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Resumen

Reformulamos la teoría de homotopía introducida por Rosero en el con-
texto de categorías finitas. Esta teoría tiene como objetivo asociar un grupo
a una categoría finita por medio de un funtor CatFin∗ → Grp de tal manera
que exhiba la mayoría de las propiedades de π1 : Top∗ → Grp, el funtor
inducido por el grupo fundamental de un espacio topológico. A pesar de
que esto se puede lograr usando el espacio clasificador de una categoría
pequeña, tal método es inherentemente topológico. En contraste, nuestra
teoría se desarrolla netamente en un contexto algebraico. Además de esto,
hemos replanteado los fundamentos de la versión original de la teoría para
mayor claridad y rigurosidad. Específicamente, presentamos notación con-
sistente, resultados revisados, demostraciones originales, y generalizamos
algunos de los resultados más importantes de la teoría. También presenta-
mos resultados nuevos que aportan a la teoría una estructura más sólida. Fi-
nalmente, demostramos que nuestra teoría produce resultados consistentes
en cuanto a la realización geométrica de las categorías S1 y T2, cuyos grupos
fundamentales categóricos son isomorfos a Z y Z2, respectivamente.

Palabras clave: grupo fundamental, teoría de categorías, categorías finitas,
realización geométrica, nervio de una categoría, espacio clasificador.
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Abstract

We develop a reformulation of the theory of homotopy originally intro-
duced by Rosero within the context of finite categories. This theory aims to
associate a group to every finite category by means of a functor CatFin∗ →
Grp in such a way that it has many of the properties of π1 : Top∗ → Grp,
the functor induced by the fundamental group of a topological space. Even
though this can be achieved using the classifying space of a small category,
such approach is inherently topological. In contrast, our theory develops
a theoretical framework from scratch based on a purely algebraic setting.
Furthermore, we have reformulated the foundations of the original version
of the theory for improved clarity and rigor. Specifically, we present coher-
ent notation, revised results, novel proofs, and the generalization of some
of the principal results of the theory. In addition, we also prove new results
that make the overall organization more robust. Finally, we demonstrate
that this theory gives consistent results regarding the geometric realization
of the nerve of a small category, for the particular cases of the categories
S1 and T2, whose categorical fundamental groups are isomorphic to Z and
Z2, respectively.

Keywords: fundamental group, category theory, finite categories, geomet-
ric realization, nerve of a category, classifying space.
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Chapter 1

Preliminaries

The purpose of this chapter is to present elementary concepts and fix the no-
tation and terminology used throughout our work. It consists of two main
parts: basic group theory and basic general topology. Most proofs have
been omitted because they are standard and can be found in any introduc-
tory algebra or topology textbook. Some references consulted include [8,
3, 33, 23, 18].

1.1. Elements of Group Theory

A binary operation on a set X is a function from X×X to X. A set together
with a binary operation is called magma. If (X, ·) is a magma, and · is
associative, that is x · (y · z) = (x · y) · z for every x, y, z ∈ X, then (X, ·)
is a semigroup. If, in addition, there exists an element e ∈ X such that
x · e = e · x = x for all x ∈ X, then (X, ·) is a monoid. A group is a
monoid where every element has an inverse. To elaborate further, we have
the following definition.

Definition 1.1 Group

A group is a pair (G, ·) where G is a set and · is a binary operation on G
such that

(i) · is associative,
(ii) there is e ∈ G such that for all g ∈ G, g · e = e · g = g, and
(iii) for every g ∈ G there is g′ ∈ G such that g · g′ = g′ · g = e.

Remark 1.2. We usually refer to the group (G, ·) with the name of the underlying
set only, so we might write the group G to mean that G has a group structure when
endowed with a binary operation, usually understood from the context.

The symbol for the operation is usually omitted, and juxtaposition is
used instead: we write ab for a · b. The element e is called the identity
of G and sometimes it is denoted 1. Note that if there is g′ such that

1



CHAPTER 1. PRELIMINARIES

gg′ = g′g = e, then g′ is unique: if there were another g′′ ∈ G such that
gg′′ = g′′g = e, then

g′ = g′e = g′(gg′′) = (g′g)g′′ = eg′′ = g′′.

Therefore, the element g′ is denoted by g−1 and is called the inverse of g.
If, in addition to the conditions of Definition 1.1, the group operation

verifies gh = hg for all g, h ∈ G, we say that G is an abelian group. In this
case, the symbol + is used instead of · to denote the group operation, and
the identity element is denoted by 0.

Let g be an element of a group. The product of g with itself n times
is denoted gn. The product of g−1 with itself n times is denoted g−n. We
define g0 = 1. If the group is abelian, we write ng instead of gn and −ng
instead of g−n. In this case, we also write 0g = 0.

A group is finite if the underlying set is a finite set; otherwise it is called
infinite group. The order of a group is defined to be the cardinality of the
underlying set. We denote the order of a group G by |G|. We write |G| < ∞
if G is finite and |G| = ∞ otherwise.

Subgroups

Definition 1.3 Subgroup

Let (G, ·) be a group. A subgroup of G is a pair (H, ∗) where H is a
subset of G and ∗ is the restriction of · to H.

Let e be the identity of G. It is clear that G and {e} are two subgroups
of G. The latter is called the trivial subgroup of G.1 We say H is nontrivial1 The trivial subgroup may be denoted with

the symbol 0 or 1, depending on whether the
ambient group is abelian or not, respectively.
However, this convention is not always strictly
followed.

if H 6= {e}. We say H is a proper subgroup of G if H ⊆ G and H 6= G.
Otherwise, we say H is improper. We write

H ≤ G

to mean H is a subgroup of G, and H < G to mean that H is a proper
subgroup of G.

Let H be a subset of G. Subgroups are characterized by the following
property: H ≤ G if and only if both H 6= ∅ and ab−1 ∈ H for all a, b ∈ H.

The intersection of two subgroups is again a subgroup, and in general,
if (Hλ)λ∈Λ is a nonempty family of subgroups of G, then ⋂λ∈Λ Hλ is also a
subgroup of G. In contrast, the union of a collection of subgroups may not
be a subgroup. However, if (Hλ)λ∈Λ is a nonempty family of subgroups of
G such that either Hλ ⊆ Hλ′ or Hλ′ ⊆ Hλ for all λ, λ′ ∈ Λ, then ⋃λ∈Λ Hλ

is in fact a subgroup of G. On the other hand, if H and K are subgroups of
G, and if we let

HK = {hk | h ∈ H, k ∈ K} ,

then HK ≤ G if and only if HK = KH.

2



1.1. ELEMENTS OF GROUP THEORY

Direct Products and Direct Sums of Groups
Let (Gλ)λ∈Λ be a nonempty family of groups.The direct product of (Gλ)λ∈Λ

is the group whose underlying set is the cartesian product

∏
λ∈Λ

Gλ

endowed with the componentwise multiplication

(gλ)λ∈Λ · (g′λ)λ∈Λ = (gλ · g′λ)λ∈Λ.

If Λ is finite, say Λ = {1, . . . , n}, then we write G1× · · · ×Gn for ∏λ∈Λ Gλ.
The direct product is commutative and associative up to isomorphism.

If (Gλ)λ∈Λ is a family of abelian groups, we define its direct sum to be
the subgroup of ∏λ∈Λ Gλ that consist of those elements (gλ)λ∈Λ for which
the set {gλ | gλ 6= 0} is finite, or equivalently, such that gλ = 0 for all but
finitely many λ ∈ Λ. The direct sum of (Gλ)λ∈Λ is denoted⊕λ∈Λ Gλ. The
direct sum of a finite family of abelian groups is denoted G1 ⊕ · · · ⊕ Gn. If
(Gλ)λ∈Λ is finite, the direct product and the direct sum are exactly the same
group.

Homomorphisms of Groups

Definition 1.4 Group-homomorphism

Let G and H be groups. A map ψ : G → H is a homomorphism of groups
from G to H if

ψ(ab) = ψ(a)ψ(b)

for every a, b ∈ G.

We refer to ψ as a group-homomorphism for brevity, or simply as a ho-
momorphism, when there are no other algebraic structures involved, such
as rings, modules, or algebras. In those cases, we use the terms ring-
homomorphism, module-homomorphism, or algebra-homomorphism, re-
spectively.

Let G and H be groups and ψ : G → H a homomorphism. The kernel
of ψ is

Ker ψ = {a ∈ G | ψ(a) = 1}

where 1 denotes the identity element of H. The image of ψ is Im ψ = ψ(G).
Both the kernel and image of a homomorphism are subgroups of its domain
and codomain, respectively; that is, Ker ψ ≤ G and Im ψ ≤ H. Moreover,
ψ is injective if and only if Ker ψ = 1, where 1 denotes the trivial subgroup
of G. For any subgroup K ≤ G, its image ψ(K) is a subgroup of H. On the
other hand, is it a basic result that ψ(1) = 1 and ψ(gn) = (ψ(g))n for any
g ∈ G and any n ∈ Z.

3



CHAPTER 1. PRELIMINARIES

An isomorphism is a bijective homomorphism. Equivalently, ψ : G →
H is an isomorphism if and only if there exists another homomorphism
ψ′ : H → G such that

ψ ◦ ψ′ = IdH and ψ′ ◦ ψ = IdG.

where IdH and IdG denote the identity maps on H and G, respectively. If
there exists a isomorphism from G to H, we write G ∼= H and say that G
and H are isomorphic. In fact, ∼= is an equivalence relation in the class of all
groups. An endomorphism of G is a homomorphism from G to itself. An
automorphism is a bijective endomorphism.

Factor Groups
Let (G, ·) be a group and H ≤ G. Fix g ∈ G. The left coset of H by g is

gH = {gh | h ∈ H} .

The right coset of H by g is

Hg = {hg | h ∈ H} .

The conjugacy class of H by g is

gHg−1 =
{

ghg−1 | h ∈ H
}

.

Proposition 1.5

Let H be a subgroup of a group G and g an element of G. The following
statements are equivalent.

(i) For every g ∈ G, Hg = gH.
(ii) For every g ∈ G, gHg−1 = H.
(iii) For every g ∈ G, gHg−1 ⊆ H.
(iv) There exists a homomorphism with domain G whose kernel is H.

A normal subgroup H of G is a subgroup of G such that gHg−1 = H for
every g ∈ G, i.e., H is invariant under all conjugations. By the proposition
just presented, a normal subgroup is a subgroup that satisfies any of the
conditions listed in Proposition 1.5. The notation H ⊴ G is used to indicate
that H is a normal subgroup of G. A fact of fundamental importance is that
the kernel of any homomorphism is normal. Clearly, every subgroup of an
abelian group is normal.

Let N ⊴ G. The set

G/N = {gN | g ∈ G}

is a group when endowed with the operation defined by

(gN)(g′N) = (gg′)N

4



1.1. ELEMENTS OF GROUP THEORY

where g, g′ ∈ G. The fact that N is normal is equivalent to the fact that this
operation is well-defined. The group G/N is called the quotient group of G
by N, sometimes also called factor group. The map π : G → G/N : g 7→ gN
is a surjective homomorphism called canonical projection. If G and H are
abelian groups, the cokernel of a homomorphism ψ : G → H is defined as

Coker ψ = H/ Im ψ.

Theorem 1.6 Fundamental Theorem of Group Homomorphisms

Let ψ : G → H be a group-homomorphism. If N is a normal subgroup
of G contained in the kernel of ψ, then there exists a unique homomor-
phism ψ : G/N → H such that ψ = ψ ◦ π.

Proof. Define
ψ : G/N → H : aN 7→ ψ(a).

Note that ψ is well-defined because if aN = bN, then ab−1 ∈ N ≤ ker ψ,
whence ψ(ab−1) = 1 and thus ψ(a) = ψ(b). Moreover

ψ((aN)(bN)) = ψ(abN) = ψ(ab) = ψ(a)ψ(b) = ψ(aN)ψ(bN).

By construction, we have ψ = ψ ◦ π.

The conclusion of the previous result can be restated by saying that there
exists a unique homomorphism ψ : G/N → H that makes the following
diagram commute.

G H

G/N

π

ψ

ψ

Remark 1.7. A diagram consists of a collection of objects and arrows between those
objects. A diagram is said to commute if, for any pair of objects, all paths obtained
by following the arrows between them are equal.2 For instance, in the diagram 2 Commutative diagrams are ubiquitous to

category theory, as we will see in Chapter 3.above, the objects are G, G/N, and H and the arrows are ψ, π, and ψ. That this
diagram commutes means ψ = ψ ◦ π.

Let K and N be subgroups of a group G with N � G. Then
(i) N ∩ K � K,
(ii) NK = KN, and
(iii) if K is normal in G and K ∩ N = {e}, then nk = kn for all k ∈ K and

n ∈ N.
With these facts at hand, we can now present four fundamental results that
are consequences of Theorem 1.6, called, in order of presentation, the first,
second, third, and fourth isomorphism-theorems.

5



CHAPTER 1. PRELIMINARIES

Corollary 1.8 Isomorphism theorems of groups

(i) For any homomorphism of groups ψ : G → H,

G/ Ker ψ ∼= Im ψ.

(ii) If K, N ≤ G and N ⊴ G, then

NK
N
∼=

K
N ∩ K

.

(iii) If H, K ⊴ G and K ≤ H, then

H/K � G/K and G/K
H/K

∼=
G
H

(iv) Let N � G. There is a one-to-one correspondence between sub-
groups of G that contain N and subgroups of G/N. In particular,
every subgroup of G/N is of the form A/N with N ≤ A ≤ G.
Furthermore, for all A, B ≤ G that contain N, it holds

(a) A ≤ B if and only if A/N ≤ B/N, and
(b) A � G if and only if A/N � G/N.

1.2. Elements of General Topology

We denote the power set of a set X by P(X).

Definition 1.9 Topological space

Let X be a set. A topology T on X is a subset of P(X) such that
(i) both ∅ and X belong to T ,
(ii) if (Xλ)λ∈Λ is a family of elements of T , then ⋃

λ∈Λ
Xλ ∈ T , and

(iii) if (Xλ)λ∈Λ is a finite family of elements of T , then ⋂
λ∈Λ

Xλ ∈ T .

The pair (X, T ) is called topological space.

Let (X, T ) be a topological space. We say that X is a topological space
when the topology T is understood from the context. We say that U is an
open subset of X if and only if U ∈ T . A subset C of X is closed if X \ C is
an open subset of X.

Let A ⊆ X. The interior of A, denoted A◦ or IntX A, is the union of all
open subsets of X contained in A. The closure of A, denoted A or ClX A, is
the intersection of all closed subsets of X that contain A. Moreover, (i) A
is open if and only if A = A◦, (ii) A is closed if and only if A = A, and (iii)
A is everywhere dense if and only if A = X. A set N ⊆ X is a neighborhood
of a point x ∈ X if there exists an open subset U of X such that x ∈ U ⊆ N.

6



1.2. ELEMENTS OF GENERAL TOPOLOGY

A subspace of (X, T ) is a pair (Y, TY) where Y ⊆ X and

TY = {Y ∩O | O ∈ T } .

The collection TY is called the subspace (or relative) topology on Y. A subset
of a topological space is always assumed to be endowed with the subspace
topology unless otherwise stated.

Definition 1.10 Basis

Let T be a topology on X. A subset B of T is a basis for T if for every
O ∈ T there exists B′ ⊆ B such that

O =
⋃

B∈B′
B.

Example 1.11. The set of open intervals of R is a basis for the so called
usual topology of the real numbers. Thus R is a topological space, whose
open sets are arbitrary unions of open intervals. A remarkable subspace of
R that we will be using a lot is the unit interval I = [0, 1].

The elements of a basis are called basic open sets. We can define a topol-
ogy on a set by specifying a collection of distinguished open sets.

Proposition 1.12

Let B be a collection of subsets of a set X. Then B is a basis for some
topology on X if and only if

(i) X =
⋃

B∈B B, and
(ii) for any B, B′ ∈ B and x ∈ B ∩ B′, there exists B′′ ∈ B such that

x ∈ B′′ ⊆ B ∩ B′.
In this case, there exists a unique topology on X for which B is a basis,
called the topology generated by B.

Let x be a point of a topological space X. A collection Bx of neigh-
borhoods of x is a neighborhood basis for X at x if any neighborhood of x
contains an element of Bx. If there exists a countable neighborhood basis
at every point of X, we say X is first countable. A topological space is said
to be second countable if it admits a countable basis for its topology, and
separable if it contains a countable dense subset.

On the other hand, a cover of X is a family (Uλ)λ∈Λ of subsets of X
such that ⋃

λ∈Λ

Uλ = X.

The cover is said to be open (closed) if each Uλ is open (closed). If Λ′ ⊆ Λ is
finite and ⋃λ∈Λ′ Uλ = X, we say (Uλ)λ∈Λ′ is a finite subcover of (Uλ)λ∈Λ.

7
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Definition 1.13

A space is compact if every open cover admits a finite subcover.

Continuity and Homeomorphisms

Definition 1.14 Continuous function

A map f : X → Y between topological spaces X and Y is continuous if
for any open subset O of Y, the set f−1(O) is an open subset of X.

The image of a space under a continuous map is called continuous image.
Let X and Y be topological spaces and f : X → Y a continuous map. If

there exists a continuous map f ′ : Y → X such that

f ◦ f ′ = 1Y and f ′ ◦ f = 1X

then f is an homeomorphism, and X and Y are said to be homeomorphic. If
X and Y are homeomorphic, we write X ∼= Y. Being homeomorphic is an
equivalence relation in the class of all topological spaces. The composition
of homeomorphisms is a homeomorphism. It must be emphasized that a
bijective continuous map is not necessarily a homeomorphism. An injec-
tive continuous map that is a homeomorphism onto its image is called a
topological embedding.

Example 1.15. The circle is the set
S1 =

{
(x, y) ∈ R2 | x2 + y2 = 1

}
considered as

a subspace of R2. A knot is an embedding
S1 → R3. Two embeddings ψ, ψ′ : X → Y are
equivalent if there exist homeomorphisms
φX : X → X and φY : Y → Y such that
ψ ◦ φX = φY ◦ ψ′. For instance, the knots with
images

are equivalent. However, they are not
equivalent to the knot

Properties of topological spaces that are preserved under homeomor-
phisms are called topological properties or invariants. For instance, cardinal-
ity, connectedness, separability, countability, and compactness are some
examples of topological properties. Topological properties are useful be-
cause, in order to show that two spaces are not homeomorphic, it is enough
to find a property that the spaces do not share.

The following result allow us to create a new continuous map given a
family of continuous maps defined on smaller open subsets of a topological
space: continuous maps can be glued together to create another continuous
map.

Theorem 1.16 Gluing lemma

Let X and Y be topological spaces, and let (Oλ)λ∈Λ be a finite closed
cover of X. Suppose ( fλ : Oλ → Y)λ∈Λ is a family of continuous maps
such that

fλ

∣∣
Oλ∩Oλ′

= fλ′
∣∣
Oλ∩Oλ′

for all λ, λ′ ∈ Λ. Then there exists a unique continuous map f : X → Y
such that f |Oλ

= fλ for every λ ∈ Λ.

This result, also known as the pasting lemma, remains valid if (Oλ)λ∈Λ

is assumed to be an arbitrary open cover of X. The gluing lemma will

8
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play a crucial role in the next chapter, particularly when we discuss the
concatenation of paths in a topological space.

The Product Topology
Let (Xλ, Tλ)λ∈Λ be a family of topological spaces. Let X = ∏λ∈Λ Xλ. The
collection{

∏
λ∈Λ

Oλ

∣∣∣∣ Oλ ∈ Tλ for all λ ∈ Λ and {λ ∈ Λ | Oλ 6= Xλ} is finite
}

is a basis for a topology T , called the product topology on X. The pair (X, T )
is called a product space. If Λ is finite, say Λ = {1, . . . , n}, we write X1 ×
· · · × Xn rather than ∏λ∈Λ Xλ.

For each λ ∈ Λ, define the map

pλ : X → Xλ by
(

xµ

)
µ∈Λ 7→ xλ.

We call pλ the λth canonical projection of X onto Xλ. It is clear that pλ is
surjective. Furthermore, it is a standard result that the product topology
is the coarsest topology on X with the property that pλ is continuous, for
every λ ∈ Λ.

The cartesian product ∏λ∈Λ Xλ can be endowed with another topology,
called the box topology, defined as the topology generated by the basis{

∏
λ∈Λ

Oλ

∣∣∣∣ Oλ ∈ Tλ for all λ ∈ Λ

}
.

However, the box topology is not suitable for most purposes. The cartesian
product of topological spaces is always endowed with the product topology,
unless explicitly stated otherwise. Nevertheless, when the index set is finite,
both the box and product topology are exactly the same. In any other case,
these topologies are different.

Example 1.17. The set Rn is a product space when endowed with the topol-
ogy whose basic open sets are products of open intervals of real numbers.
Some special subspaces of Rn include the unit open ball, the unit n-disk,
the (n− 1)-sphere and the n-dimensional cube, defined as follows in order
of appearance:

B = {(x1, . . . , xn) ∈ Rn | x2
1 + · · ·+ x2

n < 1},

Dn = {(x1, . . . , xn) ∈ Rn | x2
1 + · · ·+ x2

n ≤ 1},

Sn−1 = {(x1, . . . , xn) ∈ Rn | x2
1 + · · ·+ x2

n = 1},

In = {(x1, . . . , xn) ∈ Rn | 0 ≤ xi ≤ 1, 1 ≤ i ≤ n}.

In particular, we call D2 the unit disk and S1 the unit circle, and they will be
assumed to be endowed with the subspace topology of R2

9
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A product space and its projections are characterized, up to unique iso-
morphism, by the following universal property.

Theorem 1.18 Universal property of the product topology

Consider a product space ∏λ∈Λ Xλ. For any topological space Y and
any family (ψλ : Y → Xλ)λ∈Λ of continuous maps, there exists exactly
one continuous map ψ : Y → ∏λ∈Λ Xλ such that the diagram

∏λ∈Λ Xλ

Y Xλ

pλ
ψ

ψλ

commutes for every λ ∈ Λ.

Quotient Topology

Definition 1.19 Quotient topology

Let (X, T ) be a topological space and ∼ an equivalence relation on the
underlying set X. Let π : X → X/∼ be the canonical projection. The
collection

Q =

{
U ⊆ X/∼

∣∣∣∣ π−1(U) ∈ T
}

is a topology on X/∼, called the quotient topology on X/∼. The quotient
space of X by ∼ is (X/∼,Q).

Alternatively, we could start with a partition of X and define the quo-
tient topology analogously, using the fact that an equivalence relation in-
duces a partition and vice versa.

A quotient space and its canonical projection are characterized, up to
unique isomorphism, by the following universal property.

Theorem 1.20 Universal property of the quotient topology

Let X/∼ be a quotient space. If ψ : X → Y is a continuous map such
that ψ(x) = ψ(x′) whenever x ∼ x′ for all x, x′ ∈ X, then there exists a
unique continuous map ψ : X/∼ → Y such that the diagram

X Y

X/∼

ψ

π
ψ

commutes.

