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Resumen

Las redes artificiales neuronales (RNN) son modelos computacionales que aproximan la
actividad cerebral para resolver un problema, sin embargo, el rendimiento de estas redes
depende en la correcta configuracion de su estructura y de una multitud de pardmetros,
que en muchos casos son fijados mediante un proceso de prueba y error. La presente te-
sis propone un algoritmo que automatiza el proceso de afinacién de RNNs. El algoritmo
propuesto es una variacién del algoritmo “Neuro Evolution of Augmenting Topologies”
(NEAT), el cual utiliza conceptos bioldgicos como evolucién, mutacién y especiacion,
para mejorar de manera consistente la adaptacién de una poblacion inicial de RNNs
generadas de manera aleatoria. El algoritmo propuesto difiere al utilizar una estrate-
gia diferente para la especiacién de la poblacién, se pasa de utilizar “fitness sharing” a
utilizar “deterministic crowding”, éste algoritmo propuesto se lo nombra como “Determi-
nistically Crowded - Neuro Evolution of Augmenting Topologies” (DC-NEAT'). A partir
de la comparacion de NEAT y DC-NEAT a la hora de resolver el problema de balanceo
de una vara con configuracién completa, observamos que DC-NEAT obtiene redes mas

simples en estructura que NEAT, pero requiere un niimero mayor de generaciones.

Palabras Claves- redes neuronales artificiales, algoritmos genéticos, deterministic crow-
ding, NEAT.



Abstract

Artificial Neural Networks (ANN) are computational models that approximates brain
activity. However, their performance depend on the correct settings of their initial struc-
tures and large amount of parameters, which used to be manually tuned in a tiresome
trial-and-error process. This thesis proposes an algorithm that automates the time-
consuming task of fine-tuning ANNs. The proposed algorithm is a variation of Neuro
Evolution of Augmenting Topologies (NEAT'), which consists on improving the fitness
of a population of initially random ANNSs, using biological concepts, such as evolution,
mutation and speciation. Our contribution to NEAT is the used of a different speciation
strategy, deterministic crowding, to conserve and promote diversity in the population.
The proposed algorithm is named as Deterministically Crowded - Neuro Evolution of
Augmenting Topologies (DC-NEAT). After comparing DC-NEAT with NEAT for the
full pole balancing problem, we observed that DC-NEAT produces simpler networks but

requires more generations to obtain them.

Keywords- artificial neural networks, genetic algorithms, deterministic crowding, NEAT.
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Chapter 1

Introduction

Artificial neural networks are computational models which are widely used in diverse
applications. These networks are composed of units called neurons which transmit in-
formation between them utilizing connections. However, the design of these artificial
neural networks is complex, the following questions must be answered: How many neu-
rons? and How these neurons are connected?. Hornik in [1] determined that failure in
the application of artificial neural networks can be attributed to the improper design of
these networks. In general, design of artificial neural networks is done based on a trial-
and-error process, where intuition are used to optimize the architecture of networks,
the neurons and their connections. Some in their pursuit of automating the design of
artificial neural networks have married the ideas of genetic algorithms with the design of
networks. In particular, genetic algorithms are used to evolve the architecture of artificial
neural networks. A population of networks is continuously changed to produce better
performing networks, in the context of the problem that these networks are used on, by
applying Darwinism and mutation. The population is pushed to better performance by
the genetic algorithm.

Neuro Evolution of Augmenting Topologies (NEAT) is one method that uses genetic
algorithms to evolve the architecture of artificial neural networks from minimal struc-
tures. This method uses ezplicit fitness sharing for the conservation and promotion of
diversity in the population of networks (individuals). Explicit fitness sharing partitions
the population in niches or species with the idea that highly likely networks should com-
pete against each other and not with networks from other niches. Nonetheless, other
niching methods exist like deterministic crowding which are simpler to implement and
has less time complexity.

In this work, a new method for evolving artificial neural networks is introduced,
Deterministically Crowded - Neuro Evolution of Augmenting Topologies (DC-NEAT).
This new method is based on Neuro Evolution of Augmenting Topologies, indeed it
borrows its genome encoding (how networks are encoded as genes) and the mutation
operators of NEAT. Nevertheless, DC-NEAT differs from NEAT as it uses deterministic

11
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crowding instead of explicit fitness sharing. The purpose is to create a version of NEAT
that has a simpler design and is easier to implement.

