditional machine learning approaches [36]. Hierarchical representations in
deep learning involve the automatic learning of increasingly abstract and complex features
at different layers of a neural network, allowing the model to capture nuanced patterns in
the input data [37]. A DL model necessitates the incorporation of multiple hidden layers
within a neural network. Furthermore, various neural network architectures are available,
including convolutional neural networks (CNNs), recurrent neural networks (RNNs), and
deep belief networks (DBNs) [38]. On the other hand, a poor feature selection may pro-
duce inaccurate results when it comes to class identification. In contrast, DL enables the
automation of feature learning, enabling simultaneous learning and categorization [39].

2.1.3 Computer Vision Applications
CV is a field within artificial intelligence focused on enabling computers to interpret and
understand visual information. It involves developing algorithms and models to analyze
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images or videos, mimicking human visual perception [40]. Key applications include im-
age recognition, object detection, and facial recognition. With the advent of deep learn-
ing, particularly CNNs, computer vision has achieved remarkable progress [41]. CV finds
widespread use in various sectors, including healthcare, autonomous vehicles, and aug-
mented reality [42], [43], [44]. As technology evolves, computer vision continues to drive
innovation, revolutionizing industries and enhancing capabilities in tasks such as image
analysis, security, and immersive experiences [45]. In Figure 2.1, we have breast cancer
ultrasound images that have been processed by neural networks to segment and predict if
the patient has or does not have cancer.

Figure 2.1: Attention UNet Model used in breast cancer segmentation. The Breast Ul-
trasound Dataset was used in the implementation of this model [46]. Grad-CAM is a
technique used for visualizing and understanding the decisions made by convolutional neu-
ral networks.

2.2 The use of Artificial Neural Networks
ANNs are computational models that draw inspiration from natural neurons Figure 2.2.
Natural neurons Figure 2.2a, have synapses on their membranes or dendrites where they
receive signals. The neuron is triggered and releases a signal via the axon when the signals it
receives are powerful enough to cross a particular threshold. This signal may be transmitted
to a different synapse, perhaps causing other neurons to fire [47]. When modeling artificial
neurons, the complicated structure of genuine neurons is greatly simplified. In essence, as
shown in Figure 2.2b, natural neurons are made up of inputs (such as synapses) multiplied
by weights (the strength of the corresponding impulses), which are then calculated by
a mathematical function to determine whether the neuron will activate. An additional
function, which could be the identity, computes the artificial neuron’s output, sometimes
based on a threshold. Artificial neurons are combined in ANNs to process information
[47]. ANNs consist of interconnected layers of nodes or neurons Figure 2.3. The three
main types of layers are the input layer, which receives initial data; the hidden layer,
positioned between input and output and responsible for learning complex patterns; and
the output layer, which produces the final output or prediction. Hidden layers are termed
so because they don’t directly interact with the external environment or final output but
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play a key role in learning and capturing intricate data patterns [48].

(a) A natural neuron that receives impulses
at dendrites processes the signal in the neu-
ron’s center and transmits the processed im-
pulse to other neurons through the axon.
The neurons are connected by a synapse

(b) Artificial neural network that receives inputs and
processes the signals with a function and produces an
output similar to a natural neuron .

Figure 2.2: A comparison between a natural and an artificial neuron [47].

Figure 2.3: A simple ANN composed of an input layer, hidden layers, and an output [49].

The evolution and development of CNNs have a long history. This is a brief overview
of their past: Kunihiko Fukushima created the self-organizing neural network model for
pattern recognition known as the Neocognitron in 1980. The Neocognitron opened the
path for the creation of CNNs by demonstrating its capacity to recognize handwritten
characters [50].

CNN architecture AlexNet, created by Alex Krizhevsky, Ilya Sutskever, and Geoffrey
E. Hinton, produced ground-breaking outcomes in the 2012 ImageNet Large Scale Visual
Recognition Challenge. Then, the University of Oxford’s Karen Simonyan and Andrew
Zisserman proposed a CNN architecture known as VGGNet in 2014. The goal of VGGNet
was to investigate how network depth affected CNN accuracy in image recognition tasks.
The multiple convolutional layers of the VGGNet architecture are followed by fully con-
nected layers [51]. VGGNet receives a 224x224 RGB image as input. The network applies
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a sequence of max-pooling layers with a 2x2 filter and a stride of 2, after which it applies a
series of convolutional layers with small 3x3 filters and a stride of 1. Multiple iterations of
this convolution and pooling pattern produce a deep network with either 16 or 19 layers,
called VGG16 and VGG19, respectively Figure 2.4.

Figure 2.4: VGG Neural Network Architecture with an input of 224 × 224 × 3 [52].

In 2014, in terms of competence, VGGNet performed remarkably well. Its accuracy
greatly outperformed earlier models, proving the usefulness of deep CNN architectures.
In the competition, VGG16 and VGG19 both had top-5 error rates of 7.3% and 7.5%,
respectively. As a foundation for later CNN architectures, the VGGNet architecture has
gained popularity as a solution for image recognition applications [53]. It is significant to
remember that VGGNet has a deep architecture and that training takes a lot of computer
power. Although the network’s high parameter count increases accuracy, it also raises
computational requirements. VGGNet training can take a long time, and to speed up the
process, powerful hardware, like graphical processing units (GPUs), must be available.

2.2.1 The Loss function During Training
A loss function, sometimes referred to as an error function, cost function, or discrepancy
function, is a mathematical function that quantifies the difference between the model’s
predicted and actual outputs in the context of neural networks. It measures the model’s
effectiveness at a certain task.

A loss function’s primary function is to indicate how well the model performed dur-
ing training. The model can minimize the loss and enhance its predictions by adjusting
its parameters (weights and biases) through gradient descent and backpropagation after
calculating the loss. Some examples:

1. MSE: For regression issues, the Mean Squared Error (MSE) loss function is widely

9



used. The average squared difference between the actual and predicted values is
computed. Larger errors are penalized more severely by MSE.

2. Binary Cross-Entropy: For binary classification issues, binary cross-entropy is
frequently utilized. It calculates the difference between the actual binary labels and
the anticipated probabilities.

3. Categorical Cross-Entropy: This technique is applied to classification issues in-
volving multiple classes. The average cross-entropy loss between the true class labels
and the predicted class probabilities is computed.

One of the more commonly used loss functions is cross-entropy L(W ) [54]. Our definition
of the cross-entropy loss function is L(W ).
Through backpropagation of the error through the neural network and convergence to the
local minimum value of L(W ), the classification network iteratively updates the values of
W . Images from any dataset can be defined as

(X(i), Y (i)) for i ∈ {1, . . . , n}, (2.1)
n represents the total number of images in the experimental dataset.

2.2.2 Activation Functions in Convolutional Neural Networks
In neural networks, activation functions (AF) are used to calculate the weighted total of
input and biases, which determines whether or not a neuron can fire. It uses gradient
processing, most commonly gradient descent, to modify the given data before producing
an output for the neural network that includes the data’s parameters. In some literature,
these activation functions are frequently referred to as a transfer function [55]. Since the
activation function generates a neuron’s output to feed the following layer, it is a crucial
component in ANN training. Non-linearity functions are frequently used instead of lin-
earity functions for predicting real phenomena [56]. Next, certain non-linearity activation
functions will be explained.

Rectified Linear Unit Activation Function

Out of all the AF, one of the most widely used is the so-called rectified linear unit (ReLU)
activation function [57]. The function is defined as:

f(x) = max(0, x) =
xi, if xi ≥ 0

0, if xi < 0
(2.2)

This function eliminates the vanishing gradient issue seen in previous iterations of activa-
tion functions by rectifying input values less than zero and driving them to zero [58]. In the
output layers of the network, the ReLU function has been used in the hidden units of deep
neural networks with an additional AF. Typical applications of this function include object
categorization and speech recognition [59]. There is an issue known as ”dying ReLU” that
arises when ReLU neurons go dormant and only produce 0 for any given input [60]. The
leaky ReLU was suggested as a solution to the dead neuron problems [59].
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Sigmoid Activation Function

In some literature, the sigmoid AF is also known as the logistic function or squashing
function [61]. A non-linear AF that is primarily utilized in feedforward neural networks is
the sigmoid. It is a real function that is bounded, differentiable, and defined for real input
values. It has some smoothness and positive derivatives everywhere [62]. The sigmoid AF
is defined by the next relationship:

f(x) =
(

1
(1 + exp−x)

)
(2.3)

Unfortunately, the sigmoid AF has several significant flaws, such as gradient saturation,
and non-zero-centered output, which causes the gradient updates to propagate in various
directions [55].

Hyperbolic Tangent Activation Function (tanh)

Another kind of AF utilized in DL is the hyperbolic tangent function, which also has
several versions employed in DL applications. The tanh function, also referred to as the
hyperbolic tangent function, is a smoother zero-centered function with a range of -1 to 1
[34].

f(x) =
(

ex − e−x

ex + e−x

)
(2.4)

Because it provides higher training performance for multi-layer neural networks, the tanh
function has replaced the sigmoid function as the favored function [63], [64]. Nevertheless,
the sigmoid vanishing gradient issue was also unsolvable by the tanh function. The func-
tion’s primary benefit is that it facilitates back-propagation by producing zero-centered
output. One characteristic of the tanh function is that it can only achieve a gradient of 1
when the input value is zero or when x is zero (Figure 2.5). As a result, during computing,
the tanh function produces some dead neurons. The rectified linear unit (ReLU) activation
function was created as a result of more research on activation functions in response to the
tanh function’s limitations. The tanh function is primarily employed in recurrent neural
networks for speech recognition tasks [59] and natural language processing [65].

2.2.3 Convolution Operator Technique Example
Convolution is a mathematical technique applied in ML that results in a new output
denoting the relationship between x(t) and the reverse-translated version of h(t). The
input function x(t) is coupled with a function h(t). Most people refer to the function h(t)
as a kernel or filter transformation. This has the following definition in the continuous
domain:

y(t) = (h × x)(t) =
∫ ∞

−∞
h(τ)x(t − τ)dτ (2.5)

A convolution quantifies the degree of overlap between two functions mathematically
[66]. It can be compared to a blending procedure that uses point-wise multiplication with
two datasets. The equation for two-dimensional images is defined as:

y(i, j) = (h × x)(i, j) =
∑

n

∑
m

h(m, n)x(i − m, i − n) (2.6)
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Figure 2.5: Sigmoid and tanh activation functions. The ranges of both functions are
depicted in the graphs [55].

Cross-correlation can be defined as a mathematical operation that measures the degree
of similarity or correlation between two signals, x(t) and ht(t), and it is quite similar to
convolution. It is mathematically given by:

y(t) = (h ⊗ x)(t) =
∫ ∞

−∞
h(τ)x(t + τ) (2.7)

When it comes to image processing, a convolution filter is just the scalar product of
the filter weights with the input pixels within a window. This scalar product is a parallel
operation that works well for computing on GPUs and other highly parallel systems.

To give an example with a two-dimensional image, first, let us review element-wise
multiplication, also known as the Hadamard product. The Hadamard product of two
matrices or vectors involves multiplying corresponding elements together. The general
formula for element-wise multiplication of two matrices, A and B, of the same size (having
the same number of rows and columns) is as follows: For matrices A and B of the same
size, if A = [aij] and B = [bij] are two matrices of the same size, then the element-wise
multiplication, denoted by C = A ⊙ B, is given by:

cij = aij · bij

For vectors A and B of the same size, if A = [a1, a2, . . . , an] and B = [b1, b2, . . . , bn] are two
vectors of the same size, then the element-wise multiplication, denoted by C = A ⊙ B, is
given by:

ci = ai · bi

As an example, for two matrices of 2x2 dimension, the element-wise product is defined
as: [

a1 a2
a3 a4

]
⊙
[

b1 b2
b3 b4

]
=
[

a1 · b1 a2 · b2
a3 · b3 a4 · b4

]
(2.8)
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Let’s explore how the Hadamard product works with two-dimensional data and hidden
representations, ignoring channels for the time being. The input in Figure 2.6 is a two-
dimensional tensor with 3 for height and 3 for width values. We designate the form of the
tensors as (3,3) or 3x3. The kernel has two dimensions: height and width. The height and
width of the kernel (in this case, 2X2) determine the geometry of the kernel window, also
known as the convolution window.

Figure 2.6: Hadamard product, based on cross-correlation operation, applied to 2x2 di-
mension matrices. The first output element is calculated using the input and kernel tensor
elements: 0 × 0 + 1 × 1 + 3 × 2 + 4 × 3 = 19 [67].

2.2.4 Receptive Field and Feature Map in Artificial Intelligence
The output of the convolutional layer in Figure 2.6 is frequently referred to as a feature
map since it may be thought of as the learned representations (features) in the spatial
dimensions (e.g., width and height) to the next layer. In CNNs, the term ”receptive field”
describes each element (from all the layers before this one) that could have an impact on
the computation during forward propagation. Keep in mind that the receptive field could
exceed the input’s real size.
Let’s continue our explanation of the receptive field using Figure 2.6. The four elements in
the shaded part of the input are the receptive field of the shaded output element (calculated
value 19) given the 2*2 convolution kernel. Let’s now represent the 2*2 output as y and
examine a deeper CNN that outputs a single element, z, with an extra 2*2 convolutional
layer that receives y as input. In this instance, all four of the y elements are included in
the receptive field of z, whereas all nine input elements of Figure 2.6 are included in the
2*2 receptive field. So, we can construct a deeper network with any image element that re-
quires a larger or smaller receptive field to detect input features over a wider or smaller area.

In Figure 2.7, we have as an input a feature map that contains the RGB channels.
Color images typically have the RGB format. So, a filter that can extract the feature and
give a convolutional output is needed. The number 3 in 5 × 5 × 3 represents the number
of channels that have the feature map. Note that the output does not have this format.
The final result is a 3×3 that is going to be the next input to the next convolutional layer.
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Figure 2.7: 3-dimensional convolution using an input feature map that has 3 channels of
color ”RGB”.

The methods that provide greater control over the output’s size are padding and strided
convolutions. They will be discussed in the sections that follow. As an introduction, let us
examine the fact that after applying numerous successive convolutions, we typically end up
with outputs that are significantly smaller than our input because kernels typically have a
width and height larger than 1. Ten layers of 5 × 5 convolutions take an image that has
240×240 pixels as a starting point and reduce it to 200×200 pixels. This process removes
30% of the original image and obliterates any interesting information on the image’s edges.
The most widely used method for resolving this problem is padding. In other situations,
such as when we think the initial input resolution was too complicated, we might want to
significantly lower the dimensionality. Stridden convolutions are a well-liked method that
can be useful in these situations.