10
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The construction we have seen can be generalized in the following sense:
if q : X → Y is a surjective map where X is a topological space and Y is any
set, then {

U ⊆ Y
∣∣∣∣ q−1(U) is open in X

}
is a topology on Y, called the quotient topology on Y induced by q.

Definition 1.21 Quotient map

Let X and Y be topological spaces. A quotient map from X to Y is a
surjective function q : X → Y such that Y is endowed with the quotient
topology induced by q.

It is straightforward fact that a quotient map is continuous.

Example 1.22 (Quotient spaces). (i) (Circle) We can define the circle as
the set

S1 =

{
z ∈ C

∣∣∣∣ |z| = 1
}

endowed with the relative topology of C. We have the homeomor-
phism

S1 ∼= I/[1 ∼ 0]

where ∼ is the equivalence relation on I = [0, 1] defined by

x ∼ y ⇐⇒ x = y or {x, y} = {0, 1}.

(ii) (Cylinder) The cylinder is the product space S1 × I, and it is homeo-
morphic to the quotient

I2/[(0, t) ∼ (1, t)]

where we identify points of the unit square that are at the same height.
Points that are not identified remain as singletons in the quotient.

(iii) (Torus) The 2-torus or just torus, denoted T2, is the product space
S1 × S1. We have the homeomorphism

T2 ∼= I2/[(0, t) ∼ (1, t), (t, 0) ∼ (t, 1)].

The equivalence relation considered here is the one that identifies the
parallel sides of I2 and leaves the inner points as singletons. In other
words, the torus can be obtained from the unit square by identifying
the points on the sides that are at the same height or in the same
vertical. The n-dimensional torus Tn is just the product space S1 ×
· · · × S1 of the circle with itself n times.

(iv) (Möbius strip) The Möbius strip is defined as the quotient space

I2/[(0, t) ∼ (1, 1− t)].

11
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In this case, we identify the vertical sides of I2 but in the opposite
direction.

(v) (Klein bottle) The Klein bottle is the quotient space

I2/[(t, 0) ∼ (t, 1), (0, t) ∼ (1, 1− t)].

The Klein bottle can be obtained by pasting together the (single)
edges of two Möbius bands.

Connectedness

Definition 1.23 Connected space

A topological space is connected if it does not admit a cover into two
nonempty disjoint open subsets.

Equivalently, a space is connected if has only two subsets that are both
open and closed: the empty set and the entire space. A topological space
is disconnected if it is not connected.

Proposition 1.24 Properties of connectedness

(i) The continuous image of a connected space is connected.
(ii) The product of a connected space is connected.
(iii) Every quotient space of a connected space is connected.
(iv) Connectedness is a topological property.

Let X be a topological space and A ⊆ X. We say A is connected if
A endowed with the subspace topology is connected. More specifically, A
is connected if we cannot find two nonempty open subsets U and V of X
such that

A ⊆ U ∪V and A ∩U ∩V = ∅.

If A is connected, then A is connected. Moreover, if both A ⊆ X and
B ⊆ X are connected and A ∩ B 6= ∅, then A ∪ B is connected.

A connected component of a space X is a maximal connected subset of X,
that is to say, a connected subset that is not properly contained in any other
proper connected subset of X. Equivalently, a connected component is one
of the equivalence classes generated by the equivalence relation defined by

x ∼ x′ ⇐⇒ there is C ⊆ X connected such that x, x′ ∈ C

for every x, x′ ∈ X. Connected components are closed. The number of
connected components is a topological invariant. A topological space is
totally disconnected if all of its connected components are singletons. For
instance, any discrete space is totally disconnected.
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Path Connectedness
A path in a topological space X is a continuous map from I = [0, 1] to X.
If γ is a path in X and γ(0) = p and γ(1) = q, we say that γ is a path from
p to q.

Definition 1.25 Path-connected space

A topological space is path-connected if there is a path between any pair
of points of the space.

Proposition 1.26 Properties of path connectedness

(i) The continuous image of a path-connected space is
path-connected.

(ii) The product of finitely many path-connected spaces is
path-connected.

(iii) Every quotient space of a path-connected space is also
path-connected.

(iv) Path connectedness is a topological property.
(v) Path connectedness implies connectedness.

A path-component is a maximal nonempty path-connected subset, or
equivalently, a path-component is one of the equivalence classes generated
by the equivalence relation that identifies pairs of points connected by a
path. Unlike the case of connectedness, path-components are not neces-
sarily closed. As in the case of connectedness, path-components of a space
form a partition. Finally, the number of path-components is a topological
invariant, and any path-component of a space X is contained in a single
connected component of X.

13





Chapter 2

Classical Homotopy Theory

Algebraic topology originated from the attempts to construct algebraic in-
variants of topological spaces. The classical and widely known ones being
the fundamental group and the homology groups. We devote this chapter to
the study of the former: the fundamental group of a pointed space. Alge-
braic invariants are helpful in the classification of topological spaces. For
instance, homeomorphic topological spaces have isomorphic fundamental
groups; the converse is not necessarily true. Thus, we can determine if two
spaces are not homeomorphic by showing that their fundamental groups
are not isomorphic.1 1 To be precise, one computes the fundamental

group of a topological space respect to a point
chosen in some path-connected component.

Throughout this chapter, I denotes the unit interval [0, 1] and C(X, Y)
denotes the space of continuous functions from a space X to a space Y. The
fundamental results have been consulted in [6, 18, 30, 15, 32].

2.1. Homotopy

The main motivation for introducing homotopy is to define homotopy of
paths for then we can define the fundamental group. Homotopy formal-
izes the idea of continuous deformation, which will allow us to talk about
deformation of paths in a topological space.

Definition 2.1 Homotopy

Let f and g be two continuous maps from a topological space X into
a topological space Y. A homotopy from f to g is a continuous map
H : X× I → Y such that

∀x ∈ X : H(x, 0) = f (x) and H(x, 1) = g(x).

If there is a homotopy from f to g, then f is said to be homotopic to g,
which is denoted by f ' g. If H is such homotopy, we write H : f ' g.

In light of this definition, if we fix t ∈ I, we can define a mapping
ht : X → Y by ht(x) = H(x, t). This results in a change of viewpoint
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of H.2 Indeed, we can think of a homotopy from f to g as a family of2 Think of t as time so that a homotopy
between f and g is a “continuous process of
deformation” at t goes from 0 to 1.

continuous maps (ht)t∈I such that h0 = f and h1 = g. Continuity of H
implies continuity of ht for all t ∈ I. However, continuity of each map ht

does not necessarily imply that H is continuous since it must be verified, in
addition, that the assignment (x, t) 7→ ht(x) is continuous.

Remark 2.2. Setting X × I or I × X as the domain of a homotopy is a matter of
convenience. We stick to the former.

Example 2.3. (Rectilinear homotopy) Let X and Y be topological spaces.
Any two continuous maps f , g : X → Rn are homotopic. This follows from
the fact that the map H : X× I → Rn defined by the formula

H(x, t) = (1− t) f (x) + tg(x)

is continuous since f and g are. Therefore H : f ' g. In fact, this result
remains true if Rn is replaced by any convex subset of Rn.

Theorem 2.4 ' is an equivalence relation

Suppose X and Y are topological spaces. Homotopy of maps is an equiv-
alence relation on C(X, Y).

Proof. We prove that ' is reflexive, symmetric, and transitive.
(i) (Reflexivity) Any map f ∈ C(X, Y) is homotopic to itself, namely via

the constant homotopy H : X × I → Y : (x, t) 7→ f (x). Continuity
of H comes from continuity of f . Thus ' is reflexive.

(ii) (Symmetry3) Suppose f ' g where f , g ∈ C(X, Y). This means there3 Symmetry of ' permits us to state that H is
a homotopy between f and g whenever H is a
homotopy from f to g or otherwise.

is a homotopy H from f to g with H(x, 0) = f (x) and H(x, 1) =

g(x) for all x ∈ X. Then G : X × I → Y : (x, t) 7→ H(x, 1− t) is
continuous and satisfies G(x, 0) = g(x) and G(x, 1) = f (x) for all
x ∈ X, i.e. G is a homotopy from g to f . Hence ' is symmetric.

(iii) (Transitivity) Suppose f ' g and g ' h where f , g, h ∈ C(X, Y).
Let H, G : X × I → Y be homotopies from f to g and from g to h,
respectively. Define the map F : X× I → Y by

F(x, t) =

H(x, 2t) if t ∈ [0, 1
2 ],

G(x, 2t− 1) if t ∈ [ 1
2 , 1],

for all x ∈ X and t ∈ I. Then F is a homotopy between f and h.
Indeed, notice F(x, 1

2 ) = H(x, 1) = G(x, 0) = g(x) for all x ∈ X, so
F is continuous by the pasting lemma; also F(x, 0) = H(x, 0) = f (x)
and F(x, 1) = G(x, 1) = h(x) for all x ∈ X. Hence ' is transitive.

The proof is complete.
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By Theorem 2.4, we can split the set C(X, Y) into equivalence classes,
which we call homotopy classes. We denote by π(X, Y) the quotient set of
C(X, Y) by '.

Theorem 2.5 Composition preserves '

Suppose X, Y, and Z are topological spaces. Let f1, f2 ∈ C(X, Y) and
g1, g2 ∈ C(Y, Z). If f1 ' f2 and g1 ' g2, then g1 ◦ f1 ' g2 ◦ f2

Proof. Suppose f1 ' f2 and g1 ' g2 and let H and G be homotopies from
f1 to f2 and from g1 to g2, respectively. Define F : X× I → Y by

F(x, t) = G(H(x, t), t)

for all x ∈ X and all t ∈ I. Then F is a homotopy from g1 ◦ f1 to g2 ◦ f2.
Indeed, F is continuous as it is the composition of continuous functions
and for any x ∈ X we have

F(x, 0) = G(H(x, 0), 0) = G( f1(x), 0) = g1( f1(x)) and
F(x, 1) = G(H(x, 1), 1) = G( f2(x), 1) = g2( f2(x)).

Therefore g1 ◦ f1 ' g2 ◦ f2.

Sometimes we may need to work with homotopies that leave some
points fixed. Thus we must establish the notion of homotopy respect to
a subspace, where deformation does not occur.

Definition 2.6 Relative homotopy

Let X and Y be topological spaces and fix a subset A ⊆ X. A homotopy
H between maps f , g ∈ C(X, Y) is called homotopy relative to A if

∀x ∈ A, ∀t ∈ I : H(x, t) = H(x, 0).

We say f and g are homotopic relative to A.

Notice from the definition above that H(x, t) = H(x, 0) is equivalent
to H(x, t) = f (x). Moreover, we have f |A = g|A since H(x, 1) = g(x) for
all x ∈ X.

When the homotopy between two maps is not relative to any particular
subspace, the maps are said to be freely homotopic. We will add the adjective
freely for emphasis when necessary. As shorthand, we say f and g are A-
homotopic if they are homotopic relative to A, which might also be denoted
by f ' g (rel A). If A = {p}, we may just write f ' g (rel p).

Example 2.7. Suppose X is a topological space, A is a subset of X and B ⊆
Rn is a convex set. Let’s show that any two continuous maps f , g : X → B
are homotopic relative to A if f |A = g|A. Certainly, let f , g ∈ C(X, B)
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agree on A and define H : X× I → B by

H(x, t) = f (x) + t(g(x)− f (x))

for all x ∈ X and y ∈ I. (H is called the straight-line homotopy between
f and g.) Note that H is continuous and takes values on B as B is convex.
Also H(x, 0) = f (x) and H(x, 1) = g(x) for all x ∈ X. Then H is a
homotopy between f and g. Finally, since f (x) = g(x) for all x ∈ A we
have H(x, t) = f (x) + t0 = f (x) for all x ∈ X and t ∈ I, as desired.

2.2. Paths

We have defined homotopy of continuous functions between topological
spaces. Now we consider the particular case when those continuous maps
have I = [0, 1] as domain, that is, paths. We already know that paths can be
used to study topological properties like connectedness (Section 1.2). We
will give them another purpose: paths can serve as a tool to detect holes in
a space. We will make this precise later on.

Definition 2.8 Path

A path in a topological space X is a continuous map from I to X. If f is
a path in X, we call x0 = f (0) and x1 = f (1) the initial and final point
of f , respectively. We say f is a path in X from x0 to x1.Note that it is the mapping f that is the path

and not its image f ([0, 1]), which is called a
curve in X.

Remark 2.9. Any continuous map f : [a, b] → X can be reparametrized to get
a continuous map with domain [0, 1]. Indeed, define g : [0, 1] → X by g(t) =

f (a + t(b− a)) for all t ∈ [0, 1]. Thus, using [0, 1] in Definition 2.8 is a matter of
convenience.

Example 2.10. (i) (Constant path) The constant path at x ∈ X is the map
ex : I → X defined by ex(t) = x for all t ∈ I.

(ii) (Inverse path) Let X be a topological space. For any path f ∈ C(I, X)

we define the inverse path of f by f : I → X : t 7→ f (1− t). Note
that f = f . Moreover, if ψ : X → Y is continuous, ψ ◦ f is a path in
Y, and

ψ ◦ f (t) = ψ ◦ f (1− t) = ψ ◦ f (t)

for all t ∈ I, whence ψ ◦ f = ψ ◦ f .

Figure 2.1: Loops on the Klein bottle. The
base points are not shown.

Definition 2.11 Loop

A loop f in a topological space X is a path in X with same initial and
terminal point. This common point x0 is called the base point of the loop.
We say that f is a loop based at x0.
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The set of loops in a space X based at a point x0 is denoted by Ω1(X, x0).
We will be interested in those homotopies of continuous maps [0, 1]→

X that fix 0 and 1. This notion constitutes a stronger relation than mere
homotopy.

Definition 2.12 Homotopy of paths

Suppose f and g are two paths in X. A path-homotopy between f and g
is a homotopy from f to g relative to ∂I = {0, 1}. If there exists such
a homotopy, we say that f and g are path-homotopic and denote it by
f ∼ g.

In other words, a path-homotopy is one that fixes the endpoints of
paths. Thus we may reformulate the definition as follows. Two paths f
and g in X are path homotopic if and only if they have the same initial
point x0 and same final point x1 and, in addition, there is a continuous
map H : I2 → X such that

H(s, 0) = f (s) and H(s, 1) = g(s),

H(0, t) = x0 and H(1, t) = x1,

for every (s, t) ∈ I2. Intuitively, we would think of s and t as space and
time variables, respectively.

A null-homotopic loop is a one that is path-homotopic (and not just
homotopic) to a constant loop.

Theorem 2.13 ∼ is an equivalence relation

Let X be a topological space. Homotopy of paths is an equivalence
relation on C(I, X).

Proof. Notice this does not follow from Theorem 2.4 as path-homotopy
is a stronger notion than homotopy alone. Nevertheless, we only need to
modify the proof to verify that path-homotopies fix the endpoints of paths.

(i) (Reflexivity) Any path f in X is homotopic to itself via the constant
homotopy, which trivially fixes the endpoints of f . Thus ∼ is reflex-
ive.

(ii) (Symmetry) Suppose f ∼ g where f and g are paths in X such that
x0 = f (0) = g(0) and x1 = f (1) = g(1). This means there is
a homotopy H from f to g relative to {0, 1}. Then G : I2 → X :
(s, t) 7→ H(s, 1− t) is a homotopy from g to f which satisfies

G(0, t) = H(0, 1− t) = x0 and G(1, t) = x1,

meaning it is relative to {0, 1}. Thus g ∼ f . It follows that ∼ is
symmetric.
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(iii) (Transitivity) Let f , g and h are paths in X with same starting point
x0 and same terminal point x1. Suppose f ∼ g and g ∼ h. Let
H, G : I2 → X be path homotopies from f to g and from g to h,
respectively. Define the map F : I2 → Y by

F(s, t) =

H(s, 2t) if t ∈ [0, 1
2 ],

G(s, 2t− 1) if t ∈ [ 1
2 , 1],

for all s ∈ I and t ∈ I. Then F is a homotopy between f and h, by
Theorem 2.4. Because H and G are relative to {0, 1}, we also have

F(0, t) = x0 and F(1, t) = x1,

for all t ∈ I. Therefore f ∼ h, whence we conclude ' is transitive.
The proof is complete.

Remark 2.14. We call the equivalence classes under ∼ path-homotopy classes. If f
is a path we denote its path-homotopy class by [ f ].

Lemma 2.15

Suppose f is a path in X and φ : I → I is a continuous map that fixes 0
and 1. Then f ◦ φ ∼ f . We call f ◦ φ a reparametrization of f .

Proof. Define H : I × I → I by

H(s, t) = s + t(φ(s)− s).

That is, H is the straight line homotopy from the identity map on I to φ.
See Example 2.7. Let us verify that the continuous map f ◦ H is a path-
homotopy from f to f ◦ φ. We have

f (H(s, 0)) = f (s), f (H(s, 1)) = f (φ(s)),

and
f (H(0, t)) = f (tφ(0)) = f (0), f (H(1, t)) = f (1).

The claim follows.

Multiplication of Paths

Definition 2.16 Product of paths

Let X be a topological space. Suppose f and g are paths in X with
f (1) = g(0). In this case we say f and g are composable. Define the
product of f and g as the map f · g : I → X given by

f · g(t) =

 f (2t) if t ∈ [0, 1
2 ],

g(2t− 1) if t ∈ [ 1
2 , 1].
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It is clear that f · g is a path in X. Note that f · g is continuous since
f (1) = g(0), thanks to the gluing lemma, Theorem 1.16. Figure 2.2 illus-
trates the product of two paths.

p

q

r

f
g

Figure 2.2: A path can be thought of as the motion of a point. The moving point
in f · g starts at p = f (0), then traverses f at twice speed up to q = f (1) = g(0),
where the point now follows g also at twice speed and finally arrives to r = g(1).

Observe that we cannot formally define · as an operation on the set
C(I, X). This is due to the constrain that paths must agree on one common
endpoint so that their product is continuous.4 Note C(I, X) is not even 4 This problem can be overcome by working

on Ω(X, x0) where all paths have the same
initial and final point.

closed under · if we not require f (1) = g(0).
The following theorem tell us that · is well defined on the set of homo-

topy classes of paths. This bring us closer to one of our immediate objec-
tives: to construct a set endowed with a well-defined group operation.

Theorem 2.17 Product of paths preserves ∼

Let X be a topological space. Let f , g ∈ C(I, X) be paths such that
f (1) = g(0). Define the product of path-homotopy classes by

[ f ] · [ g ] = [ f · g ].

Then · is well defined on C(I, X)/∼. In other words, if f ∼ f̂ and g ∼ ĝ,
then f · g ∼ f̂ · ĝ whenever the products are defined.

Remark 2.18. Unfortunately, the set C(I, X)/∼ is not a group under product of
path-homotopy classes. Notice the additional condition f (1) = g(0). Thus · is not
defined for all elements of C(I, X)/∼ but only for those whose representatives agree
on a common endpoint. We can remediate this situation by enforcing all paths to
be loops based at a common point. This is the topic of the next section.

Proof. Suppose f ∼ f̂ and g ∼ ĝ. Denote x0 = f (0), x1 = f (1) and
x2 = g(1). Suppose also the product f · g is defined. Let F be a path-
homotopy between f and f̂ . Let G be a path-homotopy between g and ĝ.
Define H : I2 → X by

H(s, t) =


F(2s, t) ∀s ∈

[
0, 1

2

]
, ∀t ∈ I,

G(2s− 1, t) ∀s ∈
[

1
2 , 1
]

, ∀t ∈ I.

Note H takes a unique value when s = 1/2 as F(1, t) = x1 = G(0, t). Thus
H is well defined and it is continuous by the pasting lemma. Also f̂ and
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ĝ are composable because f̂ (1) = f (1) = g(0) = ĝ(0). Let s ∈ I. If
s ∈

[
0, 1

2

]
, by definition of path multiplication we get

H(s, 0) = F(2s, 0) = f (2s) = f · g(s) and
H(s, 1) = F(2s, 1) = f̂ (2s) = f̂ · ĝ(s).

Similarly, if s ∈
[

1
2 , 1
]
,

H(s, 0) = G(2s− 1, 0) = g(2s− 1) = f · g(s) and
H(s, 1) = G(2s− 1, 1) = ĝ(2s− 1) = f̂ · ĝ(s).

Therefore

∀s ∈ I : H(s, 0) = f · g(s) and H(s, 1) = f̂ · ĝ(s),

so H is a homotopy between f · g and f̂ · ĝ. It is in fact a path-homotopy
because it leaves the endpoints fixed: H(0, t) = F(0, t) = x0 and H(1, t) =
G(1, t) = x2 for all t ∈ I.

Not only the consideration of path-homotopy classes guarantees well-
definiteness of path multiplication, but also its associativity as the next the-
orem shows. Since we aim to construct a group endowed with such an
operation, we also need an identity element and inverses. Although the
next theorem is a step further, we also need closure under the group oper-
ation which we still do not have.

Theorem 2.19 Properties of the product of path-homotopy classes

Let X be a topological space and f , g, h ∈ C(I, X). Suppose f (0) = p
and f (1) = q.

(i) (Associativity) If either [ f ] · ([g] · [h]) or ([ f ] · [g]) · [h] is defined
so is the other, and

[ f ] · ([g] · [h]) = ([ f ] · [g]) · [h].

(ii) (Identities) The constant maps ep and eq satisfy

[ f ] · [eq] = [ f ] and [ep] · [ f ] = [ f ].

(iii) (Inverses) The inverse path f satisfies

[ f ] · [ f ] = [ep] and [ f ] · [ f ] = [eq].

Proof. (i) If [ f ] · ([g] · [h]) is defined, then h starts at g(1) and g starts
at f (1). Thus ( f · g) · h exists, and so ([ f ] · [g]) · [h] is also defined.
The argument also works the other way around. Now, note [ f ] · ([g] ·
[h]) = ([ f ] · [g]) · [h] is equivalent to

f · (g · h) ∼ ( f · g) · h,
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so it is enough to prove this statement. In regard to the description
made at Figure 2.2, the moving point in the path f · (g · h) first fol-
lows f at half normal speed, and then follows both g and h at quadru-
ple speed. In contrast, the path ( f · g) · h first follows both f and g at
quadruple speed, and last h at twice the normal rate. Thus, f · (g · h)
is a reparametrization of ( f · g) · h and vice versa. Indeed, consider
the continuous map

φ : I → I : t 7→


t
2 if t ∈

[
0, 1

2

]
,

t− 1
4 if t ∈

[
1
2 , 3

4

]
,

2t− 1 if t ∈
[ 3

4 , 1
]

.

Then we have f · (g · h) ◦ φ = ( f · g) · h. Since φ fixes 0 and 1,
Lemma 2.15 implies that f · (g · h) ∼ ( f · g) · h.

(ii) Let us prove eq · f ∼ f . The map H : I2 → X defined by

H(s, t) =

 f
( 2s−t

2−t
)

if t ∈ [0, 2s],

p if t ∈ [2s, 1],

is continuous by the gluing lemma, Theorem 1.16, and satisfies

H(s, 0) = f (s), H(s, 1) = ep · f (s), H(0, t) = p, H(1, t) = q.