The rest of this thesis is structured as follows. Chapter 2 offers an overview of
genetic algorithms, here we introduce the canonical genetic algorithm (Section 2.1) which
helps understand the mechanics involved in genetic algorithms. Section 2.2 shows the
importance of diversity and niching methods, specially when applied to multi-modal
function optimization. Finally, in Section 2.3 we examine the importance of niching
methods to promote and conserve diversity in populations, additionally two niching
methods are explored fitness sharing (2.3.1) and deterministic crowding (2.3.2).

In Chapter 3, a brief overview of artificial neural networks is given. Section 3.1 defines
the concepts related to artificial neural networks. In particular, definitions for neuron,
layer, connection and learning are given. In Section 3.2, the architecture of artificial
neural network is defined. And, two network architectures of interest are exposed feed-
forward artificial neural networks (3.2.1) and recurrent artificial neural networks (3.2.2).
Lastly, Section 3.3 introduces the backpropagation learning method, which does weight
adaptation of artificial neural networks.

Chapter 4 explains everything related to the method Neuro Evolution of Augmenting
Topologies for evolving artificial neural networks. First, in Section 4.1 the algorithm of
NEAT is described paying attention to the parameters that determine the behavior of
NEAT. Section 4.2 describes the genetic encoding of networks in NEAT; how neurons
and connections are encoded to genes. In Section 4.3, the crossover procedure of NEAT
is explained. Crossover is the process where two parents share the genetic material to
produce a new individual. Section 4.4 defines the similarity measurement used in NEAT,
which plays an important role in the partitioning of the population. NEAT’s explicit
fitness sharing is detailed in Section 4.5 this method is based on fitness sharing. The
chapter ends with Section 4.6 which introduces all the mutation operators available in
NEAT.

Deterministically Crowded - Neuro Evolution of Augmenting Topologies is defined in
Chapter 5, as noted before DC-NEAT is constructed based on NEAT. The chapter starts
with Section 5.1 and Section 5.2 which describe the problems found in NEAT from a
theoretical perspective, in specific with the NEAT’s explicit fitness sharing and NEAT’s
similarity measurement. The algorithm of DC-NEAT is fully described in Section 5.3.

Chapter 6 presents the case of study problem used to test DC-NEAT, the one pole
balancing problem. It describes the two possible configurations of the pole balancing
problem. And, how DC-NEAT is used to solve these two configurations.

In Chapter 7, the results of using DC-NEAT to solve the pole balancing problem
can be viewed. Here, we can see how the DC-NEAT performs in a dynamic problem.
This chapter highlights the differences in performance of DC-NEAT when used to solve

the two configurations of the pole balancing problem. Furthermore, a comparison with
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NEAT is done.

Discussion of the results obtained is done in Chapter 8, here the behavior of DC-
NEAT noted in the previous chapter is explained. The last chapter, Chapter 9, summa-
rizes this thesis and shows the possibilities of future work with DC-NEAT.
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Chapter 2
Genetic Algorithms

In his book Genetics Algorithms in Search, Optimization and Machine Learning, Gold-
berg defines genetic algorithms (GA) as “search algortihms based on the mechanics of
natural selection and natural genetics”[2, p.1]. In general, a GA drives a population
of artificial structures towards optimality through the use of fitness based reproduction
and genetic operators (crossover and mutation). These artificial structures are known as
genomes, and they represent the parameter space of the search problem. The genomes
are composed of information units known as genes. These genes are moved, created, and
eliminated in the population by genetic operators. In contrast to other search algorithms,
like hill climbing, a GA works by: searching in a encoded parameter space, paralleliz-
ing the search over multiple points, using fitness information (pay-off information), and

using probabilistic transition rules [2, p.7].

2.1 Canonical Genetic Algorithm

The canonical genetic algorithm [3] or simple genetic algorithm [2, 4] works with a
constant population of NV bit-strings. These bit-strings or genomes are of length [. Thus,
an individual genome belongs to G := {0,1}!. And, the population belongs to the search
space P := GV. The algorithm transforms at each generation (iteration) a population p;
to a new population p;41, with ¢ representing the current generation. This transformation
of the population is achieved through the application of fitness proportionate selection,
crossover, and mutation. The algorithm runs iteratively until a stopping criterion is met,
or a maximum generation M is reached. Alg. 1 shows the canonical genetic algorithm
with the maximum number of generations as the stopping criterion.