2.2.5 Example of Padding Method
For any given convolution, we might only lose a few pixels because we usually use small
kernels, but this can add up when we apply many successive convolutional layers. One
way to solve this issue is to increase the effective size of the image by adding extra filler
pixels to the edges of our input image. Usually, we set the extra pixels’ values to zero. In
Figure 2.8, a 3 × 3 input is padded in to make it 5 × 5 in size. Next, a 4 × 4 matrix is
produced as the corresponding output. The first output element, the input, and the kernel
tensor elements used in the output computation are represented by the shaded portions of
the equation: 0 × 0 + 0 × 1 + 0 × 2 + 0 × 3 = 0.
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Figure 2.8: Cross-correlation in two dimensions with padding [67].

Consider the convolution example shown in Figure 2.6, where the input was shaped
like a 3 × 3 matrix and the convolution kernel was shaped like a 2 × 2 matrix, resulting
in an output representation of dimension 2 × 2. The output shape will be (nh − kh + 1) ×
(nw − kw + 1) assuming that the input shape is nh × nw and the convolution kernel shape
is kh × kw: The convolution kernel can only be shifted so far before it runs out of pixels to
apply the convolution.

In summary, by adding a ph rows of padding and a total of pw columns, the output will
have the shape:

(nh − kh + ph + 1) × (nw − kw + pw + 1) (2.9)
So, the height and width of the output matrix will be increased by ph and pw, respec-

tively.

Convolution kernels with height and width values like 1, 3, 5, or 7 are frequently used
in CNNs. The advantage of selecting odd kernel sizes is that we can maintain dimension-
ality by padding with an equal number of rows on top and bottom and columns on left
and right. There are two types of padding: ”valid” and ”same.”

”Valid padding” means that there is no padding, so there are no extra rows and columns.
Then, the output in this instance will be (nh − kh + 1) × (nw − kw + 1). To tell a model
that all feature map values are valid for convolution, we must specify the valid padding
when defining the model in a framework such as Tensorflow or Torch. If we don’t, the
model won’t take into account the more external values.

”Same padding” adds shifting to the convolutional window to maintain the input’s size.
As a result, equation 2.9 is the formula to determine the padding value. In Figure 2.6, we
can observe a convolution with ph and pw set to a value of 1. Also, the filter size in this
image is 2 × 2. The values for the filter are typically odd but in this example, the value is
even.
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2.2.6 Striding Method Applied to CNN
To calculate the cross-correlation, we first move the convolution window across all loca-
tions to the right and down from the input tensor’s upper-left corner. We slid one element
at a time by default in the earlier examples. However, there are situations when we shift
our window more than one element at a time, omitting the intermediate locations, either
for computational speed or because we want to minimize resource consumption. Striding
is useful because it captures a large portion of the image; this is especially helpful if the
convolution kernel is large.

We name ”stride” to the number of rows and columns that are shifted in the convolution
window in the input matrix. We have been using the stride of one step in past examples.
In Figure 2.9, we observe that the stride for height is 3 and the width is 2. The calculations
used to produce the output are 0×0+0×1+1×2+2×3 = 8, 0×0+6×1+0×2+0×3 = 6.

Figure 2.9: Cross-correlation for height and width using strides of 3 and 2, respectively
[67].

We can define the stride for the height as sh and the stride for the width as sw, then
the output shape is:⌊

(nh − kh + ph + sh) /sh
⌋

×
⌊
(nw − kw + pw + sw) /sw

⌋
. (2.10)
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Figure 2.10: An example using both padding and stride with a feature map of 5 × 5
dimension and a 3 × 3 filter. An output of 3 × 3 is produced in the convolution process

In Figure 2.10 we can see a convolution of some of the output matrix. The resulting
output shape is given by equation 2.10. The values for ph = 2 and pw = 2 because we are
adding 2 rows and 2 columns filled with zeros in Figure 2.10. Also, the values of sh and sw
are 2 because the shifting of the convolutional window slides two units in each calculation.
Replacing the values in equation 2.10 gives an output shape:

[
⌊
(5 − 3 + 2 + 2) /2

⌋
×
⌊
(5 − 3 + 2 + 2) /2

⌋
] = 3 × 3. (2.11)

2.3 Convolutional Neural Networks Architecture Re-
view

ConvNets, also known as CNNs, are very similar to standard neural networks. They still
consist of neurons that can learn new weights from data. After receiving certain inputs,
every neuron executes a dot product. The final fully connected layer still has a loss function.
A standard neural network goes through several hidden layers after receiving input data
as a single vector. Each set of neurons that make up a hidden layer is fully connected to
every other neuron in the layer before it. Every neuron in a single layer is independent of
the others and does not share any connections. When dealing with an image classification
problem, the final fully connected layer—also referred to as the output layer—contains the
class scores. Generally, a basic ConvNet consists of three main layers [68]. These three
layers are the ”convolution layer”, ”the pooling layer”, and the ”fully connected layer”
Figure 2.11.
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Figure 2.11: A simple CNN with input, several convolution layers, pooling layers, a fully
connected layer, and layer output

2.3.1 Dropout Technique in Training
You can think of a neural network as a search problem. In a neural network, every node
looks for a correlation between the input data and the right output data. Dropout prevents
weights from convergent to identical positions by randomly shutting down nodes during
forward propagation. Following this, it activates each node individually and backprop-
agates. Similarly, dropout on a layer can be achieved by randomly setting some of the
layer’s values to zero during forward propagation. Dropout must be used only during the
training process and not during testing.

2.3.2 Convolutional Layer Definition
In terms of ConvNet, the primary goal of convolution is to extract features from the input
image. In a ConvNet, this layer performs the majority of the computing. The Keras
module is typically used to create the layers. The arguments needed are:

• Filters: the number of filters used in convolution

• Kernel size: this parameter specifies the height and width of the convolution window

• Stride: the number to tell how much the convolution window must move and cal-
culate. If this number is not specified, the default stride is set to 1.

• Padding: The default is ”valid”. We can specify other padding parameters by using
”same” padding.

• The ReLU activation function: It is strongly recommended to add this function
to all convolutional layers used in the network. If no activation function is defined,
the ReLU is not used as default.

Let us define two examples of creating convolutional layers using keras.

• First example: Here we use a 300 × 300 × 1 image which means that the height
and width are both 300 and channel 1 means grayscale. The number of filters, in
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this case 16, is not specific. Typically, the number filters 16,32, and 64 are used. The
kernel size is the height and width of the convolutional window. The stride is set to
2, meaning that the convolutional window is going to shift two units to the right.
The activation function is ReLU. Here, I present a code used in Python:
Conv2D(filters = 16, kernel size = 2, strides = 2, activation =′ relu′, input shape =
(300, 300, 1))

• Second example: After the first example we can create a new layer that is going
to be part of the convolutional layer. Now we use 32 filters that will have 3 × 3
dimensions. The padding is set to ”same”, which adds two rows of zeros at the top
and bottom and two columns at the left and right of the input. The next code has
all the parameters above and also has the ReLU activation function.
Conv2D(filters = 32, kernel size = 3, padding =′ same′, activation =′ relu′)

2.3.3 The Pooling Layer
A convolutional layer, as we’ve seen, is made up of a stack of feature maps, one for each
filter. Convolution becomes more dimensional as more filters are added. More parameters
are indicated by higher dimensionality. To minimize the number of parameters and com-
putation, the pooling layer gradually reduces the spatial size of the representation. The
convolutional layer is frequently the input source for the pooling layer. The most popular
pooling strategy is max pooling. Pooling units are capable of completing additional tasks,
like average pooling, in addition to max pooling. By varying the size and quantity of
each filter in a CNN, we can regulate the convolutional layer’s behavior. We can increase
the number of filters in a convolutional layer to increase the number of nodes, and we can
increase the filter’s size to increase the pattern’s size. So, dimensionality is decreased with
the aid of the max pooling layer, which comes after the convolutional layer.

2.3.4 The Fully Connected Layer
The necessity of adding Fully Connected (FC) layers appears because the final convolu-
tional layer’s receptive field only spans a portion of the input image’s spatial dimension.
So, shallow CNN models (relatively low convolutional layers) only produce features that
correspond to a portion of the image. Therefore, in this case, a small number of FC layers
are required. The FC layers make up the majority of the network’s parameters in a typical
deep neural network. Out of the 60 million parameters in ”AlexNet”, 58 million correspond
to the FC layers. In the same way, VGGNet contains 138 million parameters in total, 123
million of which are related to FC layers [69]. The prediction is done in the final layer. A
softmax is typically used in the output layer to produce estimated class probabilities.

2.4 Remarkable Convolutional Neural Networks

2.4.1 Visual Geometry Group Neural Networks
The CNN design was the main topic of Karen Simonyan and Andrew Zisserman’s work,
”Very Deep Convolutional Networks for Large-Scale Image Recognition”[51], which was
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presented at Oxford University in 2014. The major point is to demonstrate that a CNN’s
depth is essential to achieving higher accuracy. They added more CONV layers to the
CNN, deepening its structure. In stacked CONV layers of two and three, they employ
3 × 3 filters to prevent the loss of the spatial size volume on each layer. Unlike AlexNet,
which uses 11 × 11 filters, this is not the case. By using 3 × 3 filters in staked CONV
layers of two and three CONV layers, we can achieve a behavior that is comparable to
that of large receptive fields, such as 5 × 5 and 7 × 7, respectively, but with the benefit
of adding depth to the model. Furthermore, we can use one ReLU for every CONV layer.
The architecture doubles the number of filters after each max pool layer and is generally
homogeneous. Lastly, they display the subsequent models: VGG-19, VGG-11, VGG-13,
and VGG-16. In 2014, the architecture emerged as the state-of-the-art after winning the
ImageNet challenge with an error rate of 7.3%. A few things to keep in mind with VGG
are that the model is 46.6 MB in size (AlexNet is only 1.9 MB) and that there are 140
million more parameters than before. Lastly, a crucial piece of information in the paper
is that VGG-19 only slightly improves the model’s accuracy; as a result, the accuracy of
the model remains saturated after VGG-16 [70]. This finding served as the foundation
for subsequent research to provide a solution to the issue of, as of VGG-16, expanding a
CNN’s depth without compromising accuracy. There are 16 layers in VGG16 and 19 layers
in VGG19. In the final three fully connected layers, a sequence of VGGs is identical. A
MaxPool is positioned after five sets of convolutional layers in the overall framework Figure
2.12.

Figure 2.12: VGG16 and VGG19 showing the of layers implemented in the models [71].

20



2.4.2 Inception Neural Network
Researchers at Google presented the Inception neural network, a deep convolutional neu-
ral network architecture. Its goal was to provide cutting-edge results in tasks involving
image detection and recognition. Inception modules are repeating blocks that make up
the Inception network. These modules are inspired by the multi-scale aspect of human
visual perception and are designed to extract features at multiple levels. Every Inception
module includes max pooling in addition to convolutions using filters of various sizes (1x1,
3x3, and 5x5). Following these operations, the outputs are concatenated and sent to the
following layer [72].
With multiple versions, including Inception v1, v2, v3, and so forth, the Inception architec-
ture has changed over time. For instance, Inception v3, which debuted as a component of
the GoogLeNet architecture, was utilized in the 2014 ImageNet Large-Scale Visual Recog-
nition Challenge. Inception sought to create deeper networks while preventing an excessive
increase in the number of parameters [73]. The Inception network has been extensively
employed in many different fields, such as object detection, image analysis, and even life
sciences research. You can use deep learning frameworks like TensorFlow or Keras, which
offer pre-defined Inception models that you can quickly use in your projects, to implement
an Inception network [74].

2.4.3 Google Xception
Google researchers created the deep convolutional neural network architecture known as the
Xception neural network Figure 2.13. It uses depthwise separable convolutions in place
of Inception modules, drawing inspiration from the Inception architecture. Depth-wise
Convolution is a kind of convolution in which every input channel receives a single convo-
lutional filter [75]. One way to conceptualize the Xception architecture is as an Inception
module with a very large number of towers. Depthwise separable convolutions, a hybrid of
depthwise and pointwise convolutions, are used in it [76]. It has been demonstrated that
the Xception architecture performs better than Inception V3 on the ImageNet dataset, as
well as on a larger image classification dataset with 17,000 classes and 350 million images.
It performs better but has the same amount of parameters as Inception V3 [76].

Compared to other networks, the Xception neural network has some benefits. Here are
a few main benefits [77], [38]:

• Enhanced Performance: On several image classification tasks, Xception has been
demonstrated to perform better than other architectures, including Inception V3. It
has demonstrated superior performance, for instance, on the ImageNet dataset and
a larger image classification dataset with 17,000 classes and 350 million images.

• Depthwise Separable Convolutions: Compared to traditional convolutions, this method
uses fewer connections and computations, which improves efficiency and uses less
memory.

• Computational Efficiency: Xception maintains high accuracy while lowering compu-
tational complexity through the use of depthwise separable convolutions. Because of
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this, it can be used on devices with limited resources or in situations where compu-
tational efficiency is essential.

• Transfer Learning: There are pre-trained Xception models that have been trained
on massively parallel datasets, such as ImageNet. Even with little training data,
users can still achieve good performance by utilizing the learned features from these
pre-trained models.

• Versatility: Beyond image classification, Xception can be used for a variety of com-
puter vision tasks, including object detection, semantic segmentation, and image
generation. Its features and architecture make it an adaptable option for various
visual recognition tasks.

Figure 2.13: Xception model structure [78].

2.5 Using the Transfer Learning Technique
In machine learning and deep learning, transfer learning is the process of using a previously
trained model as a starting point for a new task or challenge. Transfer learning uses the
skills and features acquired from one task to another, rather than starting from scratch
when training a model for a new one. Because it enables the training of deep neural net-
works with relatively little data, transfer learning is popular in the field of deep learning.
When dealing with real-world issues where there aren’t many labeled data points, this
is extremely helpful. Time and computational resources can be saved by fine-tuning a
pre-trained model for the new task rather than starting from scratch [79]. Reinforcement
learning, natural language processing, image classification, and other fields have all used
transfer learning. In tasks like person identification, medical image classification, and dis-
ease conversion prediction, it has been used to increase performance and decrease training
time.
A few examples of transfer learning are listed below [80], [81], [82]:

22



• Image Classification: Transfer learning is frequently applied to image classification
tasks. A feature extractor could be a pre-trained deep learning model, like ResNet or
VGG16, that was trained on a sizable dataset, like ImageNet. The learned features
of the pre-trained model are then fed into a new classifier that has been trained on
a smaller dataset specifically for the new task.