Thus, H is a path-homotopy from f to ep · f . Hence [ f ] · [eq] = [ f ].
Following a similar reasoning we obtain [ep] · [ f ] = [ f ].

(iii) The map H : I2 → X defined by

H(s, t) =


f (2s) ifs ∈

[
0, t

2
]

,

f (t) ifs ∈
[ t

2 , 1− t
2
]

,

f (2− 2s) if s ∈
[
1− t

2 , 1
]

is a path-homotopy from ep to f · f . Thus [ f ] · [ f ] = [ep]. Using the
same homotopy but with the roles of f and f interchanged it follows
analogously that [ f ] · [ f ] = [eq].

The proof is complete.

2.3. The Fundamental Group of a Pointed Space

The fundamental group is an algebraic invariant that we can associate to
any topological space. Studying the algebraic situation give us information
about the topological one. The following theorem is the one we have been
aiming at. It remediates the problem we left unsolved in the last section by
only considering those paths that start and end at the same point: loops.
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Theorem 2.20

For any topological space X and any x0 ∈ X, the set Ω1(X, x0)/∼ is a
group endowed with the operation of multiplication of path-homotopy
classes.

Proof. The fact that · is well defined follows from Theorem 2.17. Associa-
tivity, the existence of an identity, and the existence of the inverse of each
path class follow as a particular case of Theorem 2.19.

Definition 2.21 Fundamental group

Let X be a topological space and x0 a point of X. The fundamental group
The fundamental group of a topological space
was introduced by Henri Poincaré. The symbol
π is also due to Poincaré. Another name is the
first homotopy group, which is the reason for
the subindex 1 in the notation. In fact, there is
an infinite sequence of groups πn(X, x0) with
n ∈ Z+. The definition of the higher
homotopy groups was due to Hurewicz.

of X with base point x0, denoted π1(X, x0), is the set Ω1(X, x0)/∼
endowed with the operation of multiplication of path-homotopy classes:

[ α ] · [ β ] = [ α · β ].

2.3.1. The Role of Base Point
The fundamental group of a topological space greatly depends on the base
point chosen in the space. If another base point is chosen in the same
path-connected component, the resulting fundamental groups are isomor-
phic. However, the fundamental groups of a space at base points that be-
long to different path-connected components may have no relationship to
each other. In fact, the group π1(X, p) of a space X at a point p ∈ X,
only gives information about the path-connected component to which p
belongs. This is the reason why the fundamental group is mainly used to
study path-connected topological spaces.

The next result shows that there is a canonical way to change the base
point to another point in the same path-connected component. See Fig-
ure 2.3.

q

p
α

f

Figure 2.3: Change of base point. In order to change the base point from p to q,
we fix a path α from p to q. For any loop f based at p, we traverse as follows: from
q to p via α, then follow f from p back to p, and finally return to q via α. Note the
blue loop encloses a hole.
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Theorem 2.22 Change of base point

Let p and q be two points of a topological space X. Suppose α is a path
in X from p to q. Define Φα : π1(X, p)→ π1(X, q) by

Φα[ f ] = [α] · [ f ] · [α].

Then
(i) Φα is a group-isomorphism whose inverse is Φ−1

α = Φα,
(ii) the groups π1(X, p) and π1(X, q) are isomorphic,
(iii) Φep is the identity map on π1(X, p),
(iv) if α and β are path-homotopic, then Φα = Φβ,
(v) if β is a path from q to r, then Φα·β = Φβ ◦Φα, i.e., the diagram

π1(X, p) π1(X, q)

π1(X, r)

Φα

Φα·β
Φβ

commutes.

Remark 2.23. Due to Theorem 2.22, sometimes the imprecise notation π1(X) is
used. However, we must be careful to specify the base point even when working in
the same path-connected component. The reason is that, even tough π1(X, p) ∼=
π1(X, q) when p, q lie in the same path-component, the isomorphism may not be
canonical. This means that different paths from p to q may give rise to different
isomorphisms.

Proof. First note that Φα[ f ] does indeed define an element of π1(X, q) for
any f ∈ Ω(X, p).

(i) If α and β are path-homotopic, [α] = [β]. Thus, for any f ∈ Ω(X, p),

Φα[ f ] = [α] · [ f ] · [α] = [β] · [ f ] · [β] = Φβ[ f ].

Hence Φα = Φβ.
(ii) Let us first show that Φα is a group-homomorphism. If f and f ′ are

any loops based at p, then

Φα[ f ] ·Φα[ f ′] = ([α] · [ f ] · [α]) · ([α] · [ f ′] · [α])

= [α] · [ f ] · [ep] · [ f ′] · [α]

= [α] · [ f ] · [ f ′] · [α]

= Φα([ f ] · [ f ′]).

This follows from Theorem 2.19. On the other hand,

Φα ◦Φα[ f ] = [α] · [α] · [ f ] · [α] · [α] = [ep] · [ f ] · [ep] = [ f ]
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and if g is any loop based at q,

Φα ◦Φα[g] = [α] · [α] · [g] · [α] · [α] = [eq] · [g] · [eq] = [g].

This shows Φα is the inverse of Φα, so Φα is an isomorphism.
(iii) This is an immediate consequence of (i).
(iv) Let f be a loop based at p. Then

Φα·β[ f ] = [ α · β ][ f ][α · β]

= [ β · α ] · [ f ] · [α · β]

= [ β ] · [ α ] · [ f ] · [α] · [β]

= Φβ(Φα[ f ])

and the claim follows.
(v) This is a consequence of Theorem 2.19. Note that

Φep [ f ] = [ep] · [ f ] · [ep] = [ep] · [ f ] = [ f ].

The proof is complete.

Definition 2.24 Simply connected space

A topological space X is simply connected if X is path-connected and
π1(X, p) is trivial for some p ∈ X.

Note that if a space is simply connected, then π1(X, p) is trivial for any
p ∈ X. We express the fact that π1(X, p) is the trivial group by writing
π1(X, p) = 0.

The idea behind simply connectedness is that any loop in X can be
continuously deformed to a point, i.e., any loop is null-homotopic to a
constant loop. For instance, the torus is not simply connected, since some
loops enclose a hole and thus cannot be shrunk to a point. See Figure 2.3.

2.3.2. Circular Loops
Recall that the circle S1 is the set of points z ∈ C such that |z| = 1. The
map ω : I → S1 : t 7→ exp(2πit) is a loop in S1. It traverses once around
the circle counterclockwise and maps 0 and 1 in I to 1 ∈ S1 (identified with
(1, 0) in R2).

A continuous map ℓ from S1 to a topological space X is a circular loop
at p ∈ X if ℓ(1) = p. The composition ℓ ◦ ω : I → X is a usual loop at
X based at p, in the sense of Definition 2.8. In fact, any loop in X can be
factored in this way through ω.
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Proposition 2.25 Loops factor through circular loops

Let f be a loop in a space X. There exists a unique map f̃ : S1 → X such
that f = f̃ ◦ω, i.e., the diagram

I X

S1

f

ω
f̃

commutes. We call f̃ the circle representative of f .

Proof. We know S1 ∼= I/{0,1} through the homeomorphism

φ : S1 → I/{0,1} : exp(2πit) 7→ [t].

Let ψ be the map I/{0,1} → X : [t] 7→ f (t), which is well-defined because
the classes in I/{0,1} consist of the singletons {t} for 0 < t < 1 and the class
{0, 1}, whose image under f is the base point. Then we define f̃ = ψ ◦ φ.
Therefore,

f̃ ◦ω(t) = ψ ◦ φ(exp(2πit)) = ψ([t]) = f (t)

for any t ∈ I.

Lemma 2.26

Let f and g be two loops in a space X that are based at p ∈ X. Then
f ∼ g if and only if f̃ ' g̃ (rel (1, 0)).

Proof. (⇒) SupposeH : f ∼ g. We can regardH as a family of continuous
functions (ht : I → X)t∈I such that h0 = f , h1 = g, and ht(0) =

ht(1) = p for all t ∈ I. It is clear that ht is a loop for every t ∈ I. By
Proposition 2.25, ht = h̃t ◦ω for every t ∈ I. Therefore(

h̃t : S1 → X
)

t∈I

gives a homotopy from h̃0 = f̃ to h̃1 = g̃. Moreover, h̃t(1, 0) =

h̃t(ω(1)) = ht(1) = p. Hence f̃ ' g̃ relative to (0, 1).
(⇐) SupposeH : f̃ ' g̃ (rel (0, 1)). RegardH as a family (ht : S1 → X)t∈I

such that h0 = f̃ , h1 = g̃, and ht(1, 0) = p for all t ∈ I. Consider the
family (ht ◦ω : I → X)t∈I , and note that

h0 ◦ω = f̃ ◦ω = f , h1 ◦ω = g̃ ◦ω = g

and ht ◦ ω(0) = ht(1, 0) = p. This shows f and g are path homo-
topic.

27



CHAPTER 2. CLASSICAL HOMOTOPY THEORY

2.3.3. Homomorphisms Induced by Continuous Maps
Let X and Y be topological spaces. We write f : (X, x0) → (Y, y0) to
denote that f : X → Y is a continuous map such that y0 = f (x0), where
x0 ∈ X. We say f is a map of pointed spaces. This map induces a map

f# : Ω(X, x0)→ Ω(Y, y0) : α 7→ f ◦ α

from the set of loops in X based at x0 to the set of loops in Y based at y0.

Proposition 2.27

Let f : (X, x0) → (Y, y0) be a map of pointed spaces. Let α, β ∈
Ω(X, x0) be homotopic loops. Then f#(α) ∼ f#(β).

Proof. Let H : α ∼ β. Let us see f ◦ H is a homotopy of paths from f ◦ α

to f ◦ β. We have

f ◦ H(s, 0) = f (α(s)) = f ◦ α(s),

f ◦ H(s, 1) = f (β(s)) = f ◦ β(s), and
f ◦ H(0, t) = y0 = f ◦ H(1, t)

for all s, t ∈ I. This proves the claim.

The map f# induces in turn a well-defined map of fundamental groups.

Theorem 2.28

Let f : (X, x0)→ (Y, y0) be a map of pointed spaces. The map

f∗ : π1(X, x0)→ π1(Y, y0) : [α] 7→ [ f ◦ α]

is well-defined.

Proof. Follows from Proposition 2.25.

Proposition 2.29

Let f , g : (X, x0) → (Y, y0) be maps of pointed spaces that are homo-
topic relative to x0. Then f∗ = g∗.

Proof. Let H : f ' g (rel x0). Let’s see that f ◦ α ∼ g ◦ α for any α ∈
Ω(X, x0). Define G : I2 → Y by (s, t) 7→ H(α(s), t), and note that

G(s, 0) = H(α(s), 0) = f (α(s)) = f ◦ α(s),

G(s, 1) = H(α(s), 1) = g(α(s)) = g ◦ α(s), and
G(0, t) = H(α(0), t) = y0 = H(α(1), t) = G(1, t).

Hence G : f ◦ α ∼ g ◦ α. Therefore f∗[α] = [ f ◦ α] = [g ◦ α] = g∗[α] for all
α ∈ Ω(X, x0), whence f∗ = g∗. The proof is complete.
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As a result of Theorem 2.28, any continuous map f : X → Y induces a
well-defined map f∗ : π1(X, p) → π(Y, f (p)) for any point p ∈ X, simply
by setting f∗[α] = [ f ◦ α], for α ∈ Ω(X, p). Moreover, f∗ preserves the
group structure.

Theorem 2.30

Let f : X → Y be a continuous map and fix p ∈ X. Then f∗ is a group-
homomorphism.

Proof. Let α ∼ β in Ω(X, x0). It is easy to see that f ◦ (α · β) = ( f ◦ α) ·
( f ◦ β), as follows from the definition of product of paths. Then

f∗([α] · [β]) = f∗[α · β]

= [ f ◦ (α · β)]

= [( f ◦ α) · ( f ◦ β)]

= f∗[α] · f∗[β].

This proves the result.

Moreover, the induced morphism has functorial properties, as stated in
the next result. We will discuss what functorial properties are in the next
chapter when we arrive at the definition of functor.

Theorem 2.31 Functorial properties of *

Let f : (X, p) → (Y, q) and g : (Y, q) → (Z, r) be maps of pointed
spaces. Then

(i) (g ◦ f )∗ = g∗ ◦ f∗

(ii)
(

Id(X,p)

)
∗
= Idπ1(X,p)

Proof. (i) For any α ∈ Ω(X, p) we have

(g ◦ f )∗[α] = [(g ◦ f ) ◦ α] = [g ◦ ( f ◦ α)] = g∗[ f ◦ α] = g∗ ( f∗[α]) .

Thus (g ◦ f )∗ = g∗ ◦ f∗.
(ii) This is obvious.

As a result, the next corollary highlights one of the important aspects of
the fundamental group: homeomorphic spaces have isomorphic fundamen-
tal groups. Therefore, spaces with non-isomorphic fundamental groups are
not homeomorphic.
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Corollary 2.32

If f : (X, p)→ (Y, f (p)) is a homeomorphism, then

f∗ : π1(X, p)→ π1(Y, f (p))

is a group-isomorphism.

Proof. Suppose f is a homeomorphism with inverse g. Then f ◦ g = IdY

and g ◦ f = IdX. By the functorial properties of ∗, we obtain

f∗ ◦ g∗ = ( f ◦ g)∗ = Id and g∗ ◦ f∗ = (g ◦ f )∗ = Id,

where Id denotes the identity of the respective groups. Therefore f∗ is a
group-isomorphism with inverse g∗.

Theorem 2.33

It should be noted that although the notation
f∗ is used for both induced maps
π1(X, p)→ π1(Y, f (p)) and
π1(X, q)→ π1(Y, f (q)), they are not equal
unless p = q . Thus, the notation f∗ is a bit
ambiguous since does not make any reference
to the base point. A more accurate notation
would be ( fp)∗.

Let f : X → Y be a continuous map and fix two points p, q ∈ X. Sup-
pose γ is a path from p to q. Then f∗ ◦ Φγ = Φ f ◦γ ◦ f∗, that is, the
diagram

π1(X, p) π1(Y, f (p))

π1(X, q) π1(Y, f (q))

f∗

Φγ Φ f ◦γ

f∗

commutes.

Proof. Let α ∈ Ω(X, p). We have

[ f ◦ (γ · α · γ)] = [( f ◦ γ) · ( f ◦ (α · γ))]

= [ f ◦ γ] · [( f ◦ α) · ( f ◦ γ)]

= [ f ◦ γ] · [ f ◦ α] · [ f ◦ γ].

Since f ◦ γ = f ◦ γ, as shown in Example 2.10 (ii), we obtain

f∗[γ · α · γ] = [ f ◦ γ ] · f∗[α] · [ f ◦ γ],

which is equivalent to f∗ (Φγ[α]) = Φ f ◦γ ( f∗[α]). We conclude by the
arbitrariness of α.

The next result states that the fundamental group is well behaved under
products, up to isomorphism. In fact, up to canonical isomorphism.

Theorem 2.34 Fundamental group of a product space

Let (X1, x1), . . . , (Xn, xn) be pointed spaces. Then

π1(X1 × · · · × Xn, (x1, . . . , xn)) ∼= π1(X1, x1)× · · · × π1(Xn, xn).
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Proof. Note that (X1× · · · ×Xn, (x1, . . . , xn)) is itself a pointed space. Let
pi : X1 × · · · × Xn → Xi be the projection onto the ith factor, for each
1 ≤ i ≤ n. Each projection induces a well-defined map

pi∗ : π1(X1 × · · · × Xn, (x1, . . . , xn))→ π1(Xi, xi)

for all 1 ≤ i ≤ n. Now define

ϕ : π1(X1 × · · · × Xn, (x1, . . . , xn)) → π1(X1, x1)× · · · × π1(Xn, xn)

[α] 7→ (p1∗[α], . . . , pn∗[α])

Let us see that ϕ is a group-isomorphism. Since each pi∗ is a group-
homomorphism, so is ϕ. Injectivity of ϕ follows from the fact its kernel
is trivial. Indeed, suppose ϕ[α] equals the identity of

π1(X1, x1)× · · · × π1(Xn, xn),

namely ([ex1 ], . . . , [exn ]). Expressing α in terms of its component functions
as α(t) = (α1(t), . . . , αn(t)), we have

(p1∗[α], . . . , pn∗[α]) = ([ex1 ], . . . , [exn ]),

whence
pi∗[α] = [pi ◦ α] = [αi] = [exi ]

for all 1 ≤ i ≤ n. Now we can take homotopies Hi : αi ∼ exi for each
1 ≤ i ≤ n. Define H : I2 → X1 × · · · × Xn by

(s, t) 7→ (H1(s, t), . . . , Hn(s, t)).

Note that H is continuous, and

H(s, 0) = (H1(s, 0), . . . , Hn(s, 0)) = (α1(s), . . . , αn(s)) = α(s),

H(s, 1) = (H1(s, 1), . . . , Hn(s, 1)) = (ex1(s), . . . , exn(s)) = e(x1,...,xn),

H(0, t) = (H1(0, t), . . . , Hn(0, t)) = (x1, . . . , xn) = H(1, t).

This shows that H is a path-homotopy from α to e(x1,...,xn). Hence [α] is
the identity of π1(X1 × · · · × Xn, (x1, . . . , xn)). Therefore, Ker α = 0 as
indicated earlier. Let us conclude by showing that ϕ is surjective. Take
([γ1], . . . , [γn]) ∈ π1(X1, x1)× · · · × πn(X1, xn). Define

γ : I → X1 × · · · × Xn : t 7→ (γ1(t), . . . , γn(t)).

Notice γ is a loop in the product space X1× · · · × Xn based at (x1, . . . , xn).
Moreover, we have

ϕ[γ] = (p1∗[γ], . . . , pn∗[γ]) = ([p1 ◦ γ], . . . , [pn ◦ γ]) = ([γ1], . . . , [γn]).

This concludes the proof.
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2.3.4. The Fundamental Groups of S1 and Tn

The purpose of this short subsection is to highlights two basic results:

(i) The fundamental group of S1. Recall that S1 is path-connected. The
fundamental group of the circle is

π1(S1) ∼= Z.

The proof of this fact is rather involved and can be found in [18].
(ii) The fundamental group of T2. We know that Tn is path-connected,

as follows from Proposition 1.26. By Theorem 2.34, the fundamental
group of Tn is

π1(Tn) ∼= π1(S1)× · · · × π1(S1) ∼= Zn.

In particular, π1(T2) ∼= Z2.

Although the Seifert-Van Kampen theorem is a powerful tool for com-
puting fundamental groups of various spaces, it is beyond the scope of this
work. The interested reader may refer to [18] or [32] for further details.

2.4. Homotopy Equivalence

In this last section we present a criterion under which a continuous map
induces an isomorphism of fundamental groups.

Definition 2.35 Homotopy equivalence

Let X and Y be two topological spaces. We say that X is homotopy equiv-
alent to Y, denoted X ' Y, if there exists a pair of continuous maps
f : X → Y and g : Y → X such that

f ◦ g ' IdY and g ◦ f ' IdX .

Equivalently, we say X and Y have the same homotopy type. The pair of
maps f and g is called a homotopy equivalence between X and Y.

A continuous map ψ : X → Y for which there exists a continuous map
φ : Y → X such that ψ ◦ φ ' IdY and ψ ◦ φ ' IdX is called a homo-
topy inverse for φ. It is evident that homeomorphic spaces are homotopy
equivalent. A homotopy invariant is a topological property that is preserved
under homotopy equivalences.

Proposition 2.36

' is an equivalence relation on the class of all topological spaces. The
classes of spaces that are homotopy equivalent are called homotopy types.
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Proof. Reflexivity and symmetry are straightforward. In order to prove
transitivity, suppose X ' Y and Y ' Z. Then there exist continuous maps
f : X → Y, g : Y → X, h : Y → Z, and δ : Z → Y such that

g ◦ f ' IdX , f ◦ g ' IdY, δ ◦ h ' IdY, and h ◦ δ ' IdZ.

Therefore

(g ◦ δ) ◦ (h ◦ f ) = g ◦ (δ ◦ h) ◦ f ∼ g ◦ IdY ◦ f = g ◦ f ' IdX

and

(h ◦ f ) ◦ (g ◦ δ) = h ◦ ( f ◦ g) ◦ δ ' h ◦ IdY ◦ δ = h ◦ δ ' IdZ.

Thus, X ' Z by definition.

We conclude this chapter with the following result, whose proof can be
found in [18].

Theorem 2.37 X ' Y =⇒ π1(X, x) ∼= π1(Y, y)

Let f : X → Y be a homotopy invertible map between spaces X and Y.
Fix any point x ∈ X. Then

f∗ : π1(X, x)→ π1(Y, f (x))

is a group-isomorphism.
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Chapter 3

Basic Category Theory

Category theory is essentially a theory about functions, or rather an ab-
straction of the widely known concept of function. Yet, this abstraction is
fundamentally different from its set theoretical definition.

The importance of the subject must be emphasized. It was born in
the field of algebraic topology in an attempt to define the idea of natural
transformation [27, 10]. However, it has reached and found applications in
areas far beyond algebraic topology. In fact, it can be used as a foundational
theory for mathematics and thus it can replace set theory on this purpose.
Fundamentally, the importance and popularity of this theory is due to the
fact that functions are everywhere.

In what follows we do not expose a treatment of category theory as an
alternative foundational framework for mathematics, nor we aim to present
mathematical foundations for category theory. Our objective is to present
the theory from an axiomatic point of view by leaving some things unde-
fined. For instance we rely on the (undefined) notion of collection of objects,
which must not be taken as a synonym of set.1 A formal treatment of the 1 A more appropriate approach would be to

work directly with classes as in NBG theory,
but we do not need it here.

foundations of category theory can be found in [20, 17, 11, 5, 24, 21].
Discussing such matters is beyond the scope of this work. Nevertheless,
a final comment must be said. The Zermelo-Frankel axiomatic set the-
ory together with the axiom of choice (ZFC) is the most popular theory
to provide foundations to do most of mathematics, but it is not powerful
enough to develop category theory because we will need to talk about large
structures like the “category of all sets,” which have no place in ZFC. This
justifies the approach we have taken here.

In this chapter we state the essential concepts and terminology needed
in future chapters. Mainly, we lay down the basic requirements for a cat-
egorical interpretation of the fundamental group, defined in the previous
chapter. This will lead us to the foundation of a theory of homotopy for
finite categories. The exposition is intentionally brief and not meant as a
full introduction to category theory. The primary references consulted in
the preparation of this chapter include [1, 4, 27, 19, 20, 28].
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3.1. Categories

In order to define a category, some constituents must be specified and then
show that they satisfy certain conditions. We never define what they are,
but we fully specify all the properties that we want those entities to have by
stating how they relate to each other.2 This approach is illustrated in the2 This is of fundamental importance. A precise

treatment of this idea is given by the Yoneda
Lemma: an object is completely determined by
its relationships to every other object.

following definition.

