
UNIVERSIDAD DE INVESTIGACIÓN DE
TECNOLOGÍA EXPERIMENTAL YACHAY

ESCUELA DE CIENCIAS MATEMÁTICAS Y
COMPUTACIONALES

Comparison of Back-end Frameworks for the
Development of Scalable and Efficient Web Applications

Trabajo de integración curricular presentado como requisito para la
obtención del t́ıtulo de Ingeniero en Tecnoloǵıas de la Información

Author:

Steeven Geovanny Sanchez Pozo

Tutor:

Francisco Javier Hidrobo Torres Ph.D.

Urcuqúı - Diciembre de 2024

Autoŕıa

Yo, Steeven Geovanny Sanchez Pozo, con cédula de identidad 0603955824, declaro

que las ideas, juicios, valoraciones, interpretaciones, consultas bibliográficas, definiciones

y conceptualizaciones expuestas en el presente trabajo; aśı cómo, los procedimientos y

herramientas utilizadas en la investigación, son de absoluta responsabilidad de el/la autor/a

del trabajo de integración curricular. Aśı mismo, me acojo a los reglamentos internos de

la Universidad de Investigación de Tecnoloǵıa Experimental Yachay.

Urcuqúı, Diciembre de 2024.

Steeven geovanny Sanchez pozo

CI: 0603955824

i

Autorización de publicación

Yo, Steeven Geovanny Sanchez Pozo, con cédula de identidad 0603955824, cedo a

la Universidad de Investigación de Tecnoloǵıa Experimental Yachay, los derechos de pub-

licación de la presente obra, sin que deba haber un reconocimiento económico por este

concepto. Declaro además que el texto del presente trabajo de titulación no podrá ser ce-

dido a ninguna empresa editorial para su publicación u otros fines, sin contar previamente

con la autorización escrita de la Universidad.

Asimismo, autorizo a la Universidad que realice la digitalización y publicación de este

trabajo de integración curricular en el repositorio virtual, de conformidad a lo dispuesto

en el Art. 144 de la Ley Orgánica de Educación

Urcuqúı, Diciembre de 2024

Steeven Geovanny Sanchez Pozo

CI: 0603955824

ii

Dedicación

Dedico este trabajo a mis padres Edith y Giovanni,

quienes siempre confiaron en mi y me guiaron con sus enseñansas y buena educación.

A mis hermanos, Alexis and Genesis,

por el amor y constante apoyo. Siempre estaré agradecido.

Y a mi familia por su incondicional amor.

Thanks for always believing in me.

iii

Acknowledgment

Gracias a la Universidad Experimental Yachay por ser una universidad de excelencia. El

estudio y la dedicación que tienen con los estudiantes es muy satisfactorio ypuedo decir

que la experiencia vivida en esta universidad es única y no la voy aolvidar nunca.

Agradecimiento especial a mi tutor Francisco Hidrobo, por estar pendentiente y ayu-

darme en todo lo que necesite a lo largo de esta etapa, dandome motivación e inspiración

para culminar mi proceso de titulación.

Gracias a mis amigos Amanda, Oswald, Karen y Michelle quienes estubieron junto a

mi en las primeras etapas de esta vida estudiantil. A Henry, Pedro, Jhonatan, Andres,

Marcos, Mauro y Karen, quienes fueron mis compañeros de fiesta y de estudio en carrera.

A mis amigos varios como los Friendtasmas, Laila, Juli, Klever, Harvey y Eliana que me

dieron emociones musicales y espaciales. A mis amigos de juego que hicieron mi vida Uni-

versitaŕıa mucho más amena y especial Jaime, Micro, Monni, Jacko, Tevi. y finalmente a

Maŕıa que me ayudo en momento dificiles, me soportó muchas veces y me apoyó en esta

parte importate de mi vida universitaria.

Finalmente Gracias a mis padres y mis hermanos los cuales amo y respeto mucho.

Espero poder contar con ustedes toda mi vida y que todos los sueños que tenemos se nos

cumplan.

iv

Resumen

Los frameworks de trabajo para el back-end son herramientas esenciales para el desar-

rollo de aplicaciones web modernas y eficientes. Sin embargo, existe una amplia variedad

de frameworks disponibles, lo que puede dificultar la elección del más adecuado para un

proyecto espećıfico. En este trabajo, proponemos un marco metodológico que permite com-

parar herramientas de back-end (frameworks para back-end). Esta metodoloǵıa se utiliza

para realizar una comparación exhaustiva de varios Frameworks de back-end. Básicamente,

este enfoque estructurado utiliza dimensiones y métricas definidas, destacando atributos

cruciales como facilidad de desarrollo, seguridad, rendimiento, escalabilidad, mantenibil-

idad, costo, ecosistema y compatibilidad, portabilidad y popularidad, entre otros, para

desarrollar aplicaciones web escalables y eficientes. A través de un ejemplo práctico de esta

metodoloǵıa, la tesis tiene como objetivo simplificar y perfeccionar el proceso de selección

de frameworks de back-end. Al hacerlo, ofrece a los desarrolladores una gúıa esencial al

enfrentar decisiones cŕıticas y desaf́ıos inherentes al adoptar nuevos frameworks de back-

end.

Palabras Clave:

Back-end frameworks, Marco metodológico, Dimensión, Métricas, Gúıa, Aplicaciones

web, Selección de Framework.

v

Abstract

Back-end frameworks are essential tools for the development of modern and efficient web

applications. However, there is a wide variety of frameworks available, which can make it

difficult to choose the most suitable one for a specific project. In this work, we propose a

methodological framework that allows to compare back-end tools (back-end framework).

This methodology is used to comprehensive comparison of several back-end frameworks,at

its core, this structured approach harnesses defined dimensions and metrics, underscoring

pivotal attributes like easy of development, security, performance, scalability, maintainabil-

ity, cost, ecosystem and compatibility, portability, and popularity amongst others to de-

velop scalable and efficient web applications. Through a practical example of this method-

ology, the thesis aims to simplify and refine the process of selecting back-end frameworks.

In doing so, it provides developers with an essential guide when facing critical decisions

and challenges inherent in adopting new back-end frameworks.

Keywords:

Back-end frameworks, Methodology Framework, Dimension, Metrics, Guide, Web ap-

plications, Framework selection.

vi

Contents

Autoŕıa i

Autorización de publicación ii

Dedicación iii

Resumen v

Abstract vi

Contents vii

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Background . 1

1.2 Problem Statement . 3

1.3 Objectives . 4

1.3.1 General Objective . 4

1.3.2 Specific Objectives . 4

1.4 Phases of Problem Solving . 5

1.5 Scope and Limitations . 6

2 Theoretical Framework 8

2.1 Fundamentals of Web Technology . 8

2.1.1 Historic Development . 8

2.1.2 Basic Operation . 10

vii

School of Mathematical and Computational Sciences Yachay Tech University

2.1.3 Front-end and Back-end . 12

2.2 State of Art . 12

2.3 Overview of Back-end Frameworks . 14

2.3.1 Laravel . 15

2.3.2 Django . 19

2.3.3 Nodejs . 23

2.3.4 Spring . 27

3 Methodology Framework 30

3.1 General Objective . 30

3.2 Relevance . 30

3.3 Procedure Specification . 31

3.3.1 Basic Definitions . 31

3.3.2 Identification of Dimensions and Metrics 32

3.3.3 Data Gathering . 32

3.3.4 Quantitative Scoring . 33

3.3.5 Dimension Rating . 33

3.3.6 Weight Assignment . 34

3.3.7 Final Rating Calculation . 34

3.3.8 Comparison and Selection . 34

3.3.9 Evaluation Process . 35

3.4 Generic Example . 36

4 Dimensions and Metrics 38

4.1 Ease of Development . 38

4.2 Security . 40

4.3 Scalability . 42

4.4 Performance . 44

4.5 Popularity . 45

4.6 Portability . 46

4.7 Maintainability . 48

4.8 Cost . 49

Information Technology Engineer viii Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

4.9 Ecosystem and Compatibility . 51

4.10 Metrics Resume . 52

5 Application of Methodological Framework: A Practical Example 54

5.1 Description of Project . 54

5.1.1 Project Requirements . 55

5.1.2 Framework Selection . 55

5.1.3 Evaluation Results . 56

5.1.4 Select Framework . 80

6 Conclusions 83

6.1 Contributions and Implications . 83

6.2 Future Adaptations and Refinement . 84

6.3 Final Reflections . 85

Bibliography 86

Information Technology Engineer ix Graduation Project

List of Tables

2.1 Comparison between Front-end and Back-end 12

3.1 Metric ratings for Frameworks A and B . 37

3.2 Dimension ratings and weights for Frameworks A and B 37

4.1 Summary of Back-End Framework Evaluation Metrics 53

5.1 Rating of Dimensions for each back-end seleted framework 82

x

List of Figures

2.1 Basic Operation of Web Application . 10

2.2 Model-View-Controller (MVC) architecture in Laravel 15

xi

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer xii Graduation Project

Chapter 1

Introduction

1.1 Background

Software development has experienced significant growth in recent decades, going through

various stages of evolution. In its early stages, the primary focus was on desktop application

development, which ran locally on individual computers. These applications were often

monolithic and relied on client-server architectures [1].

With the rise of the Internet and the World Wide Web, web applications began to gain

popularity in the 1990s. Unlike desktop applications, web applications run in a browser

and communicate with a remote server, allowing users to access them from any device with

an Internet connection [1]. The transition to web applications brought with it a number

of advantages, such as ease of updating and maintenance, scalability, and the ability to

support multiple platforms [2].

As web applications continued to evolve, new technologies and architectural patterns

emerged to address the growing complexity and demands of modern software development.

One such pattern is the microservices architecture, which involves breaking down an ap-

plication into small, independent services that communicate with each other through APIs

[3]. This approach offers benefits such as improved scalability, fault tolerance, and easier

maintenance compared to monolithic architectures [4].

The growing importance of web applications led to the development of back-end frame-

works, which are an integral part of modern application development. back-end frameworks

provide a structure and a set of tools that facilitate the creation and maintenance of web

1

School of Mathematical and Computational Sciences Yachay Tech University

and mobile applications [5]. These frameworks help developers handle crucial aspects of

web application development, such as database management, user authentication, and API

implementation [6].

Over the years, numerous back-end frameworks have been developed to address differ-

ent needs and preferences in software development. Some of the most popular back-end

frameworks include Django (Python), Ruby on Rails (Ruby), Express (Node.js), Laravel

(PHP), and ASP.NET (C#) [6]. Each of these frameworks has its own advantages and

disadvantages in terms of performance, scalability, ease of use, and other factors that may

influence a developer’s choice.

The selection of an appropriate back-end framework is crucial for a project’s success,

as it can affect the productivity of the development team, code quality, and the ability

to scale and maintain the application over time [5]. However, due to the large number of

available frameworks and differences in their features and capabilities, it can be challenging

for developers and organizations to make informed decisions about which framework to use.

Several studies have investigated different approaches to comparing and evaluating

back-end frameworks. For example, Kaur and Rani (2016) [5] proposed a multi-criteria

evaluation framework based on the Analytic Hierarchy Process (AHP) method for compar-

ing web frameworks. Chandra and Borah (2017) [7] conducted a qualitative comparative

analysis of five popular back-end frameworks based on criteria such as ease of use, scala-

bility, and performance. Despite these efforts, there is still a need for comprehensive and

objective methods for comparing back-end frameworks to support developers and organi-

zations in their decision-making process.

Furthermore, the rise of cloud computing has introduced new considerations for se-

lecting back-end frameworks. Cloud platforms such as Amazon Web Services (AWS),

Microsoft Azure, and Google Cloud Platform (GCP) offer various services and tools that

can be leveraged by back-end frameworks to enhance application performance, security,

and scalability [8]. Therefore, it is necessary to have an idea of which is the best back-end

framework to use for the development, and what are the specifications required by the user

to know if it fits the corresponding needs, including deployment requirements (possibly in

the cloud).

In response to this need, in this thesis a methodology framework is proposed that allows

Information Technology Engineer 2 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

developers and organizations to effectively evaluate and compare back-end frameworks. By

providing a systematic and objective approach, this methodology will help decision mak-

ers identify the most suitable back-end framework for their specific project requirements,

ultimately leading to more successful and efficient software development processes.

1.2 Problem Statement

The development of web and mobile applications is a complex process that involves se-

lecting appropriate technologies and tools to meet the specific needs and requirements of

the project [1]. Among the many decisions developers must make is the choice of the

back-end framework, which is crucial to the success of the project [5]. The incorrect selec-

tion of a framework can lead to performance, scalability, maintenance, and cloud service

compatibility issues, which in turn can increase costs and development time [6].

There are numerous back-end frameworks available in the market, each with its own

advantages and disadvantages in terms of performance, scalability, ease of use, and other

factors that may influence the developer’s choice [5]. Additionally, the growing importance

of cloud computing and the adoption of microservices architectures have added additional

layers of complexity to the selection of the appropriate back-end framework [3].

Despite the abundance of information and comparisons available online, developers

often face difficulties in making an informed decision due to the lack of a systematic and

standardized comparison methodology that allows evaluating and comparing different back-

end frameworks objectively [2].

In this way, the primary challenge tackled in this study is the absence of a method-

ology that empowers developers to assess and differentiate various back-end frameworks

effectively. This includes considering pivotal factors such as performance, scalability, user-

friendliness, compatibility , and the integration of micro-services architectures [3]. Ad-

dressing this issue would equip developers with a tool to make data-driven choices and

pick the best-suited back-end framework for their endeavors, subsequently enhancing soft-

ware quality while diminishing expenses and development duration [1].

Information Technology Engineer 3 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

1.3 Objectives

In this thesis, we seek to address the challenges faced by developers when selecting a suitable

back-end framework for their web and mobile application projects. The overall objective

is to design a methodology framework that allows for the a quantitative measurement of

various dimensions and metrics relevant to evaluating the accessibility and suitability of a

back-end framework in comparison to others. By establishing both a general objective and

specific objectives, we aim to provide developers with a valuable tool for making informed

decisions and selecting the most suitable back-end framework for their projects.

1.3.1 General Objective

The general objective of this thesis is to design a comprehensive and well-founded method-

ology framework that allows developers to quantitatively measure various dimensions and

metrics relevant to evaluating the accessibility and suitability of a back-end framework in

comparison to others.

This methodology should be applicable to any back-end framework and provide a sys-

tematic and standardized approach to assessing critical aspects, such as performance, scal-

ability, ease of development, security, popularity, portability, maintainability, cost, ecosys-

tem and compatibility. Furthermore, the proposed methodology aims to be flexible enough

to adapt to the changing needs and trends in web and mobile application development. It’s

important to mention that it should be feasible to develop a web-based tool that simplifies

the implementation of this methodology, thereby offering developers a valuable tool for

making informed decisions and selecting the most suitable back-end framework for their

specific projects.

1.3.2 Specific Objectives

To achieve the general objective, the following specific objectives are proposed:

1. Define a set of evaluation criteria to objectively compare the selected frameworks.

2. Identify the relevant dimensions and metrics for evaluating the accessibility of back-

end frameworks, considering aspects such as performance, scalability, ease of use,

Information Technology Engineer 4 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

security, popularity, portability, maintainability, cost, ecosystem, and compatibility.

3. Design a methodology based on the identified dimensions and metrics that allows

developers to effectively and objectively evaluate and compare different back-end

frameworks.

4. Identify the most popular and widely used back-end frameworks in the web and

mobile application development industry.

5. Apply the proposed methodology to the back-end frameworks identified as the most

popular, to demonstrate its applicability and usefulness in selecting the most suitable

framework for a specific project.

By achieving these objectives, we expect to develop a robust and effective methodology

framework that allows developers to compare and evaluate back-end frameworks objectively

and based on relevant criteria. In the process of addressing the challenge of selecting the

best back-end frameworks, the application of this methodology is envisioned to improve

software quality, reduce development costs and time, and facilitate the adoption of suitable

technologies and architectures for each project.

1.4 Phases of Problem Solving

In this section, we will discuss the different phases of problem-solving that will be followed

throughout this thesis to address the challenges associated with selecting a suitable back-

end framework for web and mobile application projects.

• The first phase involves identifying the problem, which in this case is the difficulty

developers face when selecting a suitable back-end framework for their projects. This

phase includes understanding the various factors that influence the choice of a back-

end framework, such as performance, scalability, ease of use, among others.

• In the second phase, we will collect and analyze data related to popular back-end

frameworks and their features. This may include conducting surveys, interviews, or

gathering information from online sources. The collected data will help us identify the

Information Technology Engineer 5 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

most popular and widely used back-end frameworks in the web and mobile application

development industry.

• Based on the collected data and identified dimensions and metrics, we will design a

methodology framework that allows developers to effectively and objectively evaluate

and compare different back-end frameworks. This methodology will be designed to

be applicable to any back-end framework and provide a systematic and standardized

approach to assessing critical aspects.

• Once the methodology framework is developed, we will apply it to the most popular

back-end frameworks identified in the data collection and analysis phase. This will

demonstrate the applicability and usefulness of the methodology in selecting the most

suitable framework for a specific project.

1.5 Scope and Limitations

In this section, we will discuss the scope of this thesis and the limitations associated with

the proposed methodology framework for selecting a suitable back-end framework for web

and mobile application projects.

