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Resumen

El fenómeno de El Niño-Oscilación del Sur es la fluctuación climática interanual más
significativa, pues influye en la circulación atmosférica global y modifica los patrones
meteorológicos. En este estudio se analizó su impacto en las variaciones climáticas en
Ecuador mediante el sistema de modelado climático regional, versión 5.0.0, mediante
simulaciones de alta resolución que abarcaron la compleja topografía ecuatoriana y la
región de Niño uno y dos, esenciales para este análisis. Las condiciones de contorno
provenientes del modelo de circulación general HadGEM2-ES, bajo un escenario de
altas emisiones de gases de efecto invernadero, impulsaron las proyecciones de tem-
peratura en superficie, precipitación total y otras variables relevantes. La validación
se realizó comparando los resultados con datos reanalizados globales y aplicando cor-
rección de sesgo mediante mapeo delta cuantílico, lo que mejoró significativamente
la precisión de las proyecciones. Se identificaron eventos del fenómeno a partir de
anomalías en la temperatura superficial y se analizaron proyecciones para el periodo
2021 a 2050, las cuales revelaron un calentamiento significativo en las zonas costeras
y andinas, con incremento de precipitaciones durante eventos de El Niño y reducción
en los de La Niña. Estos hallazgos contribuyen a una mejor comprensión de los im-
pactos del fenómeno y apoyan el desarrollo de estrategias de adaptación y mitigación
en Ecuador.

Palabras clave:
El Niño-Oscilación del Sur, modelado climático regional, corrección de sesgo, simula-
ciones de alta resolución, proyecciones climáticas



Abstract

The El Niño-Southern Oscillation phenomenon is the most significant interannual cli-
matic fluctuation, influencing global atmospheric circulation and altering weather pat-
terns. In this study, its impact on climatic variations in Ecuador was analyzed using the
regional climate modeling system, version 5.0.0, through high-resolution simulations
that captured Ecuador’s complex topography and the Niño 1 and 2 region, which are
essential for this analysis. Boundary conditions from the HadGEM2-ES general circu-
lation model, under a high greenhouse gas emissions scenario, drove the projections for
near-surface temperature, total precipitation, and other relevant variables. Validation
was performed by comparing the results with global reanalysis data and applying bias
correction using quantile delta mapping, significantly enhancing projection accuracy.
Events of the phenomenon were identified based on anomalies in near-surface tempera-
ture, and projections for the period 2021 to 2050 revealed significant warming in coastal
and Andean regions, with increased precipitation during El Niño events and decreased
precipitation during La Niña events. These findings contribute to a better understanding
of the phenomenon’s impacts and support the development of adaptation and mitigation
strategies in Ecuador.

Keywords:
El Niño-Southern Oscillation, regional climate modeling, bias correction, high-resolution
simulations, climate projections
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Chapter 1

Introduction

The El Niño-Southern Oscillation (ENSO) is recognized as the most significant interannual climate

fluctuation influencing global atmospheric circulation, thereby affecting weather and climate patterns

worldwide6. ENSO comprises irregular periods of warming (El Niño) and cooling (La Niña) in

the surface waters of the tropical eastern Pacific Ocean, driven by complex interactions between sea

surface temperatures (SST) and atmospheric conditions in the equatorial Pacific4. During El Niño

events, weakened trade winds reduce the upwelling of colder, nutrient-rich water off the coast of

South America, leading to increased SSTs in the central and eastern tropical Pacific. Conversely,

La Niña events are marked by stronger-than-usual trade winds and enhanced upwelling, resulting in

colder SSTs7. The neutral phase is characterized by a balance in the tropical Pacific climate system

without the significant deviations seen in El Niño or La Niña events8. Figure 1 provides a schematic

representation of these phases, illustrating the distinct atmospheric and oceanic conditions.

ENSO is a very unpredictable phenomenon since it shows variations in intensity, frequency, and

duration. Each phase can last from a few months to a year9. This phenomenon greatly influences the

global atmospheric circulation, as it alters the position and intensity of the jet stream and the trajectories

of storms in the Pacific. The jet stream is a band of fast-moving winds that moves from west to east

in the upper atmosphere, significantly influencing weather and climate patterns. Therefore, these

changes can lead to extreme weather events with environmental and socioeconomic impacts around

the world10.

1.1 ENSO Dynamics

The dynamics of ENSO involve intricate interactions between the atmosphere and the ocean, primarily

driven by feedback mechanisms like the Bjerknes and thermocline feedbacks. The Bjerknes feedback,

identified by Jacob Bjerknes, links SSTs in the eastern tropical Pacific with overlying atmospheric

1



(a): La Niña conditions (b): Normal conditions (c): El Niño conditions

Figure 1.1: Schematic of atmospheric and oceanic conditions of ENSO in the tropical Pacific. Under
normal conditions, the Walker Circulation features rising air and heavy rainfall over the warm western
Pacific and descent over the cooler eastern Pacific, creating a "cold tongue" and a "warm pool" in sea
surface temperatures. During El Niño, weakened trade winds shift the warm pool eastward, flatten
the thermocline, and reduce upwelling, leading to a positive feedback loop of warming surface waters
and weakening winds. La Niña intensifies trade winds, steepens the tilt of the thermocline, increases
upwelling, and shifts the warm pool further west. Taken from "Introduction to El Niño Southern
Oscillation in a Changing Climate"4.

conditions, wherein a reduction in the east-west temperature gradient weakens trade winds, reducing

upwelling and allowing warmer waters to propagate eastward, amplifying the initial warming11. The

thermocline, a layer in the ocean where the temperature gradient is most pronounced, also plays a

crucial role in ENSO dynamics. During El Niño, the thermocline depth decreases in the eastern

Pacific, reducing the cooling effect of upwelling, thereby reinforcing the warming. During La Niña,

the deeper thermocline in the eastern Pacific promotes the upwelling of cooler waters, sustaining or

strengthening the cooling12.

Extending this understanding, the Zebiak-Cane model, a pivotal coupled ocean-atmosphere

model, provides deeper insights into the propagation of oceanic waves and their role in ENSO events13.

This model elucidates how Kelvin and Rossby waves contribute significantly to the development and

decay of ENSO phenomena. Wind anomalies in the western Pacific initiate Kelvin waves. These

waves travel eastward along the equator, causing a deepening of the thermocline. As these Kelvin

waves move eastward, they spread warm water across the Pacific, diminishing the cooling effect pro-

duced by upwelling cold water from the deeper ocean layers14. This deepening of the thermocline in

the eastern Pacific reduces the efficiency of upwelling to cool the surface waters, thereby reinforcing

the warming associated with El Niño events. This mechanism amplifies the initial warming signal

and sustains the El Niño conditions. On the other hand, Rossby waves propagate westward, playing

a crucial role in the termination of El Niño events. As these waves move westward, triggered by the

changes in wind patterns, they induce a rise in the thermocline in the western Pacific. This elevation of

the thermocline restores the normal upwelling of cooler, nutrient-rich waters, which helps to cool the
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SSTs. Reestablishing these conditions contributes to the transition from El Niño to La Niña or neutral

phases15. Thus, Rossby waves facilitate the decay of El Niño events by restoring the thermocline of

the equatorial Pacific to its pre-El Niño state.

1.2 Teleconections

The impacts of ENSO extend beyond the Pacific region through atmospheric teleconnections, influenc-

ing global weather patterns and climate conditions. Changes in SST and atmospheric circulation in the

equatorial Pacific can affect phenomena such as the Indian monsoon, North Atlantic storm tracks, and

rainfall patterns in the Americas and Africa. El Niño typically increases precipitation in the southern

United States and Peru, causing floods and landslides, while regions like Indonesia, the Philippines,

and northeastern Australia often experience droughts. La Niña generally produces opposite effects,

promoting dry conditions in the southern United States and increased rainfall in Southeast Asia and

Australia16. Moreover, ENSO influences global temperatures, with El Niño episodes generally leading

to higher global temperatures due to the redistribution of warm ocean water, particularly affecting the

tropics and subtropics. La Niña episodes, in contrast, are associated with cooler global temperatures.

The alteration of normal weather patterns during ENSO phases can lead to extreme weather events,

such as fewer hurricanes in the Atlantic and more cyclones in the Pacific during El Niño, and the

opposite during La Niña17.

In South America, the teleconections of ENSO have substantial regional climate impacts. El

Niño events often lead to increased rainfall on the northern coast of Peru and Ecuador, causing severe

flooding and landslides. Conversely, the Amazon Basin typically experiences decreased precipitation

during these events, exacerbating drought conditions and affecting water availability and agriculture.

In contrast, La Niña usually brings drier weather to the coastal regions of Peru and Ecuador while

enhancing rainfall in southeastern Brazil and the Andean highlands, influencing water resources and

agricultural productivity18 19.

For Ecuador, ENSO teleconnections have significant impacts on the climate, particularly in the

coastal and Andean regions. During El Niño events, the warming of sea surface temperatures in

the eastern Pacific leads to enhanced convection and increased rainfall along the Pacific coast. This

results in frequent and intense rainfall episodes, causing severe flooding, landslides, and infrastructure

damage20. The coastal provinces, such as Guayas, Manabí, and Esmeraldas, are particularly vulner-

able to these effects. This alters the hydrological cycle, affecting water resources that are crucial for

hydropower generation and irrigation21.
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Figure 1.2: Typical impacts of El Niño (top) and La Niña (bottom) on global weather patterns during
the peak season of development in December–February. Taken from NOAA/Climate Prediction
Center.

Between 1997 and 1998, Ecuador experienced a large-scale El Niño event. During the develop-

ment of this phenomenon, widespread flooding occurred in several areas of Ecuador caused by the

heavy rains. In addition, it was recorded several landslides and destruction of crops caused by soil

4



erosion. All these events caused great damage to the country’s infrastructure, causing the displacement

of populations and even human losses22.

Conversely, La Niña events typically bring drier conditions to Ecuador, particularly affecting the

coastal and inter-Andean regions. The strengthened trade winds during La Niña enhance the up-

welling of cooler, nutrient-rich waters along the coast, leading to reduced sea surface temperatures

and decreased rainfall18. La Niña events tend to bring cooler and wetter conditions to the highlands,

which can benefit agriculture but also increase the risk of frost in higher elevations. This variability

poses significant challenges for water resource management and agricultural planning in the Andean

region, requiring adaptive strategies to mitigate the adverse impacts of ENSO cycles23 24.

A notable La Niña event occurred in 1999-2000, bringing prolonged dry conditions that led to

water shortages, affecting both agriculture and urban water supplies. Farmers in provinces such as

Loja and Azuay faced severe drought, resulting in crop failures and economic losses. Additionally,

the reduced rainfall impacted hydroelectric power generation, causing energy shortages in certain

areas25 26.

Figure 1.3: Floods in the city of Guayaquil (left) and La Camaronera (right) caused by the El Niño
phenomenon, taken on February 19 and March 7 of 1998, respectively. Source: El Universo.

1.3 Predictability and Challenges

Recent advancements in satellite technology, oceanic and atmospheric monitoring systems, and cli-

mate models have significantly improved our understanding of ENSO mechanisms and their impacts.

Enhanced climate models have increased our ability to predict ENSO events months in advance. Cou-

pled ocean-atmosphere models have been particularly vital in understanding the feedback mechanisms
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driving the dynamics of ENSO11.

Furthermore, accurately predicting the onset, duration, and intensity of ENSO events remains a

very difficult task. Despite continuous improvements in climate models, problems persist in capturing

the timing and magnitude of ENSO events, especially when external factors such as volcanic activity

or anthropogenic emissions are considered6. Another important problem is the variability of ENSO

impacts, which makes it difficult to develop response strategies for affected regions. Indeed, the

interactions between ENSO and other climate patterns, such as the Indian Ocean dipole, the Pacific

decadal oscillation, and the Atlantic multidecadal oscillation, are not fully understood and may

modulate or greatly amplify the effects of ENSO12 27.