• Natural Language Processing: Tasks involving natural language processing also make
use of transfer learning. For sentiment analysis, for instance, a pre-trained language
model such as BERT or GPT can serve as a foundation. Utilizing the language and
context knowledge that has already been pre-trained, the model is then improved
using a smaller dataset focused on the sentiment analysis task.

• Object Detection: Transfer learning is also applicable to tasks involving object de-
tection. A feature extractor could be a pre-trained model, such as YOLO or Faster
R-CNN, trained on a big dataset, such as COCO. The learned features of the pre-
trained model are then fed into a new classifier that was trained on a smaller dataset
that is particular to the object detection task.

• Reinforcement learning and simulation: Reinforcement learning tasks also make use
of transfer learning. Before transferring the knowledge to real-world training, models
are trained to perform tasks in various scenarios using simulated environments. For
instance, it may be safer and more effective to train a self-driving system first in a
simulated setting before moving the model to actual training.

”Freezing” and ”fine-tuning” are terms that are frequently used in transfer learning in the
context of machine learning. Let’s examine the components of each of these methods [83]:

The process of taking a pre-trained model and further training it on a new task or
dataset is known as fine-tuning. The pre-trained model’s weights are changed during fine-
tuning to better suit the new task. Generally, only some of the layers in the pre-trained
model are frozen and fine-tuned. Through fine-tuning, the model retains the advantages of
the pre-training knowledge while learning task-specific features. A pre-trained model, such
as VGG or ResNet, for image classification, for instance, can be improved on a smaller
dataset customized to a specific classification task after being trained on a larger dataset,
such as ImageNet. The pre-trained model’s early layers, which record basic features like
edges and textures, are frequently left untouched, while the later layers are adjusted to
pick up on task-specific details.

Freezing is the process of maintaining a pre-trained model’s layers or parameters con-
stant while it is being trained. The weights of a frozen layer are not updated while the layer
is being trained. This is frequently done to ensure that the knowledge that the pre-trained
model has learned during pre-training is not forgotten. As an example, the embedding
layer of a pre-trained language (the layer that has information about how words are rep-
resented) model may be frozen during fine-tuning in transfer learning for natural language
processing. By doing this, the model can only update the weights of the ensuing layers
to adjust to the new task, retaining the semantic information that the pre-trained embed-
dings had recorded. It is noteworthy that the determination of which layers to fine-tune
and which to freeze is dependent upon the particular task, dataset, and resources at hand.
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To avoid overfitting, it might be helpful in some situations to freeze more layers; in other
situations, it might be required to fine-tune more layers to capture task-specific features.

2.6 Steps in Training a Convolutional Neural Net-
work

2.6.1 Overview of Deep Learning Frameworks
Software libraries or platforms known as ”deep learning frameworks” offer a range of tools
and features for creating, configuring, and implementing deep neural networks. These
frameworks provide pre-implemented layers, optimization algorithms, and other utilities,
which make the process of creating complex deep-learning models easier [84].

Several well-liked deep learning frameworks consist of:

• Tensorflow: It is one of the most popular deep learning frameworks, created by
Google. It provides a full environment, supporting both CPU and GPU computa-
tions, for creating and implementing machine learning models.

• Pytorch: Created by Facebook’s AI Research Lab. Pytorch is an open-source deep-
learning framework. It offers dynamic computational graphs, which facilitate the
quick definition and modification of models. PyTorch is renowned for being user-
friendly and flexible.

• Keras: It is a high-level deep learning framework installed on top of backend engines
like TensorFlow. Keras is appropriate for novices and quick prototyping because it
offers an intuitive API for creating and training neural networks.

• Caffe: This framework is used for deep learning and was created by Berkeley AI
Research (BAIR). It is renowned for being quick and efficient, especially when it
comes to CNNs. Caffe supports a large number of applications and has a large
community.

• MXNet: It provides a scalable and effective way to train and use deep learning
models across multiple platforms, such as cloud servers, GPUs, and CPUs.

2.6.2 Using Public and Private Datasets
For deep learning models to be trained and evaluated, datasets are essential. They give
the model the required input data along with the labels that go with it. The particular
task and area of interest influence the dataset selection.

There are numerous datasets available for diverse applications, including image clas-
sification (e.g., ImageNet, CIFAR-10, MNIST), natural language processing (e.g., IMDb,
SQuAD), and speech recognition (e.g., LibriSpeech, TIMIT). Public datasets are freely
accessible to the general public and have no restrictions on who may use them. Organi-
zations, academic institutions, and governmental bodies frequently produce and distribute
these datasets for a range of uses, including benchmarking, analysis, and research. Public
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datasets offer a variety of data that can enhance model performance and generalization,
making them useful tools for training machine learning models. Some examples are the
public MNIST dataset for handwritten digit recognition Figure 2.14, the CIFAR-10 dataset
for object recognition, and the free-access CT Medical Images dataset Figure 2.15, .

On the other hand, private datasets are not available to the general public and call
for special authorization or permissions to access them. These datasets, which are usu-
ally owned by people, businesses, or organizations, could include private or sensitive data
that has to be kept secure. For internal research, development, or analysis needs, private
datasets are frequently utilized. Various types of data, including customer, financial, med-
ical, and proprietary research data, can be found in private datasets. To maintain data
security and privacy, authorized people or entities are typically the only ones with access
to private datasets.

Figure 2.14: MNIST dataset for handwritten digit recognition

Figure 2.15: Random images extracted from the CT Medical Images dataset that contains
images of patients with cancer.
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2.6.3 Preparing a Dataset Techniques During Training
Preparing a dataset for machine learning is an important step to ensure that the data is
clean, complete, and suitable for training a model. Here are some common techniques used
in dataset preparation.

Labeling Process

In machine learning and data analysis, dataset labeling is an essential step. It entails locat-
ing and giving raw data—such as pictures, text files, videos, or other kinds of data—meaningful
labels or annotations. Machine learning models are then trained on the labeled data, al-
lowing them to produce precise estimations and predictions. Dataset labeling is a difficult
process that calls for careful consideration of many different aspects and techniques. Busi-
nesses and researchers must evaluate the task’s complexity in addition to its size, scope,
and duration to choose the most effective labeling strategy. There are different paths or
methods to label data, and each method has its pros and cons. Some common approaches
to data labeling include manual labeling, where human annotators manually assign labels
to the data, and semi-supervised learning, which combines labeled and unlabeled data to
reduce the need for manual labeling.

Cleaning a Dataset

The process of locating and fixing mistakes, inconsistencies, inaccuracies, and other prob-
lems in a dataset is called dataset cleaning, sometimes referred to as data cleaning or data
cleansing. Before model training, this crucial step in data preprocessing must be com-
pleted. Cleaning a dataset aims to remove errors like noise, duplicate records, incorrect
formatting, missing values, and outliers to increase the data’s quality and dependability.
Researchers and data analysts can make sure the data is correct, comprehensive, and ap-
propriate for analysis or modeling by cleaning the dataset. The particular procedures and
methods used for cleaning a dataset can change based on the type of data and the project’s
needs. Nonetheless, a few standard methods and approaches are as follows:

• Managing missing values: You can use a variety of advanced techniques, such as re-
gression imputation or multiple imputation, to fill in missing values. Some techniques
include mean imputation, median imputation, and mode imputation.

• Eliminating duplicates: To prevent bias and redundancy in the dataset, duplicate
records can be found and eliminated.

• Resolving inconsistencies: Data validation techniques, standardizing formats, and
fixing typographical errors can all be used to address inconsistent data, which includes
conflicting values and formatting errors.

• Managing outliers: If an outlier is an extreme value that differs noticeably from the
rest of the data, it can be eliminated if it is incorrect, or it can be handled using the
proper statistical techniques.

• Handling noise: Noise in data refers to arbitrary or meaningless variations. Methods
such as applying, filtering, or smoothing can reduce the problem of noise in the data.
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Data Augmentation

A common technique in deep learning and machine learning is data augmentation, which
creates an artificial increase in the size and diversity of a dataset. To produce new samples
that are comparable to the originals but distinct from them, augmentation applies various
transformations or modifications to the current data. Models can then be trained using
the augmented data, which will increase their performance and generalization.

When used to create new images by applying transformations like rotation, scaling,
flipping, cropping, and adding noise or distortions, data augmentation is especially com-
mon in computer vision tasks. These modifications strengthen the model’s resistance to
varying lighting, perspectives, and object orientations, enhancing its capacity to generalize
to previously unobserved data. The benefits of data augmentation include:

1. Expanded dataset size: Data augmentation helps get around the limitations of small
datasets, which are typical in many categories, by producing new samples.

2. Better generalization of the model: By adding more diversity and variations to the
training set, augmented data aids in the model’s ability to identify more resilient and
all-encompassing patterns.

3. Decreased overfitting: Overfitting occurs when a model performs poorly on untested
data because it is too specialized in the training set. Data augmentation can help
avoid this.

Splitting the Dataset

Splitting datasets is an essential step in workflows for deep learning and machine learning.
A dataset is divided into distinct subsets for testing, validation, and training. Splitting a
dataset is done to avoid overfitting and to evaluate a model’s performance and capacity
for generalization on untested data. Below is a quick description of every subset:

1. Training Set: The model is trained using the training set. It is the biggest subset of
the dataset and is employed to discover the fundamental patterns in the data and
optimize the model’s parameters.

2. Validation Set: The model is adjusted, and the optimal hyperparameters are chosen
using the validation set. It facilitates the assessment of the model’s performance
throughout training and the decision-making process for model enhancements, like
modifying regularization strategies or learning rates.

3. Test Set: The trained model’s final performance is evaluated using the test set. It
functions as an objective assessment of the model’s capacity to generalize to unob-
served data. To prevent errors in the evaluation, the test set should not be used
during the model development process.

Depending on the size of the dataset and the particular needs of the task, the ratio of
division between these subsets may change. Generally speaking, the training set receives
70–80% of the data, the validation set receives 10-15%, and the test set receives the re-
maining 10-15%. These ratios can be changed to satisfy the particular requirements of the
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project.

ML frameworks can split datasets using a variety of techniques and libraries. For
instance, the traintestsplit function from the well-known Python machine learning library
scikit-learn makes it simple to randomly divide datasets into training and testing subsets.

2.6.4 Hyperparameters in Training a CNN
Hyperparameters are settings made before the start of the training process that govern
how the deep learning model behaves. They are manually entered by the user rather than
determined from the data. Learning rate, batch size, number of layers, activation func-
tions, and regularization strategies are a few examples of hyperparameters.

Achieving optimal model performance requires selecting the right hyperparameters. It
often involves a process of trial and error in which various hyperparameter combinations
are examined and tested. Bayesian optimization, random search, and grid search are some
of the methods that can be utilized to automate hyperparameter tuning

Adjusting the Learning Rate

In machine learning and optimization algorithms, the learning rate is a hyperparameter
that sets the step size at each iteration as the algorithm moves toward the minimum of a
loss function. It is essential to machine learning models’ training process.

A model’s learning rate determines how quickly it picks up new information and adjusts
to the given situation. Faster convergence is possible with a higher learning rate, but there
is a chance that the ideal solution will be missed. Conversely, a lower learning rate could
result in slower convergence.

The learning rate can be adjusted using a variety of techniques, including adaptive
learning rate approaches, learning rate schedules, and manual tuning. Manual tuning
entails choosing a learning rate based on trial and error or past knowledge. Learning
rate schedules use cyclical variations or gradual reductions to modify the learning rate
during training. Adaptive learning rate techniques dynamically modify the learning rate
in response to the optimization process’s advancement. Several techniques and approaches
can be used to calculate the learning rate α(1). The particular strategy may vary depending
on the problem at hand, the optimization framework and algorithm being used, and both.
Here are some typical methods:

1. Fixed Learning Rate: In certain situations, a fixed learning rate—one that stays
constant throughout all training epochs—is employed during the training process.
Although this strategy is easy to use, the best outcomes might not always be achieved.
α = 0.001 is an illustration of a fixed learning rate.

2. Learning Rate Schedules: These schedules include changing the rate of learning
based on predetermined conditions or at predetermined intervals. When a predeter-
mined condition is met or after a predetermined number of epochs, the learning rate
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can be reduced by a fixed factor. Three popular learning rate schedules are expo-
nential, polynomial, and step decay. There may be variations in the formula used in
these schedules to calculate the learning rate.

3. Adaptive Learning Rate Techniques: These techniques dynamically modify the
learning rate in response to the optimization process’s advancement. The goal of
these techniques is to determine the ideal learning rate for every step. The adaptive
learning rate techniques AdaGrad, RMSprop, and Adam are a few examples. Usually,
these techniques enhance efficiency when dealing with sparse gradient problems.

It is important to remember that the model’s performance and the training process can
be greatly impacted by the selection of the learning rate and the updating strategy. Dis-
covering the ideal learning rate for a particular problem and model architecture frequently
requires trial and error.

Number of Epochs in Training

In machine learning, the number of epochs denotes the total number of passes through the
training dataset that occurs during the training phase. A batch is a subset of the training
data that is processed before the model’s parameters are updated, and each epoch is made
up of one or more batches.

One hyperparameter that must be set before training starts is the number of epochs.
It establishes the number of times the model will run through the training set. Parameters
like the size of the dataset, and the model’s convergence behavior are some of the variables
that influence the number of epochs that are chosen.

Setting Batch Size

When a neural network is being trained, the term ”batch size” describes the number of
training examples that are processed collectively in a single forward and backward pass.
This hyperparameter holds significant importance as it can affect both the model’s perfor-
mance and the training process. Some factors, such as memory capacity, training speed,
and gradient estimation accuracy, influence the choice of batch size.

Accurate gradient estimation and training speed are traded off with batch size. Because
each update is based on fewer training examples, smaller batch sizes lead to faster training
speeds. Slower convergence and noisy gradient estimates may result from this, though.
Larger batch sizes, however, can cause the training process to lag but also yield more
accurate gradient estimates.

Optimizer Algorithm

An optimizer in the context of neural networks is an algorithm or technique that modifies
the model’s parameters (weights and biases) during training to reduce the loss function
and enhance the model’s functionality. The optimizer uses the gradients calculated during
backpropagation to determine how to update the model’s parameters.
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There are several commonly used optimizers in neural networks. Here are a few exam-
ples:

1. Stochastic Gradient Descent(SGD): It’s a popular and easy optimizer. By mak-
ing tiny movements in the direction of the loss function’s negative gradient, it modi-
fies the model’s parameters. SGD may converge slowly and become trapped in local
minima, but it can be computationally efficient.