Scope

The scope of this thesis includes the following aspects:

• Identifying relevant dimensions and metrics for evaluating back-end frameworks, fo-

cusing on performance, scalability, ease of use, cloud service compatibility, and adop-

tion of microservices architectures.

• Designing a comprehensive methodology framework that allows developers to effec-

tively and objectively evaluate and compare different back-end frameworks based on

the identified dimensions and metrics.

• Applying the proposed methodology framework to the most popular and widely used

back-end frameworks in the web and mobile application development industry.

• Proposing recommendations and best practices for selecting back-end frameworks

based on the results obtained by applying the developed methodology framework.

Information Technology Engineer 6 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Limitations

Despite the thorough approach taken in this thesis, there are some limitations to con-

sider:

1. Methodoly framework may not cover all possible dimensions and metrics relevant to

evaluating back-end frameworks. Some factors, such as specific project requirements

or developer preferences, may not be fully addressed.

2. The identification of the most popular back-end frameworks is based on data collected

at a specific point in time, which may change as new frameworks emerge or existing

ones evolve.

3. The proposed recommendations and best practices may not be applicable to all

projects or situations, as they are based on the results obtained from applying the

methodology to a specific set of popular back-end frameworks.

This thesis focuses on the development of a methodology based on a quantitative model

to aid in decision making related to the selection of back-end frameworks in web and mobile

application projects.

Information Technology Engineer 7 Graduation Project

Chapter 2

Theoretical Framework

The rapidly evolving world of software development is underpinned by a myriad of theories,

principles, and established best practices. To understand the process of selecting a back-end

framework and the myriad factors that influence this decision, it is imperative to ground

our inquiry in a robust theoretical framework. This section delves into the foundational

theories and concepts that inform our understanding of software development, back-end

technologies, and the considerations that drive the adoption of one framework over another.

By anchoring our methodology in these theories, we seek to ensure that our approach is

both informed by past knowledge and tailored to address contemporary challenges. The

following discussion will explore key theoretical constructs, their relevance to our study,

and how they collectively shape the lens through which we approach the primary objective

of this thesis.

2.1 Fundamentals of Web Technology

Web technology has undergone a revolutionary evolution since its inception, enabling ef-

fective and efficient access and distribution of information on the network. This section

explores the fundamentals of web technology, focusing on key elements that have driven

its development.

2.1.1 Historic Development

In its early days, the World Wide Web (WWW) was proposed by Tim Berners-Lee in 1989,

becoming a hypertext system that facilitated the interconnection of documents through

8

School of Mathematical and Computational Sciences Yachay Tech University

hyperlinks. The web is based on the client-server model, where web browsers act as clients

and request information from web servers that store and distribute content using protocols

like HTTP (Hypertext Transfer Protocol) [9].

The foundation of the web is built upon markup languages, with HTML (HyperText

Markup Language) being the primary language used to structure content and present it

visually in web browsers. CSS (Cascading Style Sheets) is responsible for defining presen-

tation and layout, while JavaScript enables the addition of interactivity and dynamism to

the content [10].

Over time, the web evolved to support real-time interaction through technologies like

AJAX (Asynchronous JavaScript and XML), significantly enhancing the user experience

[11]. Additionally, the adoption of open standards and the establishment of the World Wide

Web Consortium (W3C) ensured interoperability and accessibility for all users, regardless

of their device or platform [10].

The emergence of server-side technologies such as PHP, Ruby on Rails, and Node.js

allowed the creation of more complex and scalable web applications. These technologies

provided the ability to process data on the server before sending it to the browser, leading

to the development of interactive and real-time web applications [12].

The web also underwent a significant transformation with the introduction of Applica-

tion Programming Interfaces (APIs), enabling communication and data exchange between

different web applications .This led to the development of Service-Oriented Architecture

(SOA) and microservices architectures, improving application flexibility and modularity

[10].

The exponential growth in the use of mobile devices drove the development of responsive

and adaptive web design, allowing websites to adjust automatically to different screen sizes

and devices [13]. Furthermore, the introduction of technologies like Progressive Web Apps

(PWA) facilitated the creation of web applications that behave like native mobile apps,

providing a more app-like user experience [12].

If you’re embarking on the journey of creating a modern app or website, it’s essential to

grasp the two fundamental components that make it all work seamlessly. The first of these

crucial elements is referred to as the ”front-end.” This pivotal component takes charge of ev-

erything related to the user experience, shaping what the user perceives, determining when

Information Technology Engineer 9 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

to retrieve data from the server, and facilitating various interactions and modifications. In

essence, it’s the bridge between the user and the application’s functionalities.[14]

The second indispensable piece of the puzzle is known as the ”back-end.” This en-

compasses the servers and data that the front-end relies on, manipulates, and ultimately

showcases to the user. In other words, it serves as the engine powering the entire system,

handling the logic and processing that goes on behind the scenes.[14]

2.1.2 Basic Operation

Web technology operates as an interconnected system where multiple components interact

to deliver a seamless user experience. To comprehensively understand its basic operation,

one can envision a typical flow initiated when a user accesses a web application through a

browser.

Figure 2.1: Basic Operation of Web Application

User: An individual who interacts with computer systems, applications, or websites. In

the context of web applications, a user is someone who navigates a website using a

Information Technology Engineer 10 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

browser.

Browser: Software application used to access, retrieve, and present content from the web.

Examples include Google Chrome, Mozilla Firefox, Safari, and Microsoft Edge. The

browser interprets web content, primarily HTML, CSS, and JavaScript, to display

web pages to users.

DNS Server: Stands for ”Domain Name System Server”. It is a server that translates

human-friendly domain names (like ”www.example.com”) into IP addresses, which

are used for routing data across the internet.

Website: A collection of related web pages, including multimedia content, that are iden-

tified with a common domain name. A website is accessible via a public internet

protocol (IP) network, such as the internet, or a private local area network (LAN).

Main Server: Often referred to as a ”web server”. It’s a server that hosts websites and

provides content to users via browsers. The main server processes incoming requests

from users and sends back the appropriate response, typically in the form of web

pages, images, or other media.

Request: In web communication, a request is made by a user’s browser to a server to

retrieve or send information. This can be a request to view a web page, download a

file, or submit data to be processed by the server.

Response: The data sent by the server to the user’s browser following a request. This

can be in the form of a web page, an image, a video, or other types of data. The

response tells the browser what content to display or how to process the results of

the user’s request.

The interplay of these components ensures the delivery of content, data retrieval and

manipulation, and real-time interaction, forming the backbone of the modern web experi-

ence [15].

Information Technology Engineer 11 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

2.1.3 Front-end and Back-end

Front-end: The front-end, often referred to as the “client-side”, is the part of a web

application that users interact with directly. It’s everything that the user experiences

while navigating through a website – from graphics and design to how data is presented.

Front-end development involves using languages such as HTML, CSS, and JavaScript [16].

Back-end: The back-end, sometimes known as the ”server-side”, is the part of a web

application that operates behind the scenes. It handles the database operations, application

logic, server configuration, authentication, and more. Back-end development typically

involves server-side languages such as PHP, Ruby, Python, Java, and .NET [16].

Differences

In software development, understanding the key differences between the front-end and

back-end is essential, as these components form the core of any application or website.

Below is a comparative table that highlights the distinctive features and responsibilities

of each, illustrating how these two areas interact and complement each other to create a

cohesive and functional user experience.

Front-end Back-end
Direct interaction with the user Operates behind the scenes
Uses languages like HTML, CSS, and
JavaScript

Uses server-side languages like PHP, Ruby,
Python, Java

Focused on user interface and experience Focused on server, application, and
database operations

Manages how information is presented to
the user

Manages how data is stored and ensures
data integrity

Examples: Web design, animations, but-
tons

Examples: User authentication, server con-
figuration, database interactions

Table 2.1: Comparison between Front-end and Back-end

2.2 State of Art

To ensure a robust and reliable back-end for develop an application, making the right choice

when it comes to the back-end web framework is of paramount importance. Selecting the

Information Technology Engineer 12 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

best back-end web framework available to developers can significantly impact the perfor-

mance, scalability, and overall success of your project, making it a decision that should be

taken seriously and thoughtfully. By carefully evaluating the available options and align-

ing them with your project’s specific requirements, you pave the way for a powerful and

impressive digital experience that users will love and appreciate. So, don’t underestimate

the significance of this decision, as it lays the foundation for your application’s success in

the competitive and dynamic world of modern technology.

In the literature, there are several studies that compare back-end frameworks for web

application development. For example, study conducted by Savvycom Team in 2021 [17]

compared the most famous Node.js frameworks: Koa, Express, and Hapi. It presents a

detailed comparison, evaluating the performance of each framework in terms of speed,

scalability, and ease of use. To do this, the article analyzes the code of each framework in

its basic configuration, middleware, and installation. Finally, a simple but effective code

is used to measure its speed, which is a common example of a ”Hello World” program.

Additionally, the article highlights the importance of not only considering the performance

of a framework but also its ease of use and documentation.

Another study conducted in 2021 by ValueCoders [18] compares the CodeIgniter vs

CakePHP vs Yii vs Laravel frameworks based on different parameters such as popularity,

where they analyze the websites created and used by these frameworks. They compare the

architecture of each one, in this case, using the Model-View-Controller (MVC) pattern,

database integration, and how many databases each framework supports such as MySQL

or PostgreSQL, ease of use, and development cost. Additionally, they compare features

such as the database model, programming language, license, among others.

The following article written by John Wheeler [19]discusses a detailed comparison be-

tween three Python web frameworks: Django, Flask, and Pyramid. It describes the main

features of each framework, their strengths and weaknesses, and offers advice on when

to use one or the other depending on the project’s needs. The article also provides code

examples and explains how each framework handles the database, authentication, security,

scalability, and other important aspects. Additionally, it offers an overview of how these

frameworks work and performs small demos where we can observe the performance of each,

providing a comprehensive and useful insight for anyone looking to choose the right Python

Information Technology Engineer 13 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

framework for their web project.

Another significant contribution was the article written by Marin Kaluža, Marijana

Kalanj, and Bernard Vukelić [20] explains that the use of frameworks can enhance the

quality and standardization of web applications, leading to improved efficiency and reduced

costs. The back-end frameworks they focus on are Laravel, Rails, Django, and Spring.

They evaluate factors such as ease of use, scalability, security, performance, community

and support, documentation, flexibility and customization, and integration with other

technologies. In order to assess these factors, they utilize criteria such as code generator,

project health, developer’s perception, developer’s availability, business trends, templates,

I18n and l10n, testing, validation, mobile phone/iPhone support, among others.

In 2023, PrimerPy conducted an analysis of four popular Python web frameworks, in-

cluding Django, Flask, FastAPI, and Tornado [21]. The article delved into the unique

attributes of each framework, outlining their strengths and weaknesses. It also exam-

ined factors such as performance, ease of use, and scalability. The insights provided by

this article can guide developers in choosing the most suitable framework based on their

project requirements and objectives, emphasizing the need to evaluate development speed,

community support, and compatibility with emerging technologies.

A comprehensive comparison of various web development frameworks was published by

Monocubed in 2023 [22]. This comparison covered Django, Flask, Ruby on Rails, Express,

and Laravel. The article provided an in-depth analysis of each framework’s key features,

advantages, and drawbacks. Additionally, it explored aspects such as performance, user-

friendliness, and scalability. This comparison underscored the significance of selecting an

appropriate framework tailored to the specific needs of a project and the skill set of the

development team.

2.3 Overview of Back-end Frameworks

In the following section, we will delve into some of the most renowned back-end frame-

works in contemporary web development. Among them are Laravel, Django, Node.js, and

Spring. These frameworks have not only risen in popularity due to their robust features

and capabilities but also because of the vast communities that have contributed to their

Information Technology Engineer 14 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

evolution. As we trace their historical progression, we will highlight the pivotal moments

and innovations that have positioned them as cornerstones in the realm of back-end devel-

opment.

2.3.1 Laravel

Laravel is a popular PHP framework known for its elegant and robust architecture. It

follows the Model-View-Controller (MVC) pattern, providing a structured and organized

approach to web application development. It was developed in 2011 by Taylor Otwell

as a spin-off of Symfony [23]. Laravel incorporates features like routing, ORM, caching,

and authentication, enhancing productivity and maintainability. It also offers a modular

architecture, allowing developers to leverage reusable components and create scalable appli-

cations. Laravel’s architecture is influenced by various design patterns such as Dependency

Injection and Facades, ensuring flexibility and testability [24]. Its extensive documentation

and active community make it a preferred choice for developers.

Figure 2.2: Model-View-Controller (MVC) architecture in Laravel

Laravel has gone through several versions, each introducing new features and improve-

ments [25]:

Information Technology Engineer 15 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• Laravel 1 was released in June 2011, followed by Laravel 2 in November 2012.

• Laravel 3 was released in February 2013 and introduced a modular architecture and

better support for third-party libraries.

• Laravel 4 was released in May 2013 and included improvements in performance,

modularity, and scalability.

• Laravel 5 was released in February 2015 and introduced significant changes, including

a new directory structure, middleware, and the Blade templating engine.

• Laravel 6 was released in September 2019, followed by Laravel 7 in March 2020 and

version 8 in September 2020. These releases brought various new features, such as

Laravel Vapor, Laravel Sanctum, and Laravel Jetstream, to name a few.

• Laravel 9 was released in September 2022 and brought significant changes to the

framework’s internal architecture, including improvements to routing, middleware,

and the service container.

• Laravel 10 is expected to be released in February or March 2023 .

Each version of Laravel has contributed to its evolution, addressing developer needs and

enhancing the framework’s capabilities. With each release, Laravel continues to solidify its

position as one of the leading PHP frameworks in the industry [26].

Laravel is a PHP web development framework that has experienced significant growth

in popularity since its release in 2011. Over the years, it has gained a solid reputation and

become one of the most popular choices for web application development in PHP.

One of the main reasons behind Laravel’s popularity is its focus on code elegance,

simplicity, and readability. With concise and expressive syntax, Laravel allows developers

to write clean and maintainable code. This has attracted a wide community of developers

who appreciate the efficiency and clarity that the framework provides [25].

Another key factor that has contributed to Laravel’s popularity is its extensive set

of features and built-in tools. Laravel offers a variety of functionalities such as routing,

session handling, authentication, caching, and more, enabling developers to efficiently build

robust and feature-rich web applications. Additionally, Laravel provides a unified and

Information Technology Engineer 16 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

consistent API that makes it easy to interact with external services and integrate third-

party libraries [27]. The Laravel community is active, supportive, and always willing to

help newcomers. There are abundant resources available, including official documentation,

online tutorials, blogs, and educational videos. Furthermore, numerous Laravel-dedicated

events and conferences take place worldwide, where developers can share knowledge, learn

from experts, and network.

The popularity of Laravel is also reflected in the numbers. The official Laravel reposi-

tory on GitHub has a significant number of 73.400 stars , indicating widespread adoption

and community support. Additionally, downloads of Laravel-related packages in the PHP

package repository, Packagist, show a high level of interest and active usage of the frame-

work [28].

In the job market, the demand for developers with Laravel experience has significantly

increased. Job postings and freelance projects requiring Laravel skills are plentiful, further

reinforcing its status as a popular and relevant choice in the web development field. For

instance, in the second week of May 2023, there were around 900 job applications on

LinkedIn in Latin America. Considering the continuous growth in job offers, learning

Laravel can be highly advantageous for job seekers.

In addition, Laravel provides a built-in code generator called ”Artisan” [29] that allows

developers to generate code for various tasks, such as creating controllers, models, migra-

tions, views, and more. This code generator saves developers time and effort by automating

the creation of repetitive code components, allowing them to focus on implementing the

application’s specific business logic. Laravel also provides a powerful templating engine

called Blade [30], which enables developers to write clean and expressive templates with

features like template inheritance, conditionals, loops, and more .

Laravel is well-known for its emphasis on code maintainability and the structure of web

applications. The framework promotes good development practices such as clear separation

of responsibilities, the use of design patterns, and a modular architecture. These aspects

contribute to improving code maintainability in the long term.

Laravel is a renowned web development framework known for its emphasis on security.

It incorporates various features and tools to assist developers in safeguarding their appli-

cations against common vulnerabilities. Here are some of the security measures employed

Information Technology Engineer 17 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

by Laravel [25]:

1. Cross-Site Request Forgery (CSRF) Protection: Laravel includes built-in protection

against CSRF attacks. It generates a unique token for each session and verifies it

for every POST, PUT, DELETE, and PATCH request, thereby preventing CSRF

attacks .

2. SQL Injection Protection: Laravel employs prepared statements and parameter bind-

ing techniques to defend against SQL injection attacks. By doing so, it ensures that

malicious attempts to manipulate database queries are thwarted.

3. Cross-Site Scripting (XSS) Protection: Laravel automatically escapes output values

within views to mitigate the risk of XSS attacks. Additionally, it provides methods

for input data cleansing and filtering.

4. Data Validation: Laravel incorporates a built-in validation system that simplifies the

validation of input data. Developers can define validation rules for input fields, and

Laravel automatically validates the data, displaying error messages upon validation

failure.

