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Resumen

La detección temprana y la clasificación precisa de subtipos moleculares del cáncer de mama

son importantes para proporcionar un tratamiento adecuado. Este proyecto se centra en el

desarrollo de un modelo de aprendizaje profundo para la detección de esta enfermedad y la

identificación de sus subtipos moleculares a través de imágenes de mamograf́ıa. Para este

estudio, se emplearon dos conjuntos de datos que incluyen mamograf́ıas de pacientes sin

cáncer de mama y pacientes con esta enfermedad. La primera base de datos incluye mamo-

graf́ıas de 1416 pacientes, mientras que la segunda contiene mamograf́ıas de 1775 pacientes,

de los cuales 749 están divididos en cuatro subtipos moleculares: Luminal A, Luminal B,

HER2-enriquecido y Triple Negativo. Para los cuales, se realizó la segmentación de las le-

siones mamarias. El modelo de detección de cáncer de mama basado en AlexNet, alcanzó

una precisión de 98.60%. Para la identificación y clasificación de subtipos moleculares, se

implementó un modelo de aprendizaje por transferencia utilizando MobileNet, logrando

una precisión general del 73.95% y un área bajo la curva (AUC) del 89%. Los resultados

indicaron que el subtipo HER2-enriquecido fue el mejor caracterizado, con un AUC del

96%, seguido del subtipo Triple negativo y Luminal A, ambos con un AUC del 89% y

finalmente el subtipo Luminal B con un 82%. En conclusión, estos hallazgos proporcionan

un modelo potencial basado en imágenes médicas para la detección del carcinoma de mama

y la predicción de sus subtipos moleculares.

Palabras Clave:

Detección de cáncer de mama, subtipos moleculares, mamograf́ıa, aprendizaje profundo,

aprendizaje por transferencia.
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Abstract

Early detection and accurate classification of molecular subtypes of breast cancer are essen-

tial to provide appropriate treatment. This project focuses on the development of a Deep

Learning model for the detection of this disease and the identification of its molecular

subtypes through mammography images. In this study, two datasets were used, including

mammograms of patients without breast cancer and patients with breast cancer. The first

database includes mammograms of 1416 patients, while the second contains mammograms

of 1775 patients, of which 749 are divided into four molecular subtypes: Luminal A, Lu-

minal B, HER2-enriched and Triple Negative. For which, segmentation of breast lesions

was performed. The AlexNet-based breast cancer detection model achieved an accuracy of

98.60%. For the identification and classification of molecular subtypes, a transfer learning

model was implemented using MobileNet, achieving an overall accuracy of 73.95% and

Area Under Curve (AUC) of 89%. The results indicated that the HER2-enriched subtype

was the best characterized, with an AUC of 96%, followed by the Triple-negative and Lu-

minal A, both with an AUC of 89%, and finally, Luminal B with 82%. In conclusion, these

findings provide a potential model based on medical imaging for the detection of breast

carcinoma and the prediction of its molecular subtypes.

Keywords:

Breast cancer detection, molecular subtypes, deep learning, mammography, transfer learn-

ing.
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Chapter 1

Introduction

1.1 Background

Breast cancer (BC) is a common type of cancer in women, with a higher incidence in

patients worldwide as skin cancer [1]. According to Surveillance, Epidemiodology, and

End Results (SEER) Program’s 2024 estimates, nearly 310,720 women will be diagnosed

with breast cancer, and 42,250 will die caused by this disease [2]. BC can also occurs in

males, though at a much lower rate of about 0.5% to 1% of all breast cancer cases [3].

Consequently, early detection of breast cancer is crucial for improving patient outcomes

and survival rates. However, conventional breast cancer detection methods—such as mam-

mography, ultrasound, and magnetic resonance imaging (MRI)—have limitations. These

methods can be subjective, prone to inter-reader variability, and time-consuming to ana-

lyze.

Deep learning (DL), a branch of artificial intelligence, has become as a potent tool for

medical imaging analysis, especially used for detection of diseases such as breast cancer.

Deep learning algorithms, particularly convolutional neural networks (CNNs) have the

capacity to learn complex patterns from large datasets of images, that radiologists might

overlook. Studies have demonstrated that deep learning models significantly outperforms

traditional methods in breast cancer detection, with higher accuracy, fewer rate of false

positives, and overall better results [4].

This groundbreaking technology holds great promise for early breast cancer detection,

contributing to lower mortality rates, and more effective treatment planning.
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1.2 Problem statement

Breast cancer remains a critical health issue globally, contributing to a substantial number

of deaths each year. Furthermore, the World Health Organization (WHO) reported several

new cases of breast cancer in females of all ages in Ecuador in 2020, of 3563 women

[5]. The accurate diagnosis and identification of breast cancer molecular subtypes are

crucial for determining the most appropriate therapy and providing valuable information

for predicting prognosis in order to improve survival rate. However, identifying them today

requires invasive and time-consuming procedures such as biopsies. Therefore, it is crucial

to seek for more accurate, reliable, non-invasive and automated approaches to classify

breast cancer molecular subtypes. The development of a deep learning-based approach

using mammograms could offer a promising avenue to enhance breast cancer detection,

diagnosis and treatment outcomes.

1.3 Objectives

1.3.1 General Objective

Develop a deep learning model for the detection of breast cancer and identification of its

molecular subtype based on mammography images.

1.3.2 Specific Objectives

• Design and implement a deep neural network to detect the breast cancer in mam-

mography images.

• Develop and train a deep learning model capable of identifying and classifying molec-

ular subtypes from mammography images.

• Determine the relationship between mammography features and the breast cancer

molecular subtypes.

• Evaluate the performance of proposed model using standard classification metrics,

such as accuracy, precision, recall , F1-score.

Biomedical Engineer 2 Graduation Project
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• Compare the proposed model with existing models of breast cancer detection and

molecular subtype classification.

1.4 Document Organization

This research work is structured into 6 chapters. These are detailed below:

• Chapter 1: Introduction. This chapter presents the motivation and general context

of the research topic, highlight the importance of early detection of breast cancer,

and the objectives of the study are established.

• Chapter 2: Theorical framework. This chapter covers an overview of key concepts in

the field of breast cancer detection and molecular subtypes. The theoretical bases of

deep learning and convolutional neural networks.

• Chapter 3: State of art. In this section reviews current and past research work in

the development of models based on deep learning for breast cancer detection and

classification of their molecular subtypes.

• Chapter 4: Methodology. This section provides a detailed procedure used to design

and develop our proposed model, including data collection, training process, the

experimental setup and the evaluation metrics used to measure model performance.

• Chapter 5: Results and Discussion. In this chapter, our study’s results are presented

and analyzed. It also includes the implications of the findings, highlighting our

model’s performance and potential areas for future improvement

• Chapter 6: Conclusion and Future Work. This chapter summarizes the main findings

of the research, discuss the limitations of the model and proposes possible improve-

ments for future research.
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Chapter 2

Theoretical Framework

2.1 Breast Cancer

Breast cancer is a major health concern for women globally, accounting for 12.5% of all

new cases each year and ranking as the leading cause of cancer death among women [6].

This disease consists of the abnormal growth of breast cells forming tumors that can be

benign and malignant. Benign tumors are non-cancerous tumors that typically grow slowly

and stay confined, while malignant tumors can invade surrounding tissues and spread

throughout the body [7] It usually originates in the ducts (ductal carcinoma) or lobules

(lobular carcinoma) of the breast, which are the glands that produce milk. It can present

as a lump in the breast, changes in breast shape, fluid discharge from the nipple or red

skin patches [8].

2.1.1 Risk factors

Breast cancer is a multi-factorial disease influenced by a complex interaction of biological,

genetic and environmental factors, some of them are described below:

• Age, the likelihood of developing increases with advancing age, with most cases di-

agnosed in women over the age of 50 [9]. This rise can be attributed to long-term

exposure to carcinogens and a decrease in the body’s efficiency in repairing cellular

damage.

• Genetics plays a significant role in the development of breast cancer, with family

history accounting for about 25% of cases [10]. Inherited mutations in breast cancer-

4
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related genes, such as BRCA1 and BRCA2, two anti-oncogenes located on chromo-

somes 17q21 and 13q12, respectively [11]. The mutation and abnormal amplification

of these tumor suppressor genes play crucial roles in the tumor initiation and pro-

gression process.

• Reproductive and hormonal factors significantly influence breast cancer risk, partic-

ularly through prolonged exposure to endogenous estrogen. This hormone, which

stimulates the growth of epithelial duct cells in the mammary glands, is a key factor

in breast cancer development. The risk is modulated by several reproductive events:

early menarche and late menopause extend the duration of estrogen exposure, increas-

ing the likelihood of estrogen receptor-positive (ER+) breast cancer. Additionally,

nulliparity or delayed childbearing until an older age can elevate the risk. Hormone

replacement therapy (HRT) during menopause involves a high exposure of exogenous

estrogen that produces a hormonal disorder increasing the breast cancer risk [9, 12].

• Lifestyle factors, certain habits and behaviors can increase the risk of developing BC.

Obesity and overweight, particularly after menopause when the ovaries stop produc-

ing estrogens, the adipose tissue produces estrogen, promoting the development of

hormone-sensitive breast tumors [13]. In addition, tobacco and alcohol consumption

increases estrogen levels and in the case of tobacco, it contains mutagens that damage

the DNA of breast cells [11].

2.1.2 Screening Detection Methods

Breast cancer detection is crucial for early diagnosis and successful treatment. Different

imaging modalities, including mammography (MG), magnetic resonance imaging (MRI),

ultrasound (US), among others that are utilized to identify and characterize breast tumors.

Each method will be described below in detail, focusing on their effectiveness, limitations,

and relevance to the breast cancer molecular subtypes.