The fitness function, f : G — R, assigns a real value to the individual’s genome. This
value represents the individual’s goodness as a solution of the problem. The canonical
genetic algorithm uses proportionate fitness selection to drive the population towards
better solutions. When using the canonical genetic algorithm for function optimization

(maximization), the objective function is used as the fitness function. However, when
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Algorithm 1: Canonical genetic algorithm with maximum number of genera-

tions M as stopping criterion.

Input: Fitness function f, M, pe, pm

Output: P

1 Initialize population P

2i=0

3 repeat

4 foreach g € P do

s || fle

6 Select N individuals to reproduce

7 Randomly pair the selected individuals

8 Crossover the pairs taking into account the crossover probability p.

9 Mutate over the population in accordance to the mutation probability p,,

10 i=i+1

11 until ¢ > M

doing function minimization the additive inverse of the objective function is used as the

fitness function.

Fitness proportiate selection adds Darwinism to the algorithm. Selecting the fitter
individuals from the population which undergo reproduction and mutation ensures that
the population overall fitness increases with the generations. In the case of the canonical
genetic algorithm, N individuals are selected from the population. However, depending
on the selection mechanism, replacement might be allowed. In other words, individuals
can be selected more than once. Roulette-wheel selection (RWS) [5] and Stochastic Uni-
versal Sampling (SUS) [6] are examples of fitness proportionate selection mechanisms.
RWS emulates a roulette wheel with a slot for each individual in the population. The
size of each slot is proportionate to the corresponding individual’s fitness. SUS is akin
to RWS, where the only difference is that it uses N pointers instead of one to mark the
“winner” on the roulette wheel. These pointers are equally spaced. Thus, only a single
spin is necessary to select the IV individuals from the population. In RWS, individuals
with fitness greater than the population’s average fitness tend to be selected more often.
Therefore, SUS is used when it is desirable to avoid highly fit individuals to outclass the

rest of the population.

The crossover operator, C' : G? — G?, creates two new individuals offsprings from
each selected pair of parent genomes. An example of a crossover operator is single point
crossover. In single point crossover, a random point in the interval [0,1 — 1] is choosen
and denoted as the crossover point. Then, using the crossover point and the parent

genomes crossover is done as shown in Fig. 2.1. The crossover point divides the parents’
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genomes in two fragments. The resulting fragments are then recombined to form two new
individuals. Thus, crossover allows the exchange of genes between individuals inside the
population. The exchange is important as it creates new combinations of genes. These
new combinations help create fitter individuals. The crossover probability p. determines
if the pair goes through crossover or not. Pairs that do not experience crossover undergo

mutation directly.

crossover point

|

Figure 2.1: Example of single point crossover with [ = 6 and crossover point at 3.

The mutation operator, M : G — G, randomly mutates each bit of the individual’s
genome in accordance to the mutation probability. Mutation adds new genes to the pop-
ulation, increasing the search coverage. Nonetheless, increasing too much the mutation
probability p,, adds noise to the search. If p,, = 0.5, the canonical genetic algorithm is

transformed into a random search.

2.2 Diversity and Multi-modal function optimization

The selection mechanism of the canonical genetic algorithm favors the preservation of
solutions, highly fit genomes. However, when working with multiple solutions of iden-
tical fitness, the population converges to a single solution. Solutions and subsolutions
are lost in the process mainly due to: selection pressure, selection noise, and operator
disruption [4]. Selection pressure is the consequence of the selection mechanism, as selec-
tion removes the lower fitness solutions from the population. Selection noise arises from
the variance of the selection mechanism in a finite population, and the competition of
similarly fit subsolutions. Selection noise ultimately causes good solutions to be removed
from the population. Operator disruption is the direct consequence of crossover and mu-
tation. These two genetic operators can inadvertently destroy good solutions from the
population. Therefore, to preserve or increase diversity in a population it is common to

reduce: selection pressure, selection noise, or operator disruption.
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count(x)

Figure 2.2: F1, unitation function, vs count(x), the number of ones in the bit string x,

where x is an eight-bit string.

To understand the importance of diversity in the population, The canonical genetic
algorithm was used to maximize the objective function F'1 (shown in Fig. 2.2). Flisa
unitation! function over the eight-bit string x, and it has multiple optimal values. For
example, the strings 11111100, 00111111, and 01111110 have the maximum fitness value
of 5. The canonical genetic algorithm with RWS was run with population size N = 16,
crossover probability p. = 0.9, mutation probability p,, = 0.01, and maximum number of
generations of 20. Fig. 2.3 shows the evolution of the population average fitness and best
fitness through the generations. The average fitness increments until reaching a value of
4. The best fitness of the population reaches the maximum value of 5 at generation 9
and 10. But, the population loses these highly fit individuals and never recovers them.
RWS alone fails to keep the highly fit individuals.