5. Password Hashing: Laravel employs secure hashing algorithms to store passwords

securely. Passwords are never stored in plain text but are instead stored as hashes

in the database.

6. Route Protection and Authorization: Laravel offers an intuitive routing system that

enables the protection of specific routes or groups of routes behind authentication.

Furthermore, Laravel provides functions for role-based and permission-based autho-

rization.

7. Error Handling and Logging: Laravel incorporates robust error handling and logging

mechanisms. Errors are automatically logged and can be configured to trigger email

notifications in the event of application errors in production environments.

Information Technology Engineer 18 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

2.3.2 Django

Django is a high-level Python web framework that allows for rapid development of secure

and maintainable websites. It follows the Model-View-Controller (MVC) Fig 2.2 archi-

tectural pattern and includes a powerful Object-Relational Mapping (ORM) system for

interacting with databases. The MVC pattern separates the application into three in-

terconnected components: Model, View, and Controller. The Model is responsible for

managing the application’s data and business logic, the View is responsible for rendering

the user interface, and the Controller is responsible for handling user requests and updating

the Model and View accordingly. [31]

Django also includes several other components that contribute to its overall architec-

ture, including:

• URL routing: Django uses a URL routing system that maps incoming requests to

the appropriate Controller or View.

• Template engine: Django’s template engine provides a way to separate the application

logic from the presentation logic.

• Object-relational mapping (ORM): Django’s built-in ORM provides a convenient way

to interact with a database, allowing developers to work with objects rather than raw

SQL.

• Middleware: Django’s middleware provides a way to add functionality to the re-

quest/response processing pipeline.

Django provides many built-in features for common web development tasks, such as

user authentication, form handling, and URL routing, as well as support for handling static

and media files. It also has a thriving ecosystem of third-party packages for extending its

functionality. [32]

Throughout its development, each version has introduced new features and improve-

ments, addressing the growing demands of developers and technological advancements.

The framework’s consistent updates have enhanced development efficiency, streamlined

processes, and expanded its functionality [32]:

Information Technology Engineer 19 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• Django 1.0: This was the first stable release of Django, and it introduced many of

the features that have made Django popular, such as the Django ORM, the admin

interface, and the URL routing system.

• Django 1.2: This release added support for multiple databases, making it easier to

write applications that use more than one database back-end.

• Django 1.3: This release added support for class-based views, which provide a more

flexible way to define views than the traditional function-based views.

• Django 1.4: This release introduced the new timezone-aware datetime module, which

makes it easier to work with datetime objects across different timezones.

• Django 1.5: This release added support for custom user models, making it easier to

create applications that use alternative user models beyond the built-in User model.

• Django 1.6: This release added support for template context processors, which allow

you to add variables to the template context automatically.

• Django 1.7: This release introduced migrations, a new system for managing database

schema changes that replaced the previous south library.

• Django 1.8: This release added support for complex query expressions, making it

easier to write complex database queries using the Django ORM.

• Django 1.9: This release introduced support for password validation, making it easier

to enforce password policies in your applications.

• Django 2.0: This release dropped support for Python 2, making it a Python 3-

only release. It also introduced several new features, including support for window

functions in the ORM.

• Django 3.0: This release introduced experimental support for asynchronous views,

and it added support for MariaDB as a database back-end.

• Django 3.1: This release added support for JSONField, a new database field type

that allows you to store JSON data in the database.

Information Technology Engineer 20 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• Django 3.2: This release introduced support for signed cookies, which can be used

as an alternative to traditional session-based authentication.

• Django 4.0: Expected to be released in late 2022 or early 2023, this release is ex-

pected to introduce several new features, including improved support for model field

validation and improved support for database schema changes.

Django, the Python web framework, has experienced substantial popularity and widespread

adoption, supported by various numbers and studies, making it one of the leading choices

for web development. According to the 2021 Python Developers Survey conducted by the

Python Software Foundation, Django ranked as the most popular web framework among

Python developers, with over 40% of respondents indicating its usage [33]. The Stack

Overflow Developer Survey 2021 [34] also highlighted Django’s popularity, listing it as

one of the most loved frameworks. Furthermore, GitHub showcases Django’s widespread

adoption, with its repository amassing over 70,600 stars and thousands of forks, indicating

active community engagement and contributions.

Beyond surveys and statistics, Django’s popularity can be attributed to its numerous

strengths. Its emphasis on clean and maintainable code, along with its comprehensive

documentation, contributes to its appeal among developers. Django’s robust feature set,

including built-in components like authentication, form handling, and database model-

ing, enhances productivity and accelerates development. The framework’s adherence to

best practices, such as the Model-View-Controller (MVC) architectural pattern, promotes

scalability and code organization. [31]

Django’s extensive community support has also played a vital role in its popularity.

The Django community is highly active, with numerous resources available for developers.

The official Django documentation provides comprehensive guides and references, while

community-driven platforms like Django Packages offer a vast collection of reusable apps

and tools. Furthermore, the Django community organizes regular events, such as Djan-

goCon, where developers gather to share knowledge, discuss best practices, and showcase

their projects . The official Laravel reposi- tory on GitHub has a significant number of

73.400 stars.[35]

Django’s popularity is further evident in its widespread industry adoption. It powers

Information Technology Engineer 21 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

numerous high-traffic websites and applications, including popular platforms like Insta-

gram, Pinterest, and Mozilla. Django’s reliability, security, and scalability make it an

attractive choice for organizations of all sizes. Its versatility allows it to cater to diverse

domains, such as e-commerce, social media, and content management systems.

In terms of job market demand, Django developers continue to be in high demand.

Websites like Indeed and LinkedIn feature numerous job postings requiring Django exper-

tise 1500 in the second week of May 2023. Freelancing platforms, such as Upwork, also

showcase a significant number of Django-related projects, indicating the continuous need

for skilled professionals.

One of the notable features of Django is its built-in code generator called ”django-

admin.” This command-line tool allows developers to generate code for various tasks, such

as creating models, views, templates, forms, and more. The code generator automates

the creation of repetitive code components, saving developers time and effort during the

development process [32].

Django includes a powerful templating engine that goes by the name of ”Django Tem-

plates.” It allows developers to create clean and expressive templates for rendering HTML

dynamically. The templating engine supports features like template inheritance, condi-

tional statements, loops, filters, and more. This enables developers to build flexible and

reusable templates for their web application’s user interface.[36]

Similar to Laravel, Django also emphasizes code maintainability and follows best prac-

tices in software development. It encourages the separation of concerns and follows the

Don’t Repeat Yourself (DRY) principle. Django promotes modular and reusable code

through its application structure, which allows developers to divide their project into

smaller, self-contained components.

Django is renowned for its emphasis on security and provides several built-in features

and tools to help developers protect their web applications against common vulnerabilities.

Here are some of the security measures incorporated in Django [32]:

1. Cross-Site Scripting (XSS) Protection: Django employs XSS protection by default,

automatically escaping output values in views. This helps prevent XSS attacks by

ensuring that any malicious code is not executed in end-users’ browsers.

Information Technology Engineer 22 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

2. Cross-Site Request Forgery (CSRF) Protection: Django includes built-in CSRF pro-

tection to prevent CSRF attacks. It generates unique CSRF tokens for each form

and verifies that the tokens match in POST, PUT, DELETE, and PATCH requests,

ensuring that requests are only sent from application-generated forms and not from

malicious third parties.

3. SQL Injection Protection: Django provides a secure Object-Relational Mapping

(ORM) that prevents SQL injection by safely executing database queries. Django’s

ORM uses query parameters and prepared statements to ensure that user-supplied

data is properly escaped and treated.

4. Form Validation: Django includes a built-in form validation system that helps en-

sure user-entered data adheres to required rules and constraints. This helps prevent

injection attacks and ensures the integrity and validity of the entered data.

5. Secure Password Handling: Django provides secure functions and methods for pass-

word storage and handling. It utilizes strong hashing algorithms and salting tech-

niques to securely store passwords in the database.

6. Access Control and Authorization: Django offers a flexible access control and autho-

rization system, allowing developers to define permissions and roles to restrict access

to certain parts of the application. This ensures that only authorized users can access

specific functionalities and sensitive data.

7. Error Handling and Event Logging: Django provides robust error handling and event

logging mechanisms. Errors are logged by default in the application logs, facilitating

issue identification and resolution. Additionally, email notifications can be configured

to receive alerts for unexpected errors in the production environment.

2.3.3 Nodejs

Node.js is an open-source, cross-platform, back-end JavaScript runtime environment that

runs on the V8 engine and executes JavaScript code outside of a web browser. It was

first released in 2009 by Ryan Dahl, and has since become a popular platform for building

Information Technology Engineer 23 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

server-side applications and network applications [37]. Node.js uses an event-driven, non-

blocking I/O model that makes it efficient and lightweight, and it has a large and active

community of developers contributing to its growth and development.[38]

Node.js follows a modular and event-driven architecture, which makes it well-suited for

building scalable and high-performance applications. At its core, Node.js is built around a

single-threaded event loop, which handles all I/O operations asynchronously. This allows

Node.js to handle a large number of requests without blocking, making it an ideal choice

for building real-time applications such as chat applications or online gaming platforms.

Node.js also includes a built-in module system that allows developers to load and use

external libraries and packages, making it easy to extend and customize Node.js applica-

tions. The module system is based on CommonJS, a module specification that defines a

standard format for organizing and distributing JavaScript modules.

Node.js also includes a number of built-in modules that provide functionality for tasks

such as file I/O, networking, and cryptography. In addition, Node.js supports the use of

external modules through package managers such as npm.[38]

Overall, Node.js’s architecture is focused on providing a lightweight, efficient platform

for building server-side applications that can handle a high volume of I/O operations. Its

modular design and support for external libraries and packages make it easy to extend and

customize to meet the needs of a wide range of applications.[39]

This are the nNodejs versions that was releases.[40]

• Node.js 0.1.0 (May 2009): Initial release of Node.js.

• Node.js 0.4.0 (March 2011): Introduced the Node Package Manager (npm).

• Node.js 0.8.0 (June 2012): Significant performance improvements, including the ad-

dition of the libuv library for handling I/O.

• Node.js 0.10.0 (March 2013): Added support for streams2, which improved handling

of large streams of data.

• Node.js 0.12.0 (February 2015): Upgraded V8 JavaScript engine to version 3.28,

which brought significant performance improvements.

Information Technology Engineer 24 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• Node.js 4.0.0 (September 2015): Merged Node.js and io.js codebases, bringing to-

gether the two separate projects.

• Node.js 6.0.0 (April 2016): Introduced support for the ECMAScript 2015 (ES6)

specification, including new language features such as classes and arrow functions.

• Node.js 8.0.0 (May 2017): Introduced support for async/await, a new language fea-

ture that simplifies asynchronous programming.

• Node.js 10.0.0 (April 2018): Upgraded V8 engine to version 6.6, which brought per-

formance improvements and new language features such as rest/spread properties

and asynchronous iteration.

• Node.js 12.0.0 (April 2019): Upgraded V8 engine to version 7.4, which brought im-

proved performance and new language features such as optional chaining and nullish

coalescing.

• Node.js 14.0.0 (April 2020): Upgraded V8 engine to version 8.1, which brought perfor-

mance improvements and new language features such as top-level await and import().

• Node.js 16.0.0 (April 2021): Upgraded V8 engine to version 9.0, which brought per-

formance improvements and new language features such as the WeakRefs API.

The security in the Node.js framework is of utmost importance to protect web appli-

cations and ensure data integrity. Here are some common security measures that can be

implemented while developing applications with Node.js:

1. Input Validation and Filtering: It is crucial to validate and filter user input to prevent

malicious code injection attacks such as SQL injections or cross-site scripting (XSS)

attacks. Node.js provides libraries and modules like Express-validator and Joi for

input validation [41].

2. Proper Dependency Management: Verifying the authenticity and reliability of third-

party packages and keeping dependencies up to date are essential security practices.

Using security tools like vulnerability scanning can help identify and address potential

security issues in the used packages [42].

Information Technology Engineer 25 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

3. Protection against Denial-of-Service (DoS) Attacks: Implementing measures to pro-

tect against DoS attacks is crucial for ensuring the availability and stability of Node.js

applications. Techniques such as rate limiting can be applied to limit the number of

requests from a single client, and utilizing DoS protection services at the infrastruc-

ture level can help mitigate such attacks [42].

4. Authentication and Authorization: Implementing a secure authentication and autho-

rization system is vital for protecting sensitive resources and data. Node.js provides

libraries like Passport.js, which offers flexible authentication strategies. Properly im-

plementing authorization mechanisms ensures that only authorized users can access

specific functionalities [43].

5. Encryption and Secure Password Storage: Utilizing strong encryption algorithms and

techniques for storing passwords is essential to safeguard user credentials. Node.js

offers libraries like bcrypt and crypto for secure password hashing and encryption

[42].

6. Session Management: Secure session management is crucial for preventing session-

related vulnerabilities. Implementing secure session handling techniques, such as

using secure session identifiers, proper session storage, and expiration policies, can

mitigate session-related security risks [42].

7. Logging and Auditing: Implementing logging and auditing mechanisms helps track

and monitor application activities, aiding in identifying and investigating security

incidents. Libraries like Winston and Bunyan provide logging capabilities for Node.js

applications [44].

8. Regular Updates and Patching: Keeping Node.js and its dependencies up to date

is essential to benefit from the latest security patches and bug fixes. Staying in-

formed about security updates and promptly applying them helps mitigate potential

vulnerabilities [42].

Information Technology Engineer 26 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

2.3.4 Spring

Spring is an open-source application framework for Java used to build enterprise-level ap-

plications. It provides a comprehensive programming and configuration model for modern

Java-based enterprise applications. Spring’s core features can be used by any Java applica-

tion, but there are extensions for building web applications on top of the Java EE platform

[45]. The framework’s primary goal is to simplify the development of Java applications

and promote good programming practices by enabling developers to focus on the ”business

logic” of their application, rather than on infrastructure and integration tasks. It was first

released in 2002 and has since become one of the most popular Java frameworks in use

today. [46]

Spring architecture is based on the Model-View-Controller (MVC) design pattern,

which separates the application into three components:

• Model: This represents the data and business logic of the application. It is responsible

for managing data persistence, validation, and processing.

• View: This is responsible for rendering the user interface. It receives data from the

model and presents it to the user.

• Controller: This handles user input and manages the flow of data between the model

and the view. It is responsible for mapping incoming requests to the appropriate

handlers and returning responses to the client.

In addition to the MVC pattern, Spring also includes several other key components:

• Dependency Injection (DI): This is a design pattern that allows components to be

loosely coupled, making them easier to test and maintain. Spring’s DI container

manages the creation and configuration of objects and their dependencies.

• Aspect-Oriented Programming (AOP): This is a programming paradigm that enables

developers to modularize cross-cutting concerns, such as logging and security, into

reusable components.

• Spring Security: This is a powerful security framework that provides authentication,

authorization, and other security features to Spring-based applications.

Information Technology Engineer 27 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• Spring 1.0 (2004): The initial release of Spring, designed to be a lightweight alterna-

tive to existing J2EE frameworks. Key features included Inversion of Control (IoC)

and Aspect-Oriented Programming (AOP).

• Spring 2.0 (2006): Introduced the concept of ”JavaConfig”, which allowed developers

to configure Spring using pure Java code instead of XML files. Also added support

for scripting languages and improved AOP capabilities.

• Spring 3.0 (2009): Introduced the Spring Expression Language (SpEL) for more pow-

erful configuration options, added support for RESTful web services, and improved

the Spring MVC framework with support for RESTful controllers.

• Spring 4.0 (2014): Dropped support for Java 5 and introduced support for Java 8 fea-

tures such as lambda expressions. Also introduced support for reactive programming

with the Spring WebFlux framework.

• Spring 5.0 (2017): Dropped support for Java 6 and introduced support for Java 9 fea-

tures such as the Java Platform Module System (JPMS). Also introduced support for

reactive streams and the Spring WebClient for non-blocking HTTP communication.

• Spring 6.0 (in development): Will drop support for Java 8 and introduce support for

Java 17 features. Also expected to introduce improvements to the Spring WebFlux

framework and simplify the Spring programming model. [46]

The Spring framework provides several security measures to protect applications from

common security threats. These measures can be implemented to ensure the confidential-

ity, integrity, and availability of the application’s resources. Here are some key security

measures for the Spring framework:

1. Authentication and Authorization: Spring Security offers robust authentication and

authorization mechanisms. It provides various authentication options such as form-

based authentication, token-based authentication using technologies like JSON Web

Tokens (JWT), and integration with external providers such as OAuth 2.0. Addition-

ally, Spring Security enables fine-grained access control using roles and permissions

[47].

Information Technology Engineer 28 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

2. Protection against Common Security Attacks: Spring Security includes features to

mitigate common security vulnerabilities such as Cross-Site Scripting (XSS), Cross-

Site Request Forgery (CSRF), SQL Injection, and File Inclusion attacks. These

protections are implemented through request filtering, input validation, and secure

coding practices [47].

3. Session Management: Spring Security provides session management capabilities to

handle user sessions securely. It allows configuring session policies, such as session

timeout and invalidation, and ensures proper association of sessions with authenti-

cated users [47].