Mammography

Mammography (MG), a low-dose X-ray technique, is a commonly used method for breast

cancer detection and recommended for women aged 40 and older. This procedure involves
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taking X-ray images in two views, craniocaudal (CC) and mediolateral oblique (MLO) to

identify abnormalities within the breast tissue. during mammogram interpretation, radiol-

ogists look for lesions, including small lumps and clusters of calcification, which are often

undetectable by manual examination [14]. Despite its widespread used, mammography is

not a definitive diagnostic method. When suspicious areas are detected, a biopsy is re-

quired for a more precise histopathology and molecular analysis [11]. According to its role

in subtype differentiation, MG provides an important initial indicators related to imag-

ing features align with specific molecular profiling. For example, MG is able to recognize

microcalcifications and subtle abnormalities, which frequently presents in HER2-enriched

subtypes, as well another morphological features [15]. With a specificity of 75% and sen-

sitivity of 67,8% [16], its lower sensitivity that can lead false negatives cases, especially in

younger women with dense breast that can obscure tumors, necessitating additional screen-

ing examinations [17], such as US or MRI [18]. Despite these limitations, this technique

is particularly useful in screening for less aggresive, early-stage cancer, contributing to a

30% to 50% reduction in mortality rates [19,20].

Magnetic resonance imaging

Magnetic Resonance Imaging (MRI) apply strong magnetic fields and radiofrequency sig-

nals to produce highly detailed images of soft tissues, making it particularly useful for

detecting small tumors in young women at high risk of breast cancer and detection of

multifocal and multicentric lesions [21]. Unlike mammography and ultrasound, MRI offers

the highest sensitivity for detecting occult cancer [22], with a sensitivity rate of 94.4% but

a lower specificity of 26.4% [16]. In the case of its specificity, lower values indicates that

lead to increase false positives, but it can vary based on whether the assesment focuses on

morphological features or enhancement patters [23]. Furthermore, MRI is instrumental in

forming personalized therapeutic strategies for aggressive subtypes, such as HER2-enriched

and triple-negative tumors, which often exhibit distinct MRI features, including concentric

tumor reduction and rim enhancement [24,25].
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Ultrasound

Also known as ultrasonography (US) or sonography, is a cost-effective and widely accessible

screening tool that uses high frequency sound waves to view tissues and organs inside the

body, allowing the detection of anomalous tissues as breast tumors, distinguishing between

cysts and solid masses [16]. Additionally, US provides high-resolution images of the shape,

orientation, internal structure, and borders of breast lesions without exposing patients to

ionizing radiation. Nonetheless, a notable limitation of ultrasound is its relatively low

specificity of 34%, which can result in many unnecessary recalls and biopsies [26]. In

addition, US can measure the echogenicity of tissue, estimate vascularity on Doppler, and

evaluating tumor stiffness via elastography, that are highly associated predicting molecular

subtypes [27]. However, the sensitivity of US in distinguishing between different breast

cancer subtypes remains uncertain, although some studies indicate that it may effectively

predict triple negative subtype [28]. Despite these limitations, US remains a good tool

for evaluating breast tissue and assessing lymph node involvement, complementing other

imaging modalities in comprehensive breast cancer diagnosis and management [29].

2.1.3 Molecular subtypes

Breast cancer is a heterogeneous disease with various subtypes characterized by distinct

gene expression patterns an are associated with different clinical features, tumor behaviors

and treatment outcomes. In 2000, Perou et al. [30] proposed a classification of molecular

subtypes based on gene profiles using microarrays. Inicially, the subtypes were divided

into four groups: Luminal-like tumors, Her2-enriched tumors, basal-like and normal-like

tumors [31]. Subsequently, this classification was expanded to include more specific sub-

types through the use of protein biomarkers present in different breast carcinomas and

provide information about biological process that drive cancer growth and progression.

The immunohistochemistry (IHC) technique allowed the identification and classification

of these intrinsic subtypes based on the expression of their hormonal receptors, which are

divided into Luminal A, Luminal B, triple negative and Her2-enriched [32]. The clinico-

pathological characteristics of each of these subtypes are detailed in Table 2.1.
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Table 2.1: Clinicopathological characteristics of molecular subtypes of breast cancer.

Characteristics
Molecular subtypes

Luminal A Luminal B HER2-
enriched

Triple
Negative

IHC Markers ER/PR+,
Her2-

ER/PR+,
Her2-

ER/PR–,
Her2+

ER/PR-, Her2-

Frequency 50% 15% 20% 15%

Ki-67 <14% ≥14% High High

Prognosis Good Middle Bad Bad

Therapy HT ChT, HT HT, ChT,
Herceptin

ChT,
experimental

Luminal A

This subtype occurs most frequently in breast cancer, accounting for 50% of cases. It

is characterized by the expression of hormone receptors (ER/PR+) and an absence of

expression of Human epidermal growth factor receptor 2 (Her2-). Compared to the other

subtypes, this is the one with the best prognosis, responding well to hormonal therapy

(HT), which consists in blocking hormonal activity and preventing the progression of cancer

cells. In addition, it indicates a low Ki-67 index of less than 14% [33].

Luminal B

It constitutes about 15% of breast cancer cases. Like Luminal A, it presents (ER/PR)

positive and low or no presence of the Her2 receptor, which influences its treatment and

prognosis, which is intermediate, but less favorable than Luminal A [34]. The suggested

treatments in this case are chemotherapy (ChT) and hormonal therapy [35]. This subtype

has a higher cell proliferation with Ki-67 greater than 14%.

HER2-enriched

Human epidermal growth factor receptor 2 (Her2) positive or enriched, representing ap-

proximately 15% of mammary carcinomas, is characterized by an overexpression of the

HER2 receptor and the absence of (ER/PR). This subtype presents a poor prognosis and
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a high Ki-67 index, indicating increased cell proliferation that facilitates metastasis [36].

Patients with this subtype respond better to chemotherapy and the use of drugs such as

Herceptin, and in certain cases hormone therapy [24].

Triple negative

The triple negative or basal-like subtype, which comprises 15% of breast cancer cases,

has a worse prognosis and induces metastasis in the brain and lungs [37], due to the

lack of hormone receptors (ER/PR) and (Her2-) expression limiting therapeutic options,

so chemotherapy is recommended but experimental studies for new treatments are still

underway [38]. In addition, it is often associated with BRCA1 mutations and has a high

Ki-67 index with a rapid cell proliferation [39].

2.1.4 Imaging features of Molecular Subtypes

As previously mentioned, each of the subtypes presents not only specific gene expression

patterns and biomarkers, but also distinct morphological characteristics of the tumors that

can be identified in medical images. In particular, Wu and Ma, 2017 [40] demonstrates

how molecular subtypes are associated with specific radiological features that are observed

in mammograms and MRI. In the case of mammograms, some of the variables that are

considered are the shape of the breast lesion, the shape of the margin, breast density, the

presence of calcifications and the presence of structural distortions.

In ultrasound images (US),there are some particular features associated with molec-

ular subtypes were also found, such as mass appearance, mass margins, mass boundary,

echogenicity, which can be classified as homogeneous, heterogeneous or complex [41]. In ad-

dition, if the tumor present posterior acoustic characteristics, such as shadowing, posterior

enhancement [42,43].

On the other hand, in images obtained by MRI, the differentiating indicators include

tumor size and morphology and texture such as rim (edges) enhancement [44–46], and

where the tumors are located or clustered for example if there are multi-centered [47].

The imaging features of each of the different breast cancer detection methods for each

molecular subtype are summarized in Table 2.2.
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Table 2.2: Imaging features of molecular subtypes of breast cancer.

Imaging Modality

Molecular subtypes

Luminal A Luminal B HER2-
enriched

Triple
Negative

MG features

Irregular
spiculated

mass.

Microlobulated,
spiculated
margin,

architectural
distortion.

Mass with
associated

fine-
pleomorphic
calcifications.

Circumscribed
or oval mass.

MRI features

Irregular mass
with

spiculated
margin.

Irregular mass
with

spiculated
margin

Multi-focal or
multi-center
enhancement

Round or oval
mass, rim

enhancement.

US features
Irregular

hypo-echoic
mass with
posterior
acoustic

shadowing.

Irregular mass
with angular

margin.

Hypoechoic
with irregular

margins.

Circumscribed
margins and

posterior
enhancement.

Image sample Figure 2.1 Figure 2.2 Figure 2.3 Figure 2.4

Figure 2.1: Imaging features of Luminal A subtype. A) Mammography shows a mass with
spiculated margin, B) US shows hypo-echoic mass with posterior acoustic shadow, and C)
MRI shows an irregular enhancing with spiculated mass.

Biomedical Engineer 10 Graduation Project



School of Biological Sciences and Engineering Yachay Tech University

Figure 2.2: Imaging features of Luminal B subtype: A) At mammogram showed a mi-
crolobulated spiculated mass with indistinct margins and architectural distortion, B) on
MRI there is an enhancing irregular mass with spiculated margins , and C) on US a hy-
poechoic with irregular mass is observed.

Figure 2.3: Imaging features of HER2 subtype. A) The mammography shows a mass with
fine linear calcifications, B) MRI shows a non-mass multi-focal enhancement, and C) on
US, the mass is hypoechoic with irregular margins.

Figure 2.4: Imaging features of Triple Negative subtype. A) circumscribed oval mass is on
MG, B) a round mass with rim enhancement is observed on MRI, and C) on US reveals
hypoechoic and round mass.
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2.2 Artificial Intelligence

Artificial intelligence (AI) is a field of computer science that consist of the development

of “intelligent agents” that mimics the human intelligence in order to perform tasks such

as learning, decision-making, recognizing patters among others cognitive abilities within a

machine framework and to perform them is necessary the execution of a series of AI algo-

rithms. The term of AI was coined with Alan Turing in the 1950s in this book Computers

and Intelligence, who proposed the ”Turing Test” as a way to measure of a machine’s

intelligence [48]. The development of Artificial Intelligence (AI) in the last years has a

great impact and revolutionize the world, and has brought great advances in the health

care field. AI encompasses machine learning and deep learning.