! An unitation function counts the number of 1s in a bit-string.
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Evolution of Population Average Fitness and Best Fitness

6 7
5.5 —— Maximum Fitness
5 A —=—  Best Fitness
45 .—.—.—.—.—.—.—/ —e— Average Fitness
4 1
2 3.5
g 3 ¥
= 25 w
2
1.5
1
0.5

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Generation

Figure 2.3: Population average fitness and best fitness evolution of the canonical genetic
algorithm through the generations. The algorithm was run with: RWS as selection
mechanism, N = 16, p. = 0.9, p,,, = 0.01, and M = 20. Maximum fitness value is shown

in red.

The algorithm fails to search in both solution niches, see Fig. 2.2 at values count(x) =
2 and count(x) = 6. The algorithm does not preserve nor increase the diversity in the
population. Thus, the search centers in only one niche; in this case the neighborhood
centered at count(x) = 2. Diversity helps the canonical genetic algorithm to do parallel
searches by maintaining multiple niches in the population. Therefore, genetic diversity
is of great importance when using the canonical genetic algorithm to solve multi-modal

function optimization [7].

2.3 Niching methods

Mahfoud defines in [4] niching methods as “techniques that promote the formation and
maintenance of stable subpopulations in the genetic algorithm”. These subpopulations
or niches can be used to obtain either one final solution, either multiple final solutions.
A successful niching method must be able to maintain fitness varying solutions and to do
so for a long amount of time (generations) [4]. Niching methods allow genetic algorithms
to do parallel search of multiple peaks by reducing the effect of early convergence caused
by the selection mechanism of the canonical genetic algorithm [8]. In this section, we

explore two niching methods: fitness sharing and deterministic crowding.

2.3.1 Fitness Sharing

Fitness sharing or simply sharing [9] reduces the fitness value of individuals in the

population by sharing their fitness with the rest of the population. In specific, fitness
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sharing divides the population in niches, and the individual shares its fitness with the
individual’s niche. This sharing reduces the payoff of highly dense populated regions.
The niches are built using a similarity measure or “distance” that indicates how similar
two individuals are. This measure can be either genotypic (based on the genetic search
space), or phenotypic (based on the problem search space). Fitness sharing reduces the
redundant search in the population, as it discourages large niches composed of similar
individuals. And, it encourages the formation of new niches composed of highly dissimilar

individuals.

Algorithm 2: Calculation of population shared fitnesses in fitness sharing.

Input: Fitness function (f), population array (P), population size N
Output: {f]:1<j <N}
Calculate the fitness f; of each individual in P

=

J=0
repeat

Compute the niche count m; of each individual in P

[, S N

Compute the shared fitness f; of each individual in P
until j > N

(=]

Alg. 2 shows the process of fitness sharing. The process starts by calculating the
shared value of each individual with all individuals in the population, this value can be

calculated using the sharing function,

1— (QEDya 5 d(4. k) < oy,
sh(j, k) = (5o)" iEd.k) <ow, (2.1)
0 otherwise.

where j and k represent individuals in the population, d(j, k) is the similarity distance
which determines the shape of the niche, the constant « determines the shape of the
sharing function, and the similarity threshold, o4, is the size of the niche. The value
of the similarity threshold, os, must be positive, o5 > 0, and depends on the shape of
the search space landscape and the similarity distance, d. A typical value of « is 1,
the sharing function then has a triangular shape (see Fig. 2.4). The sharing function,
sh(j, k), has values in [0, 1]; the sharing function measures a sense of species’ belonging
of two individuals in the population. A value of one indicates that the individuals j
and k belong to the same species, whereas a value of zero indicates that the individuals

belong two different species.
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sh(j, k)

Os

d(j, k)

Figure 2.4: Sharing function with a = 1.