4. Password Encryption: Spring Security offers utilities for secure password storage. It

supports secure hashing algorithms and salting techniques to protect user passwords

from unauthorized access. Storing passwords securely reduces the risk of compromis-

ing user accounts in the event of a security breach [47].

5. Auditing and Logging: Spring provides logging and auditing features that enable

tracking and monitoring of application activities. This helps in identifying security

incidents, investigating issues, and complying with regulatory requirements. Logging

frameworks like Logback and Log4j are commonly used with Spring applications [47].

6. Brute Force Attack Prevention: Spring Security provides mechanisms to prevent

brute force attacks, such as limiting the number of failed login attempts and tem-

porarily blocking user accounts after multiple failed attempts. These measures pro-

tect user accounts from unauthorized access [47].

Information Technology Engineer 29 Graduation Project

Chapter 3

Methodology Framework

This chapter aims to establish a systematic approach, based on quantitative model, for eval-

uating and selecting the most appropriate back-end framework for development projects.

With an ever-increasing range of options, making an informed choice becomes crucial yet

complicated. This chapter provides a structured approach that relies on carefully selected

dimensions and metrics, offering an adaptable and weighted evaluation. By following this

methodology, stakeholders can objectively compare different frameworks, taking into ac-

count both technical and organizational factors critical to the project’s success.

3.1 General Objective

The main goal of this methodology is to offer a standardized and measurable procedure

that helps to choose the most fitting back-end framework, serving developers and deci-

sion makers. It allows for aligning the framework’s functionalities meticulously with the

project’s requirements, minimizing inaccuracies, and optimizing efficacy. This approach

facilitates informed decisions based on predefined criteria and ensures the selected frame-

work aligns seamlessly with the project’s goals and needs, fostering enhanced outcomes

and efficiency.

3.2 Relevance

The choice of a back-end framework is often a long-term commitment and can significantly

affect both the development speed and the quality of the final product. A wrong choice

30

School of Mathematical and Computational Sciences Yachay Tech University

can lead to scalability issues, increased costs, and delays. Therefore, it is crucial to have a

clear and systematic process for assessing different frameworks based on a range of factors

such as performance, security, compatibility, and community support.

3.3 Procedure Specification

This section will describe the detailed procedure that will be followed to specify, evaluate

and select back-end frameworks according to a set of predetermined criteria. Key termi-

nologies, such as dimension, metric, weight, and rating, will be defined and explained and

used to categorize and quantify various aspects of the frameworks. The process for identi-

fying relevant dimensions and metrics and for collecting relevant data from each framework

under consideration will be detailed. Subsequently, we will discuss how quantitative scores

will be assigned to each metric and how dimension scores will be calculated, in addition to

assigning weights and calculating the final score. Finally, the method of comparison and

selection of the most appropriate framework will be described based on the final weighted

scores. In summary, this section will provide a comprehensive overview of the methodology

to be employed for the systematic evaluation of back-end frameworks.

3.3.1 Basic Definitions

This section defines basic concepts that are crucial to understanding the criteria and pro-

cesses that will be described later, thus establishing a common basis of understanding for

the objective evaluation and comparison of the different back-end development frameworks

that will be analyzed.

• Dimension: Refers to a broad and comprehensive evaluation category, such as secu-

rity, performance, or scalability, in which similar features or attributes of a back-end

framework are grouped together for evaluation and comparison. It is a general crite-

rion that makes it easier to organize specific and detailed aspects of the framework

that are being examined.

• Metric: Within each dimension, metrics are specific attributes or characteristics

that can be evaluated to determine the effectiveness or quality of the framework on a

Information Technology Engineer 31 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

particular dimension. For example, in the security dimension, relevant metrics could

include authentication, validation, and implemented testing methods, thus offering a

more granular and detailed approach in evaluating each dimension.

• Weight: This term represents the degree of importance or relevance assigned to

each dimension during the evaluation process. The weights directly influence the

final rating of the framework, allowing the results to be adjusted according to the

specific priorities and needs of the project or user.

• Rating: It is a quantitative value that summarizes the adequacy or suitability of

a back-end framework based on the evaluation of metrics of its various dimensions.

The score is calculated using a formula that integrates both the individual values of

each metric and dimension and the weights assigned to them, providing a numerical

summary of the overall performance of the framework in question.

3.3.2 Identification of Dimensions and Metrics

Before beginning the evaluation of back-end frameworks, it is essential to carefully identify

the relevant dimensions and metrics that will serve as evaluation criteria. In this step, a list

of relevant dimensions such as performance, scalability, ease of use, security, popularity,

portability, maintainability, cost, ecosystem and compatibility, which are vital for the

success of the project, is made. Within each dimension identified, specific metrics are

determined, such as authentication for security or loading times for performance, which

will allow for a more detailed and focused evaluation. This identification process is crucial

to ensure that all important aspects of the framework are comprehensively and fairly

evaluated, and to provide meaningful insights that will guide the final selection of the

back-end framework.

3.3.3 Data Gathering

Once the relevant dimensions and metrics are identified, the next step in the evaluation

process is the collection of data for each back-end framework under consideration. Data is

obtained through methods such as empirical testing, documentation review, and consulta-

tion with subject matter experts. This step is essential since the accuracy and relevance of

Information Technology Engineer 32 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

the data collected will directly influence the validity of the final results. By gathering ac-

curate and relevant data, objective and informed evaluations can be made that accurately

reflect the capabilities and limitations of each framework, ensuring a well-informed final

selection tailored to the needs of the project.

3.3.4 Quantitative Scoring

In this phase of the procedure, each identified metric is evaluated and assigned a score

on a scale from 0 to 1, allowing intermediate values such as 0.25, 0.5 or 0.75 for a more

refined evaluation. This quantitative approach provides a means to objectively compare

the different frameworks, offering clarity and precision in the results, and facilitating the

identification of specific strengths and weaknesses in each framework evaluated.

3.3.5 Dimension Rating

In this process, the average score of each metric within a dimension is calculated to obtain

the score for that dimension. Each metric Mij within the dimension i receives a score, and

then all these scores are added together and divided by the total number of metrics n in

that dimension, as shown in the formula:

Di =
∑n

j=1 Mij

n
(3.1)

Where:

• Di is the rating of dimension i.

• Mij is the rating of metric j in dimension i.

• n is the total number of metrics in dimension i.

This scoring method provides a consolidated numerical summary that reflects the overall

performance of the framework on each dimension evaluated, allowing detailed and direct

comparisons between different frameworks and facilitating a detailed analysis of how each

framework performs in specific areas. Therefore, an understandable and fair evaluation is

ensured, essential to inform the final selection of the most appropriate framework for the

project.

Information Technology Engineer 33 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

3.3.6 Weight Assignment

In this crucial step, weights are assigned to each metric, reflecting its relative importance

in the specific use case or project at hand. This mapping is essential to ensure that the

most critical aspects of the framework have a proportional impact on the final grade. The

weights are intended to refine and personalize the evaluation process, allowing users to

prioritize based on their particular needs and preferences, thus providing a final result that

is truly representative and relevant to the project context.

3.3.7 Final Rating Calculation

Using the next formula, the final rating for each framework is calculated:

F =
m∑

i=1
Di × Pi (3.2)

Where:

• F is the framework’s final rating.

• Di is the rating of dimension i.

• Pi is the weight assigned to dimension i.

• m is the total number of dimensions.

This integrative calculation takes into account both the score obtained in each dimension

and the relative importance assigned to each of them, thus providing a comprehensive and

balanced reflection of the overall performance of the framework in relation to the specific

needs of the project. This final step is crucial to derive a single numerical value that allows

you to objectively compare different frameworks and select the fittest one based on clear

and fair criteria.

3.3.8 Comparison and Selection

Once the final scores are calculated, they are compared to each other to determine which of

the evaluated frameworks is the most suitable. The framework with the highest weighted

score is recommended for use, as this indicates that it best meets the project requirements

Information Technology Engineer 34 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

and preferences. This phase is essential for informed decision making, as it allows for a

direct and objective evaluation of the frameworks based on their performance on different

dimensions and metrics, thus ensuring that the final choice is aligned with the objectives

and needs of the project.

3.3.9 Evaluation Process

The evaluation process begins by assigning scores to each metric associated with a dimen-

sion, using a scale of 0, 0.5, and 1. Intermediate values, such as 0.25 and 0.75, can also be

utilized if a more nuanced measurement is necessary or if the user desires a more detailed

analysis based on the fulfillment of each metric.

• Metrics Scoring: Every individual metric related to a dimension is scored based

on its compliance and efficacy within the evaluated framework.

• Dimension Rating: Subsequently, the average of the metrics scores is calculated

to acquire the dimension’s rating using the formula, as stated in equation 3.1:

Di =
∑n

j=1 Mij

n

Once ratings for all the dimensions are obtained, weights are assigned according to

user-defined priorities. This phase aims to depict the relative importance of each dimension

within the specific context of the project.

• Final Rating Calculation: The formula to derive the final rating of the framework

is denoted in equation 3.2:

F =
m∑

i=1
Di × Pi

This comprehensive process ensures that every aspect of the framework is accurately

evaluated and weighted, facilitating a fair and precise comparison among different frame-

works and aiding in the selection of the framework best aligned with the project’s goals

and needs.

Information Technology Engineer 35 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

3.4 Generic Example

Before delving into the complexities of our analysis, it is imperative to establish an under-

standing of our approach through a generic example, illustrating the applied methodology

in a simplified manner. In this section, a hypothetical scenario is presented to showcase the

comparison of two frameworks, designated as Framework A and Framework B, based on

three predefined dimensions. For each dimension, two metrics are considered to evaluate

and contrast the frameworks systematically. The intention is to offer a clear and concise

depiction of how the methodology functions in practice, enabling an assessment and final

rating of each framework. It should be noted that the comprehensive explanations of each

dimension and metric will be furnished in Chapter 4 (See Chapter 4 for more details).

Suppose we are evaluating two frameworks and considering 3 dimensions: Dimension

1, Dimension 2, and Dimension 3. Each metric has 2 metrics.

Framework A:

• Dimension 1: Metric 1 (0.75), Metric 2 (0.5)

• Dimension 2: Metric 1 (0.25), Metric 2 (1)

• Dimension 3: Metric 1 (0.5), Metric 2 (0.75)

Framework B:

• Dimension 1: Metric 1 (0.5), Metric 2 (0.5)

• Dimension 2: Metric 1 (0.75), Metric 2 (0.75)

• Dimension 3: Metric 1 (0.25), Metric 2 (0.5)

If we assign a weight of 0.5 to Dimension 1, 0.3 to Dimension 2, and 0.2 to Dimension

3, we can calculate each framework’s final rating using the previously mentioned formulas.

FA = (0.625 × 0.5) + (0.625 × 0.3) + (0.625 × 0.2) = 0.625

FB = (0.5 × 0.5) + (0.75 × 0.3) + (0.375 × 0.2) = 0.5625

Information Technology Engineer 36 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Based on the calculations, Framework A has a higher final rating (0.625) compared to

Framework B (0.5625).

Now, let’s create the comparison table:

Comparison Table

FW Met 1.1 Met 1.2 Met 2.1 Met 2.2 Met 3.1 Met 3.2
A 0.75 0.5 0.25 1 0.5 0.75
B 0.5 0.5 0.75 0.75 0.25 0.5

Table 3.1: Metric ratings for Frameworks A and B

FW Dim 1 (Weight: 0.5) Dim 2 (Weight: 0.3) Dim 3 (Weight: 0.2)
A 0.625 0.625 0.625
B 0.5 0.75 0.375

Table 3.2: Dimension ratings and weights for Frameworks A and B

Final ratings:

FA = 0.625

FB = 0.5625

Based on the table and calculations, the Framework A is recommended over the

Framework B for this particular scenario due to its higher final rating.

With these calculations and the table, one can clearly and concisely discern which

framework is more suitable based on the defined dimensions and weights in this example.

Of course, in real-world applications, multiple additional factors may need to be consid-

ered, and a more detailed evaluation may be required.

Choosing a back-end framework is a critical decision for the success of any development

project. Multiple criteria need to be considered, from technical aspects to organizational

factors. With so many options available, it’s essential to have a systematic and objective

methodology to guide this choice. The importance of this methodology lies in its ability to

adapt to the specific needs of a user or project, assigning weights to the different dimensions

based on their priorities.

Information Technology Engineer 37 Graduation Project

Chapter 4

Dimensions and Metrics

Choosing a back-end framework is a very important decision in the software development

process, often shaping the project’s architecture, scalability, and long-term maintainabil-

ity. With a multitude of options available, it’s essential to evaluate frameworks based

on a series of well-defined dimensions, ensuring alignment with project requirements and

team expertise. This chapter elucidates key dimensions, each with associated quantitative

metrics. These dimensions provide a comprehensive guideline for developers and decision-

makers to systematically assess, compare, and ultimately select the most suitable back-end

framework for their specific needs.

4.1 Ease of Development

Ease of Development pertains to the simplicity and expedience with which developers

can understand, learn, and use the framework to create and maintain applications. This

dimension is vital as it can significantly impact the development time and the quality of

the final product.

• Metric: Programming Language

– Meaning: Indicates whether the framework’s programming language is well-

known by the team.

– Where to Find: Discuss with the team and consult skill sets.

– Measurement:

38

School of Mathematical and Computational Sciences Yachay Tech University

∗ Very familiar: 1

∗ Moderately familiar: 0.5

∗ Not familiar: 0

• Metric: Maturity

– Meaning: Indicates whether the technology is well-established or something new

that is still being tested.

– Where to Find: Review the history of the framework and the community backing

it.

– Measurement:

∗ Well-established: 1

∗ In development: 0.5

∗ New or under testing: 0

• Metric: Code Generators and Scaffolding

– Meaning: Tools that allow developers to rapidly generate code for common

components such as models, views, and controllers.

– Where to Find: Consult the framework’s documentation and available tools.

– Measurement:

∗ Extensive support and efficiency: 1

∗ Moderate support: 0.5

∗ No support or inefficient: 0

• Metric: Documentation Quality

– Meaning: Availability and completeness of official documentation.

– Where to Find: Official website or GitHub repository.

– Measurement:

∗ full measure: 1 (Comprehensive, well-organized documentation)

∗ Partially measure: 0.5 (Some useful documentation, but lacking in areas)

Information Technology Engineer 39 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

∗ Not measure: 0 (Poor or non-existent documentation)

• Metric: Community Support

– Meaning: Availability of community resources, tutorials, and forums.

– Where to Find: Online communities, Stack Overflow, GitHub.

– Measurement:

∗ full measure: 1 (Strong community support and abundant resources)

∗ Partially measure: 0.5 (Moderate community support and some resources)

∗ Not measure: 0 (Limited or no community support)

• Metric: Learning Curve

– Meaning: Time and effort required to become proficient.

– Where to Find: Personal experience, online tutorials, and courses.

– Measurement:

∗ full measure: 1 (Easy to learn and become proficient)

∗ Partially measure: 0.5 (Moderate learning curve)

∗ Not measure: 0 (Steep learning curve)

4.2 Security

Security is a paramount dimension that assesses the framework’s ability to safeguard

against unauthorized access and other potential vulnerabilities, ensuring data integrity

and confidentiality. This dimension is pivotal as it directly impacts the trust users place

in the application and its adherence to data protection regulations.

• Metric: Authentication

– Meaning: Support for standard authentication protocols like OAuth, JWT.

– Where to Find: Check the framework documentation or built-in features.

– Measurement:

Information Technology Engineer 40 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

∗ Full measure: 1 (Supports multiple standard authentication protocols)

∗ Partially measure: 0.5 (Supports one standard authentication protocol)

∗ Not measure: 0 (No standard authentication protocol support)

• Metric: Authorization

– Meaning: Ease of implementing access controls at a resource level.

– Where to Find: Framework documentation and user reviews.

– Measurement:

∗ Full measure: 1 (Rich, flexible authorization features)

∗ Partially measure: 0.5 (Basic authorization features)

∗ Not measure: 0 (Poor or no authorization features)

• Metric: Attack Mitigation

– Meaning: Resistance to common attacks like SQL Injection, XSS, CSRF.

– Where to Find: Security audit reports and framework documentation.

– Measurement:

∗ Full measure: 1 (Resistant to multiple types of common attacks)

∗ Partially measure: 0.5 (Resistant to at least one type of common attack)

∗ Not measure: 0 (No resistance to common attacks)

• Metric: Encryption

– Meaning: Support for encrypting data in transit and at rest.

– Where to Find: Framework documentation.

– Measurement:

∗ Full measure: 1 (Supports both data-in-transit and data-at-rest encryption)

∗ Partially measure: 0.5 (Supports either data-in-transit or data-at-rest en-

cryption)

∗ Not measure: 0 (No support for encryption)

Information Technology Engineer 41 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• Metric: Auditing and Logging

– Meaning: Ability to perform detailed tracking of security-related activities.

– Where to Find: Framework features or third-party integrations.

– Measurement:

∗ Full measure: 1 (Detailed, configurable security logging and auditing)

∗ Partially measure: 0.5 (Basic logging capabilities)

∗ Not measure: 0 (No security logging and auditing)

• Metric: Reported security issues

– Meaning: Indicates the framework’s vulnerability and security robustness. Num-

ber of reported security issues in the past year.