2.2.1 Machine Learning

Machine Learning (ML) is a branch of artificial intelligence, that focuses on training al-

gorithms and models that can analyze data, make predictions and decisions using this

data. These algorithms can enhance their efficiency in a particular task as they encounter

increased large data. ML is commonly divided in four types, that are explained below:

• Supervised Learning, training data contains optimal outcomes (also known as induc-

tive learning). Learning is tracked in this method. Algorithms are trained using

labeled examples, such as an input where the desired output is known.

• Unsupervised Learning, There are not the desired outputs in the training results.

The goal is to find hidden patterns or intrinsic structures in the input data, where

the data does not have historical label. Unsupervised learning models examine data

without human supervision, in contrast to supervised learning, which depends on

labelled data with specified target values.

• Semi-supervised Learning, is when a few desired outputs are included in the training

data. This type of learning combine labeled data (including explicit target values) and

unlabeled data (no targets). Semi-supervised learning finds a balance by using the

labelled instances that are already available and looking for patterns in the unlabeled

data. This makes it helpful in situations when getting enough labelled data is difficult.
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• Reinforcement Learning, where rewards are given after a sequence of actions. In a

given case, it is a matter of taking appropriate steps to maximize compensation. It is

the most ambitious method of learning in AI and used in the robotics field. It consists

of three components: the agent (the learner or decision maker), the environment

(everything the agent interacts with) and actions (what the agent can do) [49].

2.2.2 Deep Learning

It is a subset of ML, deep learning (DL) employs multi-layer deep neural networks and

a large-scale data to learn automatically. The DL emerged thanks to advances in artifi-

cial neural networks (ANNs), which were introduced by Frank Rosenblatt [50] , who in

1958 introduced the term of “perceptron”, a simple learning model that could learn new

skills through a process of trial and error. The development of ANN was inspired by the

biological functioning of the human brain [51]. The brain is composed by neurons which

are responsible for receiving sensory information (signals) from the external world through

dendrites, then processes the signals in the cell body, and transmits the information as

output through the axon [52]. As illustrated in Figure 2.5.

Figure 2.5: Biological neural network and their relationship with artificial neural network.

Similarly, a neural network receives multiple inputs, process them, applies a weighted

sum followed by a non-linear function (activation function), and generate outputs. Struc-

turally, an ANN consists of three layers of interconnected nodes or neurons, as illustrated

in Figure 2.6 and detailed below:
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• The input layer is analogous to independent variables in a mathematical model, serv-

ing as the initial data points that the network processes. It receives and process input

information from external sources, transforming it into a format that the network can

utilize.

• The hidden layers, are intermediate layers between the input and output layers in

the neural network. These layers are able to extract complex features from the input

data, transforming it into a more abstract, intricate and meaningful representation.

They are the primary drivers of the network’s learning capability, which enables to

adapt and enhance performance over time.

• The output layers, on the other hand, is the final layer, and it is responsible for

producing the prediction or results for a given input. These layer takes the output

from the hidden layers and generates a prediction or classification based on learned

patterns in the data.

Figure 2.6: Structure of an Artificial Neural Network (ANN)

2.2.3 Convolutional Neural Networks

A convolutional neural network (CNN), also known as ConvNet, is a type of deep learning

that specialized in processing and analyzing visual data, especially images. They are
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feedforward networks, which means that information flows in one direction, from input

to output. Inspired by the human visual cortex, CNNs process this data in a grid-like

arrangement in order to extract important features and recognize patterns automatically

[53]. They exhibit translation-invariant characteristics, making them effective for tasks like

image classification, object detection, and segmentation [54].

Structure of CNN

The architecture of a CNN consists of several building blocks. The key components and

how they are organized to form the network are described below:

• Convolution layer, is the first layer and most essential component of a CNN. This

layer contains filters also known as kernels that are applied to the input images to

extract features such as edges, textures, and specific patterns. A kernel is a matrix of

weights that slides over the input image, performing a convolution operation, which

is mathematically defined in the equation (2.1) [55]. The input data is combined

with the learned weights to compute a new feature map, and the resulting convolved

values are processed through a non-linear activation function [56].

convx,y =
∑

i

wixi (2.1)

Where:

wi are the kernel weights associated with the position i,

xi are the values of the spatially corresponding the input image,

convx,y, is the result represents the output of the convolution operation at the spatial

coordinates (x, y).

• Pooling layer (Downsampling), reduces the spatial dimensions (width and height) of

the feature maps while retaining important information that helps the network be-

came more robust to variations in the input and reduce the computation complexity.

Besides, the pooling layer is responsible for combining semantically similar features

into one.

• Fully connected layer, also known as a dense layer, is responsible for making the final
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predictions or classifications based on the features extracted by the previous layers

applying a series of weights and biases.

Activation functions follow the convolution and fully-connected layers in CNNs to make

the network be able to learn non-linearity. ReLU (Rectified Linear Unit), TanH and sigmoid

function are some examples of activation functions. These activation functions also allow

the network to extract complex relationships between input data and learned features so

that better predictions or classifications can be made [57].

During the training of a CNN, the weights inside the kernels are adjusted through

the process of backpropagation and optimization algorithms in order to select appropri-

ate hyperparameters [58]. Some commonly used optimization techniques include Stochastic

Gradient Descent (SGD) and Adaptive Moment Estimation (Adam). These algorithms dy-

namically update the learning rate using gradient momentum, facilitating efficient training.

The structure of a typical CNN is shown in the Figure 2.7, from the image input to the

output layer.

Figure 2.7: General structure of a typical convolutional neural network (CNN) for image
classification.
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CNNs for Image Classification

In medical image classification, CNNs are widely used to identify patterns that indicate

the presence of anomalies. Some of the most widely used architectures in this field include:

• AlexNet, considered the pioneering CNN, consists of eight layers: five convolutional

layers and three fully connected layers. The first layer has 96 kernel of size 11 x

11 with a stride of 4. It was the first to introduce the ReLU activation function

and dropout regularization to prevent overfitting. This architecture significantly

contributed to the advancement of deep learning in computer vision by winning the

2012 ImageNet competition [59]. Input size: 227x227x3.

• ResNet50, is characterized by its 50-layer depth and the use of residual connections

to extract complex features from images, solving the vanishing gradient problem.

ResNet50 set a new standard in deep learning by enabling very deep networks to

converge [60]. Input size: 224x224.

• MobileNet, uses depthwise separable convolutions, which split the convolution op-

eration into two steps: depthwise convolution and pointwise convolution, that sig-

nificantly reduces the number of parameters, and making it useful for working with

transfer learning [61]. Input size: 224x224.

• VGG CNNs, are known for their simplicity, utilizing a uniform architecture based on

3x3 kernels and follow two basic principles: maintain a constant number of filters for

a given output feature map size and, double the number of filters when the feature

map size is halved by convolutional layers with stride 2, which keeps the time com-

plexity per layer constant [62]. There are two versions: VGG16 and VGG19, named

according to the number of layers they contain. VGG16 consists of 13 convolutional

layers and 3 fully connected layers, while VGG19 has additional 3 convolutional

layers. Input size: 224x224.

• InceptionV3, is a groundbreaking deep learning model designed by Google reasearchers

based on GoogLeNet [63]. This is used to optimize the depth and width of neural

network without increasing the number of parameters. This model consists 48 layers

Biomedical Engineer 17 Graduation Project



School of Biological Sciences and Engineering Yachay Tech University

that employs Inception modules, which utilize multiple parallel branches to capture

features and introduces factorized 7x7 convolutions, reducing computational com-

plexity while maintaining efficiency. Input size: 299x299.

• Xception, is an improved version of the previous architecture, using 36 depthwise

separable convolutional layers instead of Inception modules to enhance efficiency

while using fewer parameters. It also offers an innovative approach, combined with

linear bottleneck layers, and has 71 layers. Input size: 299x299.
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Chapter 3

State of the Art

Nowadays, the development of Deep Learning models has revolutionized the diagnosis,

detection and prediction of complex diseases such as breast cancer. This state of the art

reviews the main recent research and developments in the application of innovative models

in the detection of this disease, as well as the classification of its molecular subtypes using

mammography images.

3.1 Deep learning-based model for detection of breast
cancer

Deep learning (DL) models for breast cancer detection, described in Table 3.1, mainly use

convolutional neural networks (CNNs), which focus on classification and segmentation of

medical images. Firstly, Sheen et al. [4] propose a CNN-based model that achieves an

AUC of 91%. This model employs the “end-to-end” training technique, which allows it to

learn directly from the raw data with minimal reliance on detailed annotations of breast

lesion regions of interest (ROIs) after the initial phase, thus facilitating their efficient

classification. The model was fine-tuned from the VGG16 and ResNet50 architectures,

using the public dataset as INbreast and CBIS-DDSM. The combination of both CNNs can

enhance the model’s ability to generalize patterns. They also applied data augmentation

to improve their AUC of 88% to 91%. Similarly, Li et al. [64] performed ROI extraction

of malignant, benign, and normal cases using digital mammography and digital breast

tomosynthesis (DBT) images (3D-mammograms), for subsequent multimodal classification.
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To do so, the researchers used VGG16 architecture with transfer learning for both imaging

modalities. The study found that DBT-based model had significant performance than using

digital mammography, with accuracy rates of 91% for malignant, 95.4% for benign, and

98.4% for normal tissues. On the other hand, the custom model developed by Mahmood

et al. [65] offers promising results for breast tumors classification, with an accuracy of 98%

, high sensitivity of 99% and AUC of 99%. This model consists of three Conv layers,

followed by a max-pooling and a two-category softmax classifier, corresponding to benign

and malignant tumors. The dataset used consists of mammographic images from MIAS

and private datasets, which was improved using pre-processing techniques such as contrast-

limited adaptive histogram equalization (CLAHE), noise reduction with median, Gaussian,

and bilateral filters, and segmentation using Otsu threshold.