2. Adam: The optimizer Adam (Adaptive Moment Estimation) combines the benefits
of RMSProp and AdaGrad. Based on the estimates of the first and second moments
of the gradients, it modifies the learning rate for each parameter. Adam is renowned
for its quick convergence and strong output on a variety of issues.

3. Adagrad: It adjusts the rate of learning for every parameter by utilizing the gradi-
ents from the past. Larger updates are provided for parameters with smaller gradi-
ents, and smaller updates are provided for parameters with larger gradients. Adagrad
can manage various learning rates for various parameters and works well with sparse
data.

4. RMSProp: Based on the past gradients, the optimizer RMSProp (Root Mean
Square Propagation) also modifies the learning rate for every parameter. To nor-
malize the learning rate, a moving average of squared gradients is employed. When
it comes to non-stationary objectives, RMSProp works well and can converge more
quickly than SGD.

The particular problem at hand, the size of the dataset, and the neural network’s archi-
tecture all influence the optimizer selection. There isn’t a single optimizer that is ideal for
every task, so it’s usually advised to try out a variety of them to see which one suits your
needs.

The optimizer can be specified at the model compilation stage when using well-known
deep learning frameworks such as TensorFlow or PyTorch. For instance, you can pass the
optimizer as an argument when using TensorFlow’s compile() method. You can create an
optimizer object in PyTorch and give it the model parameters.

2.6.5 Analyzing Results Tools and Techniques During Training
When analyzing the performance of a CNN model, several tools and techniques can be
used. Here are some key approaches:

Common Metrics in CNN

Several metrics are used to assess a model’s performance based on the outcomes found in
the test dataset. Metrics allow us to assess a model’s overall and per-class performance.
Metrics typically make use of the data that the confusion matrix provides. Here are some
examples:
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1. Accuracy: is a commonly used metric for evaluating the performance of classification
models. It measures the proportion of correct predictions made by the model out of
the total number of predictions. In binary classification, accuracy can be calculated
using the formula:

Accuracy = TP + TN

TP + TN + FP + FN
(2.12)

Where:

• True Positives represents the number of correctly predicted positive classes.
• True Negatives represents the number of correctly predicted negative classes.
• False Positives represents the number of classes that were incorrectly predicted

as positive when they were actually negative.
• False Negatives represent the number of classes that were incorrectly predicted

as negative when they were actually positive.

2. Precision: It is a metric frequently used to assess a model’s performance in classifi-
cation tasks. Out of all the the cases the model predicts as positive, it calculates the
percentage of correctly predicted positive instances. The quality of positive predic-
tions is the main focus of precision. The following formula can be used to determine
precision:

Precision = TP

TP + FP
(2.13)

3. Recall: It is a metric that is frequently used in classification tasks to assess a model’s
performance. Out of all the actual positive cases, it calculates the percentage of
correctly predicted positive events. The concept of recall centers on the model’s
capacity to recognize every positive example. The formula below can be used to
calculate recall:

Recall = TP

TP + FN
(2.14)

4. F1-score: A popular metric for assessing a model’s performance in classification
tasks is the F1 score. It gives a fair assessment of the model’s performance by
integrating recall and precision into one metric. The accuracy of the model on a
dataset is indicated by the F1 score, which is computed as the harmonic mean of
precision and recall. When recall and precision are both crucial or when there is an
imbalance in the classes, it is especially helpful. The F1 score is computed using the
following formula:

F1-Score = 2 · Precision · Recall

Precision + Recall
(2.15)

Though it can also be applied to multi-class classification by computing the F1 score
for each class and then obtaining the average (macro-average or micro-average) based
on the particular requirements, it is worth noting that the F1 score is frequently
utilized in binary classification tasks.
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Using a Confusion Matrix

Using a confusion matrix, we can visually see the results of our model performance. It is
often used to evaluate the accuracy and effectiveness of a machine learning model’s pre-
dictions. The matrix displays the number of true negatives, true positives, false negatives,
and false positives produced by the model on the test data.

Figure 2.16 is an example of a 2 × 2 confusion matrix used in binary classification:
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Figure 2.16: Confusion matrix presenting two classes.

We can compute several evaluation metrics, including accuracy, precision, recall, and
F1 score, using the confusion matrix. These measures provide insight into how well the
model recognizes positive and negative occurrences.
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Chapter 3

State of the Art

When the pandemic started, the methods used to diagnose patients with the symptoms
of COVID-19 were chest X-rays, Polymerase chain reaction (PCR), and chest CT scans.
Wilhelm Röntgen, with the discovery of the X-ray images, opened the door to the diagnosis
of several diseases, including pneumonia. Chest X-ray is still being used nowadays and was
very helpful during the pandemic. Now, I present a review from the time radiotherapy was
used until our days with the use of artificial intelligence in diagnosing diseases, focusing
on COVID-19.

3.1 Pneumonia Infection
A dangerous lung infection, pneumonia, can be caused by bacteria, viruses, and fungi.
A physical examination, diagnostic tests, and the patient’s symptoms can all be used to
diagnose pneumonia. Chest pain, fever, coughing, shortness of breath, and exhaustion are
typical signs of pneumonia. A doctor may identify abnormal lung sounds, like crackles or
diminished breath sounds, during a physical examination of the patient [85].

3.1.1 Diagnostic Tests for Pneumonia Infection
In this article [86], they compare chest X-ray versus ultrasonography tests Figure3.1. The
results are reported in Table 3.1. They used 30 patients with a mean age of 63.8 ± 18.3
years. The value for the specificity of the ultrasonography was reported as not calculable
because patients were diagnosed as positive for pneumonia before the test. So, no healthy
patients would be found in this article. The same applies for 0% of chest X-ray specificity.
In conclusion, an ultrasonography test can detect patients with the disease better than a
chest X-ray test.

Test Sensitivity [%] Specificity [%]
Chest X-ray 93.1 0
Ultrasonography 100 not calculable

Table 3.1: Sensitivity and Specificity of Different Tests for Pneumonia Detection.
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Figure 3.1: A ultrasound with a patient positive for pneumonia. The lung is consolidated
or filled with fluid, making the heart visible and the lung looks like a liver [87].

Balk et al. gathered the results of 12 studies that included 1510 patients [88]. In this
work, the specificity is reported for both CXR and ultrasound tests Table 3.2.

Test Sensitivity [%] Specificity [%]
Chest X-ray 88.75 94.23
Lung ultrasound 86.8 98.2

Table 3.2: Sensitivity and Specificity of Different Tests for Pneumonia Detection.

In this study [89], statistics are reported in Table 3.3 for Legionnaires’ disease, which is
produced by the Legionella spp. bacterium. The samples were collected from expectorated
sputum, bronchoscopic aspirate, nasopharyngeal swab, nasotracheal suction, and urine
samples. The tests they used were direct immunofluorescent antibody (DFA) Figure 3.2,
PCR, bacterial culture, and urine antigen. From the results, we observe that PCR and urine
antigens have the highest sensitivity but are used to detect specific strains of the bacteria.
So, the culture test is better and more affordable in price, offering better specificity and
working for all the strains of the bacteria.

Test Sensitivity [%] Specificity [%]
Culture 10–80 100
DFA stain 25–70 95
PCR 80–100 90
Urine antigen 70–90 99

Table 3.3: Pneumonia Legionella spp. Detection Tests.
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Figure 3.2: Direct immunofluorescent antibody test used to detect the Legionella pneu-
mophila bacterium [90].

3.1.2 Pneumonia Bacterial Treatment
The bacteria that produce pneumonia include Streptococcus pneumonia, Staphylococcus
aureus, Haemophilus influenza, Mycobacterium tuberculosis, mycoplasma, and chlamydia,
among others. The antibiotics used depend on the type of infection that the patient has.
I present in Table 3.4 a summary of drugs used to treat this disease [91].
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Drug Spectrum of Activity Mechanism of Action
Ceftaroline Methicillin-resistant

coagulase-negative
staphylococci,
Streptococcus pneumoniae,
vancomycin-resistant
Enterococcus faecalis

Inhibition of transpeptidase ac-
tivity

Ceftobiprole Methicillin-resistant
Staphylococcus aureus,
Moraxella catarrhalis,
Klebsiella pneumoniae,
Escherichia coli,
Pseudomonas aeruginosa

Inhibition of transpeptidase ac-
tivity

Lefamulin Gram-positive strains Inhibition of protein synthesis
Telavancin Gram-positive strains Inhibition of bacterial wall syn-

thesis and disruption of bacterial
membrane function

Omadacycline Penicillin-resistant
streptococci,
Methicillin-resistant
staphylococci, atypical
bacterial pathogens, and
Gram-negative strains

Action on efflux cell pumps and
chemical modifications

Table 3.4: Drugs used to Treat Bacterial Pneumonia.

In Figure 3.3, we observe a scanning electron micrograph of Mycobacterium tuber-
culosis, which is the pathogen that causes tuberculosis disease, which attacks the lungs,
producing pneumonia, fever, coughing up blood or sputum, persistent cough, and fatigue.
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Figure 3.3: Mycobacterium tuberculosis bacteria picture produced by scanning electron
micrograph [92].

3.2 Covid-19 Virus Review
At the end of 2019, Wuhan, China, was the first city to be contaminated with the highly
transmissible SARS-CoV-2 virus seen in Figure 3.4 that causes viral respiratory distress
and pneumonia, which was subsequently designated COVID-19. Around 350 million people
had tested positive for the virus globally by the end of January 2022, and there had been
approximately 5.6 million fatalities [93]. Several methods to diagnose and treat patients
will be presented in this work, which were developed during the pandemic and continue to
be used nowadays.

3.2.1 Diagnosing Covid-19 Techniques
One of the best methods to diagnose the COVID-19 disease is real-time PCR (RT-PCR).
Other tests, like rapid IgG and IgM were used before RT-PCR became the gold standard of
detection. In Table 3.5 a summary of the most commonly used tests during the pandemic
is presented.
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Test Sensitivity [%] Specificity [%] Source
RT-PCR 98.10 98.7 [93]
Ct scan 97.00 56.00 [94]
Chest X-ray 98.00 90.00 [95]
Rapid antigen test 99.4 68.4 [96]
ELISA IgG 92.00 100 [97]

Table 3.5: COVID-19 most used tests. The values for specificity and sensibility might vary
depending on the laboratory that produced the test and conditions like the concentration
of the genetic material extracted from the patient. In the RT-PCR test, there are Federal
Drug Administration (FDA) and non-approved FDA, and some of the tests have sensitivity
and specificity values of 100% for both FDA and non-FDA.

Figure 3.4: SARS-CoV-2 Structure. We can appreciate the spike protein, which is used for
binding to the ACE2 (angiotensin-converting enzyme 2) receptor on the surface of human
cells, facilitating the entry of the virus into those cells [98].

3.2.2 Covid-19 Treatment During the Pandemic
At the beginning of the pandemic, a medicine to treat the disease was not available. So,
rest, fluids, fever, and pain medications were the treatments used during the first stages
of the disease. When the patient developed pneumonia, antiviral medications were used
without success. Monoclonal antibodies were also used in some recovery cases. The final
stage required oxygen therapy and assisted ventilation due to the consolidation of the
lungs. Finally, several vaccines were developed and distributed around the world [99]. Let
us review the vaccines that were developed against the SARS-CoV-2 virus.
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Vaccine Method Route of administration Number of doses
Pfizer/BioNTech RNA based IM 2
Moderna RNA based IM 2
AstraZeneca Viral vector IM 1 or 2
Janssen Viral vector IM 1 or 2
Sinovac Inactivated virus IM 2
Sinopharm Inactivated virus IM 2
CanSino Viral vector IM 1

Table 3.6: COVID-19 vaccines characteristics [100].

In Table 3.6, we have a summary of the most common vaccines used around the world.
They use different mechanisms to make the immunological body system recognize and
rapidly eliminate the antigen before the virus infects and replicates.

3.3 Historical Perspectives on the Use of X-ray Im-
ages

The first X-ray images were taken by the well-known scientist Wilhelm Conrad Röntgen.
He was holding with his fingers a tiny object in a beam that emitted X-rays. Then, Röntgen
recognized the image of his fingers on the cardboard screen. So, he captured the first-ever
X-ray image. The experiment radically changed medicine and is regarded as the beginning
of radiography. He also took a picture of the hand of his wife, which showed the bones of
the hand clearly, opening a new field of study called radiology [101].

3.3.1 Diagnosis of Pneumonia and other diseases
In the next few years, Professor Morris Manges published an article giving detailed an-
notations of the diagnosis of X-rays in patients, including bronchopneumonia, acute lobar
pneumonia, abscesses, and gangrene [102]. During the Second World War, the use of X-
rays to diagnose wounded soldiers became a national interest for the United States. Major
Elberth Kenneth Lewis published in 1944 [103]. Kenneth and its medical team examined
6,000 cases, of which 25 percent presented with a type of pneumonia. They presented the
X-ray images and the diagnosis of some patients in the publication. In conclusion, they
said that an X-ray is not sufficient to accurately diagnose a patient with the aforemen-
tioned diseases. They suggested laboratory exams and physical examinations. Along with
the discovery of X-rays in diagnosis, some researchers used these rays to treat patients.
The appearance of radiotherapy was used before and during Roentgen’s discovery [104].

3.3.2 Radiotherapy
The treatment of pneumonia using radiotherapy began during the first and second decades
of the 20th century. In this paper [105], investigators diagnosed and treated patients in
the United States who had several inflammatory conditions, including gangrene, inner ear
infections, carbuncles, arthritis, and sinusitis [106]. Musser and Edsall published the first
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study on the use of X-rays in the treatment of pneumonia patients in 1905 [107]. Musser et
al. hypothesized that X-ray therapy might contribute to the metabolism of the congestion
produced by pneumonia. However, the use of radiotherapy was discontinued as sulfa drugs
demonstrated more efficiency in treating bacterial forms of pneumonia [108].

3.4 Existing Methods for COVID-19 Detection Using
X-ray Images Review

Nowadays, two main X-ray methods are used to diagnose COVID-19: chest X-rays and
chest CT scans [109]. The sensitivity of both methods will be discussed further.

3.4.1 Using Chest X-rays as a Diagnostic Method
This method is quick and easy to use to produce an image of the lungs. These pictures can
be used to detect fluid, pneumonia, and other abnormalities in the lungs. However, chest
X-rays are not as sensitive as chest CT scans for detecting COVID-19 [110]. However, they
are cheaper than CT scans. The price of a chest X-ray in Ecuador is around $ 10 [111].
However, one disadvantage of chest X-rays is their high false-negative rate. The imaging
test’s immaturity and the absence of pulmonary disease at the time of presentation are two
potential causes, particularly for portable X-ray equipment [112]. Also, breast prominence,
inadequate inspiration, and improper patient placement can all result in false positive
results on chest X-rays [112]. Many studies have examined the sensitivity of portable
chest X-rays versus PCRs in the identification of COVID-19 in patients. These did not
display particularly high sensitivity numbers at first, but in environments with a severe to
moderate condition of the disease, it increased to as much as 89% [113]. In Figure 3.5, we
appreciate arrows indicating how COVID-19 affects the lungs, presenting structures that
can be recognized by doctors and specialists.