– Where to Find: Security advisory databases, framework’s official channels.

– Measurement:

∗ Few or no reported issues (0-3): 1

∗ Moderate number of issues (4-7): 0.5

∗ Many issues (>7): 0

4.3 Scalability

Scalability refers to the ability of a framework to expand and manage increased load grace-

fully, ensuring that the performance of the application remains optimal as the demand

grows. It’s an essential property to consider, especially for applications anticipated to

experience varied or growing user traffic over time.

• Metric: Horizontal Scalability

– Meaning: The ability of the framework to handle more requests by adding more

machines in the pool.

– Where to Find: Through stress tests and framework documentation.

– Measurement:

Information Technology Engineer 42 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

∗ Full measure: 1 (Easily scales horizontally with little to no configuration)

∗ Partially measure: 0.5 (Supports horizontal scaling but requires manual

configuration)

∗ Not measure: 0 (Does not support horizontal scaling)

• Metric: Vertical Scalability

– Meaning: The ability to handle more requests by adding more power (CPU,

RAM) to an existing machine.

– Where to Find: Through performance tests and documentation.

– Measurement:

∗ Full measure: 1 (Easily scales vertically without application changes)

∗ Partially measure: 0.5 (Supports vertical scaling but may require applica-

tion changes)

∗ Not measure: 0 (Does not support vertical scaling)

• Metric: Load Balancing

– Meaning: The ability to distribute incoming network traffic across multiple

servers.

– Where to Find: Framework documentation and feature set.

– Measurement:

∗ Full measure: 1 (Built-in load balancing features or easy integration with

external load balancers)

∗ Partially measure: 0.5 (Can be manually configured for load balancing)

∗ Not measure: 0 (No load balancing support)

• Metric: Microservices Architecture Support

– Meaning: Capability to break up the application into loosely coupled, indepen-

dently deployable components.

– Where to Find: Framework features, documentation, and community support.

Information Technology Engineer 43 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

– Measurement:

∗ Full measure: 1 (Full support for microservices architecture)

∗ Partially measure: 0.5 (Some support, but may require third-party tools)

∗ Not measure: 0 (No support for microservices)

• Metric: State Management

– Meaning: Ability to manage user sessions and data across multiple servers.

– Where to Find: Framework documentation or third-party libraries.

– Measurement:

∗ Full measure: 1 (Built-in robust state management features)

∗ Partially measure: 0.5 (Can handle state but may require third-party li-

braries)

∗ Not measure: 0 (Poor or no state management features)

4.4 Performance

Performance of a framework is a pivotal consideration as it directly impacts user expe-

rience and resource utilization. Efficient frameworks ensure swift responses, even under

substantial load, guaranteeing user satisfaction and optimal resource allocation.

• Metric: Latency

– Meaning: The time it takes for the framework to respond to a single request.

– Where to Find: This can be found using monitoring tools, load testing, bench-

marks, official documentation.

– Measurement:

∗ Full measure: 1 (Less than 100 ms)

∗ Partially measure: 0.5 (Between 100 ms and 300 ms)

∗ Not measure: 0 (More than 300 ms)

• Metric: Throughput

Information Technology Engineer 44 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

– Meaning: The number of requests that the system can handle per second.

– Where to Find: Measured through load testing and performance monitoring,

benchmarks, official documentation.

– Measurement:

∗ Full measure: 1 (More than 1000 requests per second)

∗ Partially measure: 0.5 (Between 500 and 1000 requests per second)

∗ Not measure: 0 (Less than 500 requests per second)

• Metric: CPU Usage

– Meaning: Percentage of CPU time required for operations.

– Where to Find: Using system resource monitoring tools, benchmarks.

– Measurement:

∗ Full measure: 1 (CPU usage less than 30%)

∗ Partially measure: 0.5 (CPU usage between 30% and 60%)

∗ Not measure: 0 (CPU usage above 60%)

• Metric: Memory Usage

– Meaning: Amount of RAM used during operations.

– Where to Find: Through system resource monitoring or profiling tools, bench-

marks.

– Measurement:

∗ Full measure: 1 (Memory usage less than 70%)

∗ Partially measure: 0.5 (Memory usage between 70% and 85%)

∗ Not measure: 0 (Memory usage above 85%)

4.5 Popularity

Popularity can serve as an indirect indicator of a framework’s reliability, user-friendliness,

and community support. A popular framework is likely to have a large, active community

Information Technology Engineer 45 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

that can offer support, plugins, and contribute to the framework’s improvement and sta-

bility. Popularity is often associated with the quality and quantity of documentation and

learning resources available, which can significantly impact the ease of adoption and use.

• Metric: Number of stars/forks on platforms like GitHub.

– Meaning: Indicates community trust and engagement.

– Where to Find: Framework’s GitHub or similar repositories.

– Measurement:

∗ Many stars/forks (>20k): 1

∗ Moderate stars/forks (10k-20k): 0.5

∗ Few stars/forks (<10k): 0

• Metric: Community activity and responsiveness.

– Meaning: Gauge of community support.

– Where to Find: Forums, Stack Overflow, and GitHub issues.

– Measurement:

∗ Very active and responsive: 1

∗ Moderately active: 0.5

∗ Barely active or unresponsive: 0

4.6 Portability

Portability is a pivotal dimension that deals with the ability of the software framework to

be transferred and adapted to different environments easily. This adaptability allows for

enhanced flexibility and broadens the scope and reach of the application, facilitating de-

ployment in varied ecosystems and ensuring optimal functionality across different platforms

and environments.

• Metric: Cross-Platform Support

Information Technology Engineer 46 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

– Meaning: Ability to run the application on multiple platforms without major

code modifications.

– Where to Find: Official documentation and developer community forums.

– Measurement:

∗ Full measure: 1 (Runs on multiple platforms without code modifications)

∗ Partially measure: 0.5 (Runs on multiple platforms but requires some code

modifications)

∗ Not measure: 0 (Not designed for cross-platform support)

• Metric: Containerization Support

– Meaning: Ease of packaging the application and its dependencies into a con-

tainer.

– Where to Find: Framework documentation and community discussions.

– Measurement:

∗ Full measure: 1 (Offers native or easy support for containerization)

∗ Partially measure: 0.5 (Supports containerization but with additional con-

figuration)

∗ Not measure: 0 (Does not support containerization)

• Metric: Cloud Compatibility

– Meaning: How well the framework integrates with cloud services.

– Where to Find: Framework documentation, cloud service documentation, and

developer testimonials.

– Measurement:

∗ Full measure: 1 (Excellent compatibility with major cloud providers)

∗ Partially measure: 0.5 (Some compatibility issues with major cloud providers)

∗ Not measure: 0 (Poor or no cloud compatibility)

• Metric: Database Agnosticism

Information Technology Engineer 47 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

– Meaning: Flexibility to work with different types of databases.

– Where to Find: Framework documentation and feature set.

– Measurement:

∗ Full measure: 1 (Supports multiple types of databases out of the box)

∗ Partially measure: 0.5 (Limited to certain types of databases but extensible)

∗ Not measure: 0 (Tied to a specific database with no flexibility)

4.7 Maintainability

Maintainability is a critical dimension, reflecting the ease with which a framework can

accommodate modifications, enhancements, and debugging. High maintainability ensures

that developers can efficiently comprehend, update, and augment the codebase to adapt

to evolving requirements or address issues.

• Metric: Code Complexity

– Meaning: The ease with which the codebase can be understood, modified, and

extended.

– Where to Find: Code analysis tools, code reviews.

– Measurement:

∗ Full measure: 1 (Low complexity, easy to understand code)

∗ Partially measure: 0.5 (Moderate complexity, some areas are hard to un-

derstand)

∗ Not measure: 0 (High complexity, code is difficult to understand)

• Metric: Modularity

– Meaning: The extent to which the application is divided into independent,

interchangeable modules.

– Where to Find: Codebase structure, framework documentation.

– Measurement:

Information Technology Engineer 48 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

∗ full measure: 1 (Highly modular design)

∗ Partially measure: 0.5 (Some modularity, but also monolithic components)

∗ Not measure: 0 (Monolithic design, low modularity)

• Metric: Testability

– Meaning: How conducive the framework is to unit testing, integration testing,

and end-to-end testing.

– Where to Find: Framework documentation, community forums, codebase.

– Measurement:

∗ Full measure: 1 (Framework provides or integrates well with testing tools)

∗ Partially measure: 0.5 (Testing possible but may require significant effort

or third-party tools)

∗ Not measure: 0 (Poorly suited for testing)

• Metric: Long-Term Support

– Meaning: Availability of long-term support for the framework, including security

updates and bug fixes.

– Where to Find: Official announcements, framework website, community forums.

– Measurement:

∗ Full measure: 1 (Guaranteed long-term support)

∗ Partially measure: 0.5 (Some level of support, but not guaranteed long-

term)

∗ Not measure: 0 (No long-term support)

4.8 Cost

Cost is a pivotal dimension as it assesses the economic feasibility and impact of adopt-

ing a specific framework. It is crucial for organizations to evaluate the cost dimension

meticulously to ensure sustainable and efficient deployment of resources.

Information Technology Engineer 49 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• Metric: Licensing

– Meaning: Cost associated with the framework’s license, if applicable.

– Where to Find: Official framework website, documentation, or pricing page.

– Measurement:

∗ Full measure: 1 (No licensing cost)

∗ Partially measure: 0.5 (Moderate licensing cost)

∗ Not measure: 0 (High licensing cost)

• Metric: Server Resources

– Meaning: Requirements and costs associated with CPU, memory, and storage.

– Where to Find: Framework documentation, case studies, real-world usage.

– Measurement:

∗ Full measure: 1 (Minimal requirements and low cost)

∗ Partially measure: 0.5 (Moderate requirements and costs)

∗ Not measure: 0 (High requirements and elevated costs)

• Metric: Migration Cost

– Meaning: Time and resources required to migrate from another system.

– Where to Find: Developer testimonials, documentation, community forums.

– Measurement:

∗ Full measure: 1 (Easy and low-cost migration)

∗ Partially measure: 0.5 (Moderate in terms of time and resources for migra-

tion)

∗ Not measure: 0 (Difficult and costly to migrate from another system)

• Metric: Learning Cost

– Meaning: Time required for the team to get up to speed with the framework.

– Where to Find: Community forums, developer feedback, personal experience.

Information Technology Engineer 50 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

– Measurement:

∗ Full measure: 1 (Quick learning curve)

∗ Partially measure: 0.5 (Moderate time to learn)

∗ Not measure: 0 (Steep learning curve)

4.9 Ecosystem and Compatibility

The Ecosystem and Compatibility dimension evaluates the adaptability and integration

capability of the framework within the existing technology ecosystem. The evaluation of

this dimension is crucial to ensuring that the framework can effortlessly integrate with other

technologies and tools, facilitating a cohesive and seamless development environment.

• Metric: Libraries and Tools

– Meaning: Ease of integrating external libraries and third-party tools.

– Where to Find: Framework documentation, developer communities, and tuto-

rials.

– Measurement:

∗ Full measure: 1 (Very easy to integrate)

∗ Partially measure: 0.5 (Moderately easy to integrate)

∗ Not measure: 0 (Difficult to integrate)

• Metric: Front-end Compatibility

– Meaning: Ease of integration with front-end frameworks and libraries.

– Where to Find: Framework documentation, community forums, and example

projects.

– Measurement:

∗ Full measure: 1 (Very easy to integrate)

∗ Partially measure: 0.5 (Moderately easy to integrate)

∗ Not measure: 0 (Difficult to integrate)

Information Technology Engineer 51 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• Metric: APIs and Connectivity

– Meaning: Ease of connecting to external services via APIs.

– Where to Find: Framework documentation, API documentation of external

services, developer testimonials.

– Measurement:

∗ Full measure: 1 (Very easy to connect)

∗ Partially measure: 0.5 (Moderately easy to connect)

∗ Not measure: 0 (Difficult to connect)

• Metric: Updates and Maintenance

– Meaning: Frequency and quality of updates to the framework.

– Where to Find: Framework release notes, community forums, and feedback.

– Measurement:

∗ Full measure: 1 (Frequent and high-quality updates)

∗ Partially measure: 0.5 (Infrequent or medium-quality updates)

∗ Not measure: 0 (Rare and poor-quality updates)

4.10 Metrics Resume

In the following table, we present a systematic and detailed summary of the key metrics

used to evaluate back-end frameworks. These metrics span across various critical dimen-

sions such as Ease of Development, Security, Scalability, Performance, Popularity, Porta-

bility, Maintainability, Cost, and Ecosystem and Compatibility. Each metric is assessed

on a quantifiable scale, enabling a comprehensive and objective comparison of different

frameworks. This tabular compilation serves as a valuable tool for developers, architects,

and decision-makers in selecting the most appropriate back-end framework for their specific

project needs, taking into consideration the multifaceted aspects of software development.

Information Technology Engineer 52 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Dimension Metric Measurement Scale

Ease of Development

Programming Language 1, 0.5, 0
Maturity 1, 0.5, 0
Code Generators and Scaffold-
ing

1, 0.5, 0

Documentation Quality 1, 0.5, 0
Community Support 1, 0.5, 0
Learning Curve 1, 0.5, 0

Security

Authentication 1, 0.5, 0
Authorization 1, 0.5, 0
Attack Mitigation 1, 0.5, 0
Encryption 1, 0.5, 0
Auditing and Logging 1, 0.5, 0
Reported Security Issues 1, 0.5, 0

Scalability

Horizontal Scalability 1, 0.5, 0
Vertical Scalability 1, 0.5, 0
Load Balancing 1, 0.5, 0
Microservices Architecture
Support

1, 0.5, 0

State Management 1, 0.5, 0

Performance

Latency 1, 0.5, 0
Throughput 1, 0.5, 0
CPU Usage 1, 0.5, 0
Memory Usage 1, 0.5, 0

Popularity Number of Stars/Forks on
GitHub

1, 0.5, 0

Community Activity and Re-
sponsiveness

1, 0.5, 0

Portability

Cross-Platform Support 1, 0.5, 0
Containerization Support 1, 0.5, 0
Cloud Compatibility 1, 0.5, 0
Database Agnosticism 1, 0.5, 0

Maintainability

Code Complexity 1, 0.5, 0
Modularity 1, 0.5, 0
Testability 1, 0.5, 0
Long-Term Support 1, 0.5, 0

Cost

Licensing 1, 0.5, 0
Server Resources 1, 0.5, 0
Migration Cost 1, 0.5, 0
Learning Cost 1, 0.5, 0

Ecosystem and Compatibility

Libraries and Tools 1, 0.5, 0
Frontend Compatibility 1, 0.5, 0
APIs and Connectivity 1, 0.5, 0
Updates and Maintenance 1, 0.5, 0

Table 4.1: Summary of Back-End Framework Evaluation Metrics

Information Technology Engineer 53 Graduation Project

Chapter 5

Application of Methodological
Framework: A Practical Example

This chapter seeks to articulate in a cohesive and practical way the foundations estab-

lished in the previous chapters, integrating the methodology detailed in Chapter 3 with

the dimensions and metrics outlined in Chapter 4. The intention is to develop a structured

and comprehensive evaluative process that allows an evaluation balanced and multifaceted

of different frameworks, contemplating aspects such as functionality, performance, main-

tainability, cost and compatibility in the technological ecosystem. This comprehensive

approach aims to provide a robust and adaptable tool to guide the informed selection of

back-end frameworks, effectively aligning their capabilities and characteristics with the

specific requirements and objectives of software development projects. Through the care-

ful implementation of this methodology, we aim to maximize the value and minimize the

risks associated with the adoption of new frameworks, thus contributing to the success and

sustainability of technological projects.

5.1 Description of Project

This section seeks to exemplify the application of the developed methodology for the se-

lection of a suitable framework for a project to make an application web to support an

“Inventory Management System”. The project pertains to a company specializing in inven-

tory management, handling products sourced globally. The system necessitates a NoSQL

database and is estimated to require good controller of back-end calls to ensure optimal

54

School of Mathematical and Computational Sciences Yachay Tech University

functionality.

5.1.1 Project Requirements

Given the project’s mandate to efficiently manage vast inventory data from diverse global

sources, the system demands high scalability, reliability, and peak performance. In addi-

tion, due to the significant volume of daily back-end calls, it’s imperative for the system to

be robust and responsive, ensuring the uninterrupted operation of the inventory system.

The choice of a NoSQL database emphasizes the importance of selecting a framework that

not only integrates seamlessly with such databases but also offers robust support.

The project team consists of two members. One member predominantly possesses

expertise in JavaScript, while the other is proficient in PHP and Python. Java is not within

their comfort zone. Taking into consideration the team’s size, the system should prioritize

ease of development and maintainability. Moderate cost, compatibility with various APIs,

and a structured approach to foster an optimal development experience are also critical

factors. Therefore, the team is in pursuit of a framework that aligns with both their

technical requirements and their current skill set, thereby streamlining the development

and deployment of their initiative.

5.1.2 Framework Selection

For the practical implementation and assessment of the proposed methodology, we have

chosen four prominent and widely used frameworks in contemporary software development:

Laravel, Django, Spring, and Nodejs [2.3]. Each of these frameworks represents different

paradigms, programming languages, and ecosystems, thus providing a diverse and repre-

sentative field for the application of our evaluative methodology.