Figure 1.4: Illustration of a General Circulation Model (GCM) and a Regional Climate Model
(RCM). GCMs simulate the climate system based on the fundamental laws of physics, chemistry, and
biology, covering the entire globe. RCMs are specialized to simulate regional-scale climate processes
more accurately by taking high-resolution factors into account, such as topography and coastlines.
Taken from "The State of the Art and Fundamental Aspects of Regional Climate Modeling in South
America"5

A recent concern is the possibility that some anthropogenic activities will alter and worsen the

characteristics of ENSO. Indeed, recent research suggests that global warming may eventually alter the

frequency, intensity, and spatial distribution of ENSO events, leading to extreme weather conditions28.

In this context, regional climate models (RCMs) are of paramount importance for understanding the
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annual variability in climate caused by ENSO in a local domain like Ecuador. RCMs provide high

spatial resolution, allowing for a detailed representation of local geographical features such as moun-

tains, valleys, and coastlines, which is crucial for a country with diverse topography influencing its

climate patterns. High-resolution models can capture the microclimates within the Andean highlands,

coastal plains, and Amazon basin, often missed by global models26.

The detailed outputs from RCMs assess the potential impacts of ENSO on local infrastructure,

agriculture, and water resources, critical for developing adaptation strategies to mitigate adverse

effects of ENSO-related extreme weather events29. Finally, RCMs provide valuable information for

policymakers and planners to develop targeted strategies for climate adaptation and disaster risk

reduction, enabling more effective and tailored policies to address ENSO impacts at the regional

level5 30.

1.4 Research problem

Research has provided valuable insights into the climate dynamics of Ecuador and the impact of

ENSO. Evaluations of high-resolution precipitation scenarios for the southern Ecuadorian Andes

have contributed to understanding regional climate variability26. This study emphasized the need for

improved precipitation datasets and suggested further research to integrate local observational data

to enhance model accuracy. Analyses of the forcings and evolution of the 2017 coastal El Niño

provided detailed assessments of its impacts on northern Peru and Ecuador20. Future research should

focus on the combined effects of coastal and basin-wide El Niño events to better predict their im-

pacts. Studies of present-day climate and projected future changes in temperature and precipitation in

Ecuador have offered important projections under various climate scenarios31. This research stressed

the importance of considering elevation-dependent warming and suggested further investigation into

the potential feedback mechanisms between land use changes and climate. Furthermore, projected

changes in climate, elevation-dependent warming, and extreme events over continental Ecuador for the

period 2041-2070 have been examined, highlighting the need for detailed regional climate analyses32.

This research pointed out the necessity for high-resolution climate models to capture microclimatic

variations and suggested the inclusion of more extreme event scenarios in future studies.

Advances in regional climate modeling have greatly increased our understanding of climate vari-

ability and its impacts at the local level. RegCM in particular has shown very promising results in

several areas. For example, in one study, by evaluating the modulation of large-scale signals produced

by dynamically downscaled seasonal forecast systems, the use of RegCM demonstrated high accuracy

in fitting global climate model outputs for regional applications33. This study also recommends the
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integration of different regional climate models to improve predictive capability in specific areas.

Likewise, the study on rainfall in northeastern Brazil, by downscaling the Climate Forecast System

Version 2 (CFSv2) model using RegCM-4.9, highlighted the importance of using regional climate

models to capture global climate phenomena34. In this study, the author suggests that future studies

should focus on improving the representation of local atmospheric processes and land-ocean interac-

tions to improve the prediction of precipitation patterns.

Despite these advancements, there remains a need to explore the effectiveness of different climate

models in the Ecuadorian domain, particularly in the context of ENSO. This thesis aims to complement

and build upon the existing body of research by utilizing the fifth-generation Regional Climate

Modeling System (RegCM5). The novelty of this investigation lies in the application of RegCM5 to the

Ecuadorian domain specifically to study the influence of ENSO, which has not been comprehensively

explored in previous research. By leveraging advanced computational modeling, this study seeks to

provide a more detailed characterization of temperature and precipitation variability associated with

ENSO events. This improved modeling approach will enhance the understanding of ENSO-related

climatic variations with high accuracy and a fine spatial resolution. It will allow for a more detailed

assessment of the potential impacts of ENSO on the climate of Ecuador for the near future (2020-2040),

providing valuable information for developing effective adaptation and mitigation strategies.

1.5 Objectives

1.5.1 General objective

This thesis aims to understand the impact of the El Niño Southern Oscillation (ENSO) on interannual

climate variations in Ecuador, emphasizing the analysis of climatic parameters such as near-surface

air temperature and precipitation through advanced computational modeling.

1.5.2 Specific objectives

The specific goals of this thesis are the following:

1. To model the climatic conditions of Ecuador under different ENSO phases (El Niño and La

Niña) using the fifth-generation Regional Climate Modeling System (RegCM5).

2. To validate the performance of the RegCM5 model against ERA5 reanalysis data for the period

1991-2020, assessing its accuracy in simulating near-surface air temperature, total precipita-

tion, wind divergence, and relative humidity across Ecuador, and to identify areas of model

discrepancies.
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3. To apply bias correction techniques, specifically Quantile Delta Mapping (QDM), to the

RegCM5 model outputs to improve the accuracy of projections for near-surface air temper-

ature and total precipitation, particularly during ENSO-related events.

4. To identify and analyze future ENSO events (2021-2050) using bias-corrected model data based

on SST anomalies in the Niño 1+2 region, examining the frequency and characteristics of El

Niño and La Niña events.

5. To investigate the potential impacts of ENSO on the climate of Ecuador for the near-future

(2021-2050), focusing on changes in temperature and precipitation patterns during El Niño and

La Niña events, and to provide detailed projections of spatial distribution and intensity of these

climatic variables.
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Chapter 2

Methodology

This study aims to understand the impact of the El Niño-Southern Oscillation (ENSO) on interannual

climate variations in Ecuador. By employing the Regional Climate Modeling System RegCM5 (version

5.0.0), we perform long-term simulations to analyze the influence of ENSO on climatic parameters

and predict potential future changes. The use of high-resolution regional climate models is crucial

for capturing the complex interactions between the atmosphere and ocean, especially in a region with

diverse topography like Ecuador5.

2.1 Software

The Regional Climate Modeling System (RegCM5) is an advanced climate simulation tool developed

by the Abdus Salam International Centre for Theoretical Physics (ICTP) ∗. For this study, we used

the most recent version, RegCM5 (version 5.0.0), which has shown improvements in computational

efficiency and accuracy compared to previous versions. This model incorporates a new non-hydrostatic

dynamical core called MOLOCH, which according to tests performed optimizes the representation

of complex atmospheric processes and topographic effects35, which makes it a very useful tool for

studies in regions with complex geography, such as Ecuador.

2.1.1 RegCM5 Preprocessor

Domain

The domain for simulation, illustrated in Figure 2.1, is centered at 4°S, 82.5°W, covering all of con-

tinental Ecuador and extending into the Pacific Ocean to include the Niño 1+2 region, essential for

studying ENSO-related phenomena. The simulation grid, with a resolution of 25 km, consists of 93

∗The RegCM5 model is available at https://github.com/ICTP/RegCM, and more details about ICTP can be found
at https://www.ictp.it/.
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cells along the x-axis and 89 cells along the y-axis, vertically extending across 23 levels up to 5hPa.

This high resolution enables a detailed representation of local geographical features, such as the Andes

mountains, the Pacific coastal plains, and the Amazon basin, which significantly influence regional

climate patterns in Ecuador31.

The topography of Ecuador is diverse and complex. The Andes mountain range runs from north

to south, with peaks exceeding 6,000 meters, creating varied climatic zones. The coastal region at sea

level experiences different climate conditions compared to the high-altitude areas36. The Galapagos

Islands, located about 1,000 km off the coast, also present unique topographical features that affect the

local climate. Including the El Niño region 1+2 in the simulation domain is critical because it is one of

the primary areas where the SST anomalies are most pronounced during ENSO events, significantly

impacting regional weather patterns18.

Figure 2.1: Topography of the simulation domain for both the present and near-future period. The red
square encloses the continental region of Ecuador. The orange square encloses the Galapagos Islands,
and the yellow square encloses the El Niño 1+2 region. These three squares conform to our target area
of study.
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Initial and Boundary Conditions

RegCM5 realizes the downscaling process by employing one-way nesting techniques to derive bound-

ary conditions from General Circulation Models (GCMs). This method allows regional climate

simulations to be informed by larger-scale climate dynamics without feedback to the GCM, ensuring

that the regional model benefits from the boundary conditions imposed by the global model while

maintaining computational efficiency35.

For this study, the initial and boundary conditions are provided by the HadGEM2-ES GCM.

HadGEM2-ES is a coupled Atmosphere-Ocean General Circulation Model (AOGCM) documented

in detail in Collins et al. 201137. The atmospheric component of HadGEM2-ES has a horizontal

resolution of N96 (1.875° × 1.25°) with 38 vertical levels, while the ocean component has a horizontal

resolution of 1° (increasing to 1/3° at the equator) and 40 vertical levels38. A previous study39 showed

that HadGEM2-ES provided reliable boundary conditions that helped improve the accuracy of regional

climate simulations in representing ENSO-related climate variability in South America.

Data for the simulations were obtained from the RegCM repository, utilizing variables such as

specific humidity (hus), air temperature (ta), zonal wind (ua), meridional wind (va), and surface

pressure (ps). The simulations follow the RCP8.5 scenario, which represents a high greenhouse

gas concentration pathway. The RCP8.5 scenario was chosen for this study because it represents

a high greenhouse gas concentration pathway, often referred to as the "business-as-usual" scenario.

This scenario assumes continued increases in greenhouse gas emissions throughout the 21st century,

resulting in significant radiative forcing of 8.5 W/m2 by 210040. The selection of RCP8.5 allows for

the examination of potential climate impacts under extreme conditions, providing valuable insights

into the worst-case outcomes of climate change. By using this scenario, the study aims to understand

the upper bounds of climate variability and change, which is crucial information for developing robust

adaptation and mitigation strategies to address the severe consequences of high-emission trajectories

in Ecuador.

2.1.2 RegCM5 Simulation

Mesh Details

The horizontal grid in RegCM5 uses the Arakawa C grid system, a staggered grid arrangement where

velocity components and scalar quantities (like temperature and humidity) are computed at different

points within each grid cell. This design enhances the accuracy and stability of numerical simulations

by reducing computational errors associated with interpolating between different types of variables.

The C grid system is particularly effective for representing atmospheric dynamics and resolving fine-
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scale features in the model domain41.

Vertically, RegCM5 uses a height-based coordinate system, which is effective for capturing the

complex vertical structure of the atmosphere, especially in areas with significant topographical vari-

ations like Ecuador. This vertical coordinate system follows the terrain, allowing a more precise

depiction of surface influences on atmospheric processes39.

For our model, we use the Mercator map projection, as it preserves angles and provides a fairly

accurate representation of geographic features near the equator. This feature is quite useful for

our domain and guarantees minimal distortion of spatial characteristics. Regarding the boundary

conditions, it is important to ensure a smooth transition between the regional model and the GCM

inputs. Therefore, we used 12 grid cells at each domain boundary as a transition zone, in which the

GCM was applied. the exponential relaxation method. This method gradually adjusts the regional

model solution to the boundary conditions provided by the GCM, providing stability to the model near

the domain boundaries.35.

Model Equations

For these simulations, we used the MOLOCH dynamical core, implemented in RegCM5, which solves

a set of fully compressible, non-hydrostatic equations. This model uses a hybrid terrain-following

vertical coordinate, ζ, that adapts to the topography and extends from the surface to a configurable

model top (rigid lid) where the vertical velocity is set to zero35. The MOLOCH dynamical core is

particularly suited for high-resolution simulations where atmospheric processes like convection and

wave propagation are explicitly resolved without hydrostatic balance assumptions.42.