The shared values of the individuals are used to calculate each individual niche count,
for an individual j the niche count is

N

mj = sh(j, k), (2.2)

k=1
where N is the total population size. The niche count has values in [1, N|; an individual

can “belong” to more than one niche. Finally, the shared fitness of the individual is

/ f J
A 2.3
fi=at (23
After calculating the shared fitness fj’ for all individuals in the population, the selec-
tion mechanism uses these shared fitnesses instead of the previously calculated fitnesses.
Any selection mechanism can be used with fitness sharing. However, the selection mech-
anism influences the stability of the genetic algorithm; stochastic universal selection is

popular [4].

2.3.2 Deterministic Crowding

Mahfoud [4] proposed deterministic crowding as an improvement to De Jong’s crowd-
ing method [10]; deterministic crowding can maintain several peaks of a multi-modal
function. Alg. 3 shows how to apply deterministic crowding in the canonical genetic
algorithm. Deterministic crowding compares parents with offsprings in two possible
tournament configurations. On the one hand, parent 1 versus offspring 1, and parent 2
versus offspring 2. On the other hand, parent 1 versus offspring 2, and parent 2 versus
offspring 1. The tournament configuration is decided by the minization of the parent-
offspring distance. The victor of the tournament is chosen by better fitness, so that the

parent is either kept in the population or replaced by an offspring.
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Algorithm 3: Deterministic Crowding

1

2

W

© 0 N o o«

11

12

13

14

15

16

17

18

19

20

21

Input: Population size N, Population array P, Fitness function f, similarity

metric d, Maximum Generation M

Output: P
t=0
repeat
i=0
repeat
Select randomly without replacement p; and ps.
Cross p1 and po, obtaining ¢; and cs.
Mutate ¢; and ¢, yielding ¢} and c.
if (d(p1,ch) + d(p2, ¢3)) < (d(p1, ch) + d(p2, ¢;)) then
if f(c}) > f(p1) then
L Replace p; with ¢} in P
if f(c,) > f(p2) then
L Replace py with ¢, in P
else
if f(c,) > f(p1) then
L Replace p; with ¢, in P
if f(c}) > f(p2) then
L Replace py with ¢} in P
T4+
until i > N/2
t++
until ¢t > M
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Chapter 3

Artificial Neural Networks

Artificial Neural Networks (ANN) are computational approximations of mental activity
in the brain, based on the hypothesis that mental activity consists primarily of elec-
trochemical impulses of brain cells called neurons [11, p. 727]. ANNSs can also be
understood as computational frameworks that emulate the neurons networks inside the
human brain which perform massively parallel computations [12]. This model consists
of computational units known as neurons or nodes, interconnected by weighted links.
These computational units can be divided as: input or sensor nodes, hidden nodes, and
output nodes. The input nodes act as receptors of external of external signals. The hid-
den nodes do not receive direct information from the outside world. The output nodes
are the ones that produce the output of the network. Nowadays, ANNs are used widely

in many fields, among others, rainfall forecasting [13] and credit risk evaluation [14]

3.1 Concepts, terminology and definitions

Tsoi and Back [15] have done a compilation of concepts, definitions, and terminologies
related to recurrent neural networks. However, the terms and definitions presented also
encompass feedforward neural networks too. In this section, these terms and definitions

are presented.

3.1.1 Neuron

A neuron or a node is a computing unit that functions as a static mapping of the inputs
and the output. In principle, neurons themselves do not have dynamic behaviours.
Whenever, an artificial neural network has a dynamic behaviour, it is the result of the

connections between neurons.
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T
X2 &
Wy
o=¢&h) ) —
w,
Tn

Figure 3.1: Diagram of a neuron.

Fig. 3.1 shows the representation of a neuron with n inputs and one output. The

activation value h of the neuron is given by
n
h=Y wa;+9, (3.1)
i=1

where z; are the input values of the neuron with x; € R, w; are the connection weights of
the inputs with w; € R, and 6 is the bias value of the neuron with § € R. The connection
weights, w;, are bounded by wiin and Wimaz, Winin < W; < Wae. Lypically, we have

Winin = —1 and Wyee = 1. The output of the neuron y is

o=¢(h), (3.2)

where & is the so called activation function of a neuron, a static monotic non-linear
function, £ : R — R. Different activation functions results in different neuron models.

Examples are shown in Table 3.1.

Type h £(h)
1
14e—h
Sigmoid and related functions. | >0 ; wiz; tanh(h)
h
, 1+|h|
Radial Basis Functions (RBF) | Y7, B0l where | "

c,t=1,2,...,n, com-
poses ¢ the center of
the RBF and o its
width.

Table 3.1: Examples of activation functions and their respective activation value.