Another proposal, based on a different CNN, was developed by Omonigho et al., [66]

utilizing modified Alexnet reducing to five Conv layers and softmax activation for binary

classification (benign vs. malignant tumors). Also, the use of data augmentation effectively

increased the datasets size from 322 to 2576 images using transformations such as flipping,

rotation and enhancement using Gaussian filters to improve model performance, achieving

an accuracy of 95.70% for classifying benign and malignant lesions. Likewise, Ragab et

al., [59] employed pre-trained AlexNet architecture with the ML technique, support vector

machines (SVM) for the development of a computer-aided detection (CAD) system, this

implementation improved the accuracy to 87.2% and AUC of 94%. In addition, CLAHE

was used as a mammography image processing method, and tumor ROIs were manually

extracted and segmented using threshold technique. In constrast to previous studies, this

model has a lower accuracy, which is less than 90%, the authors suggest is due to the

quality of dataset. In the case of segmentation of abnormal lesions and their subsequent

automated classification, using CC and MLO views of mammogram separately. Salama and

Aly [67] propose an implementation of U-net segmentation model together with CNNs such

as InceptionV3, DenseNet121, ResNet50, VGG16 and MobileNetV2. However, InceptionV3

demostrated the best results with an accuracy of 98.87%. Overall, the literature highlights

the importance of applying pre-processing and data augmentation techniques to improve

the generalization of the model to detect and classify patterns. In addition, the different

CNNs commonly used in cancer detection are presented.
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3.2 Deep learning-based models for identification and
classification of molecular subtypes

Some previous studies on the classification of molecular subtypes using mammograms are

described in Table 3.2.

Firstly, a TL model based on the ResNet-18 architecture for binary classification of

luminal (Luminal A and Luminal B) and non-luminal (HER2-enriched and triple negative)

subtypes proposed by Bhandary et al., [68]. This model uses full mammography images

and employs the 5-fold cross-validation technique, highlighting the use of hyperparameters

such as a batch size of 16, a learning rate of 1 × 10−5 for the Adam optimizer, and a

weight decay of 5 × 10−3. This approach achieved an AUC score of 66.88% and F1-score

of 66.93%. Some limitations that authors mentioned about their results, is lack of detailed

information about morphology, size of breast lesions and class imbalance, especially with

predominance of Luminal subtype.

On the other hand, Mota et., [69] explain how to classify molecular subtypes when there

is an imbalance of data, which can cause issues in classification since the class with a higher

number of images will have a preference. To address this, they compare methodologies

such as oversampling (increasing data to balance), undersampling (reducing data from

the class with more images), and data augmentation by generating images with geoemtric

transformations. Besides, the authors proposed two types of classification, including binary

(one subtype against all others) and multiclass (evaluating all subtypes simultaneously),

the former achieving an average accuracy of 79.02% and an AUC of 64.69%, while the

multi-class classification achieved an average AUC of 60.62% with oversampling and data

augmentation. The model in this study is based on pre-trained Resnet-101 CNN. The

dataset OPTIMAM in this study contained information about tumor locations, which

allowed for the extraction of the ROI (Region of Interest).

The incorporation of multi-modal models, which use two different types of data for

classification, is very promising. An innovative approach proposed by Zhang et al., [70],

who developed an inter-modal DL model (MDL-IIA) that used ResNet50 as base model

with intra- and inter-modality attention modules, in order to determine patterns in both

ultrasound and mammogram images. For this, it was necessary to crop the breast lesions.
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The MDL-IIA achieved a high accuracy of 88.5% and a Matthews correlation coefficient

(MCC) of 88.7%. This novel model compared to previous researches show a high per-

formance in the prediction of molecular subtypes, due to its large dataset, multimodal

integration, and modification of CNN with attention models.

Finally, DL techniques can also be used in the determination of hormone receptors

such as HER2, ER and PR that define molecular subtypes. Ueda et al., [71], used cross-

validation for their classification model, which basen on four architectures: VGG16, Incep-

tionV3, ResNet52 amd Dense121. To determine which models perform better, the author

used an ensemble method with the best models for each receptor. For each biomarker, an

AUC 67% was obtained for ER, 61% for PR and 75% for HER2. Using for each one these

ensemble Inception + ResNet for ER , VGG16 + Inception for PgR and HER2 biomarkers.

Therefore, the evidence found related works suggest that development of deep learn-

ing models to predict and classify molecular subtypes using mammograms are promising.

Nevertheless, there are some limitations in current studies that need to be addresed. For

example, limited databases and data imbalance. In addition, complete information on

clinical data of breast lesions should be included.
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Chapter 4

Methodology

This section details the methodology used to develop a DL model for detection of BC

and the classification of its molecular subtypes from mammography images. The process

consists of several steps: data collection and pre-processing, segmentation, model training

and evaluation. Figure 4.1 presents the overall flowchart of the methodology proposed.

Figure 4.1: Flowchart of the proposed methodology.
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4.1 Dataset description

Three mammography databases were used in this research, the data specifications of each

one is summarized in Table 4.1 , which is described in detail below.

Table 4.1: Summary of the datasets used, with their specifications.

Dataset CMMD KAU-BCMD CBIS-DDSMCMMD1 CMMD2
Number of
cases

1026 749 1416 1566

Number of
images

2214 1498 5662 10239

Image type DICOM JPG DICOM
Resolution 1914 x 2294 px 2816 x 3583 px Varied

Categories Benign
Malignant

Her2-enriched
Luminal A
Luminal B

Triple negative

BIRAD1
BIRAD2
BIRAD3
BIRAD4
BIRAD5

Benign
Malignant

Size 22.86GB 607 MB 163.51GB

Approach Breast cancer
detection

Molecular subtypes
classification

Breast cancer
detection

Tumor
segmentation

Ref. [72] [73] [74]

4.1.1 CMMD

The Cancer Imaging Archive (TCIA) [75] provides The Chinese Mammography Database

(CMMD) [76] contains 3728 mammographies from 1,775 patients (mean age: 47.56 years;

range 18-87 years) from China with benign and malign cases from the left and right sides

of the breast with CC and MLO views as it is shown in Figure 4.2.

Figure 4.2: CC and MLO views of the left and right breasts of sample mammogram of
CMMD dataset.
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The database is divided into CMMD1 and CMMD2. CMM1 contains 1026 cases (2214

mammograms) that are distinguished between benign and malignant, on the other hand

CMM2 includes 749 cases (1498 mammograms) that include malignant cases divided by

molecular subtypes as follows:

• Luminal A: 152 cases (51.39 ± 11.21) years.

• Luminal B: 376 cases (49.30 ± 10.82) years.

• HER2-Enriched: 135 cases (50.21 ± 10.16) years.

• Triple negative: 86 cases (48.67 ± 10.79) years.

The distribution per class is shown in Figure 4.3.

Figure 4.3: Distribution of molecular subtypes per class in CMMD2 dataset.

4.1.2 KAU-BCMD

King Abdulaziz University Breast Cancer Mammogram Dataset (KAU-BCMD) [73], con-

tains 1416 cases including 5662 DICOM mammograms with CC and MLO views of the

left and right breast. It is divided according to BI-RAD categorical from BI-RAD0 to

BI-RAD5. However, for this specific study, only cases classified as BI-RADS 1 were used,

corresponding to patients who do not present suspicious lesions in the breast that includes

1865 mammographies.
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4.1.3 CBIS-DDSM

The Curated Breast Imaging Subset (CBIS-DDSM) is a updated public dataset of mammo-

grams extracted from the Digital Database for Screening Mammography (DDSM) contain-

ing 1566 cases with 62644 images of both breasts in both CC and MLO views [74]. Each

image includes precise information about the tumor region of interest (ROI) and binary

mask images that delimited the general position of the tumor. The database is divided

by their abnormality type into mass and calcification, where tumors are labeled by their

lesion type into benign and malignant. For this study, only cases with malignant tumors

(1176 images) were selected, since the molecular subtypes to be analyzed correspond to

malignant.

4.2 Detection of Breast Cancer

4.2.1 Data Preparation

The mammograms that are in DICOM format had been converted to Portable Network

Graphics (PNG) format. The datasets were splitted into training set (1300 images) and

the validation set (200 images) per class. Normal cases were labeled with 0 and cases with

carcinoma with 1. The input images were normalized by dividing each pixel value by 255,

scaling the values to a range of [0, 1].

4.2.2 Data Pre-processing

To improve the quality of mammograms images and highlight relevant features of abnormal

lesions, for the detection of breast cancer. The procedure used in data pre-processing in

this study is summarized in Figure 4.4. The techniques used are described in detail below.

Biomedical Engineer 28 Graduation Project



School of Biological Sciences and Engineering Yachay Tech University

Figure 4.4: Block diagram for data pre-processing.

ROI Extraction of Breast

It is important to obtain a region of interest (ROI) that focuses on the breast area of mam-

mograms, because most of these are large in size and only 30% corresponds to breast tissue.

Analyzing the whole-mammogram can complicate the detection of breast cancer [65]. This

procedure reduces noise and avoids analyzing irrelevant areas. Therefore, mammograms

were processed in grayscale and the external contours are detected. Then, the contour with

the largest area is selected, assuming that this corresponds to the breast, and a rectangle

is calculated to delimit it.