3.4.2 Diagnosis Using Chest Computerized Tomography Scan
Chest CT scans offer more image resolution than chest X-rays and can provide more
accurate details of the lungs. They are also better at detecting COVID-19. However, chest
CT scans are more expensive and require more radiation than chest X-rays [114]. The
price of chest CT scans in Ecuador varies from $ 150 to $ 300 in the private sector [115].
Now, let us review the sensitivity of a chest X-ray vs. a CT scan.

3.4.3 The Sensitivity of Chest X-ray vs CT Scan
The sensitivity of a portable chest X-ray machine is lower than that of a CT scan, with
69% versus 97–98% respectively [110]. However, in this paper [113], they report similar
sensitivity values for chest and CT scans. The reason for the sensitivity values to be so close
might be the use of 535 patients aged 65±17 years, which is a low number of patients and
the age is close to each other. They also used patients with severe symptoms of the disease,
which can enhance sensitivity in chest X-rays. Another paper states that, when COVID-19
infection is mild, chest imaging is insensitive [110]. So, the severity of the patient’s disease
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has to be taken into account when chest X-rays are used to diagnose a patient. However,
chest images can be used to triage the sick and aid doctors in the diagnosis [116].

Figure 3.5: Annotations in COVID-19 pneumonia. (A) Woman 47 years old with clear
symptoms of COVID-19. Posteroanterior (PA) chest X-ray. The image shows a reticular
interstitial pattern peripheral to the lungs (arrows). (B) The same patient is in picture
A. Three days later, a PA chest X-ray was taken. SARS-CoV-2 positive PCR result.
The X-ray displays faint, rounded bilateral peripheral alveolar opacities (dotted arrows).
(C) A male aged 57 who exhibits dyspnea and a positive SARS-CoV-2 PCR has bilateral
peripheral opacities (arrow tips) in the middle, lower, and upper fields. (D) A 45-year-old
man whose COVID-19 status was verified by PCR along with dyspnea. Anteroposterior
chest X-ray demonstrating extensive involvement of both lungs in multiple bilateral diffuse
confluent areas of consolidation. Observe the existence of two central venous lines, a
gastrointestinal tube (black arrow), and the left and right subclavian jugular veins (white
arrows). [109].

3.5 Artificial Intelligence in Chest X-rays with COVID-
19

Artificial intelligence (AI) has been used to train and predict if a patient has a pulmonary
disease using X-ray images [117]. In this paper [118], they used chest and CT scan images.
Then they segmented the images using AI and reported high precision in identifying dis-
eased regions in CT and X-ray images. They said that AI can help physicians diagnose
patients more quickly and make it easier to determine how serious a patient’s infection is
afterward. Also, radiologists can receive assistance in screening, diagnosis, and treatment
from a machine-learning-based medical assistant platform. Jiao et al. [119] state that chest
X-rays may complement clinical information in predicting the likelihood that COVID-19
patients will progress to a critical condition through AI.

41



3.5.1 High Precision Models Using Chest X-rays
Neural networks are being used to accurately predict patterns in new images. Now, I will
mention some of these frameworks that have had good results. The Bayesian DNN net-
work has an accuracy of 92.9%. It classifies COVID and other classes not mentioned in
the paper [120].

The ResNet50, InceptionV3 and Inception- ResNetV2 [121], accuracies are seen in Table
3.7.

Model Binary classification [%]
ResNet50 98.00
InceptionV3 97.00
Inception-ResNetV2 87.00

Table 3.7: Accuracy ResNet50, InceptionV3, and Inception-ResNetV2 models. All the
last-mentioned models classify COVID-19 and normal patients. The number of subjects
used in the models is 50 for COVID-19 and 1950 for Normal.

DarkNet (YOLO) [122]. Researchers obtained an accuracy of 98.08% for binary classes
(COVID vs. No-Findings) and 87.02% for multi-class (COVID vs. No-Findings vs. Pneu-
monia). They used 224 COVID-19 images, 700 for bacterial pneumonia, and 504 for normal
patients. They used balancing methods to select only 500 images from bacterial pneumonia
and 500 from normal. They also mentioned that the number of images that they used for
COVID-19 was low due to the lack of positive cases at the time they conducted the study.

3.5.2 Segmentation Algorithms
The VB-Net neural network was used in the DL-based segmentation method to identify
COVID-19-specific infection regions in CT scans. CT scans from 249 COVID-19 patients
were used to train the newly developed DL-based segmentation neural network. An ad-
ditional 300 COVID-19 CT scans were used to validate the system further [118]. They
reported a Dice similarity coefficient of 91.6% which is quite high, indicating that the au-
tomatic segmentation results are very similar to the manual segmentations. This suggests
that the VB-Net is doing a good job at accurately identifying and delineating the regions
of interest in the images. They also obtained the best accuracy of severity prediction of
73.4% ± 1.3%. This accuracy score represents how well the model can predict the severity
of lung infections. An accuracy of 73.4% means that the model’s predictions match the
actual clinical severity in 73.4% of cases, which is a reasonable level of accuracy. Other
neural networks.

Liu et al. [123] mentioned that one of the best neural networks for image segmentation
is U-Net. In contrast to Deeplab26, SegNet19, and FCN25Figure. Also, Unet performs
well when given a few samples of the images and masks. In Figure 3.6, we observe that the
network receives an image as input in the format 256*256*3, and the number 3 indicates a
color image. Then, the output is 256*256*1, meaning that the resulting image is a mask in
black and white. They also found that, when the lung field is obscured by serious diseases,
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blocked by medical equipment, or severely deformed, the accuracy of lung segmentation
is comparatively low. This remark is important when using U-net in COVID-19 datasets.
In contrast, in this paper [124], the dice scores for SCAN and Attention-U-Net-U-Net
are 97.3 ±0.8% and 96.3 ±0.7% respectively, meaning that the SCAN neural network
is slightly better than the Attention-U-net architecture. They also used the Contrast
Limited Adaptive Histogram Equalization (CLAHE) filter in Figure 3.7, to improve the
visualization of human and computer vision.

Figure 3.6: U-Net architecture with EfficientNet Encoder [125].

Figure 3.7: CLAHE filter applied in Chest X-ray image before and after [124].

3.5.3 Using Contrast Limited Adaptive Histogram Equalization
CLAHE technique uses a pre-trained neural network that has been trained with a huge
dataset and transfers that knowledge to a new model, which will receive a dataset of
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a smaller sample size. The new model is trained using this transferred knowledge and
compiles much faster [126]. In this article [127], they used transfer learning models and
obtained these results for accuracy in Table 3.8. We can observe that VGG-19 performed
better than the other models for both binary and other classes.

Model Binary classification [%] Three classes [%]
VGG-19 98.75 93.48
MobileNet 97.40 92.85
Inception 86.13 92.85
Xception 85.57 92.85
Inception ResNet v2 84.38 92.85

Table 3.8: Several transfer learning model accuracies are reported. The binary classification
used the COVID and Normal classes. The three-class classification used COVID, Normal,
and Pneumonia

Sitaula et al [128], used the VGG-16 transfer learning model with chest X-ray images.
They used three datasets containing an average of 300 images for each class. The first
dataset has 3 classes, the second has 4 classes, and the third has 5 classes. Classification
accuracy values for datasets 1, 2, and 3 are reported in Table 3.9.

Model Three classes [%] Four classes [%] Five classes [%]
VGG-16 79.58 85.43 87.49
VGG-19 74.84 82.83 85.00

Table 3.9: VGG16 and VGG19 transfer learning model accuracies.

Sitaula and its collaborators found that VGG-16 performed slightly better than VGG-
16. In Figure 3.8, we observe the confusion matrix for VGG-16 for the 3 datasets used.
It is important to mention that they used an internal testing dataset extracted from the
training dataset. The correct method would be using an external testing dataset [129],
which simulates better a real-life application with completely new images. This external
dataset will ensure a more robust evaluation of the model and its ability to perform on
unseen data.
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Figure 3.8: Confusion matrix for (a) First dataset with 3 classes, (b) Second dataset 4
classes, and (c) Third dataset that contains 5 classes [128].

3.5.4 COVID-19 Chest X-ray Public and Private Datasets
There are public and private COVID-19 datasets that were available during the pandemic
to aid experts in the diagnosis of this disease. The Kaggle database, COVID-19 Radio-
graphy Database 1, has 3616 COVID-19 positive cases along with 10,192 Normal, 6012
Lung Opacity (Non-COVID lung infection), and 1345 Viral Pneumonia. These papers
[130], [131], use the ”COVID-19 Radiography Database” to construct artificial intelligence
models obtaining good prediction results. Another more recent COVID-19 database called
COVID-QU-Ex Dataset has 33,920 chest X-ray (CXR) 2 and also has masks for segmenta-
tion. The classes and number of images are 11,956 for COVID-19, 11,263 for non-COVID

1https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
2https://www.kaggle.com/datasets/anasmohammedtahir/covidqu/?select=COVID-QU-Ex+

dataset.txt
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infections (Viral or Bacterial Pneumonia), and 10,701 for Normal. The authors of the
database have constructed the database using images from other databases. In Figure
3.9, we have 3 images obtained from the COVID-QU-Ex Dataset. The dataset has also
been used in other investigations with successful results [132], [131]. The dataset is also
well-balanced, and we might expect very good results by using it in a neural network.

Figure 3.9: Images extracted from the COVID-QU-Ex Dataset. (a) A CXR of a patient
with COVID-19. (b) A mask of the infection produced by the disease. (c) Lung mask not
considering the infection [11].

In this work [132], the COVID-QU-Ex Dataset was used to test several neural networks
using U-net segmentation. The best results are shown in Table 3.10.

Model Encoder F1 Score[%] Accuracy [%] Sensitivity[%] Specificity [%]
U-Net DenseNet121 98.81 ± 0.62 98.8 ± 0.62 99.66 ± 0.33 97.94 ± 0.82
U-Net ++ ResNet18 99.22 ± 0.5 99.23 ± 0.5 98.46 ± 0.71 100 ± 0
U-Net ++ DenseNet121 99.22 ± 0.5 99.23 ± 0.5 99.31 ± 0.48 99.14 ± 0.53
FPN ResNet18 98.56 ± 0.68 98.54 ± 0.69 99.66 ± 0.33 97.43 ± 0.91

Table 3.10: COVID-QU-Ex Dataset tested on state-of-the-art neural networks using seg-
mentation. The U-Net-DenseNet121 and FPN-ResNet18 have the highest sensitivity mean-
ing that they can classify patients with the disease excellently. U-Net++-ResNet18 has the
perfect specificity, which means that this neural network classifies, without error, healthy
patients. Future work might include replicating this work and trying to achieve similar
results using transfer learning with segmentation. They only used three classes, since pneu-
monia and lung opacity have similar patterns and they merged both classes to get higher
performance statistics.

In Figure 3.10, we observe the result of the segmentation performed in real CXR im-
ages with COVID-19. Since they are using the highest-performance neural networks, the
segmentation of the areas commented in the lungs is highly accurate. This is the final
tool we would like to build and deploy in several public hospitals. Tahir et. al [132] have
demonstrated that is possible to train and predict AI with the use of CXR images with
almost no error.
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Figure 3.10: COVID-QU-Ex Dataset segmentation and prediction. (a) Four images from
the 4 stages of COVID-19 are depicted. In mild COVID-19, the CXR has a lot of contrast
and the lungs do not present opacities (lighter areas). (b) In a moderate state, opacities
are located in the lower areas of the lungs. (c) In severe progression, the lungs have a lot of
lighter areas which means that are filled with fluid complicating breathing. The patient in
this state is very likely to need assistance to breathe. (d) In the critical phase, the patient
has to be intubated and monitored constantly to keep him alive. Observe how the white
areas cover all the dark initial space that a healthy lung has [132].
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Chapter 4

Methodology

4.1 Methodology Summary
The model was created using Jupyter Notebooks on the Google Colab and Kaggle plat-
forms. Keras, tensorflow, pandas, numpy, sklearn, matplotlib, PIL, among other libraries
were used. The dataset was selected taking into consideration the number of images and
the resolution. The dataset was first checked for images that were not part of the Chest-
Xray category and other unnecessary archives. Then it was compressed and uploaded to
my Google Drive account. Then, the dataset was downloaded in each session of compiling
by using the gdown library. So, the downloading only took 6 seconds per session using an
average of 208MB/s of speed. Then the dataset was unzipped in the Colab and Kaggle
platforms. Finally, the dataset was balanced to obtain the same amount of images for
each class. The final size of the dataset is shown further. To train the model we stored
the images of the dataset using Keras library. Then, we used grayscale images since color
images did not show model accuracy improvement. Image augmentation, autotune, and
randomizing were applied. A seed=123 was selected to ensure reproducibility so that the
randomization process would be done in a deterministic manner.

The model architectures were chosen due to recent works that showed better perfor-
mance than Alexnet and other old neural networks. Initially, we tested Alexnet and Incep-
tion but the literature shows better results using VGG19 and VGG16 models combining
transfer learning techniques. The models used in this work were tested on binary and
multiclass datasets that we created from the COVID-19 RADIOGRAPHY DATABASE
dataset. During the validation process, we used binary and categorical accuracy. Also,
binary and categorical cross-entropy were used during the model compiling. The Adam
optimizer was used. Heat maps and Grad-Cam were used to visualize the neural network
activations. Receiver Operating Characteristic (ROC) was used to visually determine the
model performance. ROC is commonly used in binary classification using different thresh-
old values to plot the data. In simpler terms, it’s a way to visualize the performance of a
binary classification model across different threshold settings. Threshold values determine
the boundary in the prediction of classes.

Kaggle provided the COVID-19 RADIOGRAPHY DATABASE free dataset. The
dataset contains a total of 27.052 images divided into 4 classes. The balancing of the
dataset was used to improve the accuracy of the results. Also, data augmentation was
applied to increase the number of images. Then, the dataset was divided into training,
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validation, and testing. A 70% was used for training, 15% for validations, and 15% for
testing. Also, prefetching and shuffling were used to ensure the reproducibility of this work.
The architecture of one of the neural networks is presented. Finally, the platforms we used
and the hardware are shown.