The activation function is crucial to the behaviour and computational power of an
ANN [16]. Thus, some authors [17, 18, 19] use spline interpolation functions as activation

functions, with different ranges of success and performance.
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3.1.2 Layer

A layer is a one dimensional array of neurons. Neurons in a layer perform computations in
a lockstep manner: The outputs of the layer are computed at the same time in “parallel”.
Thus, a layer receives the inputs and computes the outputs in one computational step.
In this work, we focus in three types of layers: input layer, output layer, and hidden
layer. The input layer is composed by the neurons in the network that receive the inputs
to the network. The inputs to the network and the neurons in the input layer form a
one-to-one relationship. The output of each of these neurons is given by the neuron’s
activation function evaluated at the value of the respective input. The output layer is
the last layer in the network, and it is formed by the neurons that produce the output
of the network. A hidden layer is one that is neither an input layer nor an output layer.
An ANN must have an input and output layer, however it can have zero or more hidden

layers.

3.1.3 Connection

A connection defines the link between two neurons. Connections can be classified by rep-
resentation and the number of outputs. The connection can represent either a constant

weight, or a linear dynamical system.

Linear dynamical connections have internal state

2(t) = Fz(t — 1) + u(t)g, (3.3)

where z(t) is a vector of dimension ng, F' is an ng X ng matrix, g is a vector of dimension
ns, and w(t) is the scalar input to the connection. The values of F' and g define the linear
dynamic system. The current internal state of the connection depends on the previous

internal state of the connection.

A connection has only one input but can have one or more outputs. Thus, connec-
tions can be either Single Input Single Output (SISO) or Single Input Multiple Outputs
(SIMO). Table 3.2 shows the output of different classes of connections. From this point
onwards, whenever we use the term connection, we refer to a static (i.e. with constant

weight) and SISO connection.

Information Technology Engineer 25 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

Constant weight Linear Dynamical
System
SISO | y(t) = wu(t), where w | y(t) = hTz(t), where

is the constant weight. | h is a vector of dimen-

sion ng.
SIMO | y(t) = wu(t), where | y(t) = Hz(t), where

both w and y(t) are | H is a p X ng matrix,

vectors of dimension | and y(t) is vector of

p. dimension p.

Table 3.2: Output y(t) of the connection depending on the classification, the input u(t),

and the internal state z(¢).

A connection can be further classified as feedforward connections and feedback con-
nections, see Fig. 3.2. In a feedforward connection, the signal travels from the input
towards the output. And, in a feedback connection, the signal travels from the output
towards the input. The terms input and output refer here to the network’s input and
output layers. In this sense, feedforward connections involve two neurons: the flow of
information, from the output of one neuron to the input of the other neuron, coincides
with the flow of information in the network, from the input layer to the output layer.
Whereas, feedback connections can involve one or two neurons: the flow of information
between the neurons, in this case, goes against the flow of information in the network.
A feedback connection that involves only one neuron is known as a local recurrent (LR)

connection, as it connects the neuron’s output to the same neuron’s input.

Output Layer Q Q Q

Hidden Layers S n

feedforward
feedback

Input Layer

Figure 3.2: Artificial neural network with n hidden layers, the input layer indicates the
network’s inputs and the output layer the network’s outputs. Here, the arrows show the

direction of information flow for feedforward and feedback connections.

We have two types of non-local connections global connections and non-local recurrent

connections. In a global connection, a neuron from one layer is connected to a neuron

Information Technology Engineer 26 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

of another layer. In a non-local recurrent connection, a neuron is connected to a neuron
in the same layer. Global connections can be either feedforward or feedback. However,

non-local recurrent connections are only feedback connections.

3.1.4 Learning

Learning is the process of altering the internal representation of an ANN (i.a. connection,
connections weights, and activation functions) to adapt the network to the problem.
Basheer et al [12] define the goal of the process of learning in an ANN as: “An ANN-
based system is said to have learnt if it can (i) handle imprecise, fuzzy, noisy, and
probabilistic information without noticeable adverse effect on response quality, and (ii)
generalize from the tasks it has learned to unknown ones.” There are many methods for
approaching learning in ANNs. Among others, we can use gradient descent to adapt the
weights in the process known as backpropagation [20], or use genetic algorithms to do
the same [21].

3.2 Artificial Neural Network Architectures

In an artificial neural network, the arrangement of neurons and connections defines the
network’s architecture. As a consequence of all possible connection classes, many ANN
architectures are possible. In this work, we focus in two particular ANN architectures:

feedforward neural networks (FNN) and recurrent neural networks (RNN).