Finally, the coordinates of the rectangle are adjusted to ensure that they are within

the image limits, obtaining the breast region of interest (BROI). Thanks to this technique,

the model will be focus on specific patterns of breast tissue, facilitating the identification

of breast lesions. The algorithm 1 for this procedure is found in appendix section.

CLAHE

Contrast-Limited Adaptive Histogram Equalization (CLAHE) improves image analysis to

adjust contrast in small regions, allowing the edges of tumors to be highlighted and easier

to identify [77]. This method is especially useful for segmenting tumors in dense breasts,

where edges of suspicious abnormalities can be difficult to distinguish [78]. The specific

parameters used in the implementation of CLAHE were the clipping limit for histogram

equalization ‘clipLimit’ of 2.0, and the grid size ‘tileGride’ of (12x12).

The algorithm 2 for this procedure is found in appendix section. For these computer

vision procedures, it was necessary to use the ’CV2 ’ library of Python.

The mammogram processed with both previous techniques is shown in Figure 4.5.
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Figure 4.5: Breast ROI cropping and CLAHE application for mammogram image process-
ing.

Data augmentation

For training deep learning models, it is crucial to have a robust data in order to increase

the diversity of the training set and improve the ability of the model to generalize to

new data and avoid overfitting. In this study, the augmentation technique is applied

using ImageDataGenerator implemented in Tensorflow.This process included the following

transformations:

• Rotation: 20°

• Shear range, probability of 0.2

• Horizontal flip, probability of 0.2

• Width shift, probability of 0.1

• Zoom range, probability of 0.2

4.2.3 Proposed model based on AlexNet

For breast cancer detection, the pre-trained AlexNet model was used, which is a CNN

architecture very useful in image classification. However, some modifications were made in
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the final layers of the network, to adapt it to a classification of normal and cancer cases.

First, the activation function of the last classification layer was replaced by the sigmoid

function, for this binary classification. The last FC containing 4096 neurons was reduced to

1024 neurons, which allowed to reduce the dimensionality of the representation. In Figure

4.6 the proposed model based on AlexNet architecture is shown.

Figure 4.6: AlexNet model architecture proposed for breast cancer detection.

4.3 Identification and classification of breast cancer
molecular subtypes

4.3.1 Data Preparation

In this section, stratification and division by molecular subtype was performed using the

CMMD2 database. For this, the CMMD manifest and the Excel file containing the patients’

clinical data were needed. The code developed by [79], for the classification between benign

and malignant tumors, was useful to modify and apply it in the division by molecular

subtype. Then, the dataset was randomly divided into Train, Validation, Test using the

proportion of 80%, 20%, 20%, the number of images per subtype is shown in Figure 4.7.

Figure 4.7: Data split into Train, Validation and Test for each molecular subtype.
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4.3.2 Data Pre-procesing

1. Mammogram Enhancement The image processing mentioned before, for CMMD2,

the crop of breast region BROI and CLAHE were applied.

2. Segmentation of Breast Tumor In this part, two commonly used models for

medical image segmentation were trained: U-net and Attention U-net.

(a) U-net model, is a type of CNN specialized for medical imaging segmentation.

It was first introduced in 2015 by Ronneberger et al., [80], its name is based in

”U” letter form of this architecture, and consists of two parts:

• Encoder, the letf side that captures context and spatial features, is a typi-

cal CNN architecture with repeated application of convolutions, ReLU ac-

tivations, and max-pooling operations. As the path progresses, the spatial

dimensions of the feature maps reduce while the number of feature channels

increases.

• Decoder, the right side, which aims to localize the objects, consists of

up-convolution or transposed convolution layers that upsample the feature

maps. It also includes concatenations with the corresponding feature maps

from the encoder path (skip connections), which helps in retaining spatial

information loss during downsampling.

(b) Attention U-net model, is an enhancement of the original U-Net architecture

that incorporates attention mechanisms to improve segmentation performance

and was developed by Oktay et al., [81]. They add attention gates (AG) in the

skip connections of decoder path, that are capable to learn and focus on the

most important features in the input data, and increase model accuracy and

sensitivity, the model architecture is shown in Figure 4.8.

The training was based on an improved version of the previously mentioned

models. Bhattiprolu [82], modified some parameters such as implementing a

batch normalization on channels after a convolution, and the loss function used

was Binary Focal Loss, since it is a binary classification, the sigmoid activation
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function was used. The input size was 224x224x3, Batch size 8 and it was

iterated for 50 epochs.

Figure 4.8: Attention U-net model architecture.

3. ROI Extraction of Breast Tumor

The segmentation model with the best performance will be used to obtain a binary

mask (predicted) that shows the location of the breast tumors corresponding to each

molecular subtype. To extract the tumor ROI, the Bounding Box technique used in

object detection was used to determine the spatial location of the breast lesions.

For this process, which is explained in Figure 4.9, a function was designed in MAT-

LAB, where the mammogram and its corresponding mask generated previously are
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loaded. Then, the mask is verified as binary; if it is not, it is converted to binary using

’imbinarize’. Then, the ’BoundingBox’ property that encloses the object (tumor) is

searched for in the mask region, the coordinates and dimensions of the bounding box

are extracted, and the tumor is cropped. Then, the images obtained were resized to

224x224 and converted to RGB (3 channels). The algorithm 3 of this process was

applied to the entire CMMD2 dataset using the Image Batch Processor application

from MATLAB R2023b as a function. The output images will be the input data for

molecular subtyping classification.

Figure 4.9: Breast tumor ROI extraction process.

4.3.3 Transfer Learning Models

Transfer learning (TL), is an efficient approach that allows improving performance in a new

task by taking advantage of the knowledge acquired in a previous task [83]. This method

is particularly useful when the data set is limited. Transfer learning consists of two stages:

pre-training and fine-tuning. First, the model is trained on a general task, such as with

ImageNet for 2D images, and then adjusting its weights to fit the new task, allowing it to

adapt to new patterns and relationships in the data [84].

The TL models used for molecular subtype classification were selected according to the

state-of-art of this study, these are: ResNet50, VGG16, VGG19, InceptionV3, Xception,

and MobileNet. After this, fine-tuning was performed to adjust the hyperparameters and
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retraining the network layers for the classification of four classes. Therefore, the last fully-

connected layer configured for 1000 classes was replaced by a dense layer containing 4

neurons (4 molecular subtypes), and a ’softmax’ activation function ideal for multiclass

classification was implemented.

4.4 Experimental Setup

4.4.1 Software and Hardware

Training a deep learning model on a powerful hardware configuration combined with spe-

cialized software. The processor used is a 12th generation Intel® Core™ i7-12650H and

GPU NVIDIA RTX 3070 of 8GB, which allows to accelerate calculations, in particular

matrix operations and parallel processing, which are vital for training neural networks. To

take advantage of the performance of this GPU, the CUDA Toolkit version 11.2 was used.

According to the programming environment, Python 3.10 was used, which provides exten-

sive libraries, mainly TensorFlow Keras 2.10, which provides high-level APIs to create and

train complex models efficiently and quickly. In addition, some of the esential libraries

used were the following: Numpy, Pandas, Sckit-learnin, Seaborn, OpenCV.

4.4.2 Experiments for Breast Cancer Detection

i. Experiment 1: Comparison between the previous AlexNet model proposed

and the fine-tuned AlexNet model.

In addition, the impact of the image processing techniques used in this study on mam-

mography images will be evaluated to improve the model performance. The proposed

model by [85] previously presented overfitting problems, the pre-processing methods

such as data augmentation were used, where Gaussian noise and morphological filters

such Median blur filter and erode were employed randomly in order to avoid overfitting.

The training setup and the hyperparameters used in this experiment for new model

proposed is:

• Batch size: 64

• Epoch: 20
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• Dropout: 0.5

• Input size: 227x227x3

• Activation function: Sigmoid

• Loss: binary crossentropy

• Learning rate (LR): 0.0001

Additionally, a model Checkpoint was used to save the best model and an EarlyStop-

ping with patience of 5 so that when the model starts to overfit, the training will be

stopped.

4.4.3 Experiments for Molecular Subtypes Classification

i. Experiment 1: Comparison of Transfer Learning models (ResNet50, VGG16,

Xception, InceptionV3) using BROI images.

All training images use ImageDataGenerator for data augmentation, the transforma-

tion will be the same as experiment for BC detection. All input data will be reescale

and normalized to 1./255. Moreover, BROI images will be resized according the input

size for each convolutional neuronal network.

The training settings are:

• Batch size: 32

• Epoch: 50

• Input size: depends on each architecture

• Activation function: Softmax

• Loss: categorical crossentropy

• Learning rate (LR): 0.001

• Dropout: 0.5

• L2 Regularizer: 0.001

ii. Experiment 2: Tumor segmentation using Unet and Attention U-net.

The process of selecting the best model for breast tumor segmentation is illustrated in
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Figure 4.10 Using the CBIS-DDSM malignant cancer mammogram dataset and their

respective masks, two segmentation models will be trained, then the evaluation is car-

ried out with performance metrics. If the model has an Acc > 90% and Jaccard index

>80%, the most appropriate model will be selected to perform tumor segmentation

according to its molecular subtype providing a predicted mask as an output.

Figure 4.10: Block diagram of model segmentation selection process to obtained predicted
mask with location of breast tumor.

iii. Experiment 3: Evaluation of TL models using segmented tumor images

(ResNet50, VGG16, Xception, InceptionV3, VGG19, MobileNet).

For this experiment, the images obtained after tumor ROI segmentation and extraction

were used. Some samples of the training dataset used are shown in Figure 4.11.

The training set consists of 120 images, 30 images for Validation and 30 images for

Testing. In addition, MobileNet and VGG19 models for transfer learning was added,

the configuration was the same as used in Experiment 1.

Dataset of ROI of Breast Tumors
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Figure 4.11: Samples training set of breast tumors images corresponding to HER2-enriched,
Luminal A, Luminal B, and Triple negative subtypes cropped using ROI extraction.