Definition 3.1 Category

A category C consist of the following data.
(i) A collection Ob(C), whose elements are called C-objects and de-

noted by A, B, C, etc.
(ii) A collection Mor(C), whose elements are called C-morphisms and

denoted by f , g, h, etc.
(iii) For each C-morphism f , there exist unique associated C-objects

dom( f ) and cod( f ), called the domain and codomain of f , re-
spectively. We write f : A → B or A

f−−→ B to indicate that
A = dom( f ) and B = cod( f ). We say that f is a C-morphism
from A to B.

(iv) For any two C-morphisms f : A → B and g : B → C, there is a
C-morphism from A to C denoted g ◦ f , called the composition of
f and g. In addition, if h : C → D is any other C-morphism,

h ◦ (g ◦ f ) = (h ◦ g) ◦ f .

(v) For each C-object A, there is a C-morphism from A to A called
the identity morphism of A, denoted by 1A, such that for every
C-morphisms f : A→ B and g : B→ A,

f ◦ 1A = f and 1A ◦ g = g.

The definition of a category is broad enough so that many stuff can be
regarded as a category. In fact, neither the objects of a category have to be
sets nor the morphisms have to be functions in the traditional context of
mathematics.

We may omit the prefix C when it is clear what is the category in context
and just talk about objects and morphisms. Synonyms for morphism include
arrow and map. Usually, as a notational convention, some authors write
A ∈ C and f ∈ C to mean that A is an object of C, i.e. A ∈ Ob(C),
and that f is a morphism of C, i.e. f ∈ Mor(C), respectively. We shall
avoid this convention and, whenever possible, use the adjectives C-object
and C-morphism in each case.

If f and g are composable C-morphisms, their composition f ◦ g is also
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denoted f g. We shall avoid this convention since some authors write f g
to mean g ◦ f .

Given any two C-objects X and Y, the collection of C-morphisms from
X to Y is denoted HomC(X, Y). It is called the hom-set of C-morphisms
from X to Y.3 Any two elements of HomC(X, Y) are called parallel mor- 3 The name hom-set was inherited from

algebra by historical reasons, where the term
homomorphism is used to refer to the structure
preserving functions. However, the hom-sets
do not have to be sets, and the morphisms may
not be functions.

phisms since they have the same domain and codomain. A morphism
from a C-object X to X is called an endomorphism of X. The collection
HomC(X, X) is denoted EndC(X). When the category C is clear from the
context, we just write Hom(X, Y).

Below we present some examples of categories. Many of these will be
used and explored in future chapters. The usual way to declare a category
is to specify what the objects and morphisms are and then show that the
remaining properties of Definition 3.1 hold.

Example 3.2. “In the beginning every axiomatic theory is poor in
theorems and rich in definitions which must be
clarified by examples.” [31](a) The category Set has (i) sets as objects and (ii) functions of sets as

morphisms, which (iii) have a clearly specified domain and codomain
as required by the usual set-theoretical definition.

(iv) (Composition) Given functions f : A → B and g : B → C be-
tween sets A, B and C, define g ◦ f : A → C : a 7→ g( f (a))
as the composite of f and g. This is the usual composition of
functions.

(v) (Associativity) Let f : A → B, g : B → C and h : C → D be
functions between sets A, B, C and D. By definition, we have

h ◦ (g ◦ f )(a) = h(g ◦ f (a))

= h(g( f (a)))

= h ◦ g( f (a))

= (h ◦ g) ◦ f (a)

for every a ∈ A. Thus, the set theoretic definition implies h ◦
(g ◦ f ) = (h ◦ g) ◦ f .

(vi) (Identity morphisms) Every set A has a unique identity function
defined by 1A : A → A : a 7→ a. Such function is the identity
morphism of A. Moreover, for any function f from a set A to a
set B it holds

f ◦ 1A(a) = f (1A(a)) = f (a), and
1B ◦ f (a) = 1B( f (a)) = f (a)

for all a ∈ A. Hence f ◦ 1A = f = 1B ◦ f .

(b) Categories of structured sets.

Top The category of topological spaces as objects and contin-
uous functions as morphisms.
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Top∗ The category of topological spaces with a base point as
objects and base-point-preserving continuous functions
as morphisms.

Grp The category of groups as objects and homomorphisms
of groups as morphisms.

Ab The category of Abelian groups as objects and homomor-
phisms of groups as morphisms.

Rng The category of rings as objects and homomorphisms of
rings as morphisms.

K-Vect The category of vector spaces over a field K as objects and
linear maps as morphisms.

Pos The category of partially ordered sets as objects and order
preserving functions as morphisms.

Met The category of metric spaces as objects and contractive
maps as morphisms.

R-Mod The category of modules over a ring R (with 1, associative
and commutative) as objects and homomorphisms of R-
modules as morphisms.

These examples have in common that they are all derived from Set.
Indeed, in each case the objects are sets with additional structure and
the morphisms are functions that preserve such structure. There are
many more examples of this kind. Note that the composition of
continuous functions is a continuous function, the composition of
group homomorphisms is a group homomorphism, the composition
of monotone maps is monotone, and so on. In fact, the remaining
properties that define a category are immediately inherited from Set.

(c) Some finite categories.

Figure 3.1: Diagrams corresponding to 1,
2, ⇊ and 3, shown in sequential order from
top to bottom. The empty category has an
empty diagram. The objects are depicted
as points but this does not mean they are
equal. We do not draw the identity arrows
and we keep this convention from now and
on.

0 The empty category. It contains no object and hence no mor-
phism.

1 It consist of exactly one object and exactly one morphism.
2 It consist of exactly two objects and exactly one morphism in

between, in addition to the identities.
3 It consist of exactly three objects
⇊ The category with exactly two objects and exactly two arrows

with same domain and codomain, i.e., with two parallel arrows.

These categories share the property that there is only one way to com-
pose any pair of arrows in each case. We provide the precise definition
of a finite category below.

(d) Every preorder naturally defines a category. Let (P,�) be a preorder.
We can specify a category P as follows. The objects of P are the ele-
ments of P. We declare that there is an arrow from object p to object
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q whenever p � q. Denote this as p → q. In this way, every mor-
phism has an unequivocally determined domain and codomain. On
the other hand, note that we have p � r whenever p � q and q � r
by transitivity of �. Thus, for any pair of morphisms p → q and
q → r, we define their composite as p → r. Reflexivity of � ensures
there is an identity morphism for every object, since p � p for any
p ∈ P. Finally, given that there is only one morphism between every
pair of objects, associativity holds trivially. Unitality (well-behaved
identities) comes from the fact that p � p � q � q is equivalent to
p � q. Therefore P is a category. We say P is a category induced by
(P,�).

(e) Every poset induces a category. Every poset is a preorder, and thus
determines a category by the last example. Note this kind of category
is not of structured sets. For instance, it is very different from Pos,
the category of partially ordered sets.

(f ) Every monoid induces a category. Let (M, ·) be a monoid. We can
specify a category M as follows. Take any mathematical object and
denote it ∗. We declare that Ob(M) consist only of ∗. We also state
that Mor(M) = M. In other words, M is a category with only one
object and the morphisms are the elements of M. Since we only
have one object, there is only one possible way to associate to each
morphism a domain and codomain: every morphism has ∗ both as
domain and codomain; in this way, condition (iii) of Definition 3.1
holds. On the other hand, Given any two elements a and b of M,
we know a · b is also an element of M. Thus, we define the compos-
ite of the morphisms a and b as a · b. The identity morphism of ∗
is the identity element of M. Finally, associativity and unitality fol-
low directly from the associativity of the monoid operation and the
definition of identity element, respectively.

Figure 3.2: A group as a category.

(g) Every group induces a category. Every group is a monoid and thus
it can be regarded as a category. Be careful not to conflate this kind
of category with Grp, the category of all groups.

(h) The homotopy category. The category hTop whose objects are topo-
logical spaces and whose morphisms are homotopy classes of contin-
uous functions.

(i) The opposite category. If C is any category, we can build a new cat-
egory named the opposite of C and denoted Cop. This category has
the same objects as C, but whenever f : A→ B is a C-arrow, we have
f op : B → A as a Cop-arrow. Thus Cop has the same data as C, but
the arrows are (formally) turned around.

(j) Product category. We define the product of two categories C and
D, denoted C × D, as the category whose objects are pairs (C, D),
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where C is a C-object and D is a D-object, and whose morphisms
are pairs ( f , g) where f : C → C′ is a C-morphism and g : D → D′

is a D-morphism. We write ( f , g) : (C, D) → (C′, D′). Composi-
tion of C×D-morphisms is done component-wise, and the identity
morphisms are pairs of the corresponding identities.

Definition 3.3 Subcategories

Let C be a category. A subcategory D of C is a category where every
D-object is a C-object, and every D-morphism is a C-morphism In
addition,

(i) the identity morphism of every D-object is a D-morphism,
(ii) the domain and codomain of every D-morphism are D-objects,

and
(iii) the composition of every pair of (composable) D-morphisms is a

D-morphism.

Remark 3.4. For any pair of D-objects X and Y, we always have

HomD(X, Y) ⊆ HomC(X, Y).

If HomD(X, Y) = HomC(X, Y) for any D-objects X and Y, we say D is a full
subcategory of C. Thus, in order to specify a full subcategory, it is enough to state
what its objects are.

Example 3.5.
(a) 0 is a subcategory of any category.
(b) The category whose objects are sets and whose morphisms are injec-

tions (or either surjections or bijections) is subcategory of Set.
(c) The category Ab of Abelian groups is a subcategory of Grp. In fact,

it is a full subcategory of Grp.
(d) We have seen that a group can be regarded as a category. Thus any

subgroup of a group determines a category itself, namely a subcate-
gory of the underlying group regarded as a category.

(e) The category of finite sets is a full subcategory of Set.
(f ) The category whose objects are sets and whose morphisms are bijec-

tions is not a full subcategory of Set.
(g) If K is a field, the category of K-vector-spaces is a full subcategory of

K-Mod.

There are foundational concerns regarding the size of categories. Ac-
tually, what we have defined as a category corresponds to the concept of a
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meta-category. In the most rigorous sense, a category is is a meta-category
whose axioms are interpreted within set theory. This will not be discussed
here and we will not use such terminology.

In order to distinguish between categories of different size, we employ
several adjectives.

Definition 3.6 Small and large and categories

A category is said to be
(i) small if both its collection of objects and morphisms are sets,
(ii) large if it is not small,
(iii) locally small if every hom-set is a set,
(iv) locally finite if every hom-set is a finite set,
(v) finite if both its collection of objects and morphisms are finite sets.

Locally small categories are very common to the extent that that many
authors require local smallness to be part of the definition of a category.
This avoids the foundational problems mentioned above. Note that finite
implies small, which in turn implies locally small. On the other hand, note
that in the definition of a finite category, the condition that the collection
of objects must be finite can be dropped. This is due to the fact that a finite
collection of morphism forces the collection of objects to be finite, as there
exists at least one morphism for each object, namely, its identity.

Example 3.7.
(a) Cat is the category of all small categories, which is itself a large cate-

gory. A morphism in Cat is a functor, a concept to be defined in the
next section.

(b) Set is a large category. For instance, the collection of all sets is not
a set—as otherwise Russell’s paradox comes up. Similarly, Grp, Pos,
Top, K-Vect, R-Mod are large.

(c) A category is small if and only if it is locally small and its class of
objects is small. Likewise, a category is finite if and only if it is locally
small and its class of objects is finite.

(d) Set is a locally small category since Hom(X, Y) = YX is a set for any
pair of sets X and Y. It follows that any category of structured sets is
also locally small.

(e) Any category induced by a preorder is small. The same is true for
categories induced by posets, monoids and groups.

(f ) The categories 0, 1, 2, 3, and ⇊ are finite.
(g) We define CatFin to be the category whose objects are finite cate-

gories and whose morphisms are functors between finite categories.
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3.1.1. Monos and Epis
The concepts covered here serve as reference material only and are not re-
quired for future work. They explore abstractions of injectivity and surjec-
tivity.

Definition 3.8 Monomorphism, Epimorphism

Let C be a category.
(i) A morphism f ∈ HomC(X, Y) is a monomorphism if for any g, h ∈

HomC(W, X), f ◦ g = f ◦ h implies g = h.
(ii) A morphism f ∈ HomC(X, Y) is an epimorphism if for any g, h ∈

HomC(Y, Z), g ◦ f = h ◦ f implies g = h.

A monomorphism (or mono for short)Special arrows are often used for monos and
epis. Monos are decorated with ↣ and epis
with ↠.

is the generalized analogue of
injection in set theory. Likewise, an epimorphism (or epi for short) is the
generalized analogue of surjection. The adjectives used to refer to a mono
and to an epi are monic and epic, respectively. The composition of monos is
monic and the composition of epis is epic.

A morphisms that is both monic and epic is is called bimorphism. It is
not necessarily an isomorphism (defined below).

Recall that in set theory a function is injective if and only if it has a
left inverse and it is surjective if and only if it has a right inverse. We can
settle these characterizations of injectivity and surjectivity in the context of
category theory.

Definition 3.9 Section, Retraction

Let C be a category.
(i) A morphism f ∈ HomC(X, Y) is a section if there exists a mor-

phism g ∈ HomC(Y, X) such that g ◦ f = 1X.
(ii) A morphism f ∈ HomC(X, Y) is a retraction if there exists a mor-

phism g ∈ HomC(Y, X) such that f ◦ g = 1Y. The object Y is
called a retract of X.

Note that if g ◦ f = 1X, then f is a section and g is a retraction. In this
case, f is said to be a section of g, and g is called a retraction of f . A more
appropriate name for a section is right inverse; likewise a better name for
retraction is left inverse. Thus, a section is a map with a left inverse and a
retraction is a map with a right inverse. Every section is a monomorphism
and every retraction is an epimorphism.It is interesting to mention that in Set, the

statement that every surjection has a section is
equivalent to the axiom of choice. The reason is
that specifying a section of a surjection
ψ : X → Y requires choosing an element of
ψ−1({y}) for each y ∈ Y.
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Definition 3.10 Isomorphism

Let C be a category. A morphism f ∈ HomC(X, Y) is an isomorphism
if there exists f ′ ∈ HomC(Y, X) such that

f ◦ f ′ = 1Y and f ′ ◦ f = 1X .

Thus, an isomorphism is a morphism that is both a section and a retrac-
tion. In the sense of this definition, the morphism f ′ is unique: if f ′ and
f ′′ satisfy f ′ ◦ f = 1X and f ◦ f ′′ = 1Y, then

f ′ = f ′ ◦ 1Y = f ′ ◦ ( f ◦ f ′′) = ( f ′ ◦ f ) ◦ f ′′ = 1X ◦ f ′′ = f ′′.

We thus call f ′ the inverse morphism of f and denote it f−1. If f ∈
HomC(X, Y) is an isomorphism, we say X and Y are isomorphic, which
is denoted X ∼= Y. It is easy to verify that the composition of isomor-
phisms is again an isomorphism and that ∼= is an equivalence relation. The
collection of all isomorphisms from a C-object X to X is denoted AutC(X).
The elements of AutC(X) are called automorphisms of X.

When we say a object X is unique up to isomorphism regarding certain
property, we mean that if X′ is any other object that satisfies such property
then X ∼= X′. If there is exactly one isomorphism between X and X′, we
say X is unique up to unique isomorphism.

3.1.2. Initial and Terminal Objects
The following is an abstract characterization of the empty set. Let us recall
that for any set A there is exactly one function from ∅ to A, namely ∅. If
A = ∅, this function is precisely ∅ itself.

Definition 3.11 Initial object

An object X in a category C is initial if for any C-object Y there is a
unique morphism from X to Y.

In other words, X is an initial object if HomC(X, Y) is a singleton for
every C-object Y. Necessarily, HomC(X, X) contains only the identity 1X.

Example 3.12.
(a) As noted at the beginning, the empty set is an initial object in Set.
(b) In Grp, the trivial group is an initial object.
(c) In Top, any empty space is initial.
(d) Z is an initial object in Ring.

A category may not have an initial object, but if it does, then it is unique
in a very special way.
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Theorem 3.13

Initial objects are unique up to unique isomorphism.

Proof. Suppose a category C has two initial objects ι and ι′. Since ι is initial,
there is a unique morphism ψ : ι → ι′. Since ι′ is initial, there is a unique
morphism ψ′ : ι′ → ι. Note that ψ′ ◦ψ is a morphism from ι to ι. However,
as ι is initial there is exactly one morphism from ι to ι, which necessarily
has to be 1ι, because identity morphisms always exist. The uniqueness then
implies ψ′ ◦ ψ = 1ι. By the same reasoning, ψ ◦ ψ′ = 1ι′ . Thus ψ is an
isomorphism and it is unique since is the unique morphism from ι to ι′.

Now we turn to the analogous concept of an initial object. Let us make
the observation that if ∗ is a singleton, then given any set X there is exactly
one way to build a map from ∗ to X.

Definition 3.14 Terminal object

An object X in a category C is terminal if for any C-object Y there is a
unique morphism from Y to X.

In other words, X is a terminal object if HomC(Y, X) is a singleton for
every C-object Y. Note that HomC(X, X) contains only the identity 1X.

Example 3.15.
(a) As noted before, any singleton is a terminal object in Set. In contrast,

Set has only one initial object.
(b) In Grp, the trivial group is a terminal object.
(c) In Top, any empty space is terminal.
(d) In Ring, the zero ring is terminal

A category may not have a terminal object, but if it does, then it is
unique in a very special way.

Theorem 3.16

Terminal objects are unique up to unique isomorphism.

Proof. Dual to the proof of Theorem 3.13.

Definition 3.17 Zero object

An object that is both initial and terminal is called a zero object.

Again, there are categories that do not have neither an initial nor a ter-
minal object. This is the case, for instance, in the category of fields, in
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which there are no homomorphisms between fields of different character-
istic. A zero object, if it exists, is denoted by 0.

Example 3.18.
(a) In Grp, the trivial group is a zero object.
(b) In Top, any empty space is a zero object.
(c) In K-Vect, the zero dimensional vector space is a zero object.
(d) The zero ring is not a zero object in Ring since it is not initial (because

it does dot have an identity).

3.2. The Duality Principle

We have already defined the opposite Cop of a category C. It is the category
whose objects are the same as those of C and whose morphisms are those
of C but formally turned around, that is, f op : Y → X is a Cop-morphism
if and only if f : X → Y is a C-morphism. Identities in Cop are the same
as in C. Composition is defined by gop ◦ f op = ( f ◦ g)op for any pair of
composable C-morphisms f and g. Note that (Cop)op = C.

The principle of duality states that every categorical concept has a dual,
obtained by reversing all the arrows around. The importance of this prin-
ciple relies in the fact that if a statement is true in C, then it also holds in
Cop. Thus, since every result has two dual formulations, only one of them
needs to be proved, as the other will follow immediately by the principle
of duality.

We have already encountered several concepts and their dual notions,
such as monomorphism and epimorphism, section and retraction, and ini-
tial and terminal objects. We will meet more throughout the remainder of
this chapter. Usually, the dual notion of a categorical concept is named by
adding the prefix “co” at the beginning.

3.3. Functors

The concept of category was born as an auxiliary step towards the formal
definition of functor and natural transformation. This resembles the situ-
ation in topology where the definition of a topology was born in order to
formalize the idea of continuous function.

The idea of functor is so important that everything in category the-
ory could be stated in terms of functors. We could start all over again
and use functors for everything, without need to define what a category
is. Roughly speaking, a functor is a morphism between categories that pre-
serves the structure: an assignment of objects to objects and morphisms to
morphisms which preserves identities and compositions. Again, note that
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in the following definition we do not say what a functor is but state what
it does.C

X

Y Z

f g

h

D

F(X)

F(Y) F(Z)
F(h)

F(g)F( f )

Figure 3.3: Functors preserve commuta-
tive triangles. Here g = h ◦ f . In other
words, functors preserve compositions of
morphisms.

Definition 3.19 Functor

A functor F from a category C to a category D, denoted F : C→ D, is a
mapping that satisfies the following conditions.
(i) To each C-object X, it assigns a unique D-object F(X).
(ii) To each C-morphism f : X → Y, it assigns a unique D-morphism

F( f ) : F(X)→ F(Y).
(iii) F(1X) = 1F(X) for every C-object X.

(iv) F(g ◦ f ) = F(g) ◦ F( f ) for all C-morphisms X
f−→ Y and Y

g−→ Z.

Remark 3.20. We write

F(A
f−→ B) = F(A)

F( f )−−−→ F(B)

to indicate the assignment of morphisms to morphisms described above. Some
authors write FX instead of F(X) and F f instead of F( f ). If the functor F is un-
derstood from the context, it is common to denote F( f ) by f∗. This conventions
simplify the notation, and we may adopt it when appropriate.

What we have defined as functor is also called covariant functor. These
terms are synonymous and we may use them interchangeably. Thus, when
the noun functor is used alone, we mean covariant functor. The additional
adjective is used in order to distinguish covariant functors from contravari-
ant functors, which we now define.

Definition 3.21 Contravariant functor

A contravariant functor F from a category C to a category D is a functor
from Cop to D.

The above definition was given for the sake of simplicity, but it is worth
to mention explicitly that a contravariant functor F : Cop → D takes a C-
morphism f : A → B to F( f ) : F(B) → F(A) and reverses compositions,
i.e.,

F(g ◦ f ) = F( f ) ◦ F(g)

for all C-morphisms f : A→ B.

Example 3.22.
(a) The identity functor. Let C be any category. We can define a functor

from C to C such that it assigns every object and every morphism to
itself. The defining properties of a functor are readily verified. We
denote it 1C and call it the identity functor of C.
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(b) The inclusion functor. The inclusion of a subcategory into its ambi-
ent category gives rise to a functor.

(c) A functor F : C → D is constant if it maps each C-object to a fixed
D-object D and each C-morphism to 1D.

(d) The forgetful functor. Let C be a category of structured sets. Define
a functor U : C→ Set as follows:

(i) to every C-object, U assigns its underlying set, and
(ii) to very C-morphism, U assigns its underlying function of sets.

In other words, U removes the structure of the objects and mor-
phisms of C. Sometimes, U is called the underlying functor. For a
specific example, consider the forgetful functor U : Grp → Set. In
this case,

(G, ·) U7−−→ G

for every group (G, ·), and

(G, ·) f−→ (H,+)
U7−−→ G

f−→ H

for any group homomorphism f . Note that, although we use the
same symbol, the label f on the left is not the same as the one on the
right because they refer to functions that have different domain and
codomain. The former is a subset of the cartesian product of the sets
(G, ·) and (H,+), whereas the latter is a subset of the the cartesian
product of the sets G and H.

(e) Bifuctors.4 A bifunctor is one whose domain is a product of two 4 It is possible to define multifunctors for any
finite product of categories, in the obvious way.
This is the categorical analog of the notion of a
function of several variables.

categories. Suppose A, B, and C are categories. Given a bifunctor
F : A×B→ C and a fixed B-object B, define the map F(−, B) : A→
B that sends every A-object A to F(A, B), and every A-morphism ψ

to F(ψ, 1B). Then F(−, B) is a functor from A to B, which follows
immediately from the fact that F itself is a functor. Moreover, F(−, B)
is contravariant. Note that, since B is arbitrary, we obtain in this
way a family of functors from A to B. In an entirely similar manner,
given any A-object A, we define F(A,−) : B→ C by mapping any B-
object B to F(A, B) and any B-morphism ϕ to F(1A, ϕ). The functor
F(A,−) is covariant.