In Figure 4.1 we appreciate an image produced using one of the samples from the
COVID-19 RADIOGRAPHY DATABASE. This image allows the reader to understand
the basic mechanism of the extraction of patterns performed by a CNN. The yellow areas
represent specific characteristics that the model is learning. It is important to mention that
this neural network is looking for characteristics unique to each disease and not looking
exactly at the lung area.
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Figure 4.1: VGG19 neural network characteristics were extracted in each layer. In the
block1-conv1 layer, we appreciate how the CNN extracts the characteristics from the
same image sixteen times. The block3-conv1, which is in the middle of the CNN, extracts
more characteristics of the initial chest X-ray image. The block5-conv1, which is one of
the last layers in the VGG19 CNN, extracts the final patterns. The reduction in size of
the initial image is also noted.
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4.2 Public Dataset
The public ”COVID-19 RADIOGRAPHY DATABASE” [133] was used in this experi-
ment. A database of chest X-ray images for COVID-19-positive cases, along with normal
and viral pneumonia images, was created by a team of researchers from Qatar University,
Doha, Qatar, and the University of Dhaka, Bangladesh, along with their collaborators
from Pakistan and Malaysia, in collaboration with medical professionals. The creators of
the database made a first release that contained 219 COVID-19, 1341 normal, and 1345
viral pneumonia chest X-ray (CXR) images. In the second release, they expanded the
COVID-19 class to 1200 CXR images. In the third update, they added 10,192 ”Normal”,
6012 ”Lung Opacity” (non-COVID lung infection), 1345 ”Viral Pneumonia” images, and
matching lung masks to the database, bringing the total to 3616 COVID-19 positive cases
[130], [131].

Table 4.1 contains the characteristics of the database [133] when accessed. In Figure
4.2, a sample from the ”COVID” class was extracted.

Total of images 27,052
Normal class images 12157
COVID class images 3815
Viral Pneumonia images 5068
Lung Opacity images 3815
Format .jpg
Images initial size 400 × 400
Shape (400,400,3)

Table 4.1: Dataset characteristics. The number 3 in shape indicates that we have an RGB
format for the initial images.

4.2.1 Balancing and Augmentation Techniques
The dataset was balanced to improve testing accuracy. The Python code counted the
number of images in each folder class. Then the minimum number was 3815 images for the
”COVID” folder. Next, the minimum number was used to randomly select samples from all
the other classes. The process was done until all the classes had the same number of images
as the minimal number. Then a new balanced dataset was created with a total of 15260
images. Next, the balanced dataset was divided into training, validation, and testing. A
70% was used for training, 15% for validations, and 15% for testing. The percentages can
be adjusted in the code as needed. Then, the images were loaded using Keras libraries. The
dataset load parameters were: height = 280, width = 280, batchsize = 32, and seed = 123
”to ensure reproducibility when the batch size is randomized”. Color images were used in
all the experiments due to the lack of significant changes when using grayscale samples.

Augmentation was done using the Keras package with random − flip = ”horizontal”
and random − rotation = 0.1. In Figure 4.3, we can observe how the flipping and rotation
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Figure 4.2: Chest X-ray of a patient diagnosed positive for COVID-19 infection.

work. Then the models were constructed using the next structure of classes: COVID
and Normal for binary classification, ”COVID” ”Normal” and ”Viral Pneumonia”, and
”COVID” ”Normal” ”Viral Pneumonia” and ”Lung Opacity”.

4.2.2 Additional Optimizers
The ”tf.data.Dataset” module provided extra tools to handle our image datasets efficiently.
Firstly, the cache() method is applied to training, validation, and test datasets. This
method efficiently caches dataset elements in memory, significantly reducing data loading
times during subsequent iterations and preventing the re-computation of expensive opera-
tions.

To introduce randomness and prevent potential biases during model training, we employ
the shuffle() method. The shuffling operation randomizes the order of elements within
the dataset. We used a buffer size of 1000 elements to ensure effective randomization. This
is particularly beneficial when the original dataset has any inherent ordering, such as all
samples of a specific class being grouped together in the same folder.

Also, we optimized the data loading process by incorporating the prefetch() method.
Prefetching allows the model to process one batch while the other is processed in the back-
ground. The buffer size, specified by the AUTOTUNE variable, can be set to auto or
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Figure 4.3: Nine randomly selected images from the dataset are shown after using
Augmentation technique.

a number. We used AUTOTUNE = 10, which means that 10 images are ready to be
processed in the background while the model is being trained.

These preprocessing techniques contribute to effective data processing, ensuring that
our machine-learning models are trained on diverse, randomized, and efficiently loaded
datasets. These optimizations are crucial for achieving better model statistics.

4.3 Transfer Learning Architectures
The models we used were downloaded using the Keras module. The transfer learning
method was used in all the experiments. To summarize ”transfer learning”, we followed
the next steps:

1. Using a previously trained model, extract its layers.

2. Freeze the layers to prevent any information from being lost for use in later training
cycles.
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3. On top of the frozen layers, add a few fresh, trainable layers. They will acquire the
ability to forecast using the previous features on a fresh dataset.

4. Utilizing the dataset processed to train the new layers.

5. Fine-tuning, which is retraining the model with a very low learning rate on the new
data after unfreezing the complete model you obtained above. This method has the
potential to yield significant enhancements by gradually adjusting the pre-trained
characteristics to the updated data.

The pre-trained neural networks used are Xception, VGG16, and VGG19. These CNNs
can be downloaded using the Keras module and following the steps detailed in the docu-
mentation page of the module [134]. In table 4.2, we have the summary of the parameters
of Xception.

Input size Output size Layer Stride Kernel
299×299×3 299×299×32 Conv2d 2 3×3
299×299×32 149×149×64 Conv2d 2 3×3
149×149×64 149×149×64 SeparableConv2d 1 3×3
149×149×64 149×149×128 SeparableConv2d 1 3×3
149×149×128 74×74×128 MaxPooling2d 2 3×3
74×74×128 74×74×256 SeparableConv2d 1 3×3
74×74×256 74×74×256 SeparableConv2d 1 3×3
74×74×256 37×37×256 MaxPooling2d 2 3×3
37×37×256 37×37×728 SeparableConv2d 1 3×3
37×37×728 37×37×728 SeparableConv2d 1 3×3
37×37×728 37×37×728 SeparableConv2d 1 3×3
37×37×728 19×19×728 MaxPooling2d 2 3×3
19×19×728 19×19×1024 SeparableConv2d 1 3×3
19×19×1024 19×19×1024 SeparableConv2d 1 3×3
19×19×1024 19×19×2048 SeparableConv2d 1 3×3
19×19×2048 10×10×2048 MaxPooling2d 2 3×3
10×10×2048 10×10×2048 SeparableConv2d 1 3×3
10×10×2048 10×10×2048 SeparableConv2d 1 3×3
10×10×2048 5×5×2048 MaxPooling2d 2 3×3
5×5×2048 1×1×2048 Conv2d 1 1×1
1×1×2048 1×1×1000 Conv2d 1 1×1

Table 4.2: Specifications of the Xception model layers.

In Figure 4.4, we present the final architecture of the VGG16 model. We can appreciate
that the pre-trained VGG16 is located within the newly trained model using X-ray images.
Also, in Figure 4.5, the VGG16 neural network can be seen within the dashed lines. Both
models were plotted using the Keras module.
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Figure 4.4: The VGG16 final model was trained using the processed chest X-ray dataset.
We observe the input layer and the size of the images used during the training process.
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Figure 4.5: Expanded VGG16 model located in Figure 4.4. The pre-trained VGG16 is
shown with its complexity of several layers and the ReLU as an activation function in
several of its layers.
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In Table 4.3, we can observe the detailed parameters for the VGG19 network.

Input size Output size Layer Stride Kernel Activations
224×224×3 224×224×64 Conv3-3 1 3×3 ReLU
224×224×64 224×224×64 Conv3-3 1 3×3 ReLU
224×224×64 112×112×64 MaxPool2 2 2×2 None
112×112×64 112×112×128 Conv3-3 1 3×3 ReLU
112×112×128 112×112×128 Conv3-3 1 3×3 ReLU
112×112×128 56×56×128 MaxPool2 2 2×2 None
56×56×128 56×56×256 Conv3-3 1 3×3 ReLU
56×56×256 56×56×256 Conv3-3 1 3×3 ReLU
56×56×256 56×56×256 Conv3-3 1 3×3 ReLU
56×56×256 28×28×256 MaxPool2 2 2×2 None
28×28×256 28×28×512 Conv3-3 1 3×3 ReLU
28×28×512 28×28×512 Conv3-3 1 3×3 ReLU
28×28×512 28×28×512 Conv3-3 1 3×3 ReLU
28×28×512 14×14×512 MaxPool2 2 2×2 None

Table 4.3: Specifications of the VGG19 model layers.

4.4 Optimizers and Loss Function
Transfer learning is done using two stages of training on the dataset. The first is with some
layers frozen to keep the learned patterns, and the second, called fine-tuning, is performed
by unfreezing all the layers of the model. Fine-tuning is typically compiled with low epoch
numbers. We used 20 epochs for the freezing stage and 10 epochs for fine-tuning.

4.4.1 Default Adam Values
The next values correspond to the line code optimizer = keras.optimizers.Adam() for the
first stage of training: Learning rate (η) = 0.001, β1 = 0.9, β2 = 0.999, ϵ = 1 × 10−8.

The update equations for Adam using the default values are as follows:

mt = β1 · mt−1 + (1 − β1) · gt

vt = β2 · vt−1 + (1 − β2) · g2
t

m̂t = mt

1 − βt
1

v̂t = vt

1 − βt
2

θt+1 = θt − η√
v̂t + ϵ

· m̂t (4.1)

Where:

• t is the iteration, and the initial values are m0 = 0, and v0 = 0.
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• mt and vt are the first and second moments, which are estimates of the mean and
uncentered variance of the gradients, respectively.

• gt is the gradient of the objective function concerning the parameters at iteration t
and is calculated in each training pass.

• m̂t and v̂t are bias-corrected estimates of the first and second moments.

• β1 and β2 are the exponential decay rates for the first and second moments, respec-
tively.

• η is the learning rate.

• ϵ is a small constant and is usually added for numerical stability with a value of
1 × 10−8.

The aforementioned formulas collectively allow the Adam optimizer to adapt the learn-
ing rates for each parameter during each training iteration. Equation 4.1 inputs the cal-
culated parameters and the learning rate to update the next iteration. Also, the use of
moments with bias correction helps to simplify the optimization process.

4.4.2 Binary and Categorical Cross-entropy
The Equation 4.2 is used by Keras as a loss function. It is used in binary classification
problems, but it is not limited to handling only two classes. We chose binary cross-entropy
as suggested by Keras. For the three and four classifications we used categorical cross-
entropy because binary gave us compiling errors.

L(y, ŷ) = − 1
N

N∑
i=1

[
yi · log (ŷi) + (1 − yi) · log (1 − ŷi)

]
(4.2)

Where:

• N represents the total number of samples.

• yi is the real label for the i sample.

• ŷi is the prediction produced by the model for the i sample.

• log is the natural logarithm function.

Equation 4.2 compares the predicted output ŷi with the real label yi and sanctions the
differences between them. The part of the equation: yi · log (ŷi) penalizes the incorrect
prediction when the real label has the value 1, and the part: (1 − yi) · log (1 − ŷi) sanctions
the incorrect prediction when the real label is 0. The total loss is the average sum of the
penalties for all the samples.
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4.4.3 Fine Tuning and Metrics
We used a learning rate of η = 1 × 10−5 in the Adam optimizer during fine-tuning, as
suggested by Keras documentation. This means that during training, the model’s weights
will receive small updates concerning their current values. For binary cross-entropy and
binary accuracy, the default values of Keras were used.

For the metrics calculation, we used the binary accuracy described in Equation 4.3. To
report the results, we used the equations described previously in introduction section, and
finally, to visualize the results, we used the confusion matrix plotting explained in Section
2.6.5.

Binary Accuracy = Number of Correct Predictions
Total Number of Samples (4.3)

We stored in Google Drive the trained models for all the classes. They can be used in
deployments whether online or offline.

4.5 Software and Hardware Used in Our Experiment
Python code can be written and run in a collaborative and interactive environment with
Google Colab, a free cloud-based platform. The capabilities of the application, which are
based on Jupyter Notebooks, include free GPU access for resource-intensive projects, real-
time collaborative editing, easy sharing via Google Drive integration, pre-installed libraries
for machine learning and data analysis, and support for exporting notebooks in multiple
formats. Because of its convenience and accessibility, Colab is widely used in data science
and machine learning applications. During the experiments, we used Google Colab, which
used the Python 3 version. We also used the 2.14.0 ”Tensorflow” version on the Jupiter
Notebooks. We also used the Kaggle plattaform.

Google Cloud Platform (GCP) and Kaggle offer access to strong GPUs, such as T4
GPUs Figure 4.6. Based on the NVIDIA Turing architecture, the T4 GPU is a good
choice for workloads that require GPU acceleration, such as machine learning. In the free
version, the one we used for this research, GCP offers 1 GPU with 16 GB of RAM of the
type GDDR6. Kaggle offered up to 30 GB of RAM, doubling the GPU RAM size of Colab.
Both the Colab and Kaggle platforms were used to run our code. The code we created for
this work can be publicly accessed on Kaggle [135].
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Figure 4.6: T4 tesla GPU offered in GCP for machine learning purposes. It was used to
accelerate the training model on the COVID dataset [136].
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Chapter 5

Results

5.1 Results Experiment Introduction
The need for a tool to predict whether or not a patient had COVID-19 appeared during
the pandemic. Neural networks have proven to be very effective at learning complex
image patterns. So, chest X-ray images that have complicated structures were used in this
work. Our objective is to create and test state-of-the-art neural networks that have been
used in the prediction of COVID-19 using chest X-rays and try to replicate and possibly
improve the results that have been reported so far. Also, the models will be tested with
different classes, and the results will be reported to conclude which is better. The trained
models could be used by Information Technology (IT) developers to create mobile apps and
websites that can aid in the diagnosis of COVID-19. The dataset has been processed using
balance, augmentation, shuffling, and prefetching techniques described in the methods
section. Several neural networks were tested on the datasets using the transfer learning
technique. The Google Colab platform was used to run the Python3 code in the form of
Jupyter notebooks. The results are explained and discussed in the next sections.