The process of training and evaluation of different TL models in molecular subtypes

classification is illustrated in Figure 4.12.

Figure 4.12: Flow-chart of evaluation of different CNNs models in classification of molecular
subtypes using ROI breast tumors images.

iv. Experiment 4: Selection and evaluation of best TL model and Fine-Tuning.

After experiment 3, the best model with good accuracy is selected and adapted for

the classification of ROI tumor images into four molecular subtypes of breast cancer

using transfer learning and fine-tuning. The input ROI tumors images was augmented

using ImageDataGenerator and the metrics described in Experiment 1.
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The procedure for Fine-Tuning applied is explained below:

• Load pre-trained model.

• The classification layer was removed from the pretrained model, which was de-

signed to classify 1000 ImageNet classes.

• A FC layer was added with 4 neurons, corresponding to the four molecular sub-

types, using softmax as activation function in order to predict the probability of

each class.

• The initial layers of pretrained model were frozen in order to allow that only

layers added to be fine-tuned.

• Adjust hyperparameters such as learning rate, batch size, add dropout, L2-

regularizer to avoid overfitting. Adjust the loss function to a categorical crossen-

tropy.

After the training the model, the best model is saved through Callbacks and Mod-

elCheckPoint. Finally, the model is evaluated through the metrics described in the

next section.

The flow-chart illustrated in Figure 4.13 summarizes the process applied in this exper-

iment.

Figure 4.13: Flowchart of the Transfer Learning Process with best model for the Classifi-
cation of Molecular Subtypes.
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4.5 Model Performance Metrics

4.5.1 Evaluation metrics for Image Classification

In order to assess the performance of the proposed model, the confusion matrix is one of

the fundamental tools for binary or multiclass classification tasks. This matrix represents

the number of true values versus predicted results and dived into four components:

• TP: True Positive indicates the cases in which the model correctly predicted a class

labeled as positive (e.g., e.g., correctly identifies breast cancer patients as positive).

• TN: True Negative indicates the cases in which the model correctly predicted a class

labeled as negative (e.g., correctly identifies non-cancerous cases as negative).

• FP: False Positive indicates the cases in which the model incorrectly predicted a

class labeled as negative, as positive (e.g., incorrectly identifying a healthy patient

as having cancer).

• FN: False Negative indicates the cases in which the model incorrectly predicted

a class labeled as positive, as negative (e.g, wrongly identify a cancer patient as

healthy).

Based on the confusion matrix, there are several evaluation measures for BC detection,

described bellow in detail:

Accuracy

Accuracy score measures the proportion of all correct predictions out of total cases, show-

ing how well the model correctly identifies both normal (non-cancerous) and abnormal

(cancerous) cases.It can be expressed by equation ( 4.1)

Accuracy(%) = TP + TN
TP + TN + FP + FN (4.1)

Precision

Precision is determined by dividing the true positives predictions among all positive pre-

dictions made by the model. High precision indicates that the model predict correctly
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classifying cancer patients among all positives cases, reducing false positives. It can be

measured by the equation ( 4.2).

Precision(%) = TP
TP + FP (4.2)

Sensitivity or Recall

Recall calculates the proportion of actual positives (cancer cases) that are correctly iden-

tified by the model and it can be measured using the equation ( 4.3).

Recall(%) = TP
TP + FN (4.3)

F1-Score

F1-score is used to measure the overall perfomance of classification model, it combines

precision and recall into a balanced metric. This metric is especially helpful for imbalanced

datasets, where a high score in one metric (e.g., sensitivity) might come at the expense of

another (e.g., precision). It can be denoted by equation ( 4.4).

F1-Score(%) = 2 · Precision · Recall
Precision + Recall (4.4)

AUC-ROC

The AUC-ROC metric represents the area under the Receiver Operating Characteristic

(ROC) curve, which plots sensitivity against the false positive rate at different thresholds.

A high AUC value (closer to 1) indicates better overall model performance across all

thresholds, distinguishing between classes more effectively.

4.5.2 Evaluation metrics for Image Segmentation

Intersection over Union (IoU)

IoU or Jaccard coefficient, is a metric used to measure the overlap between the predicted

segmentation and the ground truth segmentation. The equation of this metric is 4.5

IoU = |A ∩B|
|A ∪B|

(4.5)
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Where:

• |A ∩B| is the area of intersection between the predicted and ground truth regions.

• |A ∪B|is the area of their union.

Dice coefficient

This coefficient measures the similarity between the predicted label and the ground truth

region. The corresponding equation is 4.6

Dice coefficient = 2|A ∩B|
|A|+ |B| (4.6)

where:

• |A ∩B|, is the area of intersection between the predicted and ground truth regions.

• |A|, is the area of the predicted region.

• |B|, is the area of the ground truth region.
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Chapter 5

Results and Discussion

5.1 Detection of Breast Cancer

5.1.1 Experiment 1: Comparison between the previous model
based on AlexNet and fine-tuned proposed model.

In this section, accuracy and loss curves of previous pretrained AlexNet model and Fine-

tuned proposed model is described below.

Firstly, both the accuracy and loss curves of the reference model and the proposed

model show a similar trend; during training, the loss curve decreases and the accuracy

curve increases. However, each there are some differences according to the validation and

training curves. In Figure 5.1, the pre-trained model based on AlexNet shows the loss curve

decreases close to zero, which indicates that the model is effectively learning to minimize the

error in the training set. In the case of the accuracy curve, it increases rapidly and reaches

very high values (0.95) since the beginning of training. However, the validation accuracy

curve above the training curve and reaching values very close to 1 suggests overfitting.

This means that the model has difficulty generalizing to new data.
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Figure 5.1: Accuracy and Loss curves of previous pre-trained AlexNet model.

In the case of the proposed AlexNet model (Figure 5.2), the loss curve also decreases

steadily, but its starting point is slightly higher than that of the baseline model. More-

over, the validation loss curve lies above the training one, which might indicate that the

model is not generalizing as well as expected. Tuning the learning rate, or using another

optimizer suitable for this binary classification. Meanwhile, the accuracy curve increases

and stabilizes around 0.90 to 0.99, indicating good performance. The two accuracy curves

are almost aligned, but the validation curve is under the training curve. Therefore, it was

necessary to employ another evaluation metric to complement the evaluation of the model’s

performance.

The test accuracy after training achieved was 98.60%.

Figure 5.2: Accuracy and Loss curves of fine-tuning AlexNet model.

The confusion matrix shown in Figure 5.3 demonstrates that the breast cancer detection

model proposed has excellent performance: it correctly identified 193 of 200 cancer cases

(96.5% recall) and correctly classified the 200 normal cases. There were no false positives
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and only 7 false negatives (patient with cancer classified as a normal). The model precision

was 100% and the overall accuracy of 98.25%, indicating that the model correctly predicts

in most cases , although there is a small chance that the model will fail.

Figure 5.3: Confusion matrix of proposed Alexnet model applying fine-tuning.

Comparing our work with other studies in terms of performance (Table 5.1), it is

observed that our breast cancer detection model presents good results. However, Salama

et al., [67] report superior performance in terms of accuracy and recall, with values of

98.87% and 98.98%, respectively. This is because their approach focused exclusively on

cancer detection using only the tumor region of the breast. Similarly, Mahmood et al., [65]

highlights that the use of a ROI and the application of image enhancement techniques,

such as CLAHE, significantly increases the performance of deep learning models. In his

study, he achieved a accuracy of 98% and a loss of 0.07. This is consistent with Murtaza et

al., [86] who state that pre-processing and enhancement techniques such as ROI extraction,

image normalization, cropping and data augmentation, improve model performance.
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Table 5.1: Comparison of proposed fine-tuned AlexNet model with related works

Ref. Metrics
Accuracy (%) Precision (%) Recall (%) F1-Score (%)

[4] 98 - 86.7 -
[64] 95.10 - 70.8 -
[65] 98 - 99 -
[66] 95.70 94.6 95 -
[59] 87.20 85 76.3 80
[67] 98.87 98.79 98.98 97.99

Present work 98.60 100 96.50 98.22

5.2 Identification and classification of Molecular Sub-
types with Transfer Learning

Initially, we evaluated and compare some CNNs suggested to molecular subtyping classifi-

cation such as, ResNet50, VGG16, Xception, and InceptionV3 models with TL , mammo-

grams of breast ROI or BROI was used as an input data for these models.

5.2.1 Experiment 1: Comparison of TL with ResNet50, VGG16,
Xception, InceptionV3 models using BROI images.

In this section, we show the accuracy and loss results of the TL models for molecular

subtype classification. As seen in the bar chart (Figure 5.4), all CNNs demonstrated very

low performance below 50%. The ResNet50 model was the worst with an accuracy of

22.57%, followed by Xception with 40.28%, VGG16 with 43.75%, and finally InceptionV3

which showed a higher accuracy percentage of 45.49% compared to the other architectures.

In the case of model loss, the architecture with the lowest value of loss was VGG16. This

was due to the complexity and variability of the mammography images, which made it

challenging to identify and classify molecular subtypes.
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Figure 5.4: Comparison of Transfer Learning models performance (ResNet50, Xception,
VGG16, InceptionV3) using BROI images.

5.2.2 Experiment 2: Comparison of Unet and Attention Unet in
breast tumor segmentation.

To obtain and extract the breast tumor ROI, was neccesary the use of segmentation model.

For this, two segmentation models were trained, U-net and an optimized version called

Attention U-net, and the best one was selected based on the one that shows better per-

formance for segmenting tumors. Table 5.2 shows the results of the evaluation metrics for

each model.