(f ) For each topological space with base point (X, x0), let π1(X, x0) be
its fundamental group. If ψ : (X, x0)→ (Y, y0) is a Top∗-morphism,
define π1(ψ) : π1(X, x0)→ π1(Y, y0) by [γ] 7→ [ψ ◦ γ]. Then π1 is a
covariant functor from Top∗ to Grp.5 Indeed, if f ◦ g is defined for 5 We already discussed the functorial

properties of π1 in chapter 2. The functor π1 is
only one of the tools that algebraic topology
deals with. Roughly speaking, algebraic
topology studies functors from the category of
topological spaces to the category of groups.

Top∗-morphisms f and g, then

π1( f ◦ g)([γ]) = [ f ◦ g ◦ γ] = π1( f )([g ◦ γ]) = π1( f ) ◦ π1(g)([γ])

for any loop γ ∈ Ω(X, x0).
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Proposition 3.23 Properties of functors

(i) Functors preserve isomorphisms.
(ii) Consider two functors F : A → B and G : B→ C. Define the

composite G ◦ F : A→ C, of G with F, by

(G ◦ F)(X
f−→ X′) = G(F(X))

G(F( f ))−−−−→ G(F(X′)).

Then G ◦ F is a functor.

Let F : C→ D be a functor and X, Y two C-objects. Define

FX,Y : HomC(X, Y)→ HomD(F(X), F(Y)) : ψ 7→ F(ψ).

Note that FX,Y is a map of sets.

Definition 3.24 Full and faithful functors

A functor F : C→ D is
(i) faithful if FX,Y is injective for every pair of C-objects X and Y,
(ii) full if FX,Y is surjective for every pair of C-objects X and Y,
(iii) fully faithful if F is both full and faithful,
(iv) surjective on objects if for any D-object D there is a C-object C such

that F(C) = D,
(v) essentially surjective on objects if for any D-object D there is a C-

object C such that F(C) ∼= D.

Both faithfulness and fullness are local properties. For instance, in the
former case, we do not check whether F is injective, but rather whether the
induced function FX,Y is injective for each pair of objects X and Y. The
same idea applies for the other concepts.

A functor F : C→ D is injective on morphisms provided that for any pair
( f , g) of C-morphisms, it holds that

F( f ) = F(g) =⇒ f = g.

It is clear that a functor that is injective on morphisms is faithful, but not
the other way around. A faithful functor that is injective on objects is called
an embedding If F : C → D is such a functor, then C is identified as a
subcategory of D. If F : C → D is a fully faithful functor that is injective
on objects, then it is a full embedding of C into D. In this case, C is a full
subcategory of D.

Remark 3.25. The definition of a faithful functor does not state that if f and g are
distinct C-morphisms, then F(g) 6= F(g). This only applies when both f and g are
parallel arrows, that is, they have the same domain and codomain.
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Proposition 3.26

Let F : C → D be a fully faithful functor. For any C-morphism f , if
F( f ) is an isomorphism, then f is an isomorphism.

Definition 3.27 Isomorphism of categories

Let C and D be categories.
(i) A functor F : C → D is an isomorphism if there exists a functor

G : D→ A such that

F ◦ G = 1D and G ◦ F = 1C.

(ii) We say C and D are isomorphic if there is an isomorphism between
them and write C ∼= D in such a case.

Since the functor G in the definition above is uniquely determined by
F we write G = F−1. On the other hand, ∼= is an equivalence relation in
the conglomerate of all categories.

Remark 3.28. Note that a functor is an isomorphism if and only if it is full, faithful,
and bijective on objects.

Definition 3.29 Concrete category over Set

A category C is concrete if there is a faithful functor C→ Set.

The functor C→ Set should be thought of as a forgetful functor, which
assigns to every C-object its “underlying” set and to each C-morphism its
“underlying” function.

Example 3.30. Many familiar categories are concrete. For instance,

(i) Set,
(ii) Grp,
(iii) Ab,
(iv) Top,

(v) Ring,
(vi) K-Vect,
(vii) R-Mod,
(viii) Pos,

are examples of concrete categories. An example of a non-concrete cate-
gory is hTop: despite the fact its objects are sets with additional structure,
its morphisms are classes of functions rather than actual functions between
them (with extra structure).
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3.4. Products and Coproducts

The categorical notions of products and coproducts are abstractions of the
notions of cartesian products and direct sums, e.g., of groups.

Definition 3.31 Product

Let (Xλ)λ∈Λ be a family of objects in a category C. A product of this
family is a pair (X, (πλ)λ∈Λ) where X is a C-object and (πλ : X →
Xλ)λ∈Λ is a family of C-morphisms such that if X′ is any C-object and
(π′λ : X′ → Xλ)λ∈Λ is a family of C-morphisms, there is a unique C-
morphism ψ : X′ → X such that π′λ = πλ ◦ ψ for every λ ∈ Λ, that is,
the diagram

X Xλ

X′

πλ

π′λ

ψ

commutes.

In this case X is an attracting object, because for each pair with the
described property, there is a unique arrow into X that makes the diagram
above commute. The morphisms πλ are called the canonical projections,
even though they may not be epimorphisms or projections in the traditional
sense.

The uniqueness in this definition means that if ψ and ψ′ are two mor-
phisms that satisfy πλ ◦ ψ = πλ ◦ ψ′ for every λ ∈ Λ, then necessarily
ψ = ψ′.

Note that we have defined a product and not the product of the family
(Xλ)λ∈Λ. This is due to the fact that, in the strict sense, products are not
unique, but they are unique in a very special way.

Proposition 3.32 Products are unique up to unique isomorphism

Let (Xλ)λ∈Λ be a family of objects in a category C. A product of
(Xλ)λ∈Λ, if it exists, is unique up to unique isomorphism.

Proof. Suppose (X, (πλ)λ∈Λ) and
(
X′, (π′λ)λ∈Λ

)
are two products of the

family (Xλ)λ∈Λ. Since
(
X′, (π′λ)λ∈Λ

)
satisfies the universal property of

Definition 3.31 respect to (X, (πλ)λ∈Λ), there is a unique C-morphism
ψ : X′ → X such that π′λ = πλ ◦ ψ for every λ ∈ Λ. Likewise, there is a
unique morphism ψ′ : X → X′ such that πλ = π′λ ◦ ψ′ for every λ ∈ Λ.
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We have the following commutative diagram

X X′ X

Xλ Xλ Xλ

πλ

ψ′

π′λ

ψ

πλ

Thus πλ ◦ (ψ ◦ ψ′) = πλ for every λ. Since πλ ◦ 1X = πλ for every λ, the
uniqueness implies ψ ◦ψ′ = 1X. In an entirely analogous manner we obtain
ψ′ ◦ ψ = 1X′ . Hence ψ and ψ′ are inverses of each other. In particular, ψ

is an isomorphism and since is the only morphism from X′ to X, we have
proven that X and X′ are isomorphic up to unique isomorphism.

This result permit us to speak of the product of the family (Xλ)λ∈Λ. The
product of (Xλ)λ∈Λ, if it exists, is denoted by

∏
λ∈Λ

Xλ.

We must emphasize how the uniqueness stated in Definition 3.31 en-
ables us to conclude the equalities ψ ◦ ψ′ = 1X and ψ′ ◦ ψ = 1X′ , meaning
that ψ is an isomorphism. Without such uniqueness, we cannot conclude
that an isomorphism exists, let alone a unique one.

Remark 3.33. Uniqueness is a key part of the definition of a product (in fact, of any
universal property) because it gives us a canonical isomorphism between the objects
that satisfy the definition.

Example 3.34.
(a) The category 1 does not admit products.
(b) In Set, every family of sets admits a product. The product of a family

of sets is its cartesian product.
(c) In Grp, every family of groups admits a product: the cartesian prod-

uct of the underlying sets together with the binary operation of com-
ponentwise multiplication. The product of a family of sets is its carte-
sian product.

(d) In Top, the product of a family of topological spaces is the cartesian
product of the underlying sets endowed with the product topology,
the coarsest topology for which all the canonical projections are con-
tinuous.

As expected, there is a notion dual to that of a product.
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Definition 3.35 Coproduct

Let (Xλ)λ∈Λ be a family of objects in a category C. A coproduct of this
family is a pair (X, (ςλ)λ∈Λ) where X is a C-object and (ςλ : Xλ →
X)λ∈Λ is a family of C-morphisms such that if X′ is any C-object and
(ς′λ : Xλ → X′)λ∈Λ is a family of C-morphisms, there is a unique C-
morphism ψ : X → X′ such that ς′λ = ψ ◦ ςλ for every λ ∈ Λ, that is,
the diagram

Xλ X

X′

ς′λ

ςλ

ψ

commutes.

In this case, X is a repelling object. The morphisms πλ are called the
canonical injections, even though they may not be monomorphisms or in-
jections in the traditional sense. Analogously to the case of the product, a
coproduct, if it exists, is unique up to a unique isomorphism. The proof
of this result is completely similar to that of Proposition 3.32, and, in fact,
follows directly from the duality principle.

3.5. Fibered Products and Amalgamated Sums

Definition 3.36 Fibered product

Let f : X → Z and g : Y → Z be two morphisms in a category C. A
fibered product of f and g is a triple (P, p1, p2) that consist of a C-object
P and two C-morphisms p1 : P→ X and p2 : P→ Y such that

(i) f ◦ p1 = g ◦ p2, and
(ii) for any C-object P′ and any pair of C-morphisms p′1 : P′ → X

and p′2 : P′ → Y that satisfy f ◦ p′1 = g ◦ p′2, there exists a unique
C-morphism ψ : P′ → P such that p′1 = p1 ◦ ψ and p′2 = p2 ◦ ψ,
that is, the diagram

P′

P Y

X Z

p′1

p′2

ψ p2

p1 g

f

commutes.
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Other names for fibered product include pullback and fibre product. The
dual notion of fibered product is that of amalgamated sum, also called fibered
coproduct or pushout.

Definition 3.37 Amalgamated sum

Let f : X → Y and g : X → Z be two morphisms in a category C. An
amalgamated sum of f and g is a triple (S, s1, s2) where S is a C-object
and s1 : Y → S and s2 : Z → S are C-morphisms such that

(i) s1 ◦ f = s2 ◦ g, and
(ii) for any C-object S′ and any pair of morphisms s′1 : Y → S′ and

s′2 : Z → S′ that satisfy s′1 ◦ f = s′2 ◦ g, there exists a unique C-
morphism ψ : S → S′ such that s′1 = ψ ◦ s1 and s′2 = ψ ◦ s2, that
is, the diagram

X Z

Y S

S′

g

f s2 s′2

s1

s′1

ψ

commutes.

Example 3.38. In Set, the amalgamated sum of two functions

C
f←−− A

g−−→ B

consists of the set (B t C)/∼, where ∼ is the equivalence relation defined
by

b ∼ c ⇐⇒ ∃a ∈ A : f (a) = b and g(a) = c,

and the pair of canonical injections

i1 : B→ (B t C)/∼ and i2 : C → (B t C)/∼

defined by x 7→ [x]∼. In this case we have f (a) ∼ g(a) for every a ∈ A, so
i1 ◦ g = i2 ◦ f . To verify that ((B t C)/∼, i1, i2) is indeed a pushout of f
and g, suppose j1 : B → D and j2 : C → D satisfy j1 ◦ g = j2 ◦ f . Define
ψ : (B t C)/∼ → D by

(x, k) 7→

j1(k) if k = 1,

j2(k) if k = 2.

Here x ∈ B t C and k is the indexing variable. We have ψ ◦ i1 = j1 and
ψ ◦ i2 = j2. Note ψ is the unique function that verifies this property.
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3.6. Natural Transformations

We have given the notion of a category and the notion of map between
categories, i.e., the notion of functor. There is a further notion of a map
between functors. This concept only makes sense when considering parallel
functors.

Definition 3.39 Natural transformation

Let C and D be two categories and F, G : C → D two covariant func-
tors. A natural transformation η : F → G is a family of D-morphisms
(ηX : F(X)→ G(X))X∈C such that if f : X → Y is any C-morphism,
then the following diagram commutes

X F(X) G(X)

Y F(Y) G(Y)

f F( f )

ηX

G( f )

ηY

In other words, ηX ◦ F( f ) = G( f ) ◦ ηX for every f ∈ HomC(X, Y).

The morphisms ηX in the definition above are known as the compo-
nents of η. Rather than viewing a natural transformation as a family of
morphisms, we can consider it as an assignment that, for each C-object X,
provides a corresponding D-morphism ηX : F(X)→ G(X) that makes the
diagram above commute. The definition of natural transformation for con-
travariant functors is entirely similar. A natural transformation η : F → G
between contravariant functors F, G : C→ D is a family of D-morphisms

(ηX : F(X)→ G(X))X∈C

such that if f : X → Y is any C-morphism, then ηX ◦ F( f ) = G( f ) ◦ ηY.
In other words, the following diagram commutes

X F(X) G(X)

Y F(Y) G(Y)

f

ηX

F( f )

ηY

G( f )

Given two natural transformations η : F → G and θ : G → H between
functors either covariant or contravariant (but of the same type), we can
define their (vertical) composition θ ◦ η : F → H by

(θ ◦ η)X = θX ◦ ηX

for all C-objects X. The following diagram illustrates why the definition
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applies equally to both covariant and contravariant functors.

F(X) G(X) H(X)

F(Y) G(Y) H(Y)

F( f )

ηX

G( f )

θX

H( f )

ηY θY

If F, G, H were contravariant, only the vertical arrows would be reversed.
The functor category from C to D, denoted DC, consist of functors

C→ D

as objects and natural transformations between them as morphisms. Thus,
it is possible to speak of natural transformations that are monos, epis, sec-
tions, retractions, etc.

Definition 3.40 Natural isomorphism

Let F, G : C→ D be two functors. A natural transformation η : F → G
is a natural isomorphism if ηX : F(X) → G(X) is an isomorphism for
every C-object X. In this case, F and G are naturally isomorphic.

In this case we can define the natural transformation η−1 : G → F given
by η−1

Y : G(Y)→ F(Y) for each Y ∈ D. We call η−1 the inverse of η. Thus,
η : F → G is a natural isomorphism if and only if there is θ : G → F such
that

η ◦ θ = 1D and θ ◦ η = 1C.

It is immediate that the composition of natural isomorphism is again a
natural isomorphism.

Definition 3.41 Equivalence of categories

Two categories C and D are equivalent if if there are two functors

F : C→ D and D→ C

and two natural isomorphisms

α : F ◦ G → 1D and β : G ◦ F → 1C.

In this case, we write C ' D and we say that F and G are quasi-inverses
of each other.
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Chapter 4

Geometric Realization of a
Category

The geometric realization is the process of assigning a simplicial complex to
a topological space. A more precise term might be topological realization.
In this chapter, we introduce the necessary framework to associate a group
to a category. This is achieved by first linking a geometric structure to the
category, which being a topological space, allows us to apply the techniques
of homotopy theory discussed in Chapter 2 to define its fundamental group.
However, this approach relies in topological tools and, as we will explain
in the last chapter, we seek to develop a theory that leads to same results
but in a purely algebraic manner.

The main references for this section are [25, 14, 12, 26, 22, 13, 35].

4.1. Simplicial Sets

For each nonnegative integer n ≥ 0, we let [n] = {0, 1, . . . , n}. When
endowed with the usual ordering of the natural numbers, [n] is a totally
ordered set. A function f : [n]→ [m] is order preserving or monotone if

f (1) ≤ · · · ≤ f (m).

We know that the composition of monotone functions is monotone, that
this composition is associative, and every finite ordinal has an identity func-
tion. Thus, the collection of all finite ordinals [n] together with the order
preserving functions between these sets naturally defined a category.

Definition 4.1 Simplex category

The simplex category, denoted ∆, is the category that consists of the fol-
lowing data.

(i) Objects: linearly ordered sets [n], for each n ≥ 0.
(ii) Morphisms: monotone maps between linearly ordered sets.
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The category ∆ is small.

Remark 4.2. The collection of all ordinals can be ordered by declaring [n] ≤ [m] if
and only if n ≤ m.

Definition 4.3 Simplicial set

A simplicial set is a contravariant functor from ∆ to Set.

Remark 4.4. The definition of simplicial set was first introduced by [9].

There is nothing special about Set in this definition. We could go a step
further and define simplicial objects, which is done by replacing Set with an
arbitrary category in the above definition. For example, if we consider Grp,
then we would talk about simplicial groups. If we consider covariant func-
tors instead we get the notion of cosimplicial objects: a cosimplicial object in
a category C is a covariant functor from ∆ to C. On the other hand, there is
a category Set∆ of simplicial sets, that consists of the functors ∆op → Set
and whose morphisms are natural transformations.

Simplicial sets are particularly important for the purposes exposed in
this chapter because they help “model” topological spaces, serving as the
backbone of such spaces. We will elaborate on this idea in the remaining
of this chapter.

Our first step is to describe simplicial objects explicitly, i.e., to identify
the essential data that constitutes a simplicial set. Given a simplicial set
X : ∆op → Set and a ∆-object [n], we denote Xn := X([n]). Thus, associ-
ated to X there is the sequence of sets (Xn)n∈N. (Here N = Z+ ∪ {0}.)
On the other hand, every ∆-morphism can be described in terms of certain
special maps, which serve as building blocks, and that we now define. The
image of this maps under X will help us to give the explicit description
mentioned above.

Definition 4.5 Coface maps

Let n ∈ Z+ and fix i ∈ [n]. The ∆-morphism di : [n− 1]→ [n] defined
by

di(k) =

k if 0 ≤ k ≤ i− 1,

k + 1 if i ≤ k ≤ n− 1

is called ith coface map.

Note that di is injective. When i = n, the map di(j) is the inclusion. In
total, there are n + 1 injections di for each positive integer n. Note that di

depends on n but we omit n from the notation so that it is not overloaded.
The ith coface map deletes the ith element in the image. Analogously, we
have surjective maps that duplicate the ith element in the image.
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Definition 4.6 Codegeneracy maps

Let n ∈ Z+
0 and fix i ∈ [n]. The ∆-morphism si : [n + 1]→ [n] defined

by

si(k) =

k if 0 ≤ k ≤ i,

k− 1 if i + 1 ≤ k ≤ n + 1

is called the ith codegeneracy map.

Proposition 4.7

The coface and codegeneracy maps satisfy the following relationships.

di ◦ dj = dj+1 ◦ di if i ≤ j,

sj ◦ si = si ◦ sj+1 if i ≤ j,

sj ◦ di =


di ◦ sj−1 if i < j,

1 if i ∈ {j, j + 1},

di−1 ◦ sj otherwise.

Proof. Straight from the definitions.

Let us present a motivating example that illustrates why introducing
coface and codegeneracy maps is useful.

Example 4.8. The monotone map [5]→ [5] given by

0 0

1 1

2 2

3 3

4 4

5 5

can be factored as

0 0

1 0 1

2 1 2

3 2 3

4 4

5 5

Note that we have decomposed the map on the left to the composition of
a surjective map followed by an injective map, both order-preserving. It
turns out that any monotone map can be decomposed as the composition
of surjections and injections.
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Lemma 4.9 Factorization of order-reserving maps

Any ∆-morphism can be factored into the composition of coface and
codegeneracy maps. More precisely, if ψ : [n]→ [m] is monotone, there
exists 0 ≤ ir < · · · < i1 ≤ m and 0 ≤ j1 < · · · < js < n with
r− s = m− n such that

ψ = di1 ◦ · · · ◦ dir ◦ sj1 ◦ · · · ◦ sjs .

Moreover, this decomposition is unique.

Proof. See [25].

Let X be a simplicial set. We denote di = X(di) and si = X(si). The im-
age of any monotone map under X is the composition of di ’s and si ’s. Note
that since X is contravariant, we have di : Xn−1 → Xn and si : Xn → Xn+1

for every 0 ≤ i ≤ n. We call di the ith face map and si the ith degeneracy
map. Face and degeneracy maps satisfy the following relationships dual to
those of coface and codegeneracy maps presented in Proposition 4.7:

di ◦ dj = dj+1 ◦ di if i ≤ j,

sj ◦ si = si ◦ sj+1 if i ≤ j,

sj ◦ di =


di ◦ sj−1 if i < j,

1 if i ∈ {j, j + 1},

di−1 ◦ sj otherwise.

By Lemma 4.9, we can describe a simplicial set X explicitly if we know
the collection of sets (Xn)n∈N, and the image under X of the coface and
codegeneracy maps. In fact, this information together with the relation-
ships between face and degeneracy maps characterizes completely any sim-
plicial set. Thus, we could have defined a simplicial set as the data consist-
ing of

(i) a sequence of sets (Xn)n≥0,
(ii) a map di : Xn+1 → Xn, for each n ≥ 0 and i ∈ [n],
(iii) a map si : Xn → Xn+1, for each n ≥ 0 and i ∈ [n],

subject to the following relations:

di ◦ dj = dj+1 ◦ di if i ≤ j,

sj ◦ si = si ◦ sj+1 if i ≤ j, (4.1)

sj ◦ di =


di ◦ sj−1 if i < j,

1 if i ∈ {j, j + 1},

di−1 ◦ sj otherwise.

Let us now look into a particular example of a simplicial set.

60



4.2. GEOMETRIC REALIZATION OF A SIMPLICIAL SET

Definition 4.10 Simplex

A simplex is a contravariant functor Hom∆(−, [n]) where n is a nonneg-
ative integer. We denote ∆n = Hom∆(−, [n]) and call ∆n n-simplex.

Note that ∆n is a contravariant functor from ∆ to Set, so ∆n is a sim-
plicial set. Following our convention, we denote ∆n

m = Hom∆([m], [n]).
Relations (4.1) are readily verified. Therefore, using the characterization of
a simplicial set given above, we can specify ∆n by describing

(i) the sequence of sets (∆n
m)m≥0,

(ii) the face maps
di : ∆n

m → ∆n
m−1 : ψ 7→ ψ ◦ di

for every n ≥ 0 and i ∈ [n], and
(iii) the codegeneracy maps

si : ∆n
m → ∆n

m+1 : ψ 7→ ψ ◦ si

for every n ≥ 0 and i ∈ [n].

4.2. Geometric Realization of a Simplicial Set

Simplices are important because they are the backbones over which the
geometric realization of an arbitrary simplicial set is constructed. First, we
have to give the n-simplex ∆n a geometry. In other words, we associate to
∆n a topological space. Recall that I = [0, 1].

Definition 4.11 Standard n-dimensional simplex

The standard n-dimensional simplex is the topological space that consist
of the set

|∆n| =
{
(x0, . . . , xn) ∈ In+1 : x0 + · · ·+ xn = 1

}
endowed with the subspace topology of Rn.

Figure 4.1: Geometric realization of ∆n for
n = 0, 1, 2, 3 in order from top to bottom.

Remark 4.12. An alternative definition of |∆n| can be given as the convex hull of
n + 1 points in Rn with zeros every where but a single 1 in some component.