5.2 Details of the Dataset Used for Three Stages
The dataset mentioned in Section 4.2 was used in this experiment, and we divided it into 3
stages to test the performance using different class predictions. The stages are as follows:

5.2.1 Stage 1: Binary Classification Normal and Covid
• The original dataset had 27052 images divided into 4 classes: 12157 for Normal,

5068 for Pneumonia, 6012 for Lung Opacity, and 3815 for Covid. After the balancing
process, the dataset was divided into two classes: Normal and Covid. The images
had a size of 280*280 and a ”.jpg” format. A relation of 70%-15%-15% was used to
divide the training, validation, and test datasets, respectively. A summary of the
structure of the dataset used in binary classification is presented in Table 5.1.
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Class COVID-19 Normal Total
Train 2670 2670 5340
Validation 572 572 1144
Test 573 573 1146
Total 3815 3815 7630

Table 5.1: Binary classification arrangement of datasets.

• In Figure 5.1, we can observe several random images obtained from the balanced
dataset.

Figure 5.1: Images extracted from the processed and balanced dataset indicating the class
for each sample.

5.2.2 Stage 2: 3-Class Classification Normal, Covid, and Viral
Pneumonia

• A summary of the dataset used in three-class classification is seen in Table 5.2.

Class COVID-19 Normal Viral pneumonia Total
Train 2670 2670 2670 8010
Validation 572 572 572 1716
Test 573 573 573 1719
Total 3815 3815 3815 11445

Table 5.2: Three-class classification arrangement of dataset.
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• In Figure 5.2, random samples after processing for the 3 classes are shown.

Figure 5.2: Samples obtained after processing and balancing the COVID dataset

5.2.3 Stage 3: 4-Class Classification Normal, Covid, Viral Pneu-
monia, and Lung-Opacity

• In Table 5.3, we have the structure of the dataset used for this stage of classification.

Class COVID-19 Normal Viral pneumonia Lung-Opacity Total
Train 2670 2670 2670 2670 10680
Validation 572 572 572 572 2288
Test 573 573 573 573 2292
Total 3815 3815 3815 3815 15260

Table 5.3: Four-class classification arrangement of dataset.

• In Figure 5.3, we can appreciate images from all the 4 classes that were used in this
work.
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Figure 5.3: Samples from the balanced dataset showing all the classes used in the experi-
ment

5.3 Transfer Learning Models Architectures
All the transfer learning models have the same general structure: input, sequential, rescal-
ing, functional, pooling, dropout, and dense layers. The functional layer is where the
transfer learning model is located. In all the experiments, the dense layer was set to
”Trainable,” and the functional layer was frozen during the first process of training. The
number of parameters is the same for the freezing and the fine-tuning training. Only the
functional and dense layers account for parameters. The details of these layers are reported
in Table 5.4.
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Model Architecture Trainable Non-trainable Total
Xception 2,049 20,861,480 20,863,529
VGG16 513 14,714,688 14,715,201
VGG19 513 20,024,384 20,024,897

Table 5.4: Transfer learning training parameters. The non-trainable parameters correspond
to the functional layer during the freezing process. The functional layer contains the model
obtained from the Keras module.

5.4 Training: Convergence Analysis

5.4.1 Stage 1: Binary Classification Xception, VGG16 and VGG19
Xception Model

• Convergence analysis: In Figure 5.4, we can observe the plots produced by our Xcep-
tion model with an analysis during the freezing and fine-tuning stages of training.

• The freezing stage took 20 minutes and 35 seconds to compile using the free T4 GPU
over 20 epochs. It is important to mention that both the RAM and GPU memory
were almost at their limit, which means that adding more images or using a larger
image size will collapse the compilation due to a lack of resources. Resizing and other
methods were used to reduce the use of memory. Reducing the size of images could
make them lose important information, making the model have poor accuracy. So,
if we want to use larger datasets, a paid version of Google Colab is suggested, which
offers more memory for both GPU and RAM.

• The fine-tuning stage took 28 minutes and 2 seconds to compile using the same
software and hardware as in the freezing stage over 10 epochs. The compiling time
is higher in this stage compared to freezing since more layers are being trained.
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Figure 5.4: Convergence plots for the Xception neural network. (A) Training loss con-
vergence during the freezing process: We can appreciate a reduction in the % of both
the training and validation losses, which might indicate that the model is capturing the
desired patterns and might have good prediction results. (B) Training accuracy during
freezing: We appreciate that the binary accuracy is around 88% at the end of the training.
The validation accuracy is around 80%, which is a good value. (C) Convergence loss
during fine-tuning: The training loss converges smoothly in contrast to the validation
loss, which has high and low-value peaks. (D) Fine-tuning accuracy convergence:
We appreciate excellent binary accuracy after training the whole neural network with the
dataset. Also, we have very good validation accuracy, which might indicate that the model
will perform very well when tested with images that the model has not seen.

VGG16

• Convergence analysis: In Figure 5.5, we can observe the graphs produced by our
VGG16 model.

• The freezing stage took 20 minutes and 49 seconds to compile using the T4 GPU
over 20 epochs.

• The fine-tuning stage took 22 minutes and 35 seconds to compile over 10 epochs. In
general, VGG16 took similar compiling times for both freezing and fine-tuning.
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Figure 5.5: Plots VGG16 model. (A) Loss during the freezing process: We can ap-
preciate a very smooth graph without noticeable peaks. (B) Accuracy during freezing:
We appreciate that the binary accuracy is around 80% at the end of the training. Also,
the validation accuracy curve is pretty close to binary accuracy in comparison to Figure
5.4:(B), which means that the model is better than Xception in validating the images with
the captured patterns during training. Also, the binary accuracy curve has fewer peaks
than Xception. (C) Loss during fine-tuning: The training loss curve converges very
well, but the validation loss has a peak at epoch #1 and a peak at epoch #9. This could
be solved by increasing the number of epochs for both freezing and fine-tuning. We would
recommend at least 50 epochs for freezing and 20 for fine-tuning. In my actual hardware
setup, this would collapse my RAM and GPU memory, so we did not try that solution.
(D) Accuracy fine-tuning: The binary accuracy curve converges without peaks, but the
validation curve has a minimal value at epoch #1 and then converges smoothly. In com-
parison with Figure 5.4:(C), and (D), both loss and accuracy during fine-tuning get better
results than in the Xception model because curves are closer to each other in VGG16.
Although the values for binary accuracy are slightly lower than Xception, the closeness
of the curves might indicate that VGG16 might perform better than Xception in a new
dataset.

VGG19

• Convergence analysis: In Figure 5.6, plots for loss and accuracy for the VGG19
model.

• The freezing process took 24 minutes and 12 seconds to compile using the free T4
GPU over 20 epochs.
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• The fine-tuning stage took 26 minutes and 3 seconds to compile. Xception, VGG16,
and VGG19 have very similar values for compiling time during training. So, there is
no better model in terms of compiling time. Other parameters like accuracy and F1
score might tell us which model is the better model.

Figure 5.6: VGG19 convergence plots. (A) Loss during the freezing process: Both
training and validation curves converge smoothly with no significant peaks or minimal val-
ues. (B) Accuracy during freezing: There is a little separation of the binary accuracy
and validation curves in comparison to VGG16 curves. (C) Loss during fine-tuning:
There are two significant peaks at 6 and 7 epochs. (D) Accuracy fine-tuning: The
validation accuracy has several peaks during the training. Again more epochs are recom-
mended.

5.4.2 Stage 2: 3-Class Classification VGG19
In Figure 5.7, we can observe the plots produced by the VGG19 model. The freezing
training took 27 minutes and 43 seconds to compile using T4 GPU over 20 epochs. The
fine-tuning stage took 38 minutes and 18 seconds to compile over 10 epochs.
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Figure 5.7: Convergence plots for the VGG19 model using three classes: Normal, Covid,
and Viral Pneumonia. (A) Training loss convergence during the freezing process:
We observe that both the training loss and validation loss curves are very similar and do
not have significant peaks. (B) Training accuracy during freezing: We can appreciate
that the convergence is around 70%, and the curves are also close to each other. (C) Con-
vergence loss during fine-tuning: In this stage we have reduced the loss significantly
compared to the training with freezing. (D) Fine-tuning accuracy convergence: Here,
we have an excellent value for the accuracy at the end of the tenth epoch but the validation
accuracy is not converging close to the training accuracy. This might be caused by the
addition of the new Viral Pneumonia class.

5.4.3 Stage 3: 4-Class Classification VGG19
In Figure 5.8, we observe the plots produced by the VGG19 model. The freezing training
took 32 minutes and 34 seconds to compile using T4 GPU over 20 epochs. The fine-tuning
stage took 46 minutes and 16 seconds to compile over 10 epochs.
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Figure 5.8: Convergence plots for the VGG19 model using all the classes: Normal, Covid,
Viral Pneumonia, and Lung Opacity. (A) Training loss convergence during the
freezing process: Both curves converge smoothly because they never overlap each other.
(B) Training accuracy during freezing: In this case, the curves present some peaks and
again they never overlap, this might indicate that we are going to have more miss-classified
images than in the binary and the 3-class classification. (C) Convergence loss during
fine-tuning: In this stage we have more loss compared to the 3-class and the binary,
the curves converge with almost no peaks. (D) Fine-tuning accuracy convergence:
Finally, the accuracy is above 90% during this stage, which indicates that our model still
is very good at classifying the images with the last Lung Opacity class.

5.5 Stage 1: Binary Classification Performance met-
rics

The Xception Neural Network

Test set performance metrics: In Figure 5.9, we observe the confusion matrix for binary
classification for the Xception after being tested in an unseen dataset. The model model
correctly identifies 561 cases as COVID-positive, which are True Positives. Also, 40 cases
are COVID-positive but the model fails to identify them and predicts them as normal,
so these are False Negatives. Moreover, 12 cases are normal but the model incorrectly
predicts them as COVID-positive, then these are False Positives. Finally, 533 cases are
normal, and the model correctly predicts them as normal, then these are True Negatives.
High values for accuracy, sensitivity, specificity, and precision. A higher F1 score indicates
a better balance between precision and sensitivity. A high F1 score was obtained, generally
indicating good model performance.

The model has high accuracy and is performing well in terms of both precision and
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sensitivity. A high precision indicates that the model has a low rate of falsely predicting
normal cases as COVID-positive. Also, a high sensitivity indicates that the model is
effective in capturing most of the COVID-positive cases. A high specificity means that the
model is effective in minimizing false positives. The miss-classification rate is relatively
low, indicating a good balance between false positives and false negatives.

Figure 5.9: In the plot we can observe that Xception has an excellent predictive capabil-
ity. True Positives: 561, True Negatives: 533, False Positives: 12. False Negatives: 40.
Accuracy: 95.46%. Miss-Classification: 4.54%. Sensitivity: 93.34%. Specificity: 97.8%.
Precision: 97.91%. F1 Score: 95.57%.
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Results of the VGG16

Figure 5.10: In the plot, we can observe that VGG16 also has excellent predictive capa-
bility. True Positives: 545, True Negatives: 552, False Positives: 28. False Negatives: 21.
Accuracy: 95.72%. Miss-Classification: 4.28%. Sensitivity: 96.29%. Specificity: 95.17%.
Precision: 95.11%. F1 Score: 95.7%.

Neural Network VGG19

Figure 5.11: VGG19 has excellent predictive capability and is slightly better than Xception
and VGG16. True Positives: 568, True Negatives: 561, False Positives: 5. False Negatives:
12. Accuracy: 98.52%. Miss-Classification: 1.48%. Sensitivity: 97.93%. Specificity:
99.12%. Precision: 99.13%. F1 Score: 98.53%.
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5.5.1 Binary Classification Summary
A summary Table 5.5 from Figure 5.9, Figure 5.10, and Figure 5.11 is presented to select
the best model to be tested on 3 class and 4 class stages. The VGG19 model has the
highest accuracy, sensitivity, specificity, precision, and F1 Score. For the sensitivity, it
means that the model is better than the others in predicting patients with COVID-19 and
has a minimal amount of mispredicted false negatives. Also, for specificity, it means that
VGG19 is excellent in predicting patients that do not have the disease and there is a small
amount of false positives. In general, for COVID-19 a test that does not miss the true
positives would be chosen to avoid the spread of the disease. The F1 Score takes into
account both sensitivity and specificity. VGG19 has an F1 Score of 98.53 % so it is the
best model to be tested in the 3 classes and 4 classes classification.

Model Accuracy [%] Sensitivity [%] Specificity [%] Precision[%] F1 Score [%]
Xception 95.46 93.34 97.8 97.91 95.57
VGG16 95.72 96.29 95.17 95.11 95.7
VGG19 98.52 97.93 99.12 99.13 98.53

Table 5.5: Metrics summary for the binary classification using the transfer learning models
and COVID and Normal classes.

73



(a) Xception ROC.

(b) VGG16 ROC.

(c) VGG19 ROC.

Figure 5.12: ROC graphs of the models used during binary classification.

Xception (a), VGG16 (b), and VGG19 (c) models are shown in Figure 5.12. We observe
that the AUC are very similar, indicating excellent discrimination, meaning the model
excellently distinguishes between the positive and negative COVID-19 classes. We used
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45 threshold values for all three graphs: min value: -15.115046 and max value: 13.334197
with an average step: 0.6322. The best-balanced threshold indicates the point where the
model will effectively classify the cases. We used Youden’s J statistic to determine the
best-balanced threshold. The VGG16 has the best graph which might indicate a slightly
better performance than the other models. However, using only AUC to determine the
best model is not recommended. In our particular experiment, detecting patients positive
for COVID-19 is the priority. So, the model that has the highest sensitivity is VGG19.
Then we chose VGG19 as the best model to be trained with more classes.

5.5.2 Stage 2: 3-Class Classification VGG19

Figure 5.13: VGG19 confusion matrix on Normal, Covid, and Viral Pneumonia classes.
Accuracy: 92.44%. Miss-Classification: 7.56%. Weighted average F1 Score: 92.32%.

75



5.5.3 Stage 3: 4-Class Classification for VGG19

Figure 5.14: VGG19 confusion matrix on Normal, Covid, Viral pneumonia, and Lung
Opacity classes. Accuracy: 92.63%. Miss-Classification: 7.37%. Weighted average F1
Score: 89.04%.

5.6 Grad-CAM on Our VGG19 Model
In Figure 5.15, we observe the Grad-Cam that was obtained using the layer last convolu-
tional layer of our trained VGG19 model named block5conv4. We can appreciate the zones
that our model is capturing to predict the class of the image. The red-colored regions are
considered highly relevant. Regions highlighted in yellow may still be relevant but to a
lesser extent compared to the red regions. Based on the color interpretations, we observe
that the left lung has a lot of regions that are considered important. Also, the heart shape
is considered as seen in the yellow highlights. These results confirm the annotations men-
tioned in the state of the art about the reticular interstitial patterns and the appearance
of white areas in the lungs called opacities which are areas filled with fluid.
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Figure 5.15: Chest X-ray of a patient with COVID-19. The first image is extracted ran-
domly from the dataset used in this work. The X-ray image was predicted positive for
COVID-19 using the trained model. Next, the Heat Map was obtained using the gradi-
ents calculated from the predictions of the model. Then, the Grad-Cam was obtained and
overlayed.