Table 5.2: Model performance of U-net and Attention U-net

Model Metrics
Accuracy Loss Dice coefficient Jaccard index Mean IoU

Unet 0.9854 0.0107 0.6940 0.7498 0.5338
AttUnet 0.9881 0.0084 0.7005 0.8657 0.5423

According to Table above, the Att U-net segmentation model shows promising perfor-

mance, with high accuracy 98.81% indicating correct classification of most pixels. However,

the intersection between the predicted and true label, reflected by the Dice Coefficient 70%

and Jaccard Index 86%, although good, still has room for improvement. The Mean IoU of
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0.54 suggests inconsistencies in segmentation between different classes. Compared to U-net

model, Att U-net delivers superior results, but it would be beneficial to continue fine-tuning

the model, optimizing the image preprocessing to further improve segmentation. However,

this model could help in segmentation of breast tumor. Furthermore, Figure 5.5 shows how

segmentation is performed on a test mammogram, as seen on the top, U-net did not fully

segment the tumor region and had an IoU of 0.74. However, the tumor segmentation on

the predicted mask through the Attention U-net model obtained a higher IoU of 0.82. This

complements the information in the previous table, demonstrating that Attention U-net is

a more suitable in the task of tumor segmentation.

Figure 5.5: Comparison of sample segmentation results of Unet and Att-Unet models

5.2.3 Experiment 3: Evaluation of TL models for identification
of molecular subtypes using breast tumors ROI images

As in Experiment 1, to select the best architecture for subtype classification, transfer

learning was used with the same models mentioned in the previous experiment. In addition,

two additional models were implemented: MobileNet and VGG19. The input data contains

200 images of breast tumors ROI.
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Table 5.3: Performance comparison of different TL in molecular subtypes classification
using breast tumors ROI.

Model
Proposed

Metrics
Acc(%) Precision (%) Recall(%) F1-Score (%) AUC (%)

VGG16 42.7 58.0 55.8 54.8 81.0
ResNet50 44.8 28.8 39.0 31.8 73.8
VGG19 52.1 61.0 55.8 55.5 83.0
Xception 64.6 63.0 62.8 62.0 86.5
InceptionV3 66.7 68.8 68.3 66.5 86.5
MobileNet 67.7 68.0 68.3 68 87.8

Figure 5.6: Bar chart-based performance comparative analysis of different CNNs in molec-
ular subtypes classification.

After training and evaluating the performance of the architectures for classification, as

seen in the Figure 5.6 and Table 5.3, the model that has the best results was MobileNet,

reaching an higher accuracy of 67.7% and a low loss of 0.83, and precision 68%, recall of

68.3%, F1-score of 68, and AUC of 87.5%. In the case of other models such as: Incep-

tionV3, Xception, VGG19, ResNet50, and VGG16 achieved 66.7%, 64.6%, 52.1%, 44.8%,

and 42.7% accuracy, respectively, with corresponding losses of 0.94, 0.99, 1.03, 1.23, and

1.27. As a result, the model selected is MobileNet. Thus, MobileNet and InceptionV3
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stand out as the best models on this dataset using tumor ROIs, with high values in ac-

curacy, precision, recall, F1-score and AUC, and with the lowest loss values. In contrast,

VGG16 and ResNet50 show relatively poor performance in several metrics, with VGG16

being especially low in precision and ResNet50 showing low recall and F1-score. Moreover,

comparing with the accuracy results of the CNNs used in experiment 1, it was shown that

the extraction of the breast tumor ROI allowed a significant improvement, compared to the

breast ROI. This is because the tumor segmentation allows to reduce the complexity of the

image and allows to focus on the most relevant features of the tumor [87]. Xception and

InceptionV3 models improve the accuracy to 60%. On contrary, CNNs such as ResNet50

and VGG16 increased their accuracy, however it is still an accuracy below 50%.

5.2.4 Experiment 4: Selection and evaluation of best TL model
for classification of breast cancer molecular subtypes

For the classification of molecular subtypes using the ROI tumor images as input, the

transfer learning technique was used with the pre-trained MobileNet model, due to its

better performance in the previous experiment. To adapt this model to our classification

task, the following adjustments were made:

• Add FC layer of 1024 with ReLU as activation function,

• L2 Regularizer of 0.001

• Dropout: 0.5.

• Loss function: Categorical crossentropy.

• Batch size: 32

• LR: 0.001

• Optimizer: Adam

• Epoch: 100

The architecture of proposed model is illustrated in Figure 5.7
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Figure 5.7: Architecture proposed of transfer learning model based on MobileNet.

After training the proposed model, the accuracy and loss curves shown in Figure 5.8

were obtained. Besides, the model achieves a test accuracy was 73.95%.

Figure 5.8: Accuracy and Loss curves of Fine-tuned MobileNet model.

The differences observed in each curve are explained below:
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• The loss curves decrease constantly during training. The training loss curve de-

creases from an initial value of approximately 2.27 to reach 0.69 at epoch 100. The

validation loss curve follows a similar trend, decreasing from 1.76 to 0.69, and remains

aligned with the training loss curve, although always slightly above it. This indicates

a reasonable fit of the model, but suggests that a lower loss could be achieved by

adjusting some hyperparameters, such as the learning rate or the loss function.

• On the other hand, the accuracy curves indicate an increase during training,

although with a more variable behavior. In fact, the validation accuracy curve is

higher than the training accuracy curve for the first 35 epochs, but then remains

below it until epoch 100. During this time, the accuracy varies from 0.67 to 0.77.

This variability suggests that the model could benefit from further fine-tuning of the

hyperparameters or additional regularization techniques to improve its stability and

accuracy.

For the analysis of the confusion matrix (Figure 5.9) and the classification for each

class, we have:

• Her2-enriched (Class 0): The model performs well, with 28 out of 30 instances

correctly classified (two misclassifications).

• Luminal A (Class 1): The model also performs reasonably well but has some

confusion with LumB, as six instances were misclassified.

• Luminal B (Class 2): This class shows significant confusion with LumA and TN,

indicating the model struggles more with this class.

• Triple negative (Class 3): The model is relatively accurate but shows some con-

fusion with the other classes, especially Class 3.
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Figure 5.9: Confusion matrix of Fine-tuned MobileNet model.

Figure 5.10: AUC-ROC curves of proposed Fine-Tuned MobileNet model

The results of the model’s performance from the confusion matrix are presented in

Table 5.4, the table also includes AUC per class obtained from previous Figure 5.10.
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Table 5.4: Transfer learning model based on MobileNet performance in multi-class classi-
fication.

Molecular
Subtypes

Metrics
Precision (%) Recall (%) F1-Score (%) AUC (%)

Her2-enriched 90.32 93.33 91.80 96
Luminal A 71.88 76.67 74.19 89
Luminal B 58.06 60 59.02 82
Triple Negative 73.08 63.33 67.86 89

In Table 5.4, the 4-class classification performance metrics for the analyzed molecular

subtypes are described. According to accuracy in predicting and classification different

breast cancer molecular subtypes using mammograms, varies by subtype. Overall, the

Her2-enriched subtype was the best ranked, presenting high values in all metrics: an accu-

racy of 90.32%, a recall of 93.33%, an F1-score of 91.80% and an AUC of 96%. In second

place was the triple-negative subtype, with a precision of 73.08%, a recall of 63.33%, an

F1-score of 67.86 and an AUC of 89. In third place, the Luminal A subtype showed a pre-

cision, recall, F1-score and AUC of 71.88%, 76.67%, 74.19% and AUC of 89%, respectively.

Finally, the worst classified subtype was Luminal B, with an accuracy of 58.06%, a recall

of 60%, an F1 score of 91.80%, and an AUC of 82%. The average precision obtained in

the study was 73.33%.

The fact that the Her2-enriched molecular subtype was the best classified in this study

is supported by the results obtained by Ueda et al., [71], who reported an AUC of 75%, and

by Mota et al., [69], with an accuracy of 89.79% and an AUC of 73.31%. These authors

argue that HER2 subtype, tend to have a higher predictive accuracy compared to others

subtypes, such as Luminal subtypes. This is due to the tumor characteristics, especially

due to the presence of microcalcification, while Luminal tumors, particularly Luminal A,

may exhibit imaging features that significantly overlap with other subtypes, making them

difficult to accurately differentiate. Luminal subtypes show greater variability in their

imaging features, making it difficult for deep learning models to learn consistent patterns.

In contrast, these results differ from those obtained by Zhang et al., [70], who reported

that Luminal subtypes were mostly identified with an AUC of 92.9%. Similarly, the study

by Bhandary et al., [68] came to the same deduction, obtaining an accuracy of 81.88%

in luminal cases. The authors state that this could be related to the relationship with
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imaging features, where luminal subtypes are characterized by having an irregular and

spiculated margins. In contrast, Her2 and TN subtypes present more regular and specific

shapes; the first one is distinguished by the presence of microcalcifications, while TN is

typically observed as a circumscribed and oval mass. These findings are consistent with that

presented by Singh et al., [88], who argue that tumor morphology may be a determining

factor in the classification of molecular subtypes.

In addition, the frequency of presentation of these subtypes in breast cancer cases

and datasets used to train deep learning models often have a class imbalance, with some

subtypes (such as Luminal A) overrepresented compared to others (such as HER2 and

TN). This can bias the model toward predicting the most common subtypes and reduce

the accuracy of less common subtypes.

To sum up, the higher accuracy in predicting some molecular subtypes is due to a

combination of distinctive tumor features in the images, whereas the lower accuracy for

other subtypes is related to feature overlap, class imbalance.

5.2.5 Overall Analysis and Comparison

In this section, the results of related works in deep learning models applied to the classi-

fication of molecular subtypes of from mammogram images with our proposed model are

compared and analyzed, as it is summarized in Table 5.5.