The standard n-dimensional simplex is the geometric realization of the n-
simplex. As particular examples, |∆0| is the singleton {1}, whereas |∆1| is
the unit interval, |∆2| is a triangle, and |∆3| is a tetrahedron. See Figure 4.1.
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Definition 4.13 Geometric realization of a simplicial set

Let X be a simplicial set and endow every Xn with the discrete topology.
The geometric realization of X, denoted |X|, is the topological space

|X| =
(

⨿
n≥0

Xn × |∆n|
)/

∼

where ∼ is the equivalence relation given by

(di(x), (t0, . . . , tn)) ∼
(

x, di (t0, . . . , tn)
)

,(
sj(x), (t0, . . . , tn)

)
∼
(

x, sj (t0, . . . , tn)
)

.

Here |X| is endowed with the quotient topology.

Remark 4.14. Recall that when working with the disjoint union of topological
spaces, we omit the last component corresponding to the label to where the point
belongs to. For instance, we should actually have written (di(x), (t0, . . . , tn) , n)
instead of just (di(x), (t0, . . . , tn)). However, this omission should cause no confu-
sion.

4.3. Geometric Realization as a Functor

The geometric realization of a simplicial set can be regarded as a functor
from Set∆, the category of simplicial sets, to Top, the category of topolog-
ical spaces.

We have seen that | · | assigns a topological space to every simplicial set.
Moreover, given a morphism

F : X → Y

of simplicial sets, there is a naturally induced morphism of topological
spaces, that is, a continuous map

|F | : |X| → |Y|

defined by
[(x, t0, . . . , tn)] 7→ [(F (x), t0, . . . , tn)]

The properties of this functor are treated in [25].

62



4.4. THE NERVE AND THE CLASSIFYING SPACE OF A SMALL
CATEGORY

4.4. The Nerve and the Classifying Space of a Small
Category

We now present a method to associate a simplicial set to a small category,
called its nerve.

Definition 4.15 Nerve

The nerve of a small category C is the simplicial set given by
(i) the sequence of sets (NCn)n≥0 where

NCn := {(ψ1, . . . , ψn) | ψi+1 ◦ ψi is defined, 1 ≤ i ≤ n− 1} .

We write an element of NCn as a finite chain

A0
ψ1−→ A1

ψ2−→ A2 −→ · · · −→ An−1
ψn−→ An.

(ii) Face maps di : NCn → NCn−1 defined by

(ψ1, . . . , ψn) 7→ (ψ1, . . . , ψi−1, ψi+1 ◦ ψi, ψi+2, . . . , ψn)

for all i ∈ [n].
(iii) Degeneracy maps si : NCn → NCn+1 defined, for all i ∈ [n], by

(ψ1, . . . , ψn) 7→ (ψ1, . . . , ψi, 1i, ψi+1 . . . , ψn)

where 1i is the identity of the ith object of the chain, i.e., Ai.

Remark 4.16. When i ∈ {0, n}, the composition ψi+1 ◦ ψi does not make sense
as neither ψ0 nor ψn+1 exists. However, the convention is that di misses ψi in this
case. Thus

d0 : (ψ1, . . . , ψn) 7→ (ψ2, . . . , ψn) and dn : (ψ1, . . . , ψn) 7→ (ψ1, . . . , ψn−1).

It is readily verified that the relationships between face and degeneracy
maps are satisfied. On the other hand, since the nerve of a small category
is a simplicial set, we can compute its geometric realization. The geometric
realization of the nerve of a small category C is called the classifying space
of C, denoted BC. Thus

BC = |NC|.

The classifying space of a small category is a CW complex. Moreover, B is
a functor from Cat, the category of small categories, to Top. In fact, B can
be regarded as the composition of the functors N and | · |. Furthermore,
given a functor F : C → D of small categories, it is induced a continuous
cellular map of topological spaces BF : BC → BD [25]. We will not go
into the details here.
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Examples
We define special categories and describe the geometric realization of its
nerve. Our purpose is not to give a detailed exposition of the computa-
tions, but to illustrate the geometric aspect that arises out of a category by
following the constructions we have described so far. Specific details can
be found in [22] and [25]. The following examples were first introduced
by Rosero in [29]. Proofs have been omitted.

The Interval Category In
m

Let m ≤ n be even integers. The interval category In
m consist of

(i) objects: integers k for k ∈ {m, . . . , n};
(ii) morphisms: arrows k→ k for every k ∈ {m, . . . , n}, and arrows i→ j

for each even integer i and each j ∈ {i− 1, i, i + 1}.
The morphisms of In

m are formal arrows between integers. Alternatively,
we could define In

m as the category induced by the following preorder on
{m, . . . , n}:

m ≼ n ⇐⇒ m = n or m is even and |m− n| = 1.

This category is represented by the diagram

m m− 2 n− 2 n

m− 1 · · · n− 1

where identity arrows have been omitted.

Remark 4.17. Despite its name, In
m should not be confused with the category that

consists of exactly two objects and precisely one morphism between them.

Proposition 4.18

The classifying space of In
m is homeomorphic to the unit interval:

BIn
m
∼= [0, 1].

The Disk Category D2

The elementary disk category, denoted D2, is the category given by the fol-
lowing commutative diagram.

•

• •
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Formally, D2 consists of exactly three objects and three non-identity
morphisms that make this diagram commute. More explicitly, as shown in
Figure 4.2, its objects are A,B,C, and its morphisms are the identities of
these objects together with the arrows f : A→ B, g : B→ C, and h : C→ A,
with the additional conditions that

h ◦ g ◦ f = 1A f ◦ h ◦ g = 1B and g ◦ f ◦ h = 1C.

B

A C

gf

h

Figure 4.2: Labeled diagram of D2. Iden-
tities are not shown.

Proposition 4.19

The classifying space of D2 is homeomorphic to the unit disk:

BD2 ∼= D2.

The Circle Category S1

The circle category, denoted S1, is the category given by the diagram

• •

Formally, S1 consists of exactly two objects and two parallel non-identity
arrows. More explicitly, the objects of S1 are A,B, and its morphisms
are the identities of these objects together with the arrows f : A → B and
g : A→ B. See Figure 4.3.

A B

f

g

Figure 4.3: Labeled diagram of S1.
Proposition 4.20

The classifying space of S1 is the unit circle:

BS1 ∼= S1.

The Torus Category T2

The nth torus category, denoted Tn, is the product category S1 × · · · × S1

of S1 with itself n times. When n = 2, we just call Tn the torus category.

Proposition 4.21

The classifying space of Tn is the n-dimensional torus, that is

BTn ∼= Tn.

In particular, BT2 ∼= T2. This result follows from the fact that the func-
tor induced by the geometric realization preserves products and BS1 ∼= S1.
As described in [29], there is a similarity between T2 and T2 regarding
their plane representations, as a commutative diagram and as quotient of
the unit square I2, respectively. See Figure 4.4.

(A,A) (A,B) (A,A)

(B,A) (B,B) (B,A)

(A,A) (A,B) (A,A)

1

3

2

3

4

1 2

4

Figure 4.4: Flat representation of the torus
category T2. Arrows with the same label
are identified.

65



CHAPTER 4. GEOMETRIC REALIZATION OF A CATEGORY

Remark 4.22. By the results just presented, we have

π1(BD2) ∼= π1(D2) = 0,

π1(BS1) ∼= π1(S1) = Z, and
π1(BTn) ∼= π1(Tn) = Zn.

We will compare these results with those obtained at the end of Chapter 5.
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Chapter 5

Homotopy for Finite Categories

In this chapter we develop a novel theory that aims to associate a group
to a finite category in such a way that the framework resembles that of
classical homotopy theory presented in Chapter 2. We have seen that this
can be achieved by means of the classifying space of a category, as exposed
in Chapter 4. However, the key difference is that this will be done in a
purely algebraic manner, without relying on any topological method. To
begin with, we define the categorical analogs of many concepts of the clas-
sical homotopy theory of topological spaces and establish the foundational
framework. Subsequently, we demonstrate that the theory gives consistent
results with some of the examples presented in Chapter 4. For instance the
fundamental group of the topological circle is isomorphic to the funda-
mental group of the categorical circle as defined in the context of category
theory. We show a similar result regarding the fundamental groups of the
topological and categorical torus.

The work presented here builds extensively on the original work of
Rosero [29], where the fundamental concepts and ideas were introduced.
However, we have reformulated most of the definitions and statements
due to lack of coherence, well-definiteness and some erroneous proofs. A
short attempt in providing a correct formulation of the theory was done
by Ajila [2], but not in an exhaustive manner as done here. Apart from
that, we present revised results, coherent notation, novel proofs, and gen-
eralizations of some of the angular results of the theory. Moreover, we have
reorganized the concepts so that the presentation now resembles more that
of the classical theory of homotopy, as presented in Chapter 2.

Even though the work of Rosero [29] is based on the work by Larose
and Tardif [16], as the author acknowledges, it is nevertheless the original
formulation of the theory we explore here. Anything wise and brilliant
must be credited to the masterworks that have been revised to write this
thesis such as [21, 6, 32, 16, 19, 34, 13, 25, 33, 18, 1, 7]. Anything foolish,
assume it is my error.
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5.1. The Preordered Category Λ

Our first step is to build a category that will play a similar role to that of
the unit interval I when we talked about homotopy of paths in Chapter 2.
Recall from section 3.1 that any preorder naturally defines a category.

Lemma 5.1

Let ≼ be the binary relation on Z defined by

m ≼ n ⇐⇒ m = n or m is even and |m− n| = 1.

Then ≼ is a preorder on Z.

Proof. We prove ≼ is both reflexive and transitive. On one hand, n ≼ n
since n = n for any n ∈ Z. To see that ≼ is transitive, suppose m ≼ n and
n ≼ p where m, n, p ∈ Z. If either m = n or n = p, it is clear that m ≼ p.
If this is not the case, then m is even and |m− n| = 1, and n is even and
|n− p| = 1. However, it cannot be true that both m and n are even and
|m− n| = 1. It follows (vacuously) that m ≼ p. Therefore ≼ is a preorder
on Z.

Observe that ≼ is not a linear order. For instance, ≼ is neither symmet-
ric nor strongly connected. We write i ≺ j whenever i ≼ j and i 6= j.

Remark 5.2. Note that if i ≼ j and j ≤ k for some k ∈ 2Z, then i ≤ k. Indeed,
since this is true when i = j, assume i 6= j. Then i is even and j = i− 1 or j = i + 1,
so j < k because j is odd. Thus j− 1 < j + 1 ≤ k, whence i ≤ k. Similarly, i ≼ j
and j ≥ k for some k ∈ 2Z imply i ≥ k. It should also be noted that if i ≼ j, then
−i ≼ −j. It does not make sense to ask whether≼ is preserved under addition since
≼ is not strongly connected, meaning not every pair of integers can be compared.

Definition 5.3 Category Λ

We define Λ to be the category induced by the preordered set (Z,≼).

Notice that both the collection of objects and morphisms of Λ are count-
able. Thus, Λ is a small category. We denote any Λ-arrow by i → j where
i, j ∈ Z. Observe that the domain of any nonidentity arrow is an even inte-
ger. An odd integer is the domain of exactly one arrow, namely its identity.
The domain and codomain of a nonidentity arrow are consecutive integers.
Thus any Λ-arrow is of the form n → n, 2n → 2n − 1, or 2n → 2n + 1
with n ∈ Z. Further, if i → j is any arrow, there are three possibilities:
i = j, i = j− 1, or i = j + 1. This fact implies i → j = 1k if and only if
i = j = k. The following diagram is a visual representation of Λ, where the
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identity arrows have been omitted.

· · · −2 −1 0 1 2 · · ·

On the other hand, two Λ-arrows m → n and p → q are equal if and
only if m = p and n = q. Finally, note that there are no composable
nonidentity arrows; i.e., except by identities, Λ does not have composable
arrows. In categorical terminology, this means that Λ is a thin category
[28]. Hence it is not necessary to verify that a functor from Λ to any other
category preserves compositions of arrows. In other words, condition (iv)
in Definition 3.19 follows immediately from the fact that a functor maps
morphisms to morphisms.

Remark 5.4. Whenever m → n is used, we implicitly assume m ≼ n, otherwise
writing m→ n makes no sense because such an object does not exist.

5.2. Homotopy of Functors

Recall, from Example 3.22 (e) of section 3.3, that a bifunctor is one whose
domain is a product of two categories. For clarity, we restate the definition
below.

Suppose A, B, and C are categories. Given a bifunctor F : A× B→ C
and a fixed B-object B, define the map

F(−, B) : A→ B

which sends every A-object A to F(A, B), and every A-morphism ψ to
F(ψ, 1B). Then F(−, B) is a functor from A to B. Moreover, since B is
arbitrary, we obtain in this way a family of functors from A to B. In an
analogous manner, given any A-object A, we define F(A,−) : B → C as
the map that sends any B-object B to F(A, B) and any B-morphism ϕ to
F(1A, ϕ).

Let C and D be finite categories.

Definition 5.5

Let F, G : C → D be covariant functors. A homotopy from F to G is a
functor H : C×Λ→ D such that, for some even integers m ≤ n,

(i) H(−, k) = F for every k ≤ m, and
(ii) H(−, k) = G for every k ≥ n.

If there is a homotopy from F to G, then F is homotopy equivalent to G,
which is denoted F ' G.

We write H : F ' G to indicate that H is a homotopy from F to G.
Sometimes we say H is a (m, n)-homotopy to make emphasis on the pair
of even integers stated in the definition.
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Proposition 5.6

' is an equivalence relation over the objects of DC.

Proof.Proposition 5.6 allows us to say that F and G
are homotopy equivalent whenever F is
homotopy equivalent to G or conversely.

Let F, G, H : C→ D be covariant functors.
(i) (Reflexivity) LetH : C×Λ→ D be the functor defined byH(C, k) =

F(C) on objects, and by H(ψ, λ) = F(ψ) on morphisms. Note that
H(−, k) = F for any k ∈ Z, so F ' F.

(ii) (Symmetry) Suppose H : F ' G is a (m, n)-homotopy. Let I : C×
Λ → D be the functor defined by I(C, k) = H(C,−k) on objects
and by I(ψ, λ) = H(ψ, λ) on morphisms. It follows that

I(−, k) = H(−,−k) = G if k ≤ −n

and
Ĥ(−, k) = H(−,−k) = F if k ≥ −m.

Thus I : G ' F.
(iii) (Transitivity) Let H : F ' G and I : G ' H be (m, n) and (m′, n′)

homotopies, respectively. Define J : C×Λ→ D by

J (C, k) =

H(C, k + n) if k ≤ 0,

I(C, k + m′) otherwise,

on objects, and byNotice that j ≤ 0 implies i ≤ 0 and j > 0
implies i ≥ 0. See Remark 5.2.

J (ψ, i→ j) =

H(ψ, i + n→ j + n) if j ≤ 0,

I(ψ, i + m′ → j + m′) otherwise,

on morphisms, whenever i ≼ j. Then J (−, k) = H(−, k + n) = F if
k ≤ m− n, and J (−, k) = I(−, k + m′) = H whenever k ≥ n′ −m′.
Hence J : F ' H.

Theorem 5.7 ' preserves ◦

Suppose F ' G and F′ ' G′ where F, G, F′, G′ are functors between
finite categories. If F′ ◦ F is defined, so is G′ ◦ G, and

F′ ◦ F ' G′ ◦ G.

Proof. Let H : F ' G be an (m, n)-homotopy and let H′ : F′ ' G′ be a
(m′, n′)-homotopy. Define I(−, k) = H′(−, k + m′) ◦ H(−, k + n) for
each k ∈ Z. If k ≤ m − n, then H(−, k + n) = F since k + n ≤ m and
H′(−, k +m′) = F′ because k < 0. Thus I(−, k) = F′ ◦ F when k ≤ m− n.
If k ≥ n′ −m′, then H′(−, k + m′) = G′, and H(−, k + n) = G as k > 0.
Thus I(−, k) = G′ ◦ G when k ≥ n′ −m′. It follows F′ ◦ F ' G′ ◦ G.
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5.3. Paths

Suppose throughout that C is a finite category.

Definition 5.8 Path

Let A and B be C-objects. A path in C from A to B is a functor α : Λ→
C such that, Keep in mind Remark 5.2: i ≼ j and j ≤ m

imply i ≤ m. Likewise, if i ≼ j and j ≥ n, then
i ≥ n.

for some even integers m ≤ n,

(i) α(i→ j) = 1A if j ≤ m, and
(ii) α(i→ j) = 1B if j ≥ n.

By a C-path we mean a path between objects of C. The set of C-paths
from A to B is denoted ΦC(A, B), or just Φ(A, B) if the category is known
from the context. A loop based at A is a path from A to A. We say C is path
connected if there is a path between any two C-objects.

The integers m and n in this definition are lower and upper bounds for
α, respectively. More precisely, a lower bound for α is an even integer l such
that

α(i→ j) = 1A for j ≤ l.

Similarly, an upper bound is an even integer u such that

α(i→ j) = 1B for j ≥ u.

In order to emphasize the lower an upper bounds we sometimes say α is a
lu-path. This terminology will ease up the upcoming proofs. Note these
integers are not unique: any even integer less than l is also a lower bound,
and any even integer greater than u is also an upper bound for α. However,
if the sets of lower and upper bounds for α are bounded above and below,
respectively, we define min α to be the greatest lower bound and max α to
be the least upper bound, that is,

min α = max{l ∈ 2Z : α(i→ j) = 1A for all j ≤ l}, and
max α = min{u ∈ 2Z : α(i→ j) = 1B for all j ≥ u}.

It is clear that min α and max α are unique.
The information contained between min α and max α is called the non-

trivial part of α, that is, the objects α(k) for min α ≤ k ≤ max α, and the
morphisms α(i → j) for min α ≤ j ≤ max α. We define the length of a
path α to be the cardinality of the set of arrows contained in its nontrivial
part, that is, max α−min α.

We shall illustrate how paths are represented by means of diagrams.
Since we are interested only in the nontrivial part, any path α can be given
a representation as follows, where m = min α and n = max α.1 1 We omit the objects and arrows that do not

belong to the nontrivial part. Identities are also
omitted. The position of the objects is
indicated in parentheses below them.

α(m)
(m)

α(m + 1)
(m+1)

· · · α(n− 1)
(n−1)

α(n)
(n)

α(m→m+1) α(n→n−1)
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Example 5.9.
(i) (Constant path) A constant functor α : Λ → C is a path in C as it

can be verified from the definition. We call α a constant path at A,
where A is the C-object corresponding to the constant value of α. It
is denoted Â.

(ii) (Functors preserve paths) If α is a path in C and F : C → D is any
functor, then F ◦ α is a path in D.

(iii) (Inverse path) If α : Λ → C is a path,The first and third examples are the categorical
analog notions of constant and inverse paths of
classical homotopy theory.

then the functor from Λ to C
defined by k 7→ α(−k) on objects and by (i → j) 7→ α(−i → −j) on
morphisms is also a path in C. We call this functor the inverse path
of α, and denote it α. Note that if α is a mn-path from A to B, then
α is a (−n,−m)-path from B to A. On the other hand, note that if
F : C→ D is any functor, then F ◦ α = F ◦ α.

(iv) (A nonexample) Let A be a C-object and f : A → A. Let α be
the functor that maps every Λ-object to A and every Λ-arrow to f .
Then α is not a path since it does not satisfies the finiteness condition,
namely that a path must become eventually constant to the left and
to the right.

(v) (Concatenation of paths) If α is a path from A to B and β is a path
from B to C, we say α and β are composable, or able to be concatenated.
In other words, α and β are composable if α(max α) = β(min β).
Suppose α and β are composable paths. Let

(m, n, p, q) = (min α, max α, min β, max β).

Define a functor from Λ to C by22 Notice that there is no problem of definition
on the objects when k = n because
α(n) = B = β(p). A similar argument shows
this functor is well-defined on morphisms. k 7→

α(k) if k ≤ n,

β(k + p− n) if k ≥ n,
(5.1)

on objects and by

i→ j 7→

α(i→ j) if j ≤ n,

β(i + p− n→ j + p− n) if j ≥ n,
(5.2)

on morphisms.

Remark 5.10. By construction, this functor is unique, and it follows from
the definition that it is a (m, q− p + n)-path from A to C.

Definition 5.11 Product of paths

The product α · β of two composable paths α and β is the path defined
by (5.1) and (5.2).
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Remark 5.12. With this “operation” we are headed to the categorical notion of the
fundamental group of a finite category. Observe that · is not an actual operation on
the set of C-paths since it is not defined for every pair of elements of this set. Rather,
it should be thought of a way of producing new paths from old ones whenever the
concatenation is possible.

Theorem 5.13 Associativity of ·

Let α, β, and γ be paths in C. Then

(α · β) · γ = α · (β · γ) (5.3)

whenever the products are defined.

Proof. Let
m = min α, p = min β, r = min γ,
n = max α, q = max β, s = max γ.

Suppose the products in (5.3) are defined. Note max α · β = q− p + n and
min β · γ = p. By definition,

(α · β) · γ(k) =

α · β(k) if k ≤ q− p + n,

γ(k + r− q + p− n) otherwise

=


α(k) if k ≤ n,

β(k + p− n) if n ≤ k ≤ q− p + n,

γ(k + r− q + p− n) else

and

α · (β · γ)(k) =

α(k) if k ≤ n,

β · γ(k + p− n) else

=


α(k) if k ≤ n,

β(k + p− n) if n ≤ k ≤ q− p + n,

γ(k + p− n + r− q) else.

A similar computation shows that (α · β) · γ and α · (β · γ) agree on mor-
phisms too, completing the proof.

In view of Theorem 5.13, we will write α · β ·γ to denote either (α · β) ·γ
or α · (β · γ). As a consequence of this result,

(α · β) · γ ∼ α · (β · γ).

Now we embark on the task of description of paths in a finite category.
This will prove useful later when we define the fundamental group a finite
category. The following examples present the type of paths we will deal
with in the next section.
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Example 5.14.
(i) (Induced paths) Given a C-morphism f : A → B, there is a natural

way of obtaining new paths out of f . Define a functor from Λ to C
by

k 7→

A if k ≤ 2n,

B otherwise,
i→ j 7→


1A if i, j ≤ 2n,

f if (i, j) = (2n, 2n + 1),

1B if i, j ≥ 2n + 1,

on objects and morphisms, respectively, where n ∈ Z. By construc-
tion, this functor, which we denote f (2n), is a path from A to B.
Namely, we have “embedded” f into this path at position 2n, to the
right. We call f (2n) the induced path in C by f at position 2n. This
path is represented by the following diagram.33 An alternative representation is given by the

simplified diagram

A(2n) B B
f

Here the subscript (2n) does not represent any
property of the object A, but it is a shorthand
to denote the position at where f is based. If
possible, we will avoid this use of subscripts.

f (2n) : A
(2n)

B
(2n+1)

B
(2n+2)

f

The inverse of f (2n) is given by the diagram

f (2n) : B
(−2n−2)

B
(−2n−1)

A
(−2n)

f

which is a path from B to A.
(ii) (Subpaths) Let α be a path in C, and i ≤ j two even integers. Define

α
j
i : Λ→ C by

k 7→


α(i) if k ≤ i,

α(k) if i ≤ k ≤ j,

α(j) if k ≥ j,

k→ l 7→


α(i→ j) if l ≤ i,

α(k→ l) if i ≤ k, l ≤ j,

α(j→ j) if l ≥ j,

on objects and morphisms, respectively. We call any functor of this
form a subpath of α. Thus, a subpath of α is a path β such that β = α

j
i

for some even integers i ≤ j. It is clear from the definition that α
j
i is

a ij-path from α(i) to α(j). Note that if α is a mn-path, then α = α
j
i

for every pair of even integers i ≤ m and j ≥ n. If i = min α
j
i and

j = max α
j
i , we call α

j
i a proper subpath of α.