• Laravel: This PHP framework is recognized for its elegant syntax and robustness,

being a preferred choice for many developers aiming to build modern and scalable

web applications.

• Django: Representing the Python language, Django is notable for its speed and its

“batteries-included” philosophy, offering a wide array of built-in features.

Information Technology Engineer 55 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• Spring: This robust Java framework is known for its flexibility and its capability to

develop large-scale enterprise applications, providing a vast ecosystem of tools and

extensions.

• Nodejs: Node.js, utilizing the Nest framework, allows for the development of efficient

and scalable applications with JavaScript (or TypeScript), benefiting from Node.js’s

event-driven programming paradigm.

5.1.3 Evaluation Results

The evaluation focused on dimensions such as Scalability, Performance, Maintainability,

Cost, Ecosystem and Compatibility and Easy of development, with each dimension being

meticulously measured against the predefined metrics in chapter 4.

Ease of Development Analysis

Ease of Development evaluates the simplicity and expedience with which developers can

employ the framework to create and maintain applications.

1. Laravel: is known for its ease of development, aiding developers to produce quality

applications efficiently.

• Programming Language (PHP):

– Score: 0.5

– Analysis: Although PHP is not the primary language for the team, its

widespread use and simplicity may mitigate initial unfamiliarity. PHP’s

design facilitates quick development cycles.

• Maturity:

– Score: 1

– Analysis: Laravel’s established presence and active community reflect its

stability and reliability as a web development framework.

– References: [25].

• Code Generators and Scaffolding (Artisan):

Information Technology Engineer 56 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

– Score: 1

– Analysis: The Artisan command-line tool enhances developer productivity

through efficient code generation and scaffolding.

– References: [29].

• Documentation Quality:

– Score: 1

– Analysis: Laravel’s documentation is comprehensive and organized, en-

suring accessible information for effective framework usage.

– References: [48].

• Community Support:

– Score: 1

– Analysis: The Laravel community provides extensive support through var-

ious platforms, fostering a collaborative problem-solving environment.

– References: [49], [50].

• Learning Curve:

– Score: 1

– Analysis: Laravel’s design and abundant resources lower the learning

curve, making it accessible for developers to quickly become proficient.

– References: [49].

2. Django Django is acclaimed for its developer-friendly environment and adherence

to the ”Don’t Repeat Yourself” principle, streamlining the development process.

• Programming Language (Python):

– Score: 0.5

– Analysis: The team’s familiarity with Python, although not specifically

for backend development, is beneficial due to Python’s readability and sim-

plicity.

• Maturity:

Information Technology Engineer 57 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

– Score: 1

– Analysis: Django’s well-established status and extensive community sup-

port highlight its reliability and robustness for web development.

– Reference: [32]

• Code Generators and Scaffolding:

– Score: 1

– Analysis: Django offers efficient command-line tools for code generation,

enhancing development speed and efficiency.

– Reference: [32]

• Documentation Quality:

– Score: 1

– Analysis: The framework’s documentation is noted for its excellence, com-

prehensiveness, and organization, making it an invaluable resource.

– Reference: [32]

• Community Support:

– Score: 1

– Analysis: Django’s large and active community provides an extensive sup-

port network and abundant resources for developers.

– Reference: [32]

• Learning Curve:

– Score: 0.5

– Analysis: The comprehensive feature set of Django results in a moderate

learning curve, but the abundance of learning resources available mitigates

this challenge.

– Reference: [32]

3. Spring Spring framework is recognized for its extensive suite of features and tools

that aim to facilitate the development process, albeit with certain considerations

regarding its learning curve and documentation.

Information Technology Engineer 58 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• Programming Language (Java):

– Score: 0

– Analysis: Java’s moderate familiarity within the team and its not being

the language of choice could pose challenges in leveraging Spring to its full

potential.

• Maturity:

– Score: 1

– Analysis: Spring’s high maturity and well-established presence in the en-

terprise development landscape are indicative of its reliability and compre-

hensive community support.

– Reference: [51]

• Code Generators and Scaffolding:

– Score: 0.5

– Analysis: While Spring offers tools for code generation and scaffolding,

they are not as extensive or intuitive as those provided by some other frame-

works.

– Reference: [51]

• Documentation Quality:

– Score: 0.5

– Analysis: The documentation, though comprehensive, is often considered

overwhelming for newcomers, impacting the accessibility of the framework.

– Reference: [51]

• Community Support:

– Score: 1

– Analysis: Spring benefits from very strong community support, offering a

wealth of resources, forums, and discussion groups to aid developers.

– Reference: [51]

• Learning Curve:

Information Technology Engineer 59 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

– Score: 0.5

– Analysis: The framework’s broad array of features and configurations in-

troduces a steep learning curve, although the abundance of educational

resources available may help mitigate this challenge.

– Reference: [51]

4. Node.js Node.js stands out for its versatility and developer-friendly environment,

leveraging the widely known and favored JavaScript.

• Programming Language (JavaScript):

– Score: 1

– Analysis: JavaScript’s familiarity and popularity among the team mem-

bers significantly contribute to Node.js’s accessibility and ease of adoption.

• Maturity:

– Score: 0.5

– Analysis: Node.js exhibits a mature yet rapidly evolving ecosystem, pro-

viding a balance between stability and innovation.

– Reference: [38]

• Code Generators and Scaffolding:

– Score: 1

– Analysis: The availability of efficient tools for code generation and scaf-

folding enhances developer productivity and facilitates rapid application

development.

– Reference: [52]

• Documentation Quality:

– Score: 1

– Analysis: Node.js’s documentation is noted for its clarity, conciseness, and

organization, making it an invaluable resource for developers.

– Reference: [38]

Information Technology Engineer 60 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• Community Support:

– Score: 1

– Analysis: The Node.js community is known for its increasing support,

offering a plethora of resources, forums, and discussion platforms.

– Reference: [38]

• Learning Curve:

– Score: 1

– Analysis: Node.js provides an intuitive and straightforward learning path,

significantly lowering the barrier to entry for new developers.

– Reference: [38]

Scalability Analysis

Scalability is a crucial property to evaluate, especially for applications anticipated to ex-

perience varied or growing user traffic over time. The frameworks chosen for analysis are

Laravel, Django, Spring, and Node.js with Nest.

1. Laravel exhibits a blend of features that cater to both horizontal and vertical scal-

ability, with additional strengths in load balancing and microservices architecture

support.

• Horizontal Scalability:

– Score: 0.5

– Analysis: While Laravel supports horizontal scalability, achieving it may

necessitate manual configuration efforts to optimize performance across

multiple instances.

– Reference: [48]

• Vertical Scalability:

– Score: 0.5

– Analysis: Laravel facilitates vertical scaling, though this might require

adjustments in the application to fully leverage increased server resources.

Information Technology Engineer 61 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

– Reference: [48]

• Load Balancing:

– Score: 1

– Analysis: The framework integrates seamlessly with external load bal-

ancers, enhancing the distribution of incoming network traffic across mul-

tiple servers.

– Reference: [53]

• Microservices Architecture Support:

– Score: 1

– Analysis: Laravel offers comprehensive support for developing applications

following the microservices architecture, facilitating modular and scalable

application development.

– Reference: [48]

• State Management:

– Score: 0.5

– Analysis: State management in Laravel is feasible, yet it may rely on the

integration of third-party libraries for optimal handling.

– Reference: [48]

2. Django is celebrated for its comprehensive scalability features, underpinned by its

”batteries-included” philosophy.

• Horizontal Scalability:

– Score: 1

– Analysis: Django facilitates effortless horizontal scaling, requiring minimal

configuration to adapt to increased traffic by distributing the load across

multiple servers.

– Reference: [54]

• Vertical Scalability:

Information Technology Engineer 62 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

– Score: 1

– Analysis: It supports seamless vertical scalability, enabling efficient use of

additional server resources without the need for application modifications.

– Reference: [54]

• Load Balancing:

– Score: 1

– Analysis: Django includes built-in load balancing features, optimizing the

distribution of requests to ensure high availability and reliability.

– Reference: [54]

• Microservices Architecture Support:

– Score: 1

– Analysis: The framework provides robust support for the microservices

architecture, facilitating the development of scalable and modular applica-

tions.

– Reference: [54]

• State Management:

– Score: 1

– Analysis: Django comes with powerful, built-in state management capabil-

ities, ensuring consistent application states across distributed environments.

– Reference: [54]

3. Spring is distinguished by its convention-over-configuration philosophy and exem-

plary support for microservices, making it a powerful choice for scalable application

development.

• Horizontal Scalability:

– Score: 0.5

– Analysis: Spring supports horizontal scalability, facilitating the distribu-

tion of load across multiple servers, although achieving optimal configura-

tion may necessitate specific adjustments.

Information Technology Engineer 63 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

– Reference: [55]

• Vertical Scalability:

– Score: 1

– Analysis: The framework enables applications to scale vertically with ease,

leveraging additional resources without necessitating changes to the appli-

cation itself.

– Reference: [46]

• Load Balancing:

– Score: 1

– Analysis: Spring includes built-in load balancing features, optimizing re-

source utilization and enhancing application responsiveness.

– Reference: [56]

• Microservices Architecture Support:

– Score: 1

– Analysis: With Spring Cloud, Spring offers robust support for microser-

vices architecture, allowing for the development of highly scalable and flex-

ible applications.

– Reference: [57]

• State Management:

– Score: 1

– Analysis: Spring provides multiple effective strategies for application state

management, ensuring data consistency across distributed components.

– Reference: [46]

4. Node.js excels in providing a flexible architecture conducive to creating scalable,

testable, and maintainable applications.

• Horizontal Scalability:

– Score: 1

Information Technology Engineer 64 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

– Analysis: Node.js enables effortless horizontal scaling, allowing applica-

tions to handle increased loads by adding more instances with minimal or

no configuration required.

– Reference: [43]

• Vertical Scalability:

– Score: 1

– Analysis: It efficiently leverages additional server resources to scale verti-

cally, enhancing performance without necessitating changes to the applica-

tion code.

– Reference: [43]

• Load Balancing:

– Score: 0.5

– Analysis: While Node.js applications can integrate with external load bal-

ancers, this setup may require additional configuration for optimal distri-

bution of traffic.

– Reference: [43]

• Microservices Architecture Support:

– Score: 1

– Analysis: Node.js is inherently suited for microservices architecture, sup-

porting the development of scalable, loosely coupled services.

– Reference: [43]

• State Management:

– Score: 0.5

– Analysis: Effective state management in Node.js often relies on integrat-

ing third-party solutions to maintain application state across distributed

systems.

– Reference: [43]

Information Technology Engineer 65 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Performance Analysis

Performance of a framework is pivotal as it directly impacts user experience and resource

utilization. Efficient frameworks ensure swift responses, even under substantial load, guar-

anteeing user satisfaction and optimal resource allocation.

1. Laravel is celebrated for its ability to deliver efficient and scalable solutions, marked

by its performance metrics.

• Latency:

– Score: 0.5

– Analysis: Laravel generally exhibits response times between 100 ms and

300 ms, balancing speed and resource efficiency.

– Reference: [58]

c

• Throughput:

– Score: 1

– Analysis: It is capable of handling more than 1000 requests per second,

demonstrating high throughput under load.

– Reference: [59]

• CPU Usage:

– Score: 1

– Analysis: Laravel’s optimized performance results in CPU usage typically

less than 30

– Reference: [60]

• Memory Usage:

– Score: 0.5

– Analysis: Memory utilization often ranges between 70% and 85%, indicat-

ing a moderate footprint.

– Reference: [60]

Information Technology Engineer 66 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

2. Django stands out for its performance optimizations and capabilities in supporting

rapid application development.

• Latency:

– Score: 1

– Analysis: Django is highly efficient, boasting response times of less than

100 ms, which significantly enhances user experience by providing swift

feedback.

– Reference: [61]

• Throughput:

– Score: 0.5

– Analysis: It processes between 500 and 1000 requests per second, demon-

strating a balanced throughput capacity suitable for moderate to high traffic

applications.

– Reference: [61]

• CPU Usage:

– Score: 0.5

– Analysis: Django’s CPU usage lies between 35% and 40%, indicating a

moderate level of resource consumption that allows for additional processes

to run efficiently.

– Reference: [62]

• Memory Usage:

– Score: 1

– Analysis: Memory efficiency is a key strength, with typical usage under

70% of available resources, ensuring that applications remain lightweight

and performant.

– Reference: [63]

3. Spring is renowned for its capability to develop stand-alone, production-grade ap-

plications, showcasing exceptional performance metrics as follows.

Information Technology Engineer 67 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• Latency:

– Score: 1

– Analysis: Spring applications exhibit rapid response times, often less than

100 ms, ensuring quick interactions for end-users.

– Reference: [64]

• Throughput:

– Score: 1

– Analysis: Demonstrates the ability to efficiently manage more than 1000

requests per second, highlighting its high throughput capacity.

– Reference: [64]

• CPU Usage:

– Score: 0.5

– Analysis: Spring’s CPU utilization ranges between 40% and 60%, indicat-

ing a moderate level of efficiency.

– Reference: [51]

• Memory Usage:

– Score: 1

– Analysis: It excels in memory management, with utilization typically re-

maining below 70%, contributing to its performance efficiency.

– Reference: [51]

4. Node.js is efficient and versatile, designed for building scalable, maintainable, and

testable applications.

• Latency:

– Score: 0.5

– Analysis: Node.js typically exhibits response times ranging between 100

ms and 300 ms, reflecting a balance between speed and processing efficiency.

– Reference: [65]

Information Technology Engineer 68 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• Throughput:

– Score: 1

– Analysis: Demonstrates a high capacity for managing workload, efficiently

handling more than 1000 requests per second.

– Reference: [65]

• CPU Usage:

– Score: 1

– Analysis: Node.js is optimized for CPU resource management, maintaining

usage below 30%, which contributes to its overall performance efficiency.

– Reference: [66]

• Memory Usage:

– Score: 0.5

– Analysis: Memory consumption typically falls between 70% and 85%, in-

dicating moderate efficiency in memory utilization.

– Reference: [66]

Maintainability Analysis

Maintainability is a critical dimension, reflecting the ease with which a framework can

accommodate modifications, enhancements, and debugging. High maintainability ensures

that developers can efficiently comprehend, update, and augment the codebase to adapt

to evolving requirements or address issues.

1. Laravel excels in providing clean, readable, and highly maintainable code solutions.

• Code Complexity:

– Score: 1

– Analysis: Laravel boasts a low-complexity, well-structured codebase, fa-

cilitating ease of understanding and modification.

– Reference: [25]

• Modularity:

Information Technology Engineer 69 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

– Score: 1

– Analysis: Its highly modular design promotes efficient and independent

enhancements, allowing for the seamless integration of new features or ser-

vices.

– Reference: [48]

• Testability:

– Score: 1

– Analysis: Laravel provides extensive support for a variety of testing tools

and methodologies, ensuring robustness and reliability through comprehen-

sive test coverage.

– Reference: [48]

• Long-Term Support:

– Score: 1

– Analysis: The framework guarantees ongoing support, regular updates,

and security patches, contributing to its stability and reliability over time.

– Reference: [25]

2. Django with its ”batteries-included” philosophy, provides highly maintainable and

coherent code structures.

• Code Complexity:

– Score: 0.5

– Analysis: While Django presents moderate complexity in certain aspects,

it compensates with comprehensive documentation that aids in navigating

and understanding its intricacies.

– Reference: [54]

• Modularity:

– Score: 1

Information Technology Engineer 70 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

– Analysis: The framework is inherently designed for high modularity, en-

couraging the use of reusable components and fostering a scalable applica-

tion structure.

– Reference: [54]

• Testability:

– Score: 1

– Analysis: Django provides a robust testing framework that facilitates vari-

ous levels of testing, from unit to integration tests, ensuring the development

of reliable applications.

– Reference: [54]

• Long-Term Support:

– Score: 1

– Analysis: With its commitment to long-term support, Django regularly

releases updates and maintains extensive documentation, which underpins

a stable and evolving ecosystem.

– Reference: [54]

3. Spring provides a comprehensive and well-structured solution for building main-

tainable enterprise applications.

• Code Complexity:

– Score: 1

– Analysis: Spring is designed to minimize code complexity, enhancing read-

ability and simplifying maintenance efforts.

– Reference: [46]

• Modularity:

– Score: 1

– Analysis: It champions modular development, allowing for the creation of

independent, interchangeable modules that facilitate scalable and flexible

application architectures.

Information Technology Engineer 71 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

– Reference: [46]

• Testability:

– Score: 0.5

– Analysis: While Spring supports a wide range of testing methodologies,

integrating with certain tools and configurations may necessitate additional

setup.

– Reference: [46]

• Long-Term Support:

– Score: 1

– Analysis: Spring provides robust long-term support, ensuring regular up-

dates and comprehensive documentation to support its community.

– Reference: [46]

4. Node.js focuses on modular, scalable development, providing maintainable code

structures and extensive testing capabilities.

• Code Complexity:

– Score: 0.5

– Analysis: Node.js features moderate complexity in certain areas, necessi-

tating a deeper understanding, yet it is balanced by extensive documenta-

tion and community resources.