The hybrid ζ coordinate is defined over the interval [0,Ztop], with Ztop representing the configurable

top of the model. The relationship between the model height and the ζ coordinate is given by the

following equation:

z = h(x, y)G(ζ) + Z f e
ζ
H
−1 (2.1)

where h(x, y) represents the model topography, Z f is a scaling factor, H is the atmospheric scale height,

and G(ζ) is a polynomial function of ζ that defines the stretching of vertical levels. This function

allows for higher resolution near the surface and coarser resolution at higher altitudes35.

The horizontal and vertical discretization uses the Arakawa-C grid, where wind components are

staggered relative to other variables. So, the generalized vertical velocity is given by the following
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expression:
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where Fz is a time-independent function that depends on the ζ coordinate, u and v are the eastward

and northward components of velocity, respectively, and h is the topography. This formulation allows

the model to account for terrain-following effects while ensuring an accurate representation of vertical

motion.

The model solves the governing equations using the Exner function, Π, and the virtual potential

temperature, Θv, as the primary prognostic variables. These variables are related to temperature,

pressure, and moisture content:

Π =

(

P

P0

)

Rd
cpd

(2.3)

Θv =
Tv

Π
(2.4)

Tv ≈ T
(

1 + 0.61qv − qc − qi

)

(2.5)

where P is the pressure, P0 is a reference pressure, Rd is the gas constant for dry air, cpd is the specific

heat of dry air at constant pressure, Tv is the virtual temperature, and qv, qc, qi are the mass mixing

ratio of water vapor, liquid water and ice water. The use of Π and Θv provides a more efficient

formulation for moist atmospheric dynamics, capturing the effects of temperature and humidity in a

single equation35.

Now, the momentum equations for the horizontal wind components, u and v, and the vertical

velocity, w, are expressed as:

du

dt
= mcpdΘv
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− mG(ζ)
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(

g +
dw

dt

)

+ fv + Ku (2.6)

dv

dt
= mcpdΘv

∂Π

∂y
− mG(ζ)

∂h
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(

g +
dw

dt

)

− fu + Kv (2.7)

dw

dt
= −FzcpdΘv

∂Π

∂z
− g + Kw (2.8)

where g is the gravitational acceleration, The terms Kx denote the physical parameterizations, and fu,

fv the Coriolis terms, which are essential for capturing the effects of Earth’s rotation on atmospheric

flows, especially at larger scales, such as synoptic and planetary scales43.

Additionally, The thermodynamic equation describes the temporal evolution of the virtual potential
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temperature, Θv, including the effects of advection and diabatic heating:

dΘv

dt
≈ KΘv

(2.9)

where KΘv
represents the contributions from diabatic processes, such as latent heat release during

condensation and radiative heating or cooling35.

On the other hand, the continuity equation is solved in flux form to ensure mass conservation,

expressed as:
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where cvd is the specific heat for dry air at constant volume. In this formulation, explicit diffusion is

unnecessary for maintaining numerical stability. Instead, stability is achieved by applying a second-

order spatial filter to the divergence of the horizontal wind, effectively smoothing out small-scale

numerical noise without compromising the physical accuracy of the model35.

RegCM5 uses a variety of numerical methods to solve these equations efficiently. The model

uses a second-order centered finite difference scheme for the spatial derivatives, which provides a

perfect balance between accuracy and computational cost. This method calculates the derivatives by

averaging the values at adjacent grid points, which helps to reduce numerical errors. To advance

the solution in time, the model uses an explicit temporal integration scheme. The model applies an

explicit splitting method, where fast-moving gravity waves are handled with a smaller time step to

ensure stability, while slower processes are integrated with a larger time step. Furthermore, as already

mentioned the model employs a hybrid vertical coordinate that follows the terrain, combining the

advantages of pressure and height coordinates. This coordinate system improves the ability of the

model to accurately simulate complex terrain and severe weather phenomena35.

Physical parameterizations

RegCM5 employs physical parameterizations to simulate atmospheric processes occurring at scales too

small for our grid resolution to capture. These parameterizations are crucial to represent the complex

interactions between the atmosphere, land surface, and ocean35. The parameterization schemes we

use in this study are:

• Radiation: modified NCAR CCM3 scheme RegCM5 uses a radiation parameterization adapted

from the NCAR CCM3 radiative transfer scheme44. This scheme is responsible for calculating

the motion of solar and terrestrial radiation through the atmosphere, taking into account the

effect of gases such as CO2, O3, and water vapor, as well as that of clouds and aerosols. In
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this scheme, the shortwave component uses the δ-Eddington approximation, which takes into

account scattering and absorption by atmospheric particles. Likewise, the longwave component

includes the effects of gaseous absorption and emission, here the radiative properties of the

clouds are parameterized as a function of liquid water content and droplet size.

• Planetary Boundary Layer (PBL): Modified Holtslag Scheme The modified Holtslag scheme45

is used to represent turbulence and vertical mixing in the planetary boundary layer (PBL). This

non-local diffusion scheme accounts for the counter-gradient fluxes resulting from large-scale

eddies in an unstable, well-mixed atmosphere. The eddy diffusivity (Kc) is given by:

Kc = kwtz

(

1 −
z

h

)2

(2.11)

where k is the von Karman constant, wt is the turbulent convective velocity, z is the height, and

h is the PBL height. The counter-gradient term γc for temperature and water vapor is:

γc = C
φ0

cwth

θs

(2.12)

where C is a constant, φ0
c is the surface flux of the variable, and θs is the surface potential

temperature. This scheme effectively captures the vertical transport of heat, moisture, and

momentum, which are essential for accurate weather and climate simulations.

• Cumulus Convection: Mixed Scheme (Grell and MIT Emanuel) For cumulus convection, a mixed

scheme is employed, combining the Grell scheme46 over land and the Emanuel and Zivkovic-

Rothman scheme47 over the ocean. This approach was suggested by Reboita et al. 201448,

who found that this was the best configuration for simulating both precipitation and air tem-

perature for the subdomain AN1 which includes the border between Ecuador and Perú. The

Grell scheme considers clouds as two steady-state circulations (updraft and downdraft) with no

direct mixing between the cloudy air and environmental air †, except at the top and bottom of

the circulations. The mass flux approach used in the Grell scheme allows for detailed simu-

lation of convective processes based on environmental conditions. The MIT Emanuel scheme

assumes highly episodic and inhomogeneous mixing in clouds. Convection is triggered when

the level of neutral buoyancy is greater than the cloud base level. The cloud model includes

sub-cloud-scale updrafts and downdrafts, with entrainment and detrainment rates depending

on the vertical gradients of buoyancy. This detailed representation of convective processes

improves the simulation of precipitation and temperature over the ocean.

†In this context, "cloudy air" refers to the air mass within the cloud, characterized by higher moisture content and
cloud particles, whereas "environmental air" refers to the surrounding air mass outside the cloud.
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• Land Surface Model: CLM4.5 The Community Land Surface Model version 4.5 (CLM4.5)49

serves to represent the land surface processes (soil moisture, evapotranspiration, vegetation

types, and the carbon cycle). This scheme tries to capture all these processes within each

climate model cell with a "mosaic" approach. The hydrological and energy balance equations

are solved in the cells according to the land cover type. These equations are solved at the same

time as the main hydrological steps, to ensure the representation of the interaction between the

processes at the Earth’s surface and the atmospheric model. This scheme was selected because

it has proven to be very accurate in simulating energy, water, and carbon exchanges between the

Earth’s surface and the atmospheric atmosphere.

• Microphysics: SUBEX Scheme The SUBEX (Subgrid Explicit Moisture Scheme)50 handles

cloud and precipitation processes, accounting for sub-grid variability in clouds. The cloud

fraction (FC) is determined by the relative humidity (RH):

FC =

√

RH − RHmin

RHmax − RHmin
(2.13)

Precipitation (P) forms when cloud water content exceeds a threshold (Qth):

P = Cppt

(

Qc

FC
− Qth

)

FC (2.14)

where Cppt is the conversion rate, Qc is the cloud water content, and Qth is the autoconversion

threshold. This scheme also includes formulations for raindrop accretion and evaporation, which

are essential for understanding cloud dynamics, precipitation formation, and their impact on

climate.

• Ocean Fluxes: Zeng Scheme The Zeng scheme51 models the exchanges of momentum, heat,

and moisture between the ocean surface and the atmosphere. It accounts for stability conditions

and includes a gustiness velocity ‡ to represent the additional flux induced by boundary layer

scale variability. The fluxes are calculated using bulk aerodynamic formulas:

τ = ρau2
∗

(

u2
x + u2

y

)1/2
/u (2.15)

S H = −ρaCpau∗θ∗ (2.16)

‡"Gustiness" refers to the variability and fluctuations in wind speed due to turbulence and other small-scale processes
in the atmospheric boundary layer.
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LH = −ρaLeu∗q∗ (2.17)

where τ is the momentum flux, S H is the sensible heat flux, LH is the latent heat flux, u∗ is

the friction velocity, θ∗ is the temperature scaling parameter, q∗ is the specific humidity scaling

parameter, ρa is air density, Cpa is the specific heat of air, and Le is the latent heat of vaporization.

This scheme is crucial for accurately modeling sea surface temperatures and their influence on

atmospheric conditions.

2.2 Hardware

The computational requirements for running high-resolution climate models such as the Regional

Climate Modeling System (RegCM5) are substantial, and utilizing a high-performance computing

(HPC) cluster is essential for handling these demands efficiently.

In this study, simulations were performed on two high-performance computing (HPC) clusters:

one provided by the Ecuadorian Corporation for the Development of Research and Academia (CEDIA)

and one external. The system consisted of 24 compute nodes, each with 31 Intel Xeon Platinum 8174

processors, for a total of 744 processors. In addition, each node had 128 GB of RAM and we used

approximately 3 TB of storage space, including the GCM data and simulation results. For data transfer

between the HPC centers, SSH protocols were used.

2.3 Data Analysis

The data analysis component of this research is designed to validate the Regional Climate Modeling

System (RegCM5) outputs against observational datasets and investigate future projections of climatic

variables in Ecuador under different phases of the El Niño-Southern Oscillation (ENSO).

2.3.1 Preprocessing Data

To validate the simulated data of our model for the present time (1991 - 2020), we use the "ERA5

monthly averaged data on single levels from 1940 to present" dataset downloaded from the Copernicus

Climate Data Store § 52. The original 0.25° x 0.25° grid was remapped onto a 25km x 25km grid

to ensure compatibility with our model output. On the other hand, the model data for the present

§The Copernicus Climate Data Store provides access to climate data from ECMWF: https://cds.climate.
copernicus.eu/cdsapp#!/home. The specific ERA5 dataset is available at: https://cds.climate.copernicus.
eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview.
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and near-future time, initially recorded at 6-hour intervals, were aggregated into monthly averages.

Subsequently, the boundary relaxation areas from the model data were trimmed to eliminate potential

inaccuracies due to edge effects and numerical artifacts commonly associated with boundary regions

in climate models. This preprocessing step resulted in comparable datasets for each variable, covering

the same spatial area with identical resolution and frequency.

2.3.2 Model Validation

The model simulation for the current period spanned from 1991 to 2020. To assess the accuracy

of our model, we first calculated annual averages of several climate variables and compared them to

annual averages obtained from the ERA5 dataset. We calculated the annual mean by averaging the

monthly values of each variable for each year. This method provides information about the overall

trends and long-term behavior of the variables, effectively smoothing out short-term fluctuations53.

The variables we analyzed in this study were:

• Near-Surface Air Temperature, which represents the air temperature at 2 meters above the

ground level54.