(iii) (Translation of paths) Let α be a C-path. Fix an integer n. Let
β : Λ→ C be the path defined by

β(k) = α(k + 2n) and β(i→ j) = α(i + 2n→ j + 2n).

We say that β has been obtained by a translation of α by 2n. We
denote β = α[2n]. It follows, by construction, that

α[n][m] = α[n + m]

for any m, n ∈ 2Z.
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5.4. Homotopy of Paths

Suppose throughout that C is a finite category.
In this section we present a relation that allows us to identify paths

that are “almost the same.” Roughly speaking, two paths are considered
to be almost the same if they have the same morphisms contained in their
nontrivial parts, regardless of where their nontrivial parts are located, or if
one can be obtained from the other by following a commutative diagram.

Definition 5.15 Homotopy of paths

Let α, β ∈ ΦC(A, B) and (m, n, p, q) = (min α, max α, min β, max β). A
path homotopy H from α to β is a homotopy (of functors) from α to β

that satisfies
(i) H(k,−) = Â if k ≤ min{m, p}, and
(ii) H(k,−) = B̂ if k ≥ max{n, q}.

If there is a path homotopy from α to β, then α is path homotopic to β,
which is denoted α ∼ β.

As in the case of homotopy of functors, we write H : α ∼ β to indicate
that H is a path homotopy from α to β.

Proposition 5.16

∼ is an equivalence relation in ΦC(A, B).

Proof. This proof is similar to that of Proposition 5.6, but here we prove
that, in addition, (i) and (ii) of Definition 5.15 hold. Fix α, β, γ ∈ Φ(A, B)
and let (m, n, p, q, r, s) = (min α, max α, min β, max β, min γ, max γ).

(i) (Reflexivity4) Define H : Λ × Λ → D by H(i, j) = α(i) on objects 4 Note that (i) shows that α ' α is equivalent
to α ∼ α for any path α.and by H(ϕ, ψ) = α(ϕ) on morphisms. By Proposition 5.6, H : α '

α. Now notice that H(i, j) = A = Â(j) when k ≤ m, and H(i, j) =
B = B̂(j) for k ≥ n. Therefore,H(k,−) = Â if k ≤ m andH(k,−) =
B̂ if k ≥ n. Thus H : α ∼ α.

(ii) (Symmetry) Suppose H : α ∼ β. Define H′ : Λ×Λ→ C by

H′(i, j) = H(i,−j)

on objects and by

H′(i→ j, i′ → j′) = H(i→ j,−i′ → −j′)

on morphisms. As noted in the proof of Proposition 5.6, H′ : α ' β.
Since H′(i, j) = H(i,−j) = Â(−j) = A = Â(j) for i ≤ min{m, p},
we haveH′(i,−) = Â when i ≤ min{m, p}. Similarly,H′(i,−) = B̂
if i ≥ max{n, q}Therefore H′ : β ∼ α.
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(iii) (Transitivity) Suppose α ∼ β and β ∼ γ. Let H be a path homotopy
from α to β with even integers p < q and r < s such that

H(−, l) =

α if l ≤ p,

β if l ≥ q,
and H(k,−) =

Â if k ≤ r,

B̂ if k ≥ s.

Likewise, let I be a path homotopy from β to γ, with even integers
p′ < q′ and r′ < s′, defined analogously. Define J : Λ×Λ → C, as
in the proof of Proposition 5.6, by

J (k, l) =

H(k, l + q) if k ≤ 0,

I(k, l + p′) if k > 0,

on objects, and with the obvious modifications on morphisms. Then
J is a homotopy from α to γ, meaning α ' γ. Finally, note that
if k ≤ min{0, r}, then J (k, l) = H(k, l + q) = Â(l + q) = A for
any l ∈ Z. Thus J (k,−) = Â whenever k ≤ min{0, r}. Similarly,
J (k,−) = B̂ if k ≥ max{0, s′}. This proves that α ∼ γ.

Figure 5.1 shows the structure of Λ× Λ, and that diagram will helps
us to better understand the notion of homotopy of paths. We can think of
a functor Λ×Λ → C as a diagram that emerges from embedding Λ×Λ

into C.

. . .
...

...
...

...
... . . .

· · · (−2, 2) (−1, 2) (0, 2) (1, 2) (2, 2) · · ·

· · · (−2, 1) (−1, 1) (0, 1) (1, 1) (2, 1) · · ·

· · · (−2, 0) (−1, 0) (0, 0) (1, 0) (2, 0) · · ·

· · · (−2,−1) (−1,−1) (0,−1) (1,−1) (2,−1) · · ·

· · · (−2,−2) (−1,−2) (0,−2) (1,−2) (2,−2) · · ·

. . . ...
...

...
...

... . . .

Figure 5.1: Category Λ×Λ.
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The following example is very illustrative. It shows why two paths are
path-homotopy equivalent if one of them has been obtained by a transla-
tion of the other.

Example 5.17. Let α be the path given by the following diagram.

A
(0)

B C D E
f g ϕ ψ

The commutative diagram of Figure 5.2 gives a homotopy of paths from
α[2] to α. The fact that it is commutative follows from the fact that each
square commutes.

Remark 5.18. (i) Not only the functor presented in this example gives us an idea
of how to reallocate an arbitrary path to any position, but it also suggest a
way to eliminate pairs of identity arrows out of a path.

(ii) For instance, the second row is a path which contains a pair of identities of
the form← · →, the next row was obtained out of the second by flipping the
position of g and the pair← · →, getting a new path with a pair of identities
of the form→ · ←. Continuing this way until the bottom we obtain a new
path which is path-homotopic to the original but does not contain any pair
of identity arrows.

A A A
(0,0)

B C D E

A B B B C D E

A B C C C D E

A B C D D D E

A B C D E E E

f f

f

ff f

g ϕ

g ϕ

ψ

ψ

f g ϕ ψ

f

f

f

g

g gg

g ϕ

g

ϕ

ϕ

ϕg

ϕϕ ϕ

ψ

ψ

ψ

f g ϕ ψ

f

f

g ϕ

ϕg

ψ

ψ ψψ ψ ψ

Figure 5.2: Example 5.17.

Note that in order to construct the homotopy of paths given by the
diagram of Figure 5.2, we have moved each arrow one position at a time,
wherein a pair of identity arrows (either of the form → · ← or the form
← · →) have been inserted.
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We now generalize the idea presented in Example 5.17. To begin with,
we shall present a way to obtain new paths from old ones by inserting pairs
of identities arrows of the form → · ← or the form ← · →, depending
on the position at where the insertion is made. Given a path α in C and
n ∈ Z, define Γnα : Λ→ C byNotice that the insertion is always made to the

left of the object α(n), which is the reason why
the data is moved two positions to the left.

Γnα(k) =


α(k + 2) if k ≤ n− 2,

α(n) if k = n− 1,

α(k) else

on objects. Define Γnα on morphisms as follows: if n is even,

Γnα(i→ j) =


α(i + 2→ j + 2) if j ≤ n− 2,

1α(n) if j = n− 1,

α(i→ j) if j ≥ n,

if n is odd,

Γnα(i→ j) =


α(i + 2→ j + 2) if i ≤ n− 3,

1α(n) if i = n− 1,

α(i→ j) if i ≥ n + 1.

Remark 5.19. It follows, by construction, that

Γpα = α for all p ≤ min α.

Namely, inserting a pair of identities before min α leaves the path unchanged be-
cause α is constant before min α.

Proposition 5.20

For any path α and any n ∈ Z,

Γnα ∼ Γn+1α.

Proof. Let α be a path from A to B. We do the proof for the case when n
is odd as the other case follows a similar reasoning. Let φ = α(n + 1→ n).
Define Hn : Λ×Λ→ C by Hn(i, j) = Γnα(i) on objects and by

Hn(i→ j, k→ l) = Γnα(i→ j)

on morphisms. Define Hn+1 analogously. The reader should notice that
Hn is the homotopy of paths defined in the proof of Proposition 5.16 that
proves that ∼ is reflexive. Then

Hn : Γnα ∼ Γnα and Hn+1 : Γn+1α ∼ Γn+1α.
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Now define H : Λ×Λ→ C on objects by

H(i, j) =

Hn(i, j) if j ≤ 0,

Hn+1(i, j) otherwise,

and on morphisms by

H(i→ j, i′ → j′) =


Hn(i→ j, i′ → j′) if i′, j′ ≤ 0 or i, j ≤ n− 2,

Hn+1(i→ j, i′ → j′) if i′, j′ ≥ 1 or i, j ≥ n + 1,

φ otherwise.

Note that H(i → j, i′ → j′) = φ precisely when i, j ∈ {n− 2, n− 1, n, n +

1} and (i′, j′) = (0, 1). Let us prove H : Γnα ∼ Γn+1α. This follows imme-
diately from the definition. For any k ≤ 0, we have

H(i, k) = Hn(i, k) = Γnα(i),

and also
H(i→ j, 1k) = Hn(i→ j, 1k) = Γnα(i→ j).

Therefore, H(−, k) = Γnα for every k ≤ 0. In an entirely analogous
manner it follows that H(−, k) = Γn+1α for every k ≥ 2. Up to this
point we have shown H : Γnα ' Γn+1α. To finish the proof, take M =

min{min Γnα, min Γn+1α} and notice that if i ≤ M, then

H(i, j) =

Γnα(i) if j ≤ 0,

Γn+1α(i) otherwise
=

A if j ≤ 0,

A otherwise.

Thus,H(k,−) = Â for every k ≤ M. Let N = max{max Γnα, max Γn+1α}.
If i ≥ N,

H(i, j) =

Γnα(i) if j ≤ 0,

Γn+1α(i) otherwise
=

B if j ≤ 0,

B otherwise.

Thus, H(k,−) = B̂ for every k ≥ N. The proof is now complete.

Corollary 5.21

For any path α and any n ∈ Z,

α ∼ Γnα.

Proof. Let m = min α. If n ≤ m, there is nothing to prove because of
Remark 5.19. Suppose n > m. Since α = Γmα, by Proposition 5.20 we
have

α ∼ Γm+1α ∼ Γm+2α ∼ · · · ∼ Γm+(n−m)α = Γnα,

as claimed.
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Suppose α is a path in C. Observe that, from a combinatorial point
of view, both α and α[2n] encode the same information, for any n ∈ Z.
The only difference being the position of its nontrivial parts. Naturally, we
should expect these paths to be path-homotopy equivalent and the follow-
ing result establishes this claim.

Theorem 5.22 Invariance of ∼ under translation

For any path α and any n ∈ 2Z, we have α ∼ α[n].

Proof. Suppose α is a path with m = min α and p = max α. It is enough
to prove α ∼ α[2] since the result follows inductively from this particular
case. By Proposition 5.20,

α = Γmα ∼ Γm+1α ∼ · · · ∼ Γpα = α[2],

as desired. Now, since α was arbitrary, and using the fact that

α[i][j] = α[i + j]

for any i, j ∈ 2Z, we obtain

α ∼ α[2] ∼ α[4] ∼ · · · ∼ α[n].

The result is established.

The following definition characterizes paths that do not have any pair
of identity arrows of either the form → · ← or the form ← · → in their
nontrivial part.

Definition 5.23 Reduced path

Let α be a path from A to B. We say α is reduced if

α 6= Γnβ

for any β ∈ Φ(A, B) and every min α < n < max α.

It follows, vacuously, that any constant path is reduced, because there
is no integer n such that 0 < n < 0.

Example 5.24. Assume the following paths start at the right of 0.
(i) The path

X0 X1 X2 X3 X4
f1 f2 f3 f4

is reduced. Here, we are implicitly assuming that adjacent objects are
distinct.
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(ii) Neither

X0 X1 X1 X1 X2
f1 f2

nor
X0 X1 X1 X1 X2

f1 f2

are reduced paths. Both contain a pair of identity arrows. The first
contains a pair of the form← · → and the second contains a pair of
the form→ · ←.

(iii) If α is reduced, then α[2n] is reduced for any n ∈ Z. This is due to
the fact that reallocation of a path does not change its combinatorial
data.

Theorem 5.25 Pruning

Every path is path-homotopic to a reduced path.

Proof. Let α be a path. If α is either constant or reduced, there is nothing
to prove, because, in either case, α is already reduced and path-homotopic
to itself by reflexivity of ∼. Suppose α is nonconstant and not reduced. We
proceed by induction on the number of pairs of identity arrows contained
in the nontrivial part of α. For the base case, if α has a pair of identity
arrows, then α = Γnβ for some integer n and some reduced path β. Then

α ∼ β,

by Corollary 5.21. Now, let k be an arbitrary but fixed positive integer, and
suppose that if α′ has k pairs of identity arrows in its nontrivial part, then α′

is homotopic to a reduced path. Let us prove the claim for the case when
α has k + 1 pairs of identity arrows in its nontrivial part. In this case, we
have α = Γnγ for some integer n and some path γ, where γ has k pairs
of identity arrows in its nontrivial part. By the inductive hypothesis, γ is
path-homotopic to a reduced path. By Corollary 5.21, α ∼ γ and thus α is
path-homotopic to a reduced path as well. The principle of mathematical
induction proves the result.

From now and on we refer to Theorem 5.25 as the pruning theorem.

Theorem 5.26 · preserves ∼

If α ∼ α′ and β ∼ β′, and if α · β is defined, then α′ · β′ is defined and

α · β ∼ α′ · β′.

Proof. Let α, α′ be paths from A to B and β, β′ paths from B to C so that
α · β is defined, where A, B, C are C-objects. If α ∼ α′, then α′ is also a path
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from A to B, necessarily. Similarly, if β ∼ β′, then β is a path from B to C.
Thus α′ · β′ is defined. We now proceed to prove the result by considering
a special case first. The general case will follow from this case once it is
proved.

(i) Suppose max α = max α′ and min β = min β′. Let H : α ∼ α′ be
a aa′-path-homotopy and G : β ∼ β′ a bb′-path-homotopy. Denote
n = max α and p = min β. Define F : Λ×Λ→ C by

F (i, j) =

H(i, j) if i ≤ n,

G(i + p− n, j) otherwise,

on objects, and by

F (i→ j, i′ → j′) =

H(i→ j, i′ → j′) if j ≤ n,

G(i + p− n→ j + p− n, i′ → j′) otherwise,

on morphisms. Let us show F : α · α′ ∼ β · β′. If k ≤ min{a, b},
then, for any i ∈ Z,

F (i, k) =

α(i) if i ≤ n,

β(i + p− n) otherwise,
= α · β(i)

and, for any Λ-arrow i→ j,

F (i→ j, 1k) =

α(i→ j) if j ≤ n,

β(i + p− n→ j + p− n) otherwise,

which equals α · β(i → j), by definition of concatenation of paths
(Definition 5.11). Hence,

F (−, k) = α · β

for every k ≤ min{a, b}. In an entirely similar manner, we obtain
F (−, k) = α′ · β′ for every k ≥ max{a′, b′}. Finally, we prove

F (k,−) =

Â if k ≤ min{min(α · β), min(α′ · β′)},

Ĉ if k ≥ max{max(α · β), max(α′ · β′)}.
(5.4)

To this end, notice

min{min(α · β), min(α′ · β′)} = min{min α, min α′}

by Remark 5.10. Also,

max(α · β) = max β− p + n and max(α′ · β′) = max β′− p + n,

whence

max{max(α · β), max(α′ · β′)} = max{max β, max β′} − p + n.
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Thus, (5.4) becomes

F (k,−) =

Â if k ≤ min{min α, min α′},

Ĉ if k ≥ max{max β, max β′} − p + n.

The first equality follows from the fact min{min α, min α′} ≤ n. To
see the second equality, note that if k ≥ max{max β, max β′}− p+ n,
then k ≥ max β− p + n ≥ n, so, for any j ∈ Z,

F (k, j) = G(k + p− n, j) = C,

where the last equality is due to k + p − n ≥ max{max β, max β′}.
Similarly, we get F (1k, i→ j) = 1C for any Λ-arrow i→ j. We have
proved this special case.

(ii) Suppose α ∼ α′ and β ∼ β′. By translating α and β to suitable
positions, we can apply the result of the case just proved. Indeed, let
m = max α−max α′ and n = min β−min β′. Then

max α[m] = max α′ and min β[n] = min β′.

Thus, by (i), α[m] · β[n] ∼ α′ · β′. However,

α[m] · β[n] = α[m] · β = α · β[m].

Since α · β ∼ (α · β)[m] by Theorem 5.22, we conclude α · β ∼ α′ · β′.
End of the proof.

Theorem 5.27

If α is a path in C from A to B, then
(i) Â · α ∼ α, and
(ii) α · B̂ ∼ α.

Proof. Let m = min α and n = max α. Recall that the minimum and
maximum of a constant path are both equal to zero by convention.5 5 Note that the effect of multiplying by a

constant path on the left produces a translation
to the right of the zero.(i) Let us prove Â · α = α[m]. On one hand, by definition of multiplica-

tion of paths,

Â · α(k) =

Â(k) if k ≤ 0,

α(k + m) else.

Note that α(k+m) = A = Â(k)whenever k+m ≤ m, i.e., whenever
k ≤ 0. This means that Â · α(k) always equals α(k + m) regardless of
whether k ≤ 0 or k > 0. Thus

Â · α(k) = α(k + m)
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for every k ∈ Z. On the other hand, in order to see the equality on
morphisms, note that

Â · α(i→ j) =

Â(i→ j) if j ≤ 0,

α(i + m→ j + m) else,

and use the fact that

α(i + m→ j + m) = 1A = Â(i→ j)

whenever j + m ≤ m, i.e., when j ≤ 0. Then

Â · α(i→ j) = α(i + m→ j + m) = α[m](i→ j)

for every i, j ∈ Z with i ≼ j. We have proven Â · α = α[m]. Finally,
by Theorem 5.22, it follows Â · α ∼ α.

(ii) Again, by definition of multiplication of paths, we have

α · B̂(k) =

α(k) if k ≤ n,

B̂(k− n) else.

But B̂(k− n) = B = α(k) for every k > n. Thus, α · B̂(k) = α(k) for
all k ∈ Z. Similarly, since

α · B̂(i→ j) =

α(i→ j) if j ≤ n,

B̂(i− n→ j− n) else,

and B̂(i− n → j− n) = 1B = α(i → j) whenever j > n, it follows
α · B̂(i → j) = α(i → j) for any Λ-arrow i → j. Therefore, α · B̂ = α

whence α · B̂ ∼ α.
The proof is complete.

Lemma 5.28

Let f : A→ B be a C-arrow. Then
(i) f · f = Â, and
(ii) f · f = B̂.

Proof. The path-homotopies that show (i) and (ii) are given by the follow-
ing pair of commutative diagrams, respectively.

A
(2n,0)

A A B B B

A B A B A
(2n+2,0)

B

f f
f

f f

f

ff

f f
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Theorem 5.29 Cancellation

Let α be a path from A to B. Then
(i) α · α = Â, and
(ii) α · α = B̂.

Proof. For (i) note that, since α ∼ αm+2
m · αm+4

m+2 · · · αn
n−2,

α · α ∼ αm+2
m · αm+4

m+2 · · · α
n−2
n−4 · α

n
n−2 · αn

n−2 · α
n−2
n−4 · · · α

m+2
m · αm+2

m

∼ αm+2
m · αm+4

m+2 · · · α
n−2
n−4 · α

n−2
n−4 · · · α

m+2
m · αm+2

m

...

∼ αm+2
m · αm+2

m

∼ Â

where we have used Lemma 5.28 and Theorem 5.26. The proof for (ii)
proceeds analogously.

5.5. The Fundamental Group of a Finite Category

A category with base object is a pair (C, A) where C is a category and A
is a C-object. We say that (C, A) is a pointed category with base object at
A.6 The pointed categories that we consider in what follows are finite. 6 There is a category Cat∗ of pointed small

categories, whose objects are pairs (A, A)

where A is a small category and A is a A-object,
referred to as the base object. The morphisms of
this category are the functors
F : (A, A)→ (B, B) that preserve the base
object, i.e., F(A) = B.

Let C be a finite category. For any path α in C, we denote the path-
homotopy equivalence class of α by [α] and call it the path class of α. In
what follows, we are interested only in paths that start and end at the same
object. Recall that such a path is called a loop. If α is a loop from A to A, we
say α is a loop based at A. We call A the base object of α. The set of loops in C
based at A is denoted Ω(C, A). Recall the constant loop Â is the path that
maps every Λ-object to A and every Λ-arrow to 1A. Proposition 5.16 says,
in particular, that path-homotopy is an equivalence relation on Ω(C, A).
The set of path classes of loops based at A is denoted

κ1(C, A).

Let us see how to give κ1(C, A) the structure of a group. If α and β are
composable paths, it makes sense to define the product of their path classes
to be the path class of their product, that is,

[α] · [β] = [α · β].

This operation is only defined when α and β are composable. However,
any two loops based at A are composable and their product is again a loop
based at A. Thus, such an operation is always defined for any two elements
of Ω(C, A). We must, nevertheless, verify that it is well defined.
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Proposition 5.30

Let · be the operation on κ1(C, A) given by

[ α ] · [ β ] = [ α · β ].

Then · is well defined.

Proof. Suppose that [ α ] = [ α′ ] and [ β ] = [ β′ ], or equivalently, that
α ∼ α′ and β ∼ β′. Note that α and β are composable since both are loops
at A. Then, by Theorem 5.26, it follows α · β ∼ α′ · β′. Therefore

[ α · β ] = [ α′ · β′ ]

whence [ α ] · [ β ] = [ α′ ] · [ β′ ], by definition.

Remark 5.31. From now and on we may abbreviate the product of path classes by
juxtaposition, that is, we write [α][β] instead of [α] · [β].

Theorem 5.32

The set κ1(C, A) is a group under the operation of product of path classes
of loops based at A.

Proof. We have already seen that such an operation is defined on κ1(C, A),
meaning that κ1(C, A) is closed under the product of path classes of loops
based at A. Let us now prove the associativity of this operation and the
existence of an identity and inverses.

(i) (Associativity) This follows from Theorem 5.13. Indeed, if α, β, γ ∈
Ω(C, A), then

([α][β])[γ] = [α · β][γ] = [(α · β) · γ]

= [α · (β · γ)] (by Theorem 5.13)
= [α][β · γ]

= [α]([β][γ]).