– Reference: [38]

• Modularity:

– Score: 1

– Analysis: It adopts a highly modular design philosophy, promoting scal-

able and flexible development practices through reusable and independently

manageable components.

– Reference: [38]

• Testability:

Information Technology Engineer 72 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

– Score: 1

– Analysis: Node.js integrates seamlessly with a variety of robust testing

tools, accommodating diverse testing methodologies to ensure comprehen-

sive validation of applications.

– Reference: [38]

• Long-Term Support:

– Score: 1

– Analysis: Demonstrates a strong commitment to long-term support, evi-

denced by consistent updates and the provision of security patches, ensuring

the framework remains current and secure.

– Reference: [38]

Cost Analysis

Cost is a pivotal dimension as it assesses the economic feasibility and impact of adopt-

ing a specific framework. It is crucial for organizations to evaluate the cost dimension

meticulously to ensure sustainable and efficient deployment of resources.

1. Laravel being open-source and providing extensive resources, ensures cost-effectiveness

throughout the development lifecycle.

• Licensing:

– Score: 1

– Analysis: Laravel is an open-source framework with no licensing cost,

making it highly cost-effective for development projects.

– Reference: [25]

• Server Resources:

– Score: 1

– Analysis: Laravel has minimal server resource requirements and offers

optimal performance, ensuring low operational costs.

– Reference: [48]

Information Technology Engineer 73 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• Migration Cost:

– Score: 0.5

– Analysis: Migrating to Laravel may require moderate effort, depending

on the complexity and scale of the existing system, leading to potential

migration costs.

– Reference: [48]

• Learning Cost:

– Score: 1

– Analysis: Laravel has a quick learning curve due to extensive documenta-

tion and strong community support, reducing the learning cost for develop-

ment teams.

– Reference: [48]

2. Django offers a comprehensive framework with a focus on minimizing the cost as-

sociated with the development and maintenance of web applications.

• Licensing:

– Score: 1

– Analysis: Django is available under an open-source license, eliminating

licensing costs for development projects.

– Reference: [54]

• Server Resources:

– Score: 0.5

– Analysis: Django has moderate server resource requirements, and associ-

ated costs depend on the scale and complexity of the application.

– Reference: [32]

• Migration Cost:

– Score: 1

– Analysis: Django provides tools and documentation for smooth migration,

reducing potential migration costs.

Information Technology Engineer 74 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

– Reference: [32]

• Learning Cost:

– Score: 1

– Analysis: Django offers a gentle learning curve with extensive resources

and tutorials, minimizing the learning cost for development teams.

– Reference: [32]

3. Spring , with its comprehensive ecosystem, may involve varying costs based on the

chosen modules and deployment scale.

• Licensing:

– Score: 1

– Analysis: Spring is open-source with no additional licensing cost, con-

tributing to cost-effectiveness.

– Reference: [51]

• Server Resources:

– Score: 0

– Analysis: Spring typically requires higher server resources and costs due

to its extensive feature set and capabilities.

– Reference: [46]

• Migration Cost:

– Score: 0.5

– Analysis: Migration costs for Spring can vary depending on the existing

system and the complexity of the migration process.

– Reference: [46]

• Learning Cost:

– Score: 0.5

– Analysis: Spring demands a moderate amount of time to master due to

its extensive capabilities and diverse modules.

Information Technology Engineer 75 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

– Reference: [46]

4. Node.js, optimizes performance and resources, ensuring cost-effective development.

• Licensing:

– Score: 1

– Analysis: Node.js is open-source and free to use, contributing to cost-

effectiveness.

– Reference: [38]

• Server Resources:

– Score: 1

– Analysis: Node.js is optimized for performance with minimal resource

requirements, reducing operational costs.

– Reference: [43]

• Migration Cost:

– Score: 1

– Analysis: Node.js offers smooth migration paths with extensive support

and documentation, minimizing migration costs.

– Reference: [43]

• Learning Cost:

– Score: 0.5

– Analysis: Node.js requires a moderate learning curve, especially for de-

velopers new to TypeScript, which may slightly impact initial development

costs.

– Reference: [43]

Ecosystem and Compatibility Analysis

The Ecosystem and Compatibility dimension evaluates the adaptability and integration

capability of the framework within the existing technology ecosystem.

Information Technology Engineer 76 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

1. Laravel boasts a rich ecosystem and ensures high compatibility with various tech-

nologies and tools.

• Libraries and Tools:

– Score: 1

– Analysis: Laravel offers an extensive array of libraries and tools that are

easily integrable, enhancing development capabilities.

– Reference: [48]

• Front-end Compatibility:

– Score: 1

– Analysis: Laravel provides smooth integration with popular front-end

frameworks and libraries, facilitating comprehensive web application de-

velopment.

– Reference: [48]

• APIs and Connectivity:

– Score: 1

– Analysis: Laravel has excellent support for connecting with external ser-

vices via APIs, enhancing application functionality and versatility.

– Reference: [48]

• Updates and Maintenance:

– Score: 1

– Analysis: Laravel receives regular and high-quality updates, ensuring on-

going maintenance support and compatibility with evolving technologies.

– Reference: [48]

2. Django excels in providing a diverse ecosystem and compatibility with various tech-

nologies.

• Libraries and Tools:

– Score: 1

Information Technology Engineer 77 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

– Analysis: Django offers a robust set of libraries and tools available for

integration, enhancing development capabilities.

– Reference: [32]

• Front-end Compatibility:

– Score: 0.5

– Analysis: Django has moderate ease in integrating with some front-end

frameworks, which may require additional configuration in some cases.

– Reference: [32]

• APIs and Connectivity:

– Score: 1

– Analysis: Django provides efficient connectivity to external services through

well-documented APIs, enhancing application versatility.

– Reference: [32]

• Updates and Maintenance:

– Score: 1

– Analysis: Django ensures consistent delivery of quality updates and effec-

tive maintenance, ensuring long-term stability.

– Reference: [32]

3. Spring provides a comprehensive ecosystem and high-level compatibility, with a

focus on enterprise-level services.

• Libraries and Tools:

– Score: 0.5

– Analysis: Spring offers a good variety of libraries and tools, although some

libraries may be complex to integrate, impacting ease of development.

– Reference: [51]

• Front-end Compatibility:

– Score: 0.5

Information Technology Engineer 78 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

– Analysis: Spring is compatible with various front-end technologies but

may require additional configurations, which can add complexity to the

development process.

– Reference: [51]

• APIs and Connectivity:

– Score: 1

– Analysis: Spring offers easy connectivity with a range of external services

via APIs, enhancing application integration capabilities.

– Reference: [51]

• Updates and Maintenance:

– Score: 0.5

– Analysis: Spring provides regular updates, but the quality and mainte-

nance can sometimes be inconsistent, leading to potential challenges in

long-term support.

– Reference: [51]

4. Node.js, leveraging Node.js, offers a flexible ecosystem and a high degree of com-

patibility.

• Libraries and Tools:

– Score: 1

– Analysis: Node.js provides a wide range of easily integrable libraries and

tools, enhancing development capabilities.

– Reference: [38]

• Front-end Compatibility:

– Score: 1

– Analysis: Node.js offers effortless integration with numerous front-end

frameworks and libraries, ensuring seamless development experiences.

– Reference: [38]

Information Technology Engineer 79 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• APIs and Connectivity:

– Score: 1

– Analysis: Node.js provides superior support for API integrations with

external services, facilitating robust connectivity solutions.

– Reference: [38]

• Updates and Maintenance:

– Score: 1

– Analysis: Node.js receives frequent, high-quality updates and excellent

maintenance support, ensuring reliability and security.

– Reference: [38]

5.1.4 Select Framework

Based on the results obtained from documentation, benchmarks, blogs and websites, we

will apply formula 3.1 to obtain the calculation of each dimension, to the final rating we

apply formula 3.2. Since we have six dimensions and considering ease of development to be

the most crucial aspect of this project, we have assigned a weight of 0.25 to this dimension.

For the other five dimensions, we have selected a weight of 0.15 each. This gives us a

cumulative total of 1 in the sum of the final weights.

1. Laravel

• Scalability: D1.1 = 0.5+0.5+1+1+0.5
5 = 0.7

• Perfomance: D1.2 = 0.5+1+1+0.5
4 = 0.75

• Maintanability: D1.3 = 1+1+1+1
4 = 1

• Cost: D1.4 = 1+1+0.5+1
4 = 0.875

• Ecosystem and Compatibility: D1.5 = 1+1+1+1
4 = 1

• Ease of Development: D1.6 = 0.5+1+1+1+1+1
6 = 0.9166

Final Rating: F1 = 0.7×0.15+0.75×0.15+1×0.15+0.875×0.15+1×0.15+0.9166×0.25
6 = 0.8779

2. Django

Information Technology Engineer 80 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• Scalability: D2.1 = 1+1+1+1+1
5 = 1

• Perfomance: D2.2 = 1+0.5+0.5+1
4 = 0.75

• Maintanability: D2.3 = 0.5+1+1+1
4 = 0.875

• Cost: D2.4 = 1+0.5+1+1
4 = 0.875

• Ecosystem and Compatibility: D2.5 = 1+0.5+1+1
4 = 0.875

• Ease of Development: D2.6 = 0.5+1+1+1+1+0.5
6 = 0.833

Final Rating: F2 = 1×0.15+0.75×0.15+0.875×0.15+0.875×0.15+0.875×0.15+0.833×0.25
6 = 0.8645

3. Spring

• Scalability: D3.1 = 0.5+1+1+1+1
5 = 0.9

• Perfomance: D3.2 = 1+1+1+0.5
4 = 0.875

• Maintanability: D3.3 = 1+1+0.5+1
4 = 0.875

• Cost: D3.4 = 1+0+0.5+0.5
4 = 0.5

• Ecosystem and Compatibility: D3.5 = 0.5+0.5+1+0.5
4 = 0.625

• Ease of Development: D3.6 = 0+1+0.5+0.5+1+0.5
6 = 0.5833

Final Rating: F3 = 0.9×0.15+0.875×0.15+0.875×0.15+0.5×0.15+0.625×0.15+0.5833×0.25
6 = 0.712075

4. Nodejs

• Scalability: D4.1 = 1+1+0.5+1+0.5
5 = 0.8

• Perfomance: D4.2 = 0.5+1+1+0.5
4 = 0.75

• Maintanability: D4.3 = 0.5+1+1+1
4 = 0.875

• Cost: D4.4 = 1+1+1+0.5
4 = 0.875

• Ecosystem and Compatibility: D4.5 = 1+1+1+1
4 = 1

• Ease of Development: D4.6 = 1+0.5+1+1+1+1
6 = 0.9166

Final Rating: F1 = 0.8×0.15+0.75×0.15+0.875×0.15+0.875×0.15+1×0.15+0.9166×0.25
6 = 0.8179

Information Technology Engineer 81 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Comparison Table

Table 5.1 show a comparative illustrating the results gleaned from the analysis of four

back-end frameworks. This table delineates the conclusive rankings of each framework,

assisting in the selection of a final candidate. The insights derived from this comparative

analysis are pivotal in making an informed and optimal choice for our project needs.

Dimensions Laravel Django Spring Nodejs Weight
Scalability 0.7 1 0.9 0.8 0.15

Performance 0.75 0.75 0.875 0.75 0.15
Maintainability 1 0.875 0.875 0.875 0.15

Cost 0.875 0.875 0.875 0.875 0.15
Ecosystem and Compatibility 1 0.875 0.675 1 0.15

Ease of Development 0.92 0.83 0.58 0.92 0.25
Final Raiting 0.88 0.86 0.71 0.82

Table 5.1: Rating of Dimensions for each back-end seleted framework

Finally, after evaluating the obtained results among Laravel, Spring, Node, and Django,

specifically for this project, we can discern that Laravel emerges as the most suitable choice,

with Django not far behind. It is essential to remember that these results serve as a mere

guideline for making decisions when initiating a new project. However, any among Django,

Node, and Laravel can be considered a commendable option to commence development,

as they all hold significant merit in the realm of back-end frameworks. Keep in mind that

the ultimate choice should align with the specific requirements and goals of your project.

Information Technology Engineer 82 Graduation Project

Chapter 6

Conclusions

This thesis embarked on the ambitious endeavor to address the prevalent challenges encoun-

tered by developers in selecting an apt back-end framework for web and mobile application

projects. The overarching objective was to craft a meticulous and multifaceted method-

ology framework tailored to enable the quantitative measurement of assorted dimensions

and metrics pivotal for appraising the accessibility and suitability of a back-end framework

relative to its counterparts.

This methodology framework has been curated with the intention of providing a system-

atic and standardized approach, allowing for the nuanced evaluation of critical components

such as Ease of Development, Security, Scalability, Performance, Popularity, Portability,

Maintainability, Cost, Ecosystem and Compatibility. It is intended to be universally ap-

plicable to any back-end framework, ensuring it caters to evolving trends and needs in

application development.

6.1 Contributions and Implications

The realizations of the specific objectives have led to the establishment of a framework

that offers not just theoretical insights but practical implications in choosing back-end

frameworks, ensuring objective and criteria-based evaluations and comparisons are made.

It is crucial to note that the application of this methodology in the selection of back-

end frameworks is meticulously designed with an aim to elevate software quality, decrease

development costs and time, and foster the adoption of suitable technologies and archi-

tectural frameworks, tailored specifically for each project. This advancement is poised to

83

School of Mathematical and Computational Sciences Yachay Tech University

bring about a transformative change in the field, enhancing overall development efficacy

and output quality.

Based on the results procured from the application of this developed methodology

framework, nuanced recommendations will be provided, serving as a robust aid in the

decision-making processes for individual developers and enterprises alike. These recom-

mendations are destined to be a rich reservoir of insights, assisting in the discerning selec-

tion of the most suitable back-end framework tailored to the unique requisites of specific

projects. The practical implications of these recommendations are profound, offering in-

valuable guidance and contributing to informed and optimal decision-making in real-world

developmental scenarios.

6.2 Future Adaptations and Refinement

In light of the advanced methodological framework developed in this research, significant

future initiatives are envisioned to further expand and optimize the efficacy and applicabil-

ity of the proposed method. A key project on the horizon is the conception and realization

of a comprehensive web application that serves as a portal for accessing detailed informa-

tion about various back-end frameworks.

This application aspires to offer an intuitive and highly structured visual interface,

allowing users not only to access crucial data but also to experience and test the frameworks

in an effective and simplified manner. Such a platform will democratize access to vital

information, fostering a deeper understanding and more accurate evaluation of the various

framework options available, thus facilitating more informed and tailored decisions for each

project’s specific needs.

The implementation of a web application will be a revolutionary step, providing an

invaluable tool for developers and enterprises, and solidifying the proposed methodology

as a standard in back-end framework selection. This initiative not only responds to the

current needs of the industry but also anticipates and adapts to future trends and evolutions

in the field of web and mobile application development, maintaining its relevance and

contribution in a constantly changing technological environment.

Finally, the future application will be designed with a focus on user experience, en-

Information Technology Engineer 84 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

suring that users can navigate and utilize the platform intuitively and effectively, thereby

maximizing its benefit and impact on the development community. Subsequent devel-

opments and enhancements of this platform will be guided by emerging needs and user

feedback, ensuring its coherent evolution and its continued resonance with the demands

and expectations of the industry.

6.3 Final Reflections

This thesis stands as a navigational compass for developers in the complex journey of back-

end framework selection, offering a methodology that is structured, analytical, resilient,

and adaptable to the shifting sands of technological innovations. It illuminates pathways to

optimal developmental approaches and improved outcomes, with its applicative and evolu-

tionary nature promising to reshape developmental methodologies and uplift the standards

of web and mobile application development in the times to come.

In closing, it is pivotal to emphasize that the insights and recommendations rendered by

this methodology are to be perceived as guiding lights, not as rigid prescriptions, allowing

for a spectrum of flexibility and discernment in alignment with individual project needs

and developer inclinations. The continual enhancement and expansion of this methodology

are anticipated to embrace and address the intricate and diverse demands of the dynamic

realm of application development, ensuring its sustained relevance and utility.

Information Technology Engineer 85 Graduation Project

Bibliography

[1] N. Balani, “Web application development – evolution and future,” International Jour-

nal of Computer Science and Information Technologies, vol. 6, no. 3, pp. 2951–2955,

2015.

[2] A. Paliwal and A. Sharma, “Comparison of web development technologies: Adobe flex

and microsoft silverlight,” International Journal of Advanced Research in Computer

Science and Software Engineering, vol. 3, no. 4, pp. 872–875, 2013.

[3] S. Newman, Building Microservices: Designing Fine-Grained Systems. O’Reilly Me-

dia, Inc., 2015.

[4] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin,

and L. Safina, “Microservices: yesterday, today, and tomorrow,” Present and Ulterior

Software Engineering, vol. 32, pp. 95–118, 2017.

[5] N. Kaur and R. Rani, “Comparative analysis of web application development frame-

works: Ruby on rails and django,” International Journal of Advanced Research in

Computer Science, vol. 7, no. 3, pp. 25–28, 2016.

[6] S. Shah and V. Patel, “A comparative study of web application development frame-

works: Laravel and django,” International Journal of Engineering and Techniques,

vol. 4, no. 1, pp. 1–5, 2018.