• Total precipitation, which encompasses all forms of water, including rain, snow, sleet, and

hail, that falls to the ground over a specified period55.

• Wind divergence at specific altitudes (10 and 100 meters), which indicates the rate at which

air spreads out horizontally. Positive divergence implies air is spreading out, while negative

divergence indicates air is converging43. The divergence of the wind field V(u, v), where u is

the wind component in the x direction (Eastward winds) and v is the wind component on the y

direction (Northward winds), was calculated using the MetPy package3 and with the formula:

∇V(u, v) =
∂u

∂x
+
∂v

∂y

• Specific humidity is the mass of water vapor per unit mass of moist air. It is a measure of the

actual amount of moisture in the air56.

• Relative humidity is the ratio of the current amount of water vapor in the air to the maximum

amount of water vapor the air can hold at a given temperature57.

Since, unlike our model, the ERA5 dataset does not include relative and specific humidity within

its climate variables, it was necessary to perform calculations based on others. Particularly for

specific humidity, we used the formula:
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q = 0.622 ·

(

ed

P − 0.378 · ed

)

where q is the specific humidity, T is the near surface air temperature, ed is the dew point vapor

pressure, P is the surface pressure and es is the saturation vapor pressure given by:

es = 6.112 · exp

(

17.67 · T

T + 243.5

)

And, the formula for the relative humidity was given by:

RH = 100 ·

(

ed

es

)

The comparison was carried out by generating maps of these climate variables from both the model

output and the ERA5 dataset, as well as the bias between them. Subsequently, several error metrics

were calculated:

• MAE (Mean Absolute Error): This metric measures the average magnitude of errors between

observed and predicted values, providing a straightforward indication of model accuracy58.

MAE =
1

n

n
∑

i=1

|Pi − Oi|

• RMSE (Root Mean Squared Error): This metric computes the square root of the average

squared differences between observed and predicted values, penalizing larger errors more heav-

ily59.

RMSE =

√

√

1

n

n
∑

i=1

(Pi − Oi)2

• Median Bias: This metric is a statistical measure that indicates the central tendency of differ-

ences between predicted and observed values. Unlike mean bias, median bias is less sensitive

to outliers and provides a robust assessment of the systematic error of the model60.

Median Bias = Median(Pi − Oi)

• Pearson Correlation: This metric assesses the linear relationship between observed and pre-

dicted values, providing insights into the ability of the model to replicate variability61.
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r =

∑n
i=1(Oi − O)(Pi − P)

√

∑n
i=1(Oi − O)2

√

∑n
i=1(Pi − P)2

• Willmott Index: This metric measures the degree of agreement between observed and predicted

values, considering both the magnitude and direction of errors62.

d = 1 −

∑n
i=1(Pi − Oi)

2

∑n
i=1

(
∣

∣

∣

∣

Pi − O
∣

∣

∣

∣

+

∣

∣

∣

∣

Oi − O
∣

∣

∣

∣

)2

where Pi represents the predicted values, Oi represents the observed values, n is the number of

observations, and O and P are the means of the observed and predicted values, respectively.

In addition, to analyze the representation by the model of ENSO phenomena, composite maps

were computed for the El Niño and La Niña events. The Oceanic Niño Index (ONI), which is the

three-month running mean of sea surface temperature anomalies in the Niño 3.4 region, was used to

determine the months for each type of event8. Then, monthly averages for El Niño and La Niña events

were computed and compared with those from the ERA5 data.

2.3.3 Bias Correction

In order to reduce any systematic biases identified during the validation process, we apply bias correc-

tion to the model outputs. This statistical technique adjusts climate model outputs to more closely align

with observed data. This adjustment is essential because although climate models are powerful tools

for forecasting future climate conditions, they often exhibit systematic errors or biases. Correcting

these biases using observed climatological data or reanalysis data greatly improves the reliability and

accuracy of climate model projections63.

The method we selected for bias correction in this study is quantile delta mapping (QDM). QDM

is an advanced bias correction technique that modifies the quantiles of model outputs based on the

observed data, ensuring that both the distribution and trends of the data are maintained. This technique

is especially effective in handling non-stationary biases, which are biases that change over time64. The

process begins with quantile mapping, which adjusts the cumulative distribution function (CDF) of

the model outputs to align with the CDF of the observed data. For a specific quantile q, the quantile

mapping adjustment is:

xQM
q = F−1

obs(Fmod(xq))
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where x
QM
q is the quantile-mapped value at quantile q, Fobs is the CDF of the observed data, Fmod is

the CDF of the model data, and xq is the model data at quantile q. Subsequently, the delta change

adjustment is applied to preserve the trends in the model data. The quantile delta change is calculated

from the historical period and then applied to the future period. The delta change for a specific quantile

q is:

∆xq = F−1
mod,fut(Fmod,hist(xhist

q )) − xhist
q

where ∆xq is the delta change at quantile q, Fmod,fut is the CDF of the future model data, Fmod,hist is

the CDF of the historical model data, xhist
q is the historical model data at quantile q. Finally, the delta

change is applied to the quantile-mapped values to obtain the bias-corrected future projections. The

bias-corrected value x
QDM
q at quantile q is:

xQDM
q = xQM

q + ∆xq

This ensures that the corrected model data not only matches the observed distribution but also

accurately reflects the projected changes. Nonetheless, before applying this bias correction method to

our near-future simulation data, we first need to validate it.

To validate the bias correction, both the present simulated data and the ERA5 data were split into

two parts: one for calibration (1991-2010) and the other for validation (2011-2020). The cmethods

package was then used to correct the validation data, the QDM technique from this package allows for

an Additive QDM (compute absolute changes in quantiles) or a Multiplicative QDM (compute relative

changes in quantiles)65. After applying the bias correction to the validation part of the data, annual

means of near-surface air temperature and total precipitation were calculated and compared. These

variables are the most affected by El Niño and La Niña events. As with the model validation, maps

of the corrected model, ERA5 data, and the bias between the two were plotted, and all error metrics

were calculated.

In addition, we also calculated the annual cycles for these variables (using both the original and

corrected data) and compared them to those obtained from the ERA5 data. This annual cycle helps

us observe the typical behavior of these variables over a year, which we calculate by averaging the

monthly values of each variable over the 30 available years. The comparison between these three

cycles will help us assess whether the bias correction method also adjusts for the seasonal patterns of

the variables.
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2.3.4 Identification of El Niño and La Niña Events

For the analysis of future ENSO impacts, it is crucial to consistently identify ENSO events across

different datasets. The domain of our simulation covers the Niño 1+2 region, which is one of the key

areas for monitoring the ENSO phenomenon. The Niño 1+2 region is located in the eastern equatorial

Pacific, specifically between 0-10°S and 90°W-80°W. This region is relevant because SST anomalies

here are indicative of the onset and intensity of El Niño and La Niña events8.

For our study, it is also important to verify the effect that bias correction has on the El Niño 1+2

region, because this region is key for the subsequent identification of ENSO events. Therefore, we

calculated the 3-month moving average of sea surface temperatures in this region. We did this with our

corrected data and with the ERA5 data for comparison. This 3-month moving average is a smoothing

technique that averages SSTs over three consecutive months, which reduces short-term fluctuations

and highlights long-term trends. This allows us to better capture ENSO signals. Then, we proceeded

to evaluate the similarity between both data sets, this comparison is important since the consistent

SST patterns between our model and the ERA5 data are the basis for the identification of ENSO events.

It has to be noted that RegCM5 only models the atmosphere and is not coupled with an ocean

model. By default in RegCM, SST is prescribed every six hours from temporally interpolated weekly

or monthly SST products. These products, produced from satellite retrievals and in-situ measure-

ments, represent the mean temperature in the top few meters of the ocean. Additionally, a prognostic

SST scheme based on a two-layer model is implemented to improve the calculation of diurnal fluxes

over the ocean35. This is why comparing peaks in this region is crucial, as consistent SST patterns

between the model and observations are essential for accurately identifying ENSO events.

We then calculate SST anomalies in the Niño 1+2 region to identify El Niño and La Niña events.

Anomalies represent SST deviations from the long-term mean and are critical for classifying ENSO

events. For this classification, we use the same thresholds as the Coastal El Niño Index (CEE), which

provides specific criteria for identifying El Niño and La Niña events based on SST anomalies66.

According to this index, El Niño events are identified by SST anomalies greater than 0.4 °C for three

consecutive months, while La Niña events are determined by SST anomalies less than -0.4 °C for the

same period67.

These thresholds were selected because they provided the greatest concordance between the El

Niño and La Niña events in our model and those reported by the Oceanic Niño Index (ONI). Although

we did not use the exact reference climatology specified by the ICEN, we adapted these thresholds to

the climatology of our 30-year simulation period. This adaptation is necessary because we will use
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these thresholds to determine El Niño and La Niña events for our near-future simulation.

2.3.5 Near-Future Projections

To analyze future climate conditions, the annual means of near-surface air temperature and precipi-

tation for the near-future period (2021-2050) were computed and compared to the present simulation

results. This comparison highlights the expected shifts in climate patterns and provides insights into

long-term trends.

For this period, El Niño and La Niña years were identified using SST anomalies in the Niño 1+2

region. The same thresholds from the Coastal El Niño Index (ICEN) were applied to ensure consistency

in identifying ENSO events. Using the identified ENSO events for the near-future simulation period,

composite maps for El Niño and La Niña events were created. These composites represent the mean

values of the selected climate variables during the ENSO events and offer a detailed understanding of

the expected climatic impacts of ENSO under future conditions.
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Chapter 3

Results

This chapter presents the results of the RegCM5 simulations for the present period (1991-2020)

and near-future projections (2021-2050). The analysis includes the validation of near-surface air

temperature, total precipitation, wind divergence at 10m and 100m, specific humidity, and relative

humidity against ERA5 reanalysis data. Furthermore, the chapter details the application of bias

correction techniques to improve the accuracy of the model simulations. The identification of El Niño

and La Niña events and their impacts on climatic variables is also discussed. Finally, the near-future

projections for near-surface air temperature and precipitation are analyzed to understand potential

climate changes in Ecuador.

3.1 Validation of the Present Simulation (1991-2020)

3.1.1 Near-Surface Air Temperature

The climate of Ecuador is highly diverse, varying significantly across regions due to its geographical

location on the equator and its varying topography, including coastal areas, the Andes highlands, and

the Amazon rainforest68. Near-surface air temperature is a key variable analyzed, as it influences and

reflects the overall climate conditions in these regions. The annual mean surface air temperature in

Ecuador typically ranges from 20°C to 25°C in the coastal and Amazon regions, with cooler tempera-

tures in the highlands, averaging around 10°C to 20°C. The coastal regions experience relatively stable

temperatures year-round due to the moderating influence of the Pacific Ocean, while the highlands

exhibit more significant temperature variations due to altitude68.

Figure 3.1 shows that the RegCM5 simulation captures this general pattern of air surface temper-

atures over Ecuador. However, there are noticeable differences, particularly along the Pacific coast

and the highlands, where the model tends to overestimate temperatures, which is indicated by the red

areas on the bias maps. The metrics registered in Table 3.1 suggest that the model performs well in
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Figure 3.1: Annual mean near-surface air temperature from RegCM5 simulation (left), ERA5 reanaly-
sis data (middle), and the bias between them (right) for the period 1991-2020. The bias map highlights
areas where the RegCM5 simulation overestimates temperatures, particularly along the Pacific coast,
the Andes highlands, and the Insular region (shown in red), and areas where it underestimates tem-
peratures, such as parts of the Amazon basin and some regions within the Andes (shown in blue).