In Figure 5.16, we observe peripheral bilateral opacities highlighted in red which are
very common in COVID-19 patients. So, our trained model is performing excellent in
recognizing the patterns of this disease.

Figure 5.16: This image is another example of the Grad-Cam on a patient with COVID-19.

From Figure 5.17, we can say that the red zones indicate the zones that present opaci-
ties. In this case, both lungs present a general opacity. We also appreciate the red zones
at the bottom of the image. This tells us that the model might be learning patterns that
are not necessary to predict a label. This could be solved by segmenting the images and
creating a new image that puts in black all the zones out of the lungs. So, the model will
not learn unnecessary structures.
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Figure 5.17: Female Chest X-ray positive for COVID-19 extracted from the dataset.

The Grad-Cam applied in healthy patients shows less pattern recognition compared to
COVID-19 Figure 5.18. The red areas are also recognizing unnecessary structure out of
the lungs.

Figure 5.18: Chest X-ray of a Healthy Patient. Image extracted from our processed dataset.

We suggest using segmentation and retraining the neural network with the segmented
images. Also, the classes Lung Opacity and Viral Pneumonia could be added to COVID-
19 to improve even more the prediction of the model. We showed that the VGG19 model
is capable of inferring with high accuracy whether a patient has or not COVID-19. The
zones in red also give us insights into what patterns are capturing our model during training
allowing us to improve the performance and saving computational resources.
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5.7 VGG19 Heat Maps

Figure 5.19: Covid-19 heat maps obtained from the VGG19 Model. The heat maps were
obtained using the trained model on our processed dataset. The last convolutional layer
was used to create the heat maps. The areas in yellow are patterns captured by the neural
network.
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Figure 5.20: Healthy patient’s heat maps obtained from the VGG19 model.
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Figure 5.21: Viral Pneumonia class heat maps VGG19 model.
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Figure 5.22: Lung Opacity heat maps VGG19 model.

From Figures 5.19, 5.20, 5.21, 5.22, we observe heat maps that were extracted using VGG19
model used in this work. The code we used to process the images and extract the last
convolutional layer of the model was compiled in Google Colab. All four classes were
tested in the model producing the heat maps that give us an idea of the patterns the
model considers important. We observe that some of the captured patterns are around the
lungs. Also, the shape of the lung is considered in COVID-19 class. The viral Pneumonia
patterns are very similar to the Covid-19. So, we recommend considering merging these
classes. Finally, healthy chest X-rays do not present a high amount of yellow areas meaning
that the model is not capturing structures that are unique in sick patients.
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Chapter 6

Discussion

6.1 VI. Discussion of Results
In this section, a comparative analysis is made with other authors that have used similar
parameters and transfer learning with the models we have used.

6.1.1 Results of the Xception Neural Network
Shazia and its team used transfer learning and obtained 98.34% accuracy 98.49% F1-Score
for binary classification [137]. They used 1536 COVID-19 and 5629 pneumonia images
with a resize of 224×224. They report to have balanced the dataset but do not report the
images used after the processing. Also, they claimed to have randomly selected 10% of the
dataset images as testing. Also, they said to have used 20 epochs when they noticed no
improvement. In comparison, we obtained a binary accuracy of 95.46% and F1-score of
95.57% with 20 epochs in freezing and 10 epochs for fine tuning with a total of 7630 images
divided equally into two classes. The small improvement in the work of Shazia might be
due to the quality of the images.

6.1.2 Results of the VGG16
Kong et al. [138] report an average accuracy for binary classification of 98.0%. They used a
model based on VGG16 and DenseNet. Also, they report an average accuracy of 97.3% for
three classes. They used a total of 5230 for training and 1288 for validation. In this paper
[139], Chen et al obtained a testing accuracy of 98% on 10 epochs using transfer learning
for binary classification. Kong used segmentation and more epochs in comparison with
Chen but they obtained the same results for binary classification. We obtained a 95.72%
for accuracy in binary classification using the VGG16 model, which is very close to the
mentioned works. They used more image size and segmentation so their results are slightly
better than ours. Also, in this work [140], they obtained an accuracy of 99.5% using 2000
images divided into COVID and Normal classes. They divided the dataset into training,
validation, and testing. They used also transfer learning and resized the images to 64X64
to make the transfer learning model even faster. The high accuracy in this last work might
be attributed to the perfect balance of the dataset and the advanced state of COVID-19,
so the images might show better patterns and be better captured by the model. In general,
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the VGG19 using transfer learning proves to be time and resource-efficient compiling faster
and with a low amount of epochs.

6.1.3 Results of the VGG19
In Table 6.1, we have summarized the values for accuracy and weighted average F1 score
of the VGG19 on the 3 and 4 classes. We observe that adding more classes reduces the
model F1 score. The reason might be the similarity in patterns between classes. Overall,
the model performed very well on the four-class dataset. The weighted average F1 score of
89.04% indicates that this model might be used in real applications with very low errors in
predicting the image class. The model might be trained on the biggest Kaggle dataset to
see if the F1 score improves. Finally, the VGG19 model on the 3 and 4 classes is excellent
at predicting the COVID class because the false positive numbers are very low compared
to the other classes. We have obtained better results than the work of Sitaula et al. [128]
on their VGG19 testing. The reasons might be the use of more images in our work and
more pre-processing techniques on the datasets.

VGG19 Accuracy [%] Weighted F1 Score[%]
3-Classes 92.44 92.32
4-Classes 92.63 89.04

Table 6.1: Summary of the metrics that were calculated by using the VGG19 model on
three and four-class datasets.

In this article [141] they tested modified transfer learning models. They used a data
set consisting of 125 COVID-19, 500 atypical pneumonia, and 500 healthy X-ray images.
Their data set is very small compared with ours. Let us review the results they obtained
in Table 6.2.

Model name F1 Score[%] Accuracy [%]
VGGCOV19-NET 98.00 97.60
Cascade VGGCOV19-NET 99.75 99.84
VGG19 97.68 98.56
Cascade VGG19 98.49 99.04

Table 6.2: Summary of the results on binary classification of the modified VGG19 CNN.

If we compare the VGG19 results of both Table 5.5 and Table 6.2, our VGG19 transfer
learning model performs slightly better with a bigger dataset and 30 epochs compared to
the 100 epochs they used. The other modified models they used had very similar results,
with Cascade VGGCOV19-NET obtaining the best result.

In another study [142], they used 3616 COVID-19 chest X-ray images and 10,192 healthy
chest X-rays with VGG19 with 95% accuracy, which is a similar result to our binary
accuracy. Now let us review VGG19 in three-class classification.
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Source Dataset structure Method Accuracy [%]
[127] 224 COVID-19, 700 Pneumonia, 504 Normal TL-VGG-19 93.48
[143] 1300 COVID-19, 1300 Pneumonia, 1300 Normal TL-VGG-19 92.92
[144] 130 COVID-19, 140 Pneumonia, 400 Normal TL-VGG-19 87.00
[145] 260 COVID-19, 300 Pneumonia, 300 Normal TL-VGG-19 89.30
[146] 1493 COVID-19, 2780 Pneumonia, 1538 Normal VGG-19 72.52

Table 6.3: Review of VGG19 transfer learning (TL) models used three class datasets with
different sizes.

The worst accuracy in Table 6.3 is seen in the VGG-19 simple model; the reason might
be the lack of use of transfer learning compared to the other studies. If we compare these
results with ours, we observe similar results around 92% for the three-class classification.

Also, comparing our work results with Table 3.10 mentioned in the state of the art, we
need to make slight improvements in our experiment. They are using 33,920 images in total
in comparison with our 27,052 images. Also, they use segmentation with U-net. Future
work might include implementing their large dataset with segmentation and including more
neural networks.

6.1.4 Work Limitations in Our Experiment
The principal limitation we encountered was the lack of computational resources. Initially,
the project was tested on a local personal computer with 8GB of RAM and no GPU. The
need to use a platform like Google Colab appeared. The compilation of the codes was
running at the limit of the crash of the 1 GPU and 16 GB of RAM. When running the
multiclass codes, Google Colab crashed due to a lack of RAM space. Then we have to run
the codes in Kaggle, which offers a free 30 GB of RAM and two Tesla T4 GPUs. In the
future, problems might appear with the compilation of the 33,920 image dataset. So, a
paid version might be needed for this future work.
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Chapter 7

Conclusions

7.1 Thesis General Conclusions
In this work, we present Xception, VGG16, and VGG19 convolutional neural networks us-
ing the transfer learning technique. The CNNs were trained using the public-access Kaggle
dataset that contained chest X-ray images collected before and during the pandemic. The
dataset was prepared, separating no relevant archives and not desired images; augmenta-
tion was used to increase the number of images and increase the accuracy both for training
and prediction; and shuffling allowed for randomness in the training, ensuring better train-
ing and variability. We designed the CNNs using the pre-trained models provided by Keras
following the documentation for the implementation using transfer learning. We trained
validated and tested the models using a 70-15-15 percentage ratio. The CNNs success-
fully classified the images using two, three, and four classes. We used COVID-19, Normal,
Lung-Opacity, and Pneumonia classes. The results were reported and compared to other
investigations. The best model in our work was the VGG19. It performed better than the
VGG16 and Xception in all the datasets. Our VGG19 neural network obtained a weighted
F1 score of 98.53%, 92.32%, and 89.04% for the binary, three, and four class classifications,
respectively. We were able to learn what zones of the chest X-ray images is capturing
our model by using Grad-Cam. In the discussion of the results we mentioned the work of
Tahir et al. that obtained accuracies above 99% using more images with U-net and neural
networks. Finally, we stored in Google Drive the trained models which can be deployed to
create software tools for public and private hospitals to help diagnose COVID-19.

7.2 Future Work Insights
The VGG19 neural network can be trained with the biggest Kaggle chest X-ray dataset
to get even better results. This new model can be deployed in mobile apps and on other
platforms. A new real-time detection system can be implemented using Nvidia hardware
and similar portable GPUs. The neural network deployment can be implemented in several
public institutions around Ecuador. The model is not limited to being trained on COVID.
It can be trained with medical images like cancer histology datasets, magnetic resonance
images, ocular diseases, etc. So, the model can be used to give access to new diagnostic
tools with the help of artificial intelligence. Training the model with a larger dataset would
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require more than 30 GB of RAM and a robust GPU. The time to compile the model
should not be more than 2 hours using transfer learning and the parameters presented in
this work.
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7.3 Appendix 1

Figure 7.1: Screen capture of the model we built in the Kaggle platform.
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7.4 Appendix 2

Figure 7.2: Google Colab code used to train and test the Xception pre-trained model.

102


	Resumen
	Abstract
	Contents
	List of Tables
	List of Figures
	List of Equations
	Abbreviations
	Introduction
	Thesis Overview
	The Pneumonia Outbreak Problem
	Thesis Justification
	Contribution to Society
	Thesis Objectives
	Work General Objective
	Thesis Specific Objectives


	Theoretical Framework
	Overview of Artificial Intelligence Technology 
	Machine Learning as a Subset of Artificial Intelligence
	Applications of Deep Learning Algorithms
	Computer Vision Applications

	The use of Artificial Neural Networks
	The Loss function During Training
	Activation Functions in Convolutional Neural Networks
	Convolution Operator Technique Example
	Receptive Field and Feature Map in Artificial Intelligence
	Example of Padding Method
	Striding Method Applied to CNN

	Convolutional Neural Networks Architecture Review
	Dropout Technique in Training
	Convolutional Layer Definition
	The Pooling Layer
	The Fully Connected Layer

	Remarkable Convolutional Neural Networks
	Visual Geometry Group Neural Networks
	Inception Neural Network
	Google Xception

	Using the Transfer Learning Technique
	Steps in Training a Convolutional Neural Network
	Overview of Deep Learning Frameworks
	Using Public and Private Datasets
	Preparing a Dataset Techniques During Training
	Hyperparameters in Training a CNN
	Analyzing Results Tools and Techniques During Training


	State of the Art
	Pneumonia Infection
	Diagnostic Tests for Pneumonia Infection
	Pneumonia Bacterial Treatment

	Covid-19 Virus Review
	Diagnosing Covid-19 Techniques
	Covid-19 Treatment During the Pandemic

	Historical Perspectives on the Use of X-ray Images
	Diagnosis of Pneumonia and other diseases
	Radiotherapy

	Existing Methods for COVID-19 Detection Using X-ray Images Review
	Using Chest X-rays as a Diagnostic Method
	Diagnosis Using Chest Computerized Tomography Scan
	The Sensitivity of Chest X-ray vs CT Scan

	Artificial Intelligence in Chest X-rays with COVID-19
	High Precision Models Using Chest X-rays
	Segmentation Algorithms
	Using Contrast Limited Adaptive Histogram Equalization
	COVID-19 Chest X-ray Public and Private Datasets


	Methodology
	Methodology Summary
	Public Dataset
	Balancing and Augmentation Techniques
	Additional Optimizers

	Transfer Learning Architectures
	Optimizers and Loss Function
	Default Adam Values
	Binary and Categorical Cross-entropy
	Fine Tuning and Metrics

	Software and Hardware Used in Our Experiment

	Results
	Results Experiment Introduction
	Details of the Dataset Used for Three Stages
	Stage 1: Binary Classification Normal and Covid
	Stage 2: 3-Class Classification Normal, Covid, and Viral Pneumonia
	Stage 3: 4-Class Classification Normal, Covid, Viral Pneumonia, and Lung-Opacity

	Transfer Learning Models Architectures
	Training: Convergence Analysis
	Stage 1: Binary Classification Xception, VGG16 and VGG19
	Stage 2: 3-Class Classification VGG19
	Stage 3: 4-Class Classification VGG19

	Stage 1: Binary Classification Performance metrics
	Binary Classification Summary
	Stage 2: 3-Class Classification VGG19
	Stage 3: 4-Class Classification for VGG19

	Grad-CAM on Our VGG19 Model
	VGG19 Heat Maps

	Discussion
	VI. Discussion of Results
	Results of the Xception Neural Network 
	Results of the VGG16
	Results of the VGG19
	Work Limitations in Our Experiment


	Conclusions
	Thesis General Conclusions
	Future Work Insights

	Bibliography
	Appendices
	Appendix 1 
	Appendix 2 