(ii) (Identity) By Theorem 5.27, for any α ∈ Ω(C, A),

[ Â ][α] = [Â · α] = [α] = [α · Â] = [α][ Â ].

Thus, the identity is the constant path Â.
(iii) (Inverses) By Theorem 5.29, for any α ∈ Ω(C, A),

[α][α] = [α · α] = [ Â ] = [α · α] = [α][α],

whence [α]−1 = [α].
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Remark 5.33. By the associativity of ·, we can write [α][β][γ] to denote either
([α][β])[γ] or [α]([β][γ]), without any risk of ambiguity.

In light of Theorem 5.32, we call κ1(C, A) the fundamental group of the
category C with base object A.

5.5.1. The Role of Base Object
The following result is the categorical analog of Theorem 2.22.

Theorem 5.34 Change of base object

Let A and B be two objects of a finite category C and let α be a path
from A to B. Define

Υα : κ1(C, A)→ κ1(C, B) : [γ] 7→ [ α ] · [γ] · [α].

Then
(i) if α and β are path-homotopic, then Υα = Υβ,
(ii) Υα is a group-homomorphism,
(iii) the map Υα : κ1(C, B) → κ1(C, A) : [γ] 7→ [α] · [γ] · [ α ] is a

two-sided inverse for Υα, so Υα is a group-isomorphism, whence
κ1(C, A) ∼= κ1(C, B),

(iv) if α is constant, Υα is the identity map on κ1(C, A),
(v) if β is a path from B to C, then Υα·β = Υβ ◦ Υα, i.e., the diagram

κ1(C, A) κ1(C, B)

κ1(C, C)

Υα

Υα·β
Υβ

commutes.

Proof. First of all, note that if γ is a loop based at A, then

α · γ · α

is a path that goes from B to A (by α), then from A to B (by γ), and finally
from B back to A (by α). Hence, Υα[γ] does define an element of κ1(C, B)
for any γ ∈ Ω(C, A).

(i) If α ∼ β, then [α] = [β], so

Υα[γ] = [ α ] · [γ] · [α] = [ β ] · [γ] · [β] = Υβ[γ]

for any γ ∈ Ω(C, A). Thus Υα = Υβ.
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(ii) For any β, β′ ∈ Ω(C, A), it holds

Υα[β] · Υα[β
′] = ([ α ] · [β] · [α]) · ([ α ] · [β′] · [α])

= [ α ] · [β] · [Â] · [β′] · [α]

= [ α ] · [β] · [β′] · [α]

= Υα([β] · [β′]).

Thus Υα is a group-homomorphism.
(iii) If β ∈ Ω(C, A),

Υα(Υα[β]) = [α] · ([ α ] · [β] · [α]) · [ α ] = [ Â ] · [β] · [ Â ] = [β]

and if γ ∈ Ω(C, B),

Υα(Υα[γ]) = [ α ] · ([α] · [γ] · [ α ]) · [α] = [ B̂ ] · [γ] · [ B̂ ] = [γ].

Thus Υα is a two-sided inverse for Υα, whence (Υα)−1 = Υα. In other
words, Υα is a group-isomorphism that exhibits κ1(C, A) ∼= κ1(C, B).

(iv) If α is constant, necessarily A = B, so α = Â. Moreover, for any
γ ∈ Ω(C, A),

ΥÂ[γ] = [ Â ] · [γ] · [Â] = [ Â ] · [γ] = [γ].

The claim follows.
(v) Let γ ∈ Ω(C, A). We have

Υα·β[γ] = [ α · β ][γ][α · β]

= [ β · α ] · [γ] · [α · β]

= [ β ] · [ α ] · [γ] · [α] · [β]

= Υβ(Υα[γ]).

The claim follows.
The proof is complete.

Corollary 5.35

A path-connected finite category C has isomorphic fundamental groups
for any choice of base object. In other words,

κ1(C, A) ∼= κ1(C, B)

for any C-objects A and B.

Proof. Follows immediately from Theorem 5.34 (iii).

In light of this observation, if C is path connected, the base object will
not be specified, and we just refer to the the fundamental group of C, denoted
by κ1(C).
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Example 5.36.
(i) A consequence of Corollary 5.35 is that the elementary disk category

D2, which is path-connected, has trivial fundamental group for any
choice of base object. This category is given by the commutative dia-
gram

Y

X Z

ba

c

By the uniqueness of identities, we have c ◦ b ◦ a = 1X and a ◦ c ◦ b =

1Y, so a−1 = c ◦ b. This fact, together with the commutativity of the
diagram and Theorem 5.29, implies that any loop at Z is homotopic
to the constant path at Z. Therefore,

κ1(D2,X) ∼= κ1(D2,Y) ∼= κ1(D2,Z) ∼= 0.

(ii) Recall that the circle category S1 is given by the diagram

X Y

a

b

This category is path-connected. Indeed, since a(0) is a path from X

to Y, then a(0) is a path from Y to X. Corollary 5.35 implies that

κ1(S1,X) ∼= κ1(S1,Y).

Definition 5.37 Simply connected category

A finite category C is simply connected if C is path-connected and

κ1(C, A)

is the zero group for some (hence any) C-object A.

5.5.2. Homomorphisms Induced by Functors of Finite
Categories

The following constructions resemble those presented in subsection 2.3.3.
There, we saw that any continuous map ψ : X → Y between topological
spaces induces a well-defined homomorphism

ψ∗ : π1(X, p)→ π1(Y, ψ(p))

between the fundamental groups of the pointed spaces (X, p) and (Y, ψ(p)).
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Let F : C → D be a functor between finite categories C and D. Let A
be a C-object. Then F induces a map of between the sets of loops

F# : Ω(C, A)→ Ω(C, F(A)) : α 7→ F ◦ α.

Proposition 5.38

Let F : (C, A) → (D, B) be a functor of pointed categories. Let α and
β be two homotopic loops in C based at A. Then

F#(α) ∼ F#(β).

Proof. Let

(m, n, p, q) = (min α, max α, min β, max β).

Let H : α ∼ β. Then there exist even integers M ≤ N such that

H(−, k) = α if k ≤ M, H(k,−) = Â if k ≤ min{m, p},

H(−, k) = β if k ≥ N, H(k,−) = B̂ if k ≥ max{n, q}.

Making the composition F ◦ H gives

F ◦ H(−, k) = F ◦ α if k ≤ M, F ◦ H(k,−) = F ◦ Â if k ≤ min{m, p},

F ◦ H(−, k) = F ◦ β if k ≥ N, F ◦ H(k,−) = F ◦ B̂ if k ≥ max{n, q}.

It is clear that both F ◦ Â and F ◦ B̂ are the constant paths at F(A) and
F(B), respectively. Hence F ◦ H : F#(α) ∼ F#(β).

The map F# induces, in turn, a map of fundamental groups defined by

F∗ : κ1(C, A)→ κ1(D, F(A)) : [γ] 7→ [F ◦ γ].

By convention, we write F∗[γ] instead of F∗([γ]).

Theorem 5.39

Let F : (C, A) → (C, B) be a functor of pointed categories. Then the
map of sets

F∗ : κ1(C, A)→ κ1(D, B) : [γ] 7→ [F ◦ γ]

is well-defined.

Proof. Follows from Proposition 5.38.

On the other hand, as expected, F∗ is a group homomorphism.

Proposition 5.40

For any functor between finite categories F : C → D, the induced map
F∗ : κ1(C, A)→ κ1(D, F(A)) is a group-homomorphism.
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Proof. In order to show F∗[α · β] = F∗[α] · F∗[β], we must prove

F ◦ (α · β) ∼ (F ◦ α) · (F ◦ β),

whence the result follows immediately. However, we will actually show
the stronger result that F ◦ (α · β) = (F ◦ α) · (F ◦ β). By definition of
concatenation of paths, we have

(F ◦ α) · (F ◦ β)(k) =

F ◦ α(k) if k ≤ n,

F ◦ β(k− n + p) otherwise.

Here n = max α and p = min β. Note that this equals F((α · β)(k)) for
every k ∈ Z, simply because of the fact that

α · β(k) =

α(k) if k ≤ n,

β(k− n + p) otherwise.

The same argument on morphisms establishes the result.

Let us note that ∗ has functorial properties since, for any functors

F : (C, A)→ (D, F(A)) and G : (D, F(A))→ (E, G(F(A))),

and for any γ ∈ Ω(C, A), we have both

(G ◦ F)∗[γ] = [(G ◦ F) ◦ γ] = [G ◦ (F ◦ γ)] = G∗[F ◦ γ] = G∗(F∗[γ])

and (
1(C,A)

)
∗
[γ] = [1(C,A) ◦ γ] = [γ] = Idκ1(C,A)[γ].

Corollary 5.41

Let F : (C, A)→ (D, F(A)) be a functor of pointed categories. Suppose
F is an isomorphism. Then

F∗ : κ1(C, A)→ κ1(D, F(A))

is a group-isomorphism.

Proof. Let G : D → C be the inverse of F. Note that both F∗ and G∗ are
group isomorphisms and

G∗ ◦ F∗ = (G ◦ F)∗ =
(

1(C,A)

)
∗
= Idκ1(C,A),

F∗ ◦ G∗ = (F ◦ G)∗ =
(

1(D,F(A))

)
∗
= Idκ1(D,F(A)).

Therefore (F∗)
−1 = G∗.
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Theorem 5.42

Let F : C → D be a functor of finite categories. Let A and B be two
C-objects that are connected by a C-path γ. Then the diagram

κ1(C, A) κ1(D, F(A))

κ1(C, B) κ1(D, F(B))

F∗

Υγ ΥF◦γ

F∗

commutes.

Proof. Let α ∈ Ω(X, p). We have

[F ◦ (γ · α · γ)] = [(F ◦ γ) · (F ◦ (α · γ))]

= [F ◦ γ] · [(F ◦ α) · (F ◦ γ)]

= [F ◦ γ] · [F ◦ α] · [F ◦ γ].

Since F ◦ γ = F ◦ γ, we obtain

F∗[γ · α · γ] = [ F ◦ γ ] · F∗[α] · [F ◦ γ],

which is equivalent to F∗ (Υγ[α]) = ΥF◦γ (F∗[α]). The arbitrariness of α

allow us to conclude.

We saw in Theorem 2.34 that the fundamental group of a product of
topological spaces is well behaved under products, up to isomorphism. In
our theory, this is also true.

Theorem 5.43 Fundamental group of a categorical product

Let (C1, A1), . . . , (CN , AN) be pointed finite categories. Then

κ1(C1 × · · · × CN , (A1, . . . , AN)) ∼= κ1(C1, A1)× · · · × κ1(CN , AN).

Proof. Note that (C1× · · · ×CN , (A1, . . . , AN)) is itself a pointed category.
Let pi : C1 × · · · × Cn → Ci be the projection onto the ith factor, for each
1 ≤ i ≤ N. By Theorem 5.39, each projection induces a well-defined map

pi∗ : κ1(C1 × · · · × CN , (A1, . . . , AN))→ κ1(Ci, Ai)

defined by [α] 7→ [pi ◦ α], for all 1 ≤ i ≤ N. Now define

P : κ1(C1 × · · · × CN , (A1, . . . , AN)) → κ1(C1, A1)× · · · × κ1(CN , AN)

[α] 7→ (p1∗[α], . . . , pN∗[α])

Let us see that P is a group-isomorphism. To begin with, since each pi∗
is a group-homomorphism, so is P. Indeed, given α, β ∈ Ω(C1 × · · · ×
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CN , (A1, . . . , AN)), we have

P([α] · [β]) = P[α · β]

= (p1∗[α · β], . . . , pN∗[α · β])

= (p1∗[α] · p1∗[β], . . . , pN∗[α] · pN∗[β])

= (p1∗[α], . . . , pN∗[α])� (p1∗[β], . . . , pN∗[β])

= P[α]�P[β].

Recall that the group operation � is defined component-wise.
Injectivity of P follows from the fact its kernel is trivial. Indeed, sup-

pose P[α] equals the identity of κ1(C1, A1) × · · · × κ1(CN , AN), namely
([Â1], . . . , [ÂN ]). In other words, (p1∗[α], . . . , pN∗[α]) = ([Â1], . . . , [ÂN ]).
Let αi be the ith component of α, so that α = (α1, . . . , αN). Then

[pi ◦ α] = [αi] = [Âi]

whence αi ∼ Âi, for all 1 ≤ i ≤ n. Now we can take homotopies Hi : αi ∼
Âi for each 1 ≤ i ≤ n. We know that there exist even integers mi ≤ ni

such that

Hi(−, k) =

αi if k ≤ mi

Âi if k ≥ ni

and Hi(k,−) = Âi whenever k ≤ min αi or k ≥ max αi. (Keep in mind
that the bounds of a constant path can be taken as convenience.) Our
goal is to show that the path-class of α is the identity of κ1(C1 × · · · ×
CN , (A1, . . . , AN)). Define H : Λ×Λ→ C1 × · · · × CN by

H(i, j) = (H1(i, j), . . . ,HN(i, j)), and
H(i→ j, k→ l) = (H1(i→ j, k→ l), . . . ,HN(i→ j, k→ l))

on objects and morphisms, respectively. Let

m = min{m1, . . . , mN}, m′ = min{min α1, . . . , min αN},

n = max{n1, . . . , nN}, n′ = max{max α1, . . . , max αN}.

Note that

H(−, k) = (H1(−, k), . . . ,HN(−, k)) =

(α1, . . . , αN) if k ≤ m,

(Â1, . . . , ÂN) if k ≥ n.

Moreover,

H(k,−) = (H1(k,−), . . . ,HN(k,−)) = (Â1, . . . , ÂN)

whenever k ≤ m′ or k ≥ n′. It is clear that (Â1, . . . , ÂN) is the constant
path based at (A1, . . . , AN). Therefore H : α ∼ (Â1, . . . , ÂN), whence
[α] = [(A1, . . . , AN)]. We have proven that P is injective.
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Let us conclude by showing that P is surjective. Take

([γ1], . . . , [γN ]) ∈ κ1(C1, A1)× · · · × κ1(CN , AN).

Define γ : Λ→ C1 × · · · × CN by

k 7→ (γ1(k), . . . , γN(k)), (i→ j) 7→ (γ1(i→ j), . . . , γN(i→ j))

on objects and morphism, respectively. Note that γ is a loop in the product
C1 × · · · × CN based at (A1, . . . , AN). Moreover, we have

P[γ] = (p1∗[γ], . . . , pN∗[γ]) = ([p1 ◦ γ], . . . , [pN ◦ γ]) = ([γ1], . . . , [γN ]).

The proof is complete.

Corollary 5.44

If C and D are path-connected finite categories, then

κ1 (C×D) ∼= κ1 (C)× κ1 (D) .

5.6. First Computations

5.6.1. The Fundamental Group of S1

Recall S1 is the category with exactly two objects and two (distinct) parallel
arrows, whose diagram is given by

X Y

a

b

Rosero provided a proof in [29] (p. 101) that κ1(S1,X) ∼= Z, which is
based on the following (restated but equivalent) claim.

Let C be a finite category and f , g : A → B two parallel C-arrows.
Let Cn denote the path obtained from chaining n consecutive paths of
the form A

f−→ B
g←− A, as given by the diagram

A B A · · · A B A
f g f g

Then Cn ≁ Cm for any m, n ∈ Z+
0 distinct.

In other words, paths of the form Cn are not path-homotopy equivalent
if they have distinct length. However, this claim is not true, as established
by the following counterexample.
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Example 5.45. Let C be a finite category that has a morphism with at least
two sections. We know that sided inverses do not have to be unique, so
such a category exists. More precisely, suppose C has at least two parallel
morphisms f , g : A→ B and a morphism φ : B→ A such that

φ ◦ f = 1A and φ ◦ g = 1A.

Then, the following diagram commutes.

A B A B A

A B A B A

A B A A A

f g f g

f

f

f

g f

fg

g
φ

g

g

f g

Identities are indicated with a double line. Observe that this diagram gives
a path-homotopy from C1 to C2. Hence C1 ∼ C2 even tough this paths are
of distinct length.

As a result, the consequences of this claim as presented in [29], turn
out to be uncertain. Nevertheless, with a slight (but strong) modification
of the statement, we establish its validity within the framework presented
so far in our version of the theory. The key of the following argument is
that the choice of a morphism two right inverses is not possible.

Theorem 5.46

Let Cn denote the path in S1 that consist of n pairs of arrows of the
form A

a−→ B
b←− A, as in the diagram

A B A · · · A B Aa b a b

For any pair of positive integers m and n, if Cn ∼ Cm, then n = m. By
convention, we define C0 = Â.

Proof. Notice that Cn is reduced and of minimal length, meaning that it
does not contain pairs of identities either of the form→ · ← or the form
← · →, and it cannot be simplified further. Hence Cn is itself its minimal
representative. Now, by a translation if necessary, we can assume that both
Cn and Cm start at the same position (by Theorem 5.22), which without
loss of generality we suppose is 0. In order to apply an inductive argument,
leave m fixed.
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We proceed by induction on n. Suppose C1 ∼ Cm. Then, by Theo-
rem 5.26, we have

C1 · C1 ∼ C1 · Cm.

Since C1 · Cm ∼ Cm−1, by construction, we obtain Â ∼ Cm−1, which is
impossible unless Cm−1 is itself the constant path at A, that is, unless m−
1 = 0. Hence, necessarily we obtain m = 1. The base case is established.

For the inductive step, fix n = k for some k ∈ Z+, and suppose that
k = k′ whenever Ck ∼ Ck′ . Let us see that Ck+1 ∼ Cm implies k + 1 = m.
Assume Ck+1 ∼ Cm. Then

C1 · Ck+1 ∼ C1 · Cm ⇐⇒ Ck ∼ Cm−1.

By the inductive hypothesis, k = m− 1 as desired. Therefore, the principle
of mathematical induction proves the claim. Finally, since ∼ is symmetric,
applying the same argument over m, the validity of the assertion is estab-
lished for every m, n ∈ Z+.

The proof of the following result relies on the well-known fact from
group theory that an infinite cyclic group is isomorphic to Z, the group of
integers.

Theorem 5.47

The fundamental group of (S1,A) is isomorphic to the abelian group of
integers, that is,

κ1(S1,A) ∼= Z.

Proof. Let us prove κ1(S1,A) is an infinite cyclic group, from which the as-
sertion will follow immediately. On one hand, every element of κ1(S1,A)
is of the form [Cn] for some n ∈ Z+

0 , by the previous discussion. By Theo-
rem 5.46, [Cn] 6= [Cm] for m 6= m. Hence, we obtain an infinite sequence
of path classes: [C0], [C1], [C2], . . .. Thus, κ1(S1,A) is infinite. On the other
hand, since

Cn ∼ Cn−1 · C1 ∼ C1 · · ·C1,

where the dots denote the product of C1 with itself n times, we see that
[Cn] = [C1]

n. Furthermore, since

C1 · C1 ∼ Â and C1 · C1 ∼ Â,

we obtain [C1]
−1 = [C1 ], and inductively we see that [C1]

−n = [C1 · · ·C1 ]

for every n ∈ Z+. Therefore, κ1(S1,A) is cyclic with generator [C1], that
is,

κ1(S1,A) =
{
[C1]

k ∣∣ k ∈ Z
}

.

The proof is complete.
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Remark 5.48. Since S1 is a connected category, it follows by Corollary 5.35 that

κ1(S1,A) ∼= κ1(S1,B).

As a result, we just write κ1(S1) ∼= Z.

5.6.2. The Fundamental Group of Tn

The 2-torus category, denoted T2, is defined as the product category S1 ×
S1. In general, we define Tn, the n-dimensional categorical torus, as the
product category S1 × · · · × S1 of S1 with itself n times. Note that Tn is
connected because S1 is.

Theorem 5.49

The fundamental group of the n-dimensional torus is the direct product
of Z with itself n times, that is,

κ1(Tn) ∼= Zn.

Proof. Since κ1(S1) ∼= Z, Theorem 5.43 implies that

κ1(Tn) ∼= κ1(S1 × · · · × S1) ∼= κ1(S1)× · · · × κ1(S1) ∼= Zn,

as claimed.

Remark 5.50. Regarding the computations just made, we have obtained consistent
results with those presented in Chapter 4, where we discussed the geometric real-
ization of the nerve of a small category. See Remark 4.22.

5.7. Homotopy Equivalence

Recall that the identity functor of a category C, denoted 1C, maps every
object and every morphism to itself.

Definition 5.51

Two finite categories C and D are homotopy equivalent if there exist func-
tors F : C→ D and G : D→ C such that

G ◦ F ' 1C and F ◦ G ' 1D.

In this case we write C ' D. Equivalently, we say that C and D are of
the same homotopy type. The pair

(F, G)

is called homotopy equivalence between C and D.
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Proposition 5.52

' is an equivalence relation over the objects of CatFin.

Proof. (i) (Reflexivity) Every category is homotopy equivalent to itself
via the identity functor.

(ii) (Symmetry) Suppose C ' D, meaning that there is a pair of functors
F : C→ D and G : D→ C such that

G ◦ F ' 1C and F ◦ G ' 1D,

which is equivalent to

F ◦ G ' 1D and G ◦ F ' 1C.

Thus, by definition, D ' C.
(iii) (Transitivity) Suppose C ' D and D ' E. Then there are functors

F : C→ D, G : D→ C, H : D→ E and I : E→ D such that

G ◦ F ' 1C, F ◦ G ' 1D, I ◦ H ' 1D, and H ◦ I ' 1E.

Therefore

(G ◦ I) ◦ (H ◦ F) = G ◦ (I ◦ H) ◦ F ∼ G ◦ 1D ◦ F = G ◦ F ' 1C

and

(H ◦ F) ◦ (G ◦ I) = H ◦ (F ◦ G) ◦ I ' H ◦ 1D ◦ I = H ◦ I ' 1E.

Thus, by definition, C ' E.
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Conclusion

In this work, we have defined the fundamental group of a finite category in
a purely algebraic manner, independently of any topological method. We
have stated and proved results analogous to those in the classical theory
of homotopy. Furthermore, we discussed how our theory yields consistent
results with those obtained by computing the fundamental group of the
geometric realization of the nerve of the categorical versions of the disk,
the circle, and the torus.

This work builds upon Rosero’s [29] original approach, which, despite
its originality, lacked the rigor necessary for further development. Our con-
tribution lies in establishing a solid foundation for the theory. While we
have preserved its core ideas and spirit, most concepts have been reformu-
lated, along with many results and proofs.

A key aspect of this reformulation is the justification of the computa-
tions of the categorical fundamental groups of S1 and T2, which we showed
to be isomorphic to the classical fundamental groups of the circle and the
torus, respectively. These facts were originally established by Rosero using
a statement that we have now disproved by providing an explicit counterex-
ample. Nevertheless, we have succeeded in constructing a new proof that
confirms the validity of these results within our version of the theory.

The theory can be further expanded in several directions, of which we
highlight the statement and proof of a categorical analogue of the Seifert-
Van Kampen theorem, as well as a deeper investigation into the potential
equivalence of κ1 and π1, specifically whether

κ1(C) ∼= π1(BC)

for any path-connected finite category C.
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