Figure 3.2: Composite near-surface air temperature for El Niño (top row) and La Niña (bottom
row) events from RegCM5 simulation (left), ERA5 reanalysis data (middle), and the bias between
them (right) for the period 1991-2020. During El Niño events, RegCM5 simulation overestimates
temperatures along the Pacific coast and in the insular region (shown in red), while underestimating
temperatures within the Andean and Amazon regions (shown in blue). During La Niña events, the
model overestimates temperatures in the highlands of the Andes, as well as in some areas of the coastal
and insular regions (shown in red), while underestimating temperatures within the Andes and Amazon
areas (shown in blue).
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Table 3.1: Error Metrics for Near-Surface Air Temperature

Metric Annual Mean El Niño Event La Niña Event
MAE (°C) 1.12 0.64 1.60
RMSE (°C) 1.34 0.92 1.86
Bias (°C) 0.95 0.09 1.76
Correlation 0.95 0.97 0.93
Willmott Index 0.96 0.98 0.93

capturing the spatial variability of near-surface air temperature, indicated by the high Willmott Index

and Pearson Correlation, but has systematic biases represented by the low MAE and RMSE. The

median bias of 0.95°C suggests that the model tends to predict warmer conditions than those recorded.

During El Niño events, Ecuador generally experiences higher-than-average temperatures, particu-

larly in the coastal and Amazon regions. This warming is due to the influx of warmer ocean currents

from the central and eastern Pacific, which increases the SST and consequently, the air temperature66.

In Figure 3.2 we can observe how The RegCM5 simulation closely aligns with the ERA5 data during

El Niño events, particularly in the coastal regions where the warming effect is most pronounced. The

metrics registered in Table 3.1 indicate very low errors, which suggests that the model effectively

captures the temperature anomalies associated with El Niño. In addition, the higher Willmott Index

and Pearson Correlation during El Niño events highlight the ability of the model to replicate the

temperature increases accurately during these periods.

Conversely, La Niña events are typically associated with cooler-than-average temperatures, espe-

cially in the coastal areas. This cooling effect is due to the stronger-than-usual upwelling of cold,

nutrient-rich water along the coast of Ecuador, which lowers the SST and subsequently the air tem-

perature69. In Figure 3.2 it is difficult to observe this effect, and in fact, for the RegCM5 simulation,

there is no notable difference between El Niño and La Niña composites. Additionally, in the metrics

registered in Table 3.1 for La Niña events, the model shows higher errors than those for El Niño and

even than those for the Annual Mean, indicating significant discrepancies. Despite the higher errors,

the Willmott Index and Pearson Correlation suggest that the model still captures the general cooling

pattern, though with less accuracy. The median bias of 1.76°C indicates a warm bias, particularly

along the coast where the cooling should be more significant than captured by the model.

3.1.2 Total Precipitation

Similarly, precipitation patterns in Ecuador are influenced by complex geographical and topographical

factors. The coastal regions generally experience high annual precipitation, particularly during the

rainy season, while the highlands and Amazon regions also receive substantial rainfall, though with
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Figure 3.3: Annual mean total precipitation from RegCM5 simulation (left), ERA5 reanalysis data
(middle), and the bias between them (right) for the period 1991-2020. The bias map highlights that the
RegCM5 simulation overestimates precipitation in the central Andean region and the Amazon basin
(shown in red), while it underestimates precipitation along the coastal region (shown in blue).

Figure 3.4: Composite total precipitation for El Niño (top row) and La Niña (bottom row) events
from RegCM5 simulation (left), ERA5 reanalysis data (middle), and the bias between RegCM5 and
ERA5 (right) for the period 1991-2020. During El Niño events, RegCM5 simulation overestimates
precipitation in the Andean region and in some areas of the Amazon basin (shown in red), while
underestimating the temperature along the Pacific coast (shown in blue). During La Niña events, the
model continues to overestimate precipitation in the Andean and Amazon region, but also in some
coastal areas (shown in red), while underestimating it in other coastal areas (shown in blue).

different seasonal distributions66. In Figure 3.3 we can observe how the RegCM5 simulation failed to

capture the general spatial distribution of precipitation across Ecuador. Particularly the model tends
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Table 3.2: Error Metrics for Precipitation

Metric Annual Mean El Niño Event La Niña Event

MAE (mm/day) 4.84 5.34 5.23
RMSE (mm/day) 11.16 11.67 11.90
Bias (mm/day) -0.03 -0.42 0.11
Correlation 0.71 0.65 0.74
Willmott Index 0.53 0.50 0.51

to overestimate precipitation in the central Andean region and in the Amazon basin while underesti-

mating it along the coastal region.

The metrics for annual mean precipitation in Table 3.2 reveal very high errors, although The

Correlation Coefficient and the Willmott Index indicate moderate agreement between the RegCM5

simulation and the ERA5 data. These errors in precipitation modeling are common, primarily because

precipitation is inherently challenging to simulate accurately. Numerous studies have documented

these challenges, highlighting systematic biases and significant discrepancies in modeled precipitation

across different regions and temporal scales42 70 71 72.

The high spatial variability of precipitation in the Andes, driven by orographic effects, poses a

challenge for models attempting to accurately depict localized precipitation patterns. The precipitation

of Ecuador is particularly influenced by its varied topography and the interaction of different climatic

systems. The coastal region is often dry due to the Humboldt Current, whereas the Andean region sees

significant orographic precipitation owing to its elevation. Meanwhile, the Amazon basin experiences

heavy rainfall year-round, influenced by moist air masses from the Atlantic Ocean24. Orographic

precipitation, a primary cause of rainfall in the Andes, results from the interaction of moist air with

mountainous terrain. Accurately modeling this process is difficult because of the fine spatial scales

and complex atmospheric dynamics involved18.

During El Niño events, characterized by warmer SSTs in the central and eastern Pacific, Ecuador

generally experiences increased precipitation, particularly in the coastal and Amazon regions. This is

due to the enhanced convection and moisture transport associated with the warm phase of ENSO66.

The RegCM5 simulation in Figure 3.4 captures this increase, but the comparison with ERA5 data

shows significant discrepancies, as illustrated by the bias maps. The metrics in Table 3.2 endorse

this, The errors for El Niño events are higher than the annual mean errors, reflecting the difficulty

that the model has in accurately simulating the increased precipitation. The negative median bias of

-0.42 mm/day suggests a slight tendency to underestimate precipitation during El Niño events. The
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correlation coefficient and the Willmott Index indicate moderate agreement, but they highlight the

need for better model performance during these extreme events.

Conversely, La Niña events are typically associated with decreased precipitation, particularly

in the coastal areas, due to the stronger-than-usual upwelling of cold water along the coast, which

reduces atmospheric convection and moisture availability69. The RegCM5 simulation failed to capture

the general pattern of reduced precipitation. In fact, similar to the El Niño events, shows notable

discrepancies when compared to ERA5 data. The error metrics registered in Table 3.2 for La Niña

events are slightly lower than those for El Niño events, but they still indicate significant deviations.

The near-zero median bias of 0.11 mm/day suggests no significant overall bias in one direction, but the

performance of the model varies across different regions. The correlation coefficient and the Willmott

Index suggest that the model has slightly better agreement with observations during La Niña events

compared to El Niño events, but there is still considerable room for improvement.

3.1.3 Divergence of Winds at 10m

Figure 3.5: Annual mean wind divergence at 10m from RegCM5 simulation (left), ERA5 reanalysis
data (middle), and the bias between them (right) for the period 1991-2020. The divergence is shown
in 1/s and the arrows represent the direction and velocity of the winds. The bias map highlights areas
where the RegCM5 simulation overestimates divergence, particularly in some areas of the coastal and
Amazon regions (shown in red), and areas where it underestimates divergence, such as the Andean
region (shown in blue).

Wind dynamics in Ecuador generally depend on the region. In coastal areas, strong westerly winds

influenced by the Pacific Ocean are observed. In the Andes, wind patterns are much more variable and

erratic due to the mountainous terrain. In the Amazon, winds are quite weak and also vary greatly,

but due to the dense forest cover in the area43.

Figure 3.5 illustrates the annual mean wind divergence at 10m. The RegCM5 simulation represents

in general the patterns of the wind, but with some discrepancies. The metrics in Table3.3 reveal that
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Figure 3.6: Composite wind divergence at 10m for El Niño (top row) and La Niña (bottom row) events
from RegCM5 simulation (left), ERA5 reanalysis data (middle), and the bias between them (right)
for the period 1991-2020. The divergence is shown in 1/s and the arrows represent the direction and
velocity of the winds. During El Niño events, the RegCM5 simulation overestimates divergence along
the coast and Amazon regions (shown in red), while underestimating it in the Andean region (shown
in blue). During La Niña events, the model shows similar discrepancies.

Table 3.3: Error Metrics for Wind Divergence at 10m

Metric Annual Mean El Niño La Niña
MAE (1/s) 4.9e-06 5.1e-06 5.1e-06
RMSE (1/s) 1.0e-05 1.1e-05 1.0e-05
Bias (1/s) 4.0e-07 8.5e-07 5.7e-07
Correlation 0.52 0.50 0.50
Willmott Index 0.68 0.66 0.66

the performance of the model in simulating wind divergence is moderate, with significant errors, par-

ticularly underestimating the divergence in the Andean region and overestimating it in the coast. The

correlation coefficient and the Willmott Index indicate moderate agreement between the model and

the ERA5, suggesting that while the model captures general patterns, significant discrepancies remain.

During El Niño events, Ecuador generally experiences changes in wind patterns, including in-

creased divergence along the coast and Amazon region due to enhanced convection and moisture

transport66. In Figure 3.6 the RegCM5 simulation captures some aspects of these changes, but the

comparison with ERA5 data reveals some discrepancies, particularly in the magnitude of divergence.
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The metrics for El Niño events in Table 3.3 show errors slightly higher than the annual mean ones,

reflecting how challenging it is for the model to accurately simulate these dynamic conditions. The

correlation coefficient and the Willmott Index indicate moderate agreement and the bias of 8.5× 10−7

1/s suggests a tendency to overestimate divergence during El Niño events.

Conversely, La Niña events, typically result in decreased wind divergence, particularly along the

coast. This reduction is due to the stronger-than-usual upwelling of cold water, which stabilizes the

atmosphere and reduces convection69. The RegCM5 simulation in Figure 3.6 failed to capture the

pattern of reduced divergence. In fact, the graphs for El Niño and La Niña events are very similar

for the RegCM5 simulation. Although the difference between these same graphs with the ERA5

data is not very noticeable either, we can observe a slightly higher divergence in the Andean region,

which will be more visible at higher altitudes. The metrics for La Niña events show similar errors

than those for El Niño events but still indicate notable deviations. The correlation coefficient and the

Willmott Index show that while the model captures the general trend, there is considerable room for

improvement to accurately represent the reduced divergence during La Niña events. The median bias

of 5.7 × 10−7 1/s suggests a slight overestimation of divergence.

3.1.4 Divergence of Winds at 100m

Figure 3.7: Annual mean wind divergence at 100m from RegCM5 simulation (left), ERA5 reanalysis
data (middle), and the bias between them (right) for the period 1991-2020. The divergence is shown
in 1/s and the arrows represent the direction and velocity of the winds. The bias map highlights areas
where the RegCM5 simulation overestimates divergence, particularly along the coastal regions and
parts of the Amazon basin (shown in red), and areas where it underestimates divergence, such as the
Andean region (shown in blue).

The wind patterns at 100 meters above the surface in Ecuador are generally more influenced by

broader atmospheric circulation and less by immediate surface features compared to winds at 10

meters. At 100 meters, the winds tend to be more consistent and less variable due to the reduced
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Figure 3.8: Composite wind divergence at 100m for El Niño (top row) and La Niña (bottom row)
events from RegCM5 simulation (left), ERA5 reanalysis data (middle), and the bias between them
(right) for the period 1991-2020. The divergence is shown in 1/s and the arrows represent the direction
and velocity of the winds. During El Niño events, the RegCM5 simulation overestimates divergence
in the coastal and Amazon regions (shown in red), while underestimating it in the Andean region
(shown in blue). During La Niña events, the model shows similar discrepancies.