[7] A. Chandra and P. Borah, “Comparative analysis of popular backend web development

frameworks,” in 2017 International Conference on Algorithms, Methodology, Models

and Applications in Emerging Technologies (ICAMMAET). IEEE, 2017, pp. 1–6.

86

School of Mathematical and Computational Sciences Yachay Tech University

[8] S. K. Garg and R. Buyya, “Framework for the assessment of the environmental impact

of cloud computing services,” Information Systems Frontiers, vol. 13, no. 4, pp. 525–

540, 2011.

[9] T. Berners-Lee, “Information management: A proposal,” https://www.w3.org/

History/1989/proposal.html, CERN, 1989.

[10] World Wide Web Consortium, “Making the web work,” 2021. [Online]. Available:

https://www.w3.org/

[11] G. J. James, “Ajax: A new approach to web appli-

cations,” 2005. [Online]. Available: https://www.semanticscholar.

org/paper/Ajax%3A-A-New-Approach-to-Web-Applications-Garrett/

c440ae765ff19ddd3deda24a92ac39cef9570f1e

[12] E. Etemad and M. Zamanian, “Progressive web apps: A new level of web experience,”

in 2017 24th Asia-Pacific Software Engineering Conference (APSEC), 2017.

[13] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey of mobile

malware in the wild,” https://doi.org/10.1145/2381934.2381936, 2012.

[14] A. Lekh, “Best backend frameworks review,” Jan 2021. [Online]. Available:

https://impressit.io/blog/best-backend-frameworks

[15] M. Gurevich, D. Nosov, and N. Krichfalushiy, “Web application architecture: Types

amp; components,” Nov 2021. [Online]. Available: https://www.azoft.com/blog/

web-application-architecture/

[16] D. Comunicación, “¿qué es backend y frontend?” Sep 2019. [Online]. Available:

https://descubrecomunicacion.com/que-es-backend-y-frontend/

[17] S. Team, “The best node.js framework: Koa vs express vs hapi - detailed comparison,”

Savvycom Software, 2021. [Online]. Available: https://medium.com/savvycom/

the-best-node-js-framework-koa-vs-express-vs-hapi-detailed-comparison-46cc85207d65

Information Technology Engineer 87 Graduation Project

https://www.w3.org/History/1989/proposal.html
https://www.w3.org/History/1989/proposal.html
https://www.w3.org/
https://www.semanticscholar.org/paper/Ajax%3A-A-New-Approach-to-Web-Applications-Garrett/c440ae765ff19ddd3deda24a92ac39cef9570f1e
https://www.semanticscholar.org/paper/Ajax%3A-A-New-Approach-to-Web-Applications-Garrett/c440ae765ff19ddd3deda24a92ac39cef9570f1e
https://www.semanticscholar.org/paper/Ajax%3A-A-New-Approach-to-Web-Applications-Garrett/c440ae765ff19ddd3deda24a92ac39cef9570f1e
https://doi.org/10.1145/2381934.2381936
https://impressit.io/blog/best-backend-frameworks
https://www.azoft.com/blog/web-application-architecture/
https://www.azoft.com/blog/web-application-architecture/
https://descubrecomunicacion.com/que-es-backend-y-frontend/
https://medium.com/savvycom/the-best-node-js-framework-koa-vs-express-vs-hapi-detailed-comparison-46cc85207d65
https://medium.com/savvycom/the-best-node-js-framework-koa-vs-express-vs-hapi-detailed-comparison-46cc85207d65

School of Mathematical and Computational Sciences Yachay Tech University

[18] ValueCoders. (2021) Codeigniter vs cakephp vs yii vs laravel: Which php

framework is right for you? [Online]. Available: https://www.valuecoders.com/blog/

technology-and-apps/codeigniter-vs-cakephp-vs-yii-vs-laravel/

[19] J. Wheeler, “Django vs. flask vs. pyramid: Choos-

ing a python web framework,” 2016, [Online; accessed 4-

April-2023]. [Online]. Available: https://medium.com/featurepreneur/

flask-django-or-pyramid-choose-the-right-python-framework-for-your-project-3a9dd23ee51c

[20] M. Kaluža, M. Kalanj, and B. Vukelić, “Comparison of back-end frameworks for web

application development,” Zbornik Veleučilǐsta u Rijeci, vol. 7, no. 1, pp. 317–332,

2019.

[21] PrimerPy, “Which python web framework to choose for 2023: Django, flask,

fastapi, or tornado?” 2023. [Online]. Available: https://primerpy.medium.com/

which-python-web-framework-to-choose-for-2023-django-flask-fastapi-or-tornado-9d05860adfe3

[22] Monocubed, “Web development framework comparison: Django, flask, ruby on rails,

express, and laravel,” 2023. [Online]. Available: https://www.monocubed.com/blog/

web-development-framework-comparison/

[23] Statistics and Data, “Most popular backend frameworks 2012-2023,” 2023,

accessed on March 5, 2023. [Online]. Available: https://statisticsanddata.org/data/

most-popular-backend-frameworks-2012-2023/

[24] J. Aman, “Laravel design pattern: Simplifying web devel-

opment,” 2023. [Online]. Available: https://amanj0314.medium.com/

laravel-design-pattern-simplifying-web-development-d84115bba19d

[25] Laravel, “Laravel - the php framework for web artisans,” Laravel Sofware Foundation,

2011, accessed on March 5, 2023. [Online]. Available: https://laravel.com/

[26] DreamzTech, “Why laravel is the most popular php framework in 2023,”

DreamzTech Blog, 2023. [Online]. Available: https://blog.dreamztech.com/

why-laravel-is-the-most-popular-php-framework-in-2023/

Information Technology Engineer 88 Graduation Project

https://www.valuecoders.com/blog/technology-and-apps/codeigniter-vs-cakephp-vs-yii-vs-laravel/
https://www.valuecoders.com/blog/technology-and-apps/codeigniter-vs-cakephp-vs-yii-vs-laravel/
https://medium.com/featurepreneur/flask-django-or-pyramid-choose-the-right-python-framework-for-your-project-3a9dd23ee51c
https://medium.com/featurepreneur/flask-django-or-pyramid-choose-the-right-python-framework-for-your-project-3a9dd23ee51c
https://primerpy.medium.com/which-python-web-framework-to-choose-for-2023-django-flask-fastapi-or-tornado-9d05860adfe3
https://primerpy.medium.com/which-python-web-framework-to-choose-for-2023-django-flask-fastapi-or-tornado-9d05860adfe3
https://www.monocubed.com/blog/web-development-framework-comparison/
https://www.monocubed.com/blog/web-development-framework-comparison/
https://statisticsanddata.org/data/most-popular-backend-frameworks-2012-2023/
https://statisticsanddata.org/data/most-popular-backend-frameworks-2012-2023/
https://amanj0314.medium.com/laravel-design-pattern-simplifying-web-development-d84115bba19d
https://amanj0314.medium.com/laravel-design-pattern-simplifying-web-development-d84115bba19d
https://laravel.com/
https://blog.dreamztech.com/why-laravel-is-the-most-popular-php-framework-in-2023/
https://blog.dreamztech.com/why-laravel-is-the-most-popular-php-framework-in-2023/

School of Mathematical and Computational Sciences Yachay Tech University

[27] Laravel, “Laravel,” https://packagist.org/packages/laravel/, Acceso en ĺınea, consul-

tado el 15 de mayo de 2023.

[28] Packagist, “Laravel packages,” 2023, accessed: November 2023. [Online]. Available:

https://repo.packagist.org/packages/laravel/

[29] Laravel. (Accessed: 2023) Laravel documentation - artisan console. [Online].

Available: https://laravel.com/docs/artisan

[30] L. Blade. (Accessed: 2023) Laravel documentation - blade templates. [Online].

Available: https://laravel.com/docs/blade

[31] InterviewBit. (2021) Django architecture explained. [Online]. Available: https:

//www.interviewbit.com/blog/django-architecture/

[32] D. S. Foundation, Django Documentation, Django Software Foundation, 2023.

[Online]. Available: https://docs.djangoproject.com/

[33] JetBrains, “Python developers survey 2021 results,” 2021, accessed: November 14,

2023. [Online]. Available: https://lp.jetbrains.com/python-developers-survey-2021/

[34] JetBrains, “JetBrains Python Developers Survey 2021,” https://lp.jetbrains.com/

python-developers-survey-2021/, Acceso en ĺınea, consultado el 15 de mayo de 2023.

[35] Django, “Django GitHub Repository,” https://github.com/django/django, Acceso en

ĺınea, consultado el 15 de mayo de 2023.

[36] D. S. Foundation, Django Documentation, Django Software Foundation, 2023.

[Online]. Available: https://www.djangoproject.com/community/

[37] R. Dahl, “A history of node.js,” Built In Node, May 2019. [Online]. Available:

https://builtinnode.com/2019/05/04/a-history-of-node-js/

[38] N. S. Foundation, Node, Node Sofware Foundation, 2009, accessed: March 6, 2023.

[Online]. Available: https://nodejs.org/

Information Technology Engineer 89 Graduation Project

https://packagist.org/packages/laravel/
https://repo.packagist.org/packages/laravel/
https://laravel.com/docs/artisan
https://laravel.com/docs/blade
https://www.interviewbit.com/blog/django-architecture/
https://www.interviewbit.com/blog/django-architecture/
https://docs.djangoproject.com/
https://lp.jetbrains.com/python-developers-survey-2021/
https://lp.jetbrains.com/python-developers-survey-2021/
https://lp.jetbrains.com/python-developers-survey-2021/
https://github.com/django/django
https://www.djangoproject.com/community/
https://builtinnode.com/2019/05/04/a-history-of-node-js/
https://nodejs.org/

School of Mathematical and Computational Sciences Yachay Tech University

[39] D. Haynes, “Node.js architecture and 12 best practices for node.js devel-

opment,” Scout APM, 2021. [Online]. Available: https://scoutapm.com/blog/

nodejs-architecture-and-12-best-practices-for-nodejs-development

[40] Node.js, “Releases,” https://nodejs.org/en/about/releases/, 2022, accessed: March 6,

2023.

[41] Node.js security. Node.js Foundation. [Online]. Available: https://nodejs.org/en/

docs/guides/security-best-practices/

[42] RisingStack. Node.js security best practices. [Online]. Available: https://blog.

risingstack.com/node-js-security-best-practices/

[43] N. S. Foundation, Node Documentation, Node Sofware Foundation, 2009, accessed:

March 6, 2023. [Online]. Available: https://nodejs.org/docs/latest/api/

[44] Twilio. Logging in node.js with winston and bunyan. [Online]. Available:

https://www.twilio.com/blog/guide-node-js-logging

[45] Spring Boot. Spring boot documentation. Spring Sofware Foundation. [Online].

Available: https://docs.spring.io/spring-boot/index.html

[46] S. Team, Spring Framework Documentation, Pivotal Software, Inc., 2002–present.

[Online]. Available: https://docs.spring.io/spring-framework/docs/current/reference/

html/

[47] Spring Security. Spring security. [Online]. Available: https://docs.spring.io/

spring-security/site/docs/5.4.2/reference/html5/

[48] L. Documentation, “Laravel documentation,” Laravel Sofware Foundation, 2011,

accessed on March 5, 2023. [Online]. Available: https://laravel.com/docs/

[49] “Laracasts - the laravel learning platform,” https://laracasts.com.

[50] L. News. (Accessed: 2023) Getting started with laravel artisan. [Online]. Available:

https://laravel-news.com/category/tutorials

[51] Spring, “Spring project official website.” [Online]. Available: https://spring.io/

Information Technology Engineer 90 Graduation Project

https://scoutapm.com/blog/nodejs-architecture-and-12-best-practices-for-nodejs-development
https://scoutapm.com/blog/nodejs-architecture-and-12-best-practices-for-nodejs-development
https://nodejs.org/en/about/releases/
https://nodejs.org/en/docs/guides/security-best-practices/
https://nodejs.org/en/docs/guides/security-best-practices/
https://blog.risingstack.com/node-js-security-best-practices/
https://blog.risingstack.com/node-js-security-best-practices/
https://nodejs.org/docs/latest/api/
https://www.twilio.com/blog/guide-node-js-logging
https://docs.spring.io/spring-boot/index.html
https://docs.spring.io/spring-framework/docs/current/reference/html/
https://docs.spring.io/spring-framework/docs/current/reference/html/
https://docs.spring.io/spring-security/site/docs/5.4.2/reference/html5/
https://docs.spring.io/spring-security/site/docs/5.4.2/reference/html5/
https://laravel.com/docs/
https://laracasts.com
https://laravel-news.com/category/tutorials
https://spring.io/

School of Mathematical and Computational Sciences Yachay Tech University

[52] “Npm and node.js tools,” https://www.npmjs.com/, accessed: 2024-01-05.

[53] L. Framework, “Integrating laravel with load balancers,” https://laravel-news.com/.

[54] D. Official, “Django project official website.” [Online]. Available: https:

//www.djangoproject.com/

[55] “Spring framework horizontal scalability,” https://spring.io/projects/spring-cloud, ac-

cessed: 2024-02-05.

[56] “Spring cloud load balancing,” https://spring.io/guides/gs/

spring-cloud-loadbalancer/, accessed: 2024-02-05.

[57] “Microservices with spring cloud,” https://spring.io/microservices, accessed: 2024-02-

05.

[58] L. Community, “Laravel speed,” 2023. [Online]. Available: https://laracasts.com/

discuss/channels/testing/laravel-speed

[59] “Scaling laravel applications for high throughput,” https://laravel-news.com/

category/tutorials.

[60] “Optimizing laravel cpu usage,” https://laracasts.com/, accessed: 2024-02-05.

[61] “Optimizing django response times,” https://docs.djangoproject.com/en/stable/

topics/performance/, accessed: 2024-02-05.

[62] “Django (moderately) high cpu usage at idle,” https://code.djangoproject.com/ticket/

30372, accessed: 2024-02-06.

[63] “Reducing memory usage in django,” https://www.guguweb.com/2020/03/27/

optimize-django-memory-usage/, accessed: 2024-02-06.

[64] I. Anghel, “Latency vs throughput in spring boot applications,” accessed:

2024-02-07. [Online]. Available: https://softwareg.com.au/blogs/computer-hardware/

spring-boot-high-cpu-usages

Information Technology Engineer 91 Graduation Project

https://www.npmjs.com/
https://laravel-news.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://spring.io/projects/spring-cloud
https://spring.io/guides/gs/spring-cloud-loadbalancer/
https://spring.io/guides/gs/spring-cloud-loadbalancer/
https://spring.io/microservices
https://laracasts.com/discuss/channels/testing/laravel-speed
https://laracasts.com/discuss/channels/testing/laravel-speed
https://laravel-news.com/category/tutorials
https://laravel-news.com/category/tutorials
https://laracasts.com/
https://docs.djangoproject.com/en/stable/topics/performance/
https://docs.djangoproject.com/en/stable/topics/performance/
https://code.djangoproject.com/ticket/30372
https://code.djangoproject.com/ticket/30372
https://www.guguweb.com/2020/03/27/optimize-django-memory-usage/
https://www.guguweb.com/2020/03/27/optimize-django-memory-usage/
https://softwareg.com.au/blogs/computer-hardware/spring-boot-high-cpu-usages
https://softwareg.com.au/blogs/computer-hardware/spring-boot-high-cpu-usages

School of Mathematical and Computational Sciences Yachay Tech University

[65] E. Genedy, “Latency and throughput in node.js,” accessed: 2024-03-06. [Online].

Available: https://egenedy.hashnode.dev/latency-and-throughput-in-nodejs

[66] Node.js. Node.js official documentation. Accessed: 2024-03-22. [Online]. Available:

https://nodejs.org/en/docs/

Information Technology Engineer 92 Graduation Project

https://egenedy.hashnode.dev/latency-and-throughput-in-nodejs
https://nodejs.org/en/docs/

	=Autoría
	=Autorización de publicación
	=Dedicación
	=Resumen
	=Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Problem Statement
	Objectives
	General Objective
	Specific Objectives

	Phases of Problem Solving
	Scope and Limitations

	Theoretical Framework
	Fundamentals of Web Technology
	Historic Development
	Basic Operation
	Front-end and Back-end

	State of Art
	Overview of Back-end Frameworks
	Laravel
	Django
	Nodejs
	Spring

	Methodology Framework
	General Objective
	Relevance
	Procedure Specification
	Basic Definitions
	Identification of Dimensions and Metrics
	Data Gathering
	Quantitative Scoring
	Dimension Rating
	Weight Assignment
	Final Rating Calculation
	Comparison and Selection
	Evaluation Process

	Generic Example

	Dimensions and Metrics
	Ease of Development
	Security
	Scalability
	Performance
	Popularity
	Portability
	Maintainability
	Cost
	Ecosystem and Compatibility
	Metrics Resume

	Application of Methodological Framework: A Practical Example
	Description of Project
	Project Requirements
	Framework Selection
	Evaluation Results
	Select Framework

	Conclusions
	Contributions and Implications
	Future Adaptations and Refinement
	Final Reflections

	Bibliography

		2025-01-16T12:25:03-0500

		2025-01-16T12:26:11-0500