Table 5.5: Comparison of our proposed model and state-art related works

Model
Proposed

Metrics
Acc(%) Precision (%) Recall(%) F1-Score (%) AUC (%)

ResNet-18 [68] - - - 66.88 66.93
ResNet-101 [69] 79.02 - - - 64.7
MDL-IIA [70] 88.5 87.8 85.4 86.2 92.0
VGG+Inception [71] - 61.0 74.0 - 75.0
Our model 73.95 73.33 73.32 73.2 89.0

In therms of performance measurements, the multimodal approach proposed by Zhang

et al., [70] presents the highest performance in molecular classification. Their model

combined mammography and ultrasound images to predict molecular subtypes using a

multi-modal deep learning model (MDL-IIA) incorporating the attention mechanism with

ResNet50 as base architecture. The MDL-IIA model has achieved an accuracy, recall and
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F1-score and AUC corresponding to 87.5%, 85.4%, 86.2% and 92%, respectively. These

high values highlight how the incorporation of attention modules allows the model to selec-

tively focus on the relevant characteristics of the images to detect patterns. In addition, it

is highlighted that due to its multimodality, it achieved an MCC of 83.7% in the prediction

of molecular subtypes of 4 categories.

In comparison with our proposed work, based on MobileNet architecture that achieved

a satisfactory AUC of 89% but showed lower accuracy (73.95%), precision (73.3%), recall

(73.32%), and F1-score (73.2%) relative to Zhang et al.’s multimodal model. Although

the MobileNet model performed well with mammogram images alone, it may benefit from

architectural adjustments and the inclusion of additional imaging modalities like ultrasound

or MRI. Such as Wu et al. [89], who also observed improved results using MRI and MG

images with an accuracy of 74.1%. This approach could further improve accuracy and

generalizability, as demonstrated by previous studies leveraging multimodal data.

Furthermore, while many studies relied on residual networks like ResNet, such as Band-

hary et al. [68] with ResNet-18, performance did not universally improve with this archi-

tecture. For instance, Bandhary’s model achieved an F1-score of only 66.98% and an AUC

of 66.93%, significantly lower than multimodal models. This suggests that ResNet-based

models might have limited capacity to classify breast cancer subtypes accurately when used

on single imaging modalities without further enhancements. Also, Mota et al., [69] em-

ployed ResNet-101 for both binary and multiclass classification of molecular subtypes using

mammography images. In binary classification, accuracy exceeded 67% for all subtypes,

with HER2 classification achieving the highest accuracy (89.79%) and AUC (73.31%) after

oversampling and augmentation. However, multiclass classification showed lower accuracy

(66.88%) and AUC (66.93%)values, possibly due to the challenges associated with class

imbalance. In the case of a different approach proposed by Ueda et al. [71], who used a

mix of VGG16, InceptionV3, ResNet52, and DenseNet121 to predict receptor expression

(ER, PgR, HER2) from mammograms. Performance for ER and PgR was limited (AUCs of

67% and 61%, respectively), with HER2 prediction slightly better (AUC of 75%), in which

better combinations was VGG16 and InceptionV3. This study showed some limitations

such as limited mammograms images.

Overall, the studies demonstrate the potential of deep learning to predict breast cancer
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molecular subtypes from images. Multimodal integration, transfer learning, and incorpora-

tion of additional clinical information are promising strategies to improve model accuracy.

However, larger and more diverse datasets, strategies to address class imbalance, and rig-

orous clinical validation are needed to translate this technology into clinical practice.
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Chapter 6

Conclusion and Future Works

6.1 Conclusion

In this study, two deep learning models with two specific objectives were developed: one

for breast cancer detection and another for classifying molecular subtypes using mam-

mographic images. For the first, we proposed a model based on AlexNet CNNs, which

demonstrated outstanding performance, achieving an overall accuracy of 98.25%. Thanks

to pre-processing techniques, the model successfully distinguished between normal mam-

mograms and those with cancer with 100% precision, reaching a sensitivity of 96.50%.

These results underline the high performance in the detection task compared to other

models, providing a potential tool for early breast cancer diagnosis.

Regarding the identification and classification of molecular subtypes from mammograms,

the MobileNet model with transfer learning achieved an overall accuracy of 73.95%. This

process involved tumor segmentation and tumor region of interest (ROI) extraction, since

using breast ROI images did not allow the model to focus on the imaging features charac-

teristic of each molecular subtype.

Furthermore, it is highlighted that the best classified molecular subtype was the one en-

riched with Her2, with a precision of 90.32%, a recall of 93.3%, an F1-score of 91.80% and

an area under the curve (AUC) of 96%, followed by the Triple Negative subtype with an

accuracy of 73.08%, and the Luminal A and B subtypes with precision values of 71.88%

and 58.06%. Luminal B was the worst classified, since it shares characteristics in its mor-

phology similar to Luminal A, which complicates the distinction between these classes.
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This is attributed to the fact that image features are distinctive in mammograms for each

molecular subtype.

In brief, the proposed Deep learning models offer a promising alternative to assist radi-

ologists and oncologists in the diagnosis and treatment of breast cancer through medical

imaging.

6.2 Limitations

Regarding the breast cancer detection model, it offers a high performance, but adjustments

must be made to the architecture and its hyperparameters to avoid overfitting.

Despite the promising results obtained, the study on the identification of molecular sub-

types presents certain limitations that must be considered so that the model improves its

ability to classify molecular subtypes.

One of the main limitations is the limited number of training images that were used in

the model based on the region of interest (ROI) of the tumor. This fact suggests the need

for a more extensive database to improve the generalization of the model that is classified

by its molecular subtype that is supported by a biopsy or detailed clinical data, and the

assistance of an expert radiologist who can correctly identify tumors in mammograms. Al-

though the segmentation model had a great performance, some tumors were not segmented

correctly, which reduces the amount of data. Furthermore, the imbalance of molecular sub-

type data due to the frequency of cases in breast cancer means that the model may be

biased by the majority class, reducing the accuracy of less frequent subtypes. Another chal-

lenge of the present study regarding the model is that although deep learning models are

powerful, their ability to represent subtle differences between molecular subtypes remains

a challenge. Integrating more advanced feature extraction techniques and incorporating

additional clinical and genetic data could improve model performance.

6.3 Future works

In future research, it is recommended to incorporate multi-omics data, such as gene expres-

sion, as well as additional images, such as histology, MRI, ultrasound, in order to develop

a multi-modal model that offers a more complete view of breast cancer and its molecular
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subtypes. Some future applications of these developments include:

a. Diagnostic assistance and treatment support: Improve the accuracy and effi-

ciency in the detection and diagnosis of breast cancer, by providing advanced tools that

assist radiologists, clinicians identifying the optimal treatment for each patient based

on precise classification of the molecular subtype.

b. Development of an Integrated Model: Creating a model that combines the two

processes discussed in this study: cancer detection and molecular subtype classification

in one model could provide a more complete and efficient solution for breast cancer

diagnosis.

c. Application to other types of cancer: Extend the application of this approach to

the detection of other cancer types or diseases that could benefit from a similar analysis,

thus expanding the impact of the model in personalized medicine.

These proposals not only have the potential to enhance the accuracy and clinical outcomes

of the developed model, but could also open new research avenues in breast cancer diagnosis

and help reduce mortality rates.

6.4 Scientific Dissemination

Previous research presented at the 4th International Conference of Information Systems

and Software Technologies ICI2ST 2023 with the work titled ”Early Detection of Breast

Cancer using Pretrained AlexNet Convolutional Neural Network” [85].
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.1 Appendix 1. Algorithms for Data Pre-processing

Algorithm 1 Breast ROI Extraction Algorithm
1: Input: Whole-mammogram image (img)
2: img ← Read the image in grayscale
3: (ori h, ori w) ← Get the dimensions of img
4: cnts, ← Find the external contours in img
5: areas ← Array of contour area and calculate areas
6: select idx ← Index of the largest contour area
7: cnt ← Select the index
8: (x0, y0, w, h) ← Bounding rectangle of the selected contour
9: x1 ← Clamp (x0 + w) within [0, ori w]

10: y1 ← Clamp (y0 + h) within [0, ori h]
11: x0 ← Clamp x0 within [0, ori w]
12: y0 ← Clamp y0 within [0, ori h]
13: img broi ← Extract breast ROI from img using (x0, y0, x1, y1) coordinates.
14: Return img, img roi

Algorithm 2 Apply CLAHE to BROI
1: Input: BROI cropped image, clipLimit, tileGridSize
2: clahe ← Create CLAHE object with clipLimit and tileGridSize
3: img clahe ← Apply CLAHE to input image
4: Return BROI enhance image with CLAHE
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Algorithm 3 Bounding box crop tumor
1: Input: Original image image, segmented mask mask Verify if mask is binary
2: if mask is not binary then
3: mask ← imbinarize(mask)
4: end if

Find properties of the region in mask
5: stats ← regionprops(mask, ’BoundingBox’)

Assume a single object (tumor)
6: boundingBox ← stats(1).BoundingBox

Extract bounding box coordinates
7: x← boundingBox(1)
8: y ← boundingBox(2)
9: width← boundingBox(3)

10: height← boundingBox(4)
Crop the original image using bounding box

11: crop ← imcrop(image, [x, y, width, height])
Resize the crop to 224x224

12: resizedCrop ← imresize(crop, [224, 224])
Convert resizedCrop to RGB

13: rgbCrop ← cat(3, resizedCrop, resizedCrop, resizedCrop)
14: Output: Resized and RGB-converted image

.2 Appendix 2. Complementary results of segmenta-
tion models (plots)

.2.1 U-net model
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Figure 1: Accuracy, Loss (Top), Jaccard index (Bottom) curves of U-net model.

.2.2 Attention U-net model

Figure 2: Accuracy, Loss (Top), and Jaccard index (Bottom) curves of Att-Unet model.
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