Table 3.4: Error Metrics for Wind Divergence at 100m

Metric Annual Mean El Niño La Niña
MAE (1/s) 5.4e-06 6.0e-06 5.5e-06
RMSE (1/s) 1.2e-05 1.2e-05 1.2e-05
Bias (1/s) 5.5e-07 1.0e-06 7.3e-07
Correlation 0.56 0.53 0.55
Willmott Index 0.73 0.70 0.70

frictional influence of the surface43.

Figure 3.7 illustrates the annual mean wind divergence at 100m, showing that the RegCM5 simu-

lation represents the general patterns, but with discrepancies similar to those observed at 10 meters.

The metrics in Table 3.4 reveal that the performance of the model in simulating wind divergence

at 100 meters is moderate, with lower errors than at 10 meters. The correlation coefficient and the

Willmott Index suggest moderate agreement between the model and the ERA5 data, though significant

discrepancies remain. The median bias of 5.5 × 10−7 1/s indicates a slight overestimation, similar to

the pattern observed at 10 meters.
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During El Niño and La Niña events, the wind divergence at 100 meters shows changes similar to

those at 10 meters but with less pronounced local variations and more pronounced large-scale patterns.

The increased divergence during El Niño and decreased divergence during La Niña reflect the altered

atmospheric circulation associated with these events, affecting broader regions more uniformly at 100

meters compared to 10 meters43.

In Figure 3.8 we can observe that the RegCM5 simulation captures some aspects of the increased

divergence due to enhanced convection and moisture transport, particularly in the coastal and Amazon

regions. However, the comparison with ERA5 data reveals substantial discrepancies in the magnitude

and spatial distribution of divergence. The metrics for El Niño events in Table 3.4 show higher errors

than the annual mean, reflecting the challenges in accurately simulating these dynamic conditions with

this model. The correlation coefficient and the Willmott Index indicate moderate agreement, while

the bias of 1.0 × 10−6 1/s suggests a tendency to overestimate divergence during El Niño events.

Conversely, La Niña events, characterized by reduced divergence due to stronger-than-usual up-

welling of cold water, show similar discrepancies in the RegCM5 simulation at 100 meters. The

model struggles to capture the reduced divergence accurately, as shown in Figure 3.8. The metrics for

La Niña events reveal high errors, indicating significant deviations from ERA5 data. The correlation

coefficient and the Willmott indicate moderate agreement, but the performance of the model needs

improvement to accurately represent the reduced divergence during La Niña events. The bias of

7.3 × 10−7 1/s suggests a slight overestimation, similar to the pattern observed at 10 meters, which

suggests that this is a systematic bias.

These discrepancies in modeling wind divergence could be closely related to the difficulties of the

model in accurately simulating precipitation patterns. Wind divergence is a key factor in the formation

of clouds and precipitation. Errors in wind divergence can lead to inaccuracies in representing the

vertical motion of air, which is crucial for cloud formation and precipitation processes. For instance,

overestimating wind divergence in the coastal regions and underestimating it in the Andean regions

can result in incorrect precipitation estimates, as seen in the precipitation analysis71.

3.1.5 Specific Humidity

Similarly, specific humidity in Ecuador also varies between different regions. For example, the coastal

and Amazonian regions have high specific humidity, the coast due to its proximity to large bodies

of water, and the Amazon due to its dense vegetation. On the other hand, the Andes tend to have

lower specific humidity due to their higher altitude and cooler temperatures24. For this study, we
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Figure 3.9: Annual mean specific humidity from RegCM5 simulation (left), ERA5 reanalysis data
(middle), and the bias between them (right) for the period 1991-2020. The bias map highlights areas
where the RegCM5 simulation underestimates specific humidity, particularly in the Amazon region,
along the coast, and in the insular region (shown in blue), and areas where it overestimates specific
humidity, such as the Andean region (shown in red).

Figure 3.10: Composite specific humidity for El Niño (top row) and La Niña (bottom row) events from
RegCM5 simulation (left), ERA5 reanalysis data (middle), and the bias between them (right) for the
period 1991-2020. During El Niño events, the RegCM5 simulation underestimates specific humidity
in the Amazon region, along the coast, and in the insular region (shown in blue), while overestimating
it in the Andean region (shown in red). During La Niña events, the model shows similar discrepancies
but with less magnitude.

calculate specific humidity as the ratio of the mass of water vapor to the total mass of air (includ-

ing water vapor) and use the unit kg-kg, which expresses the mass of water vapor per unit mass of air73.
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Table 3.5: Error Metrics for Specific Humidity

Metric Annual Mean El Niño Event La Niña Event

MAE (kg/kg) 1.4 × 10−3 9.7 × 10−4 1.8 × 10−3

RMSE (kg/kg) 1.6 × 10−3 1.2 × 10−3 2.0 × 10−3

Bias (kg/kg) 1.2 × 10−3 4.7 × 10−4 1.9 × 10−3

Correlation 0.83 0.86 0.80
Willmott Index 0.83 0.89 0.76

The RegCM5 simulation in Figure 3.9 captures the overall distribution of specific humidity across

Ecuador but shows slight discrepancies in certain regions. The bias maps indicate that the model tends

to underestimate specific humidity in the Amazon region and along the coast while overestimating it

in the Andean region. The metrics in Table 3.5 indicate that the RegCM5 simulation exhibits small

errors, suggesting that the model reasonably captures the spatial variability of specific humidity, and

the bias of 1.2 × 10−3 kg/kg suggests that the model consistently overestimates the values. The high

correlation coefficient and the Willmott Index also indicate a good agreement between the model and

ERA5 data, despite the biases.

During El Niño events, specific humidity generally increases, especially in the coastal and Amazon

regions, due to enhanced convection and moisture transport from the warmer ocean surfaces66. The

RegCM5 simulation relatively captures this increase in specific humidity during El Niño events, but it

failed in terms of magnitude. The metrics for El Niño events in Table 3.5 show lower errors compared

to the annual mean and the higher correlation coefficient and the Willmott Index suggesting that the

model performs well in capturing the increased specific humidity during El Niño events. However,

the median bias of 4.7 × 10−4 kg/kg suggests a slight overestimation.

Conversely, La Niña events are associated with decreased specific humidity, particularly in the

coastal regions, due to stronger upwelling of cold water and reduced atmospheric convection69. The

RegCM5 model shows more significant discrepancies during La Niña events. The error metrics for

La Niña events in Table 3.5 reveal higher errors compared to El Niño events, along with a moderate

correlation coefficient and Willmott Index suggest moderate agreement, but the performance of the

model is less accurate compared to El Niño events. The bias of 1.9×10−4 kg/kg indicates a substantial

overestimation of specific humidity during La Niña events.
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3.1.6 Relative Humidity

Relative humidity in Ecuador, like specific humidity, varies significantly across different regions due

to the country’s diverse topography and climatic influences. Coastal and Amazon regions generally

exhibit higher relative humidity because of their proximity to large water bodies and dense vegetation,

which contribute to high moisture content in the air. In contrast, the Andean highlands tend to have

lower relative humidity due to their higher altitudes and cooler temperatures, which reduce the capacity

of air masses to hold moisture24. Relative humidity is a percentage that indicates how close the air

is to saturation, depending on both the moisture content and air temperature. In contrast, specific

humidity measures the actual moisture content in the air, independent of temperature73.

Figure 3.11: Annual mean relative humidity from RegCM5 simulation (left), ERA5 reanalysis data
(middle), and the bias between them (right) for the period 1991-2020. The bias map shows that the
RegCM5 simulation underestimates relative humidity along the coast and some parts of the Amazon
region (shown in blue) while overestimating it in the Andean region (shown in red).

The RegCM5 simulation in Figure 3.11 captures the general spatial distribution of relative hu-

midity across Ecuador but with notable discrepancies. The bias maps reveal that the model tends to

underestimate relative humidity along the coast and some parts of the Amazon region while overesti-

mating it in the Andean region. The metrics in Table 3.6 indicate that the RegCM5 simulation exhibits

moderate errors and the medium correlation coefficient and the Willmott Index suggest a moderate

agreement between the model and ERA5 data, despite these biases. Additionally, a bias of 0.81%

suggests a general overestimation of the relative humidity.

Table 3.6: Error Metrics for Relative Humidity

Metric Annual Mean El Niño Event La Niña Event
MAE (%) 3.34 3.22 3.28
RMSE (%) 4.68 4.63 4.68
Bias (%) 0.81 0.89 0.79
Correlation 0.42 0.43 0.42
Willmott Index 0.65 0.64 0.65
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Figure 3.12: Composite relative humidity for El Niño (top row) and La Niña (bottom row) events
from RegCM5 simulation (left), ERA5 reanalysis data (middle), and the bias between them (right) for
the period 1991-2020. During El Niño events, RegCM5 simulation generally underestimates relative
humidity in coastal and Amazon regions (shown in blue), while overestimating it in the Andean region
(shown in red). During La Niña events, the model shows very similar discrepancies.

During El Niño events, relative humidity typically increases, especially in the coastal and Ama-

zon regions, due to enhanced convection and moisture transport from the warmer ocean surfaces66.

The RegCM5 simulation captures this increase in relative humidity during El Niño events but with

varying accuracy. The metrics for El Niño events in Table 3.6 show errors similar to the annual mean,

with slightly better performance indicated by a higher correlation coefficient and the Willmott Index.

However, the bias of 0.89% suggests a slight overestimation of relative humidity during these events.

Conversely, La Niña events are associated with decreased relative humidity, particularly in the

coastal regions69. The RegCM5 simulation shows discrepancies during La Niña events similar to

those observed during El Niño events. The error metrics for La Niña events in Table 3.6 reveal higher

errors compared to El Niño events, along with a moderate correlation coefficient and the Willmott

Index. The bias of 0.79% indicates a slight overestimation of relative humidity during La Niña events.

It is important to note that the correlation and the Willmott Index are higher for specific humidity

compared to relative humidity primarily because specific humidity is more stable and less sensi-

tive to temperature variations. In contrast, relative humidity is a percentage that depends heavily on

temperature, making it more variable and sensitive to errors in both temperature and specific humidity.
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Notably, areas where the model overestimates relative humidity values, also present large amounts

of precipitation. This result is more marked over the Andean region and coincides with the tendency

of RegCM5 to overestimate specific and relative humidity. This may lead to predicted precipitation

that does not correspond to observed values. However, the model predicts low levels of precipitation

for the coastal region which are consistent with the observations.

3.2 Bias Correction

Given the discrepancies identified in the validation of the RegCM5 simulation, a bias correction has

been applied to the monthly data of these variables to improve the accuracy of the model simulations,

particularly for near-surface air temperature and precipitation. These variables are crucial due to their

significant influence on, and sensitivity to, the El Niño-Southern Oscillation (ENSO). The Quantile

Delta Mapping bias correction aims to mitigate systematic errors and enhance the ability of the model

to capture the spatial and temporal variability of these key climatic variables.

For this analysis, the data were divided into two periods: the calibration period (1991-2010) and

the validation period (2011-2020). The following sections present the results of the bias correction

for annual mean values and ENSO-related composites (El Niño and La Niña events) for the validation

period.

3.2.1 Near-Surface Air Temperature

Figure 3.13: Annual mean near-surface air temperature from RegCM5 simulation with bias correction
(left), ERA5 reanalysis data (middle), and the bias between them (right) for the period 2011-2020. The
bias map highlights areas where the RegCM5 simulation underestimates temperatures, particularly
throughout continental Ecuador (shown in blue).
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Figure 3.14: Composite near-surface air temperature for El Niño (top row) and La Niña (bottom row)
events from RegCM5 simulation with bias correction (left), ERA5 reanalysis data (middle), and the
bias between them (right) for the period 2011-2020. During El Niño events, RegCM5 simulation
underestimates temperatures along the Pacific coast, the insular, and Andean region (shown in blue),
while overestimating temperatures in some areas of the Amazon basin (shown in red). During La Niña
events, the model overestimates temperatures in the Andes, as well as in some areas of the Amazon
region (shown in red), while underestimating temperatures in some coast areas (shown in blue).

Table 3.7: Error Metrics for Near-Surface Air Temperature with and without Bias Correction

Event MAE RMSE Bias Correlation Willmott Index
Annual Mean
Corrected 0.21 0.25 0.18 1.00 1.00
Original 1.17 1.40 1.06 0.95 0.96
El Niño Event
Corrected 0.68 0.79 -0.69 0.99 0.99
Original 0.53 0.83 0.08 0.97 0.98
La Niña Event
Corrected 1.17 1.28 1.33 0.99 0.96
Original 1.95 2.25 2.32 0.92 0.90

The application of bias correction to the RegCM5 simulation significantly improves the accuracy

of near-surface air temperature simulations for the period 2011-2020. In Figure 3.13 we can observe

that the bias correction markedly reduces the systematic warm bias that the original model exhib-

ited across most regions of Ecuador, particularly in coastal and Andean areas. The corrected model
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Figure 3.15: Annual Cycle of near-surface air temperature for the period 2011-2020. The bias-
corrected model (RegCM5_QDM) aligns more closely with ERA5 data, particularly during the cooler
months from July to December, reducing the overall error and improving the representation of seasonal
temperature variations in Ecuador.

(RegCM5_QDM) also decreases this warm bias, bringing the temperature estimates much closer to

the ERA5 reanalysis data. The metrics in Table 3.7 indicate that the corrected model eliminates most

overestimations, achieving a reduction in the Mean Absolute Error (MAE) from 1.17°C to 0.21°C

and the Root Mean Square Error (RMSE) from 1.40°C to 0.25°C. Additionally, the systematic bias

decreases from 1.06°C to 0.18°C, and the correlation coefficient significantly improves from 0.95 to

0.99, indicating an almost perfect alignment with the ERA5 data. The Willmott Index also improves

from 0.96 to 0.99, suggesting better agreement between the model and observations.

In Figure 3.14, we can observe a clear distinction between El Niño and La Niña events, high-

lighting the different patterns in near-surface air temperature associated with each event. During El

Niño events, the original model captures the general pattern of increased temperatures with a small

underestimation in coastal regions. Despite the application of the bias correction, the corrected model

(RegCM5_QDM) shows an increase in MAE from 0.53°C to 0.68°C, indicating a slight increase in

error. Although the RMSE decreases from 0.83°C to 0.79°C, showing some improvement in overall

error magnitude, the bias shifts direction to -0.69°C, indicating a slight underestimation after correc-

tion. The correlation coefficient improves slightly from 0.97 to 0.99, and the Willmott Index remains

high, indicating good model performance.

During La Niña events, the original model presents a strong warm bias with a significant over-
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estimation of temperature. The corrected model shows a substantial reduction in bias, although

some overestimation persists. The metrics show notable improvement: MAE reduces from 1.95°C

to 1.17°C, and RMSE from 2.25°C to 1.28°C. The bias decreases from 2.3°C to 1.33°C, showing a

substantial correction of the original warm bias of the model. The correlation coefficient improves

from 0.92 to 0.99, and the Willmott Index increases from 0.90 to 0.96, indicating a much better

alignment with the ERA5 data for La Niña Events.

Through this validation, it is demonstrated that the QDM bias correction significantly improves

the results for surface air temperature. In fact, it can be observed in the analyses of the annual

means and ENSO events that the adjustments to the estimates have notably decreased the errors

previously recorded. Additionally, the annual temperature cycle shown in Figure 3.15 underlines this

statement. We can see how the original model overestimated temperatures compared to the ERA5

data, particularly during the colder months from July to December. On the other hand, the corrected

model shows a much better fit to the ERA5 data throughout the year.

3.2.2 Total Precipitation

Figure 3.16: Annual mean precipitation from RegCM5 simulation data corrected (left), ERA5 re-
analysis data (middle), and the bias between them (right) for the period 2011-2020. The bias map
highlights areas where the RegCM5 simulation overestimates precipitation, particularly along the
Pacific coast and some areas of the Andean region (shown in red), while overestimating precipitation
in the Amazon region (shown in blue).

The application of bias correction to the RegCM5 simulation significantly improves the accu-

racy of precipitation simulations for the period 2011-2020. In Figure 3.16, the corrected model

(RegCM5_QDM) shows a substantial reduction in both systematic biases and random errors when

compared to the original model. The annual mean precipitation analysis indicates that the corrected

model effectively reduces the systematic bias observed in the original model, particularly in the coastal

region where precipitation is typically high. The error metrics highlight these improvements, with
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Figure 3.17: Composite precipitation for El Niño (top row) and La Niña (bottom row) events from
RegCM5 simulation data corrected (left), ERA5 reanalysis data (middle), and the bias between
them (right) for the period 2011-2020. During El Niño events, RegCM5 simulation underestimates
precipitations along the Pacific coast and in the Amazon basin (shown in blue). During La Niña events,
the model overestimates precipitations in the coast region, as well as in some areas of the Andean
region (shown in red), while underestimating temperatures in the Amazon basin (shown in blue).

Table 3.8: Error Metrics for Precipitation with and without Bias Correction

Event MAE RMSE Bias Correlation Willmott Index
Annual Mean
Corrected 0.56 0.96 0.24 0.98 0.99
Original 4.9 11 0.12 0.71 0.52
El Niño Event
Corrected 0.62 1.2 -0.23 0.96 0.98
Original 5.7 13 -0.27 0.66 0.50
La Niña Event
Corrected 1.2 2.2 0.63 0.92 0.93
Original 6.0 13 0.56 0.75 0.47

the MAE decreasing from 4.88 mm/day to 0.56 mm/day and the RMSE from 11.42 mm/day to 0.96

mm/day. The bias shows a slight increase from 0.12 mm/day to 0.24 mm/day, indicating minor

overestimation. The correlation coefficient improves significantly from 0.71 to 0.98, demonstrating a

stronger alignment with ERA5 data, and the Willmott Index increases from 0.52 to 0.98, indicating

better model performance overall.
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Figure 3.18: Annual Cycle of total precipitation for the period 2011-2020. The original model
(RegCM5) consistently overestimates precipitation throughout the year compared to ERA5 data, with
a pronounced peak during the wet season. The corrected model (RegCM5_QDM) aligns much
more closely with ERA5. This alignment reduces the overall error and provides a more accurate
representation of the seasonal precipitation variation in Ecuador.

In Figure 3.17, we can observe the distinction between El Niño and La Niña events in terms of

precipitation patterns. During El Niño events, the original model tends to overestimate precipitation

significantly, especially in the Andean regions. The corrected model aligns more closely with ERA5

data, reducing the MAE from 5.65 mm/day to 0.62 mm/day and the RMSE from 12.78 mm/day to

1.17 mm/day. The bias shows a slight improvement, shifting from -0.27 mm/day to -0.23 mm/day.

The correlation coefficient improves from 0.66 to 0.96, and the Willmott Index from 0.50 to 0.98,

indicating enhanced model performance post-correction.

For La Niña events, the original model exhibits a strong overestimation of precipitation, which is

significantly corrected in the RegCM5_QDM model. The corrected model shows a marked improve-

ment in error metrics, with the MAE decreasing from 5.98 mm/day to 1.21 mm/day and the RMSE

from 13.47 mm/day to 2.20 mm/day. The bias increases slightly from 0.56 mm/day to 0.63 mm/day,

indicating a small overestimation. The correlation coefficient improves from 0.75 to 0.92, and the

Willmott Index increases from 0.47 to 0.93, demonstrating a better agreement with ERA5 data for La

Niña events.

Overall, the improvement of the model is much more notable for the precipitation variable, since

once the bias correction is applied, a significant reduction in errors especially in the spatial distribution
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of precipitation can be observed, which was previously too far from the ERA5 data. This improvement

can also be observed in the El Niño and La Niña events, which, despite showing stronger precipitation

during La Niña than El Niño, which is a bit far from reality, still considerably increases the precision

and therefore the confidence in the results. Additionally, the annual precipitation cycle, shown in Figure

3.18, shows a very significant improvement, since the original model (RegCM5) tended to greatly

overestimate precipitation throughout the year compared to the ERA5 data, especially during the wet

season. However, the corrected model (RegCM5_QDM) fits the ERA5 data much better, particularly

in the wettest months from February to May. Therefore, we can say that the bias correction improved

the temporal variability of precipitation, as well as its spatial distribution, which gives us a much more

accurate representation of this variable.

3.3 Identification of El Niño and La Niña Events

Figure 3.19: Three-month running mean of the Sea Surface Temperature of the El Niño 1+2 Region
for the period 1991-2020

Table 3.9: Comparison of ENSO Event Counts for the period 1991-2020.

Data Source El Niño Events La Niña Events
ONI 9 10
RegCM5_QDM 11 12
ERA5 14 11

The identification of El Niño and La Niña events is a critical aspect of understanding climate

variability and its impacts. In this analysis, the bias-corrected sea surface temperature (SST) data
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from the RegCM5 model corrected (RegCM5_QDM) in the El Niño 1+2 Region was used to identify

these events over the entire simulation period for the present (1991-2020) and near-future (2020-2050).

Figure 3.19 illustrates the three-month running mean of SST from the bias-corrected RegCM5 model

compared with ERA5 reanalysis data for the El Niño 1+2 Region. The close alignment between the

corrected model and ERA5 indicates the effectiveness of the bias correction in capturing the temporal

variability of SST.

Using the Oceanic Niño Index (ONI) thresholds and data from NOAA, we counted the number of

El Niño and La Niña events for reference. The ONI identifies 9 El Niño events and 10 La Niña events.

Applying the ICEN thresholds to the bias-corrected RegCM5_QDM data, we found 11 El Niño events

and 12 La Niña events. In comparison, the ERA5 reanalysis data identifies 14 El Niño events and 11

La Niña events. These counts are summarized in Table 3.9.

The results obtained reveal slight discrepancies in the number of ENSO events identified by the

different data sources. The ONI, which is used as a reference, recognizes a total of 19 events, while

the bias-corrected RegCM5_QDM data identifies 23 events, and the ERA5 reanalysis data identifies

25 events. These differences highlight the uncertainties inherent in the detection of ENSO events and,

above all, demonstrate that it is still a challenge to identify these events from a region other than the

standard El Niño 3.4.

However, the close number of events identified by the bias-corrected RegCM5_QDM data com-

pared to the ERA5 reanalysis data suggests that the bias correction has effectively improved the ability

of the model to capture ENSO events. The small differences in event counts can be attributed to the

different thresholds and data used for event classification. Despite not being a perfect method, this

approach is acceptable for the classification of El Niño and La Niña events. The alignment between

the corrected model data and the ERA5 reanalysis data provides confidence in the use of this method

for detecting ENSO events. Therefore, it is suitable for identifying future El Niño and La Niña events

allowing for relatively reliable climate projections of these events.

Using the same methodology for the identification of El Niño and La Niña events for the present

period, we count the El Niño and La Niña events for the near-future RegCM5 simulation data, which

identify 14 El Niño events and 10 La Niña events. These results align with other predictions that

suggest El Niño events are going to increase while La Niña events are expected to decrease. Previous

studies indicate that this trend is due to climate change, which is expected to increase the frequency

and intensity of El Niño events due to higher sea surface temperatures in the central and eastern Pacific

Oceans. This shift is attributed to changes in atmospheric circulation patterns and ocean-atmosphere

interactions under global warming scenarios74,75.
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3.4 Near-Future Projections

3.4.1 Near-Surface Air Temperature

Figure 3.20: Near-surface air temperature for the near future (2021-2050) and present period (1991-
2020) with their respective projection. The left panel shows the mean temperature for the near-future
period, indicating higher temperatures compared to the present period shown in the middle panel. The
projection in the right panel highlights an overall increase in temperature, with the most pronounced
warming observed in the Amazon and Andean regions.

The analysis of near-surface air temperature projections for the near future (2021-2050) reveals

significant warming across the region. The left panel of Figure 3.20 displays the mean temperature for

the near-future period, showing higher temperatures compared to the present period (middle panel).

The projection (right panel) indicates an overall increase in temperature, with the most pronounced

warming observed in the Amazon and Andean regions. This increase in temperature is consistent with

global climate change projections, which predict significant warming due to increased greenhouse gas

concentrations76.

The composite analysis for El Niño and La Niña events further highlights the expected changes in

temperature patterns associated with these phenomena. The top row of Figure 3.21 shows the tem-

perature composites for El Niño events in the near future and the present, along with their projection.

The near-future El Niño composite indicates a noticeable increase in temperature compared to the

present through all of continental Ecuador, but particularly in the Pacific Ocean. This warming trend

during El Niño events is expected to exacerbate the already significant impacts of these events, such

as increased heatwaves and altered precipitation patterns74.

Similarly, the bottom row of Figure 3.21 presents La Niña composites. For La Niña events, the cor-

rected model projections show a significant warming as well. The difference between the near-future

and present composites (right panel) highlights an overall increase in temperature during La Niña

events, although the warming is somewhat more intense compared to El Niño events, and very high
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Figure 3.21: Composite near-surface air temperature for El Niño and La Niña events in the near
future (2021-2050) compared to the present period (1991-2020). The top row shows El Niño events,
indicating a noticeable increase in temperature in the near future, particularly over the Pacific Ocean.
The bottom row presents La Niña events, with a significant warming observed in the near future,
especially in the Andean region.

along the Andean region. This trend suggests a future climate scenario where even traditionally cooler

La Niña periods will experience higher temperatures than currently observed, potentially altering the

expected climate impacts of La Niña events69.

It is also important to mention that the bias we applied to future temperature data helped to

significantly increase confidence in climate projections, even though this variable did not show major

improvements during validation as is the case for precipitation. Using corrected data for future

projection observations helps us avoid systematic errors that could alter the results in some way. On

the other hand, the observed warming trends for El Niño and La Niña events suggest an urgent need to

prepare for a warmer climate, which could result in more severe and frequent extreme weather events.

These projections are consistent with other studies that anticipate an increase in the frequency and

intensity of extreme weather events due to global warming76 74.

3.4.2 Total Precipitation

The total precipitation projections for the near future (2021-2050) show significant changes when com-

pared to the present period (1991-2020). The left panel of Figure 3.22 presents the mean precipitation
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Figure 3.22: Total precipitation for the near future (2021-2050) and present period (1991-2020) with
their respective projections. The left panel shows the mean precipitation for the near-future period,
indicating changes in precipitation patterns across the region compared to the present period shown
in the middle panel. The projection in the right panel highlights areas of increased precipitation,
particularly in the coastal and Andean regions.

Figure 3.23: Composite total precipitation for El Niño and La Niña events in the near future (2021-
2050) compared to the present period (1991-2020). The top row shows El Niño events, indicating a
significant increase in precipitation in the near future, particularly along the Pacific coast and parts
of the Andean regions. The bottom row presents La Niña events, with a noticeable decrease in
precipitation in the near future, especially in the Pacific coast and the Andean region.

for the near-future period, revealing changes in precipitation patterns across the region. The middle

panel displays the mean precipitation for the present period, serving as a baseline for comparison.

The right panel highlights the differences between the two periods, indicating areas of increased and
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decreased precipitation.

The analysis indicates that the coastal regions and parts of the Andean regions will experience

increased precipitation in the near future, as indicated by the red areas in the projection map. This

spatial variability in precipitation changes aligns with broader climate projections, which suggest that

climate change will lead to more extreme weather patterns, including changes in precipitation intensity

and distribution76.

The composite analysis for El Niño and La Niña events provides further insights into how these

precipitation patterns are expected to change during specific ENSO events. The top row of Figure 3.23

shows the precipitation composites for El Niño events in the near future and the present, along with

their projections. During El Niño events, the near-future composite indicates a significant increase

in precipitation in the northern coastal regions and parts of the Andean regions compared to the

present. This increase is consistent with the enhanced convective activity and higher rainfall typically

associated with El Niño events74.

In contrast, the bottom row of Figure 3.23 presents La Niña composites. For La Niña events, the

corrected model projections show a decrease in precipitation through Continental Ecuador, particu-

larly for the Pacific coast and the Andean region. The difference between the near-future and present

composites highlights a more pronounced drying trend in these regions during La Niña events, which

could exacerbate drought conditions and impact water availability69.

Overall, the bias correction we applied to the precipitation data greatly improved the accuracy of

the projections, ensuring that near-future precipitation estimates are more reliable and in line with

previously observed climate dynamics for ENSO events. Furthermore, these projections are also

consistent with some studies indicating an increase in the frequency and intensity of extreme weather

events as a result of global warming76.
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Chapter 4

Conclusions

This study aims to understand the impact of the El Niño-Southern Oscillation (ENSO) on inter-

annual climate variations in Ecuador by using the Regional Climate Modeling System RegCM5

(version 5.0.0). High-resolution simulations were conducted, encompassing the complex topography

of Ecuador and the Niño 1+2 region (Figure 3.19). The RegCM5 model, with its advanced MOLOCH

non-hydrostatic dynamical core and various physics parameterizations, was driven by boundary con-

ditions from the HadGEM2-ES General Circulation Model under the RCP8.5 scenario. The outputs

from our numerical models for near-surface air temperature, total precipitation, and other climatic

variables were validated against ERA5 reanalysis data. Bias correction using Quantile Delta Mapping

(QDM) was applied to improve the accuracy of projections. ENSO events were identified using SST

anomalies in the Niño 1+2 region, and future projections (2021-2050) were analyzed for changes

in temperature and precipitation patterns during El Niño and La Niña events. This methodological

approach ensured detailed and reliable future climate projections, essential for understanding and

mitigating ENSO impacts on regional climate patterns in Ecuador. Our conclusions are listed below:

(i) On The Model Validation

The comparison of the RegCM5 model against ERA5 reanalysis data for the years 1991-2020

provides valuable insights into the performance of the model in simulating various climatic

variables in Ecuador. The RegCM5 model successfully captures the spatial variability of near-

surface air temperature across the country, as evidenced by high Willmott Index and Pearson

Correlation values, which suggest strong alignment with the ERA5 data. Nonetheless, the

model shows a tendency to overestimate temperatures, particularly in coastal regions and the

Andes highlands. The model performs well during El Niño events, but it shows significant

discrepancies during La Niña events, where it tends to overestimate temperatures. Precipitation

modeling presents a greater challenge, with the RegCM5 model showing high errors and low

correlation with the ERA5 data. The model tends to overestimate precipitation in the central

Andean region and underestimate it along the coast and Amazon basin. These discrepancies are

51



more pronounced during El Niño and La Niña events, highlighting the difficulty of the model in

accurately simulating precipitation under extreme climatic conditions. These errors are consis-

tent with findings from previous studies, emphasizing the inherent challenges in precipitation

modeling due to complex geographical and topographical influences. The discrepancies in

wind divergence at 10m and 100m and relative humidity simulations are closely related to the

performance of the model in simulating precipitation. Errors in wind divergence affect the

vertical motion of air, which is crucial for cloud formation and precipitation. For instance, over-

estimations of wind divergence in coastal regions and underestimations in the Andean regions

lead to incorrect precipitation estimates, as reflected in the precipitation analysis. Similarly, re-

gions where the model overestimates relative humidity, such as the Andes, tend to show higher

simulated precipitation amounts. Conversely, underestimations of relative humidity in coastal

regions correlate with lower simulated precipitation.

(ii) On The Bias Correction

The bias correction applied to the RegCM5 model has been demonstrated to significantly improve

the accuracy of both near-surface air temperature and total precipitation for the period 2011-

2020. For near-surface air temperature, the corrected model markedly reduced the systematic

warm bias that was prevalent in the original model, particularly in the coastal region. Notably,

while the corrected model shows slight increases in MAE during El Niño events, it still achieves

an overall reduction in bias and error magnitudes for La Niña events, making the temperature

projections for the model more reliable for La Niña events. Similarly, the bias correction

significantly improved the precipitation projections. The corrected model effectively mitigated

the systematic overestimations observed in the original model, especially during the wet season

and ENSO-related events. The error metrics for precipitation indicate dramatic reductions in

MAE and RMSE, along with increased correlation coefficients and Willmott Index values,

underscoring the improved performance of the model post-correction. The corrected model

now aligns more closely with the ERA5 data, particularly during the ENSO events, providing a

more accurate representation of this phenomenon.

(iii) On the identification of El Niño and La Niña events

Using the method proposed in this work to identify future ENSO events in the El Niño 1+2

region, we have indicated a similar count for the present period. The (1991-2020), ONI, used as

a reference, gives a total of 19 events, the ERA5 data identified 25 events, and the bias-corrected

RegCM5_QDM model produced 23 events. Although the ENSO events in this region produced

by the model do not match the observations in time, this does not represent a drawback since the

evolution of the variables of the regional model is forced by a global model and the objective

is to observe the dynamics of the ENSO over the long term. After identifying the number of

events for the near future, the model results in an increase in the frequency of El Niño events
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and a decrease in La Niña events. The method may be used to help in the forecasting of future

phenomena that might be associated with ENSO and Ecuador’s vulnerable areas.

(iv) On the near-future projections

Regarding surface air temperature, the warming trend is very noticeable across the domain,

particularly for coastal and Andean regions. During El Niño and La Niña events, this trend

increases significantly in both cases, suggesting that even typically colder periods will experi-

ence elevated temperatures. These results agree with broader climate change projections that

predict an increase in temperatures due to high concentrations of greenhouse gases. Regarding

precipitation, our results suggest an increase in precipitation for coastal and Andean regions,

which increases in intensity during El Niño events. Contrary to this, during La Niña events,

these same regions will experience a considerable decrease in precipitation, which fits with the

dynamic behavior of this variable during ENSO events.

While this study has provided valuable insights, some limitations need to be addressed. One

significant limitation is that our RegCM5 simulation is not coupled with an ocean model, which could

enhance the precision of identifying El Niño and La Niña events, and allow us to look deeper in the

relevant region EL Niño 1+2. Coupled ocean-atmosphere models are more effective in simulating

ENSO dynamics because they account for the feedback mechanisms between the ocean and the

atmosphere, improving the accuracy of SST predictions13. The reliance on reanalysis data, like

ERA5, also poses limitations due to its inherent biases and lack of in-situ data comparison. Reanalysis

data are derived from a combination of model outputs and observations, which can introduce biases

and uncertainties, particularly in regions with sparse observational data77. Therefore, using in-situ

data instead of reanalyzed data can help improve not only the accuracy but also the confidence in

future climate projections. Future studies should incorporate comparisons with in-situ data to further

refine model data. On the other hand, only one general circulation model was used in this research,

so it would be interesting to explore whether other models can improve the identification of ENSO

events or are even more effective in simulating climate variables for this region. Different GCMs have

varying strengths and weaknesses in representing regional climate dynamics, so evaluating multiple

models can help identify the most reliable ones for a specific region78. Examples of GCMs that

could be evaluated include the Community Earth System Model (CESM), the European Centre for

Medium-Range Weather Forecasts (ECMWF), and the Max Planck Institute Earth System Model

(MPI-ESM)79. Implementing bias correction using in-situ data could offer significant benefits and

further improve the model’s accuracy. This comprehensive approach will enhance our understanding

of ENSO impacts and improve the reliability of future climate projections.
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