3.2.1 Feedforward Neural Networks

A feedforward neural network is an ANN where all connections are feedforward and of
constant weight [1]. Consequently, this kind of networks do not have feedback connec-
tions. In this regard, if this type of ANN is viewed as a weighted directed graph, no

cycles are present.

input hidden output

Figure 3.3: An example of a feedforward neural network.

For understanding how a feedforward neural network computes its output. Let us

consider a three layered ANN, an input layer with ny neurons, a hidden layer with no
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neurons, and an output layer of ng neurons, see Fig. 3.3. Given the input vector u of

size ny, the output of the input layer y; given by

y1 = &1(u), (3.4)

where &; is a vector of dimension ny with &7 = [£1(-), & ("), ..., &, ()]T, and each &(-)

is the ¢-th neuron’s activation function. The output of the hidden layer ys is given by

y2 = E2(Wiy1 + 62), (3.5)

where le is ny X mp matrix that represents the weights of the connections between
the input layer neurons and the hidden layer neurons, 05 is a vector of dimension no
that represents the bias values of the neurons, and &2 is a vector of dimension ngy of the

neurons’ activation functions. Finally, the output of the network ys is given by
ys = E3(Wiyy + Wiyz + 03), (3.6)

where W13 and W23 are no X n1 and ng X ng matrices representing the weights of the
connections of the input layer neurons to the output layer neurons, and the connections
of the hidden layer neurons to the output layer neurons, respectively. The n3 vector
03 is the neurons’ bias values. And, €3 is the vector of dimension ng of the neurons’

activation functions.

3.2.2 Recurrent Neural Networks

A recurrent neural network is an ANN that includes feedback connections. Some exam-
ples of RNNs are Hopfield networks, Bidirectional Associative Memory (BAM), Boltz-
mann machines, and recurrent backpropagation networks [22]. Fig. 3.4 shows an example
of a recurrent neural network, we can observe local, non-local and global recurrent con-
nections. In this figure, we have three layers: the input layer, a hidden layer, and output
layer. The hidden layer is formed by neurons 4 and 5. The connection from neuron 5 to
neuron 4 is a non-local recurrent connection, a feedback connection in the same layer.
The self looping connection of neuron 5 is a local recurrent connection. The connection
from the output neuron 7 to neuron 4 is global feedback connection. These feedback
connections introduce a sense of memory to the network. This sense of memory allows
recurrent neural networks to work on sequential information, where a sense of order and

time is needed.
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_@\ 0
(2]

Outputs

Inputs

Figure 3.4: Example of a recurrent neural network.

The computation model of a recurrent neural network is similar to that of a feed-
forward neural network. However, all neurons are “activated” at the same time, the
neurons have an initial activation (output) value, and the output of each neuron is saved
for the next computational tic. A recurrent neural network is used to process a signal (an
input that depends on time), w(¢). As computers are discrete machines (work in discrete
steps), recurrent neural networks also work in discrete steps. Thus, the time ¢ is defined
in a discrete manner. And, so does the output of each neuron o0;(t), for i = 1,2, ...,n with
n being the number of neurons in the network. Let us define o(t) = [01(t), 02(t), ..., 0,(t)],
the output (state) vector of all neurons. For a neuron ¢ that is not an input neuron, its
output o; is given by

0i(t) = 5(2 wji05(t — 1) + 6;), (3.7)
Jel
where £ is the neuron’s activation function, ! is the set of neurons which are connected
to the neuron ¢ (the output of the connection is the neuron ¢), wj; is the weight of the
connection from neuron j to neuron i, oj(t — 1) is the previous output of the neuron j,
and 6; is the bias value. For an input neuron 4, the output is
0i = £ wjio(t — 1) + ui(t) + 6;), (3.8)
jel
where u;(t) is the input value that match to the ¢ input neuron. The other values have
the same meaning as in 3.7.

The output of the network is given by the output values of the neurons in the output

layer. The output of the network is defined in a discrete manner and can be fed back to

the network.

3.3 Backpropagation

Backpropagation is a learning procedure that minimizes the difference between the net-

work’s output and the desired output (target) by adjusting the connection weights, this
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procedure can be used for both, feedforward and recurrent neural networks [20, 23, 24].
When using backpropagation with recurrent neural network, the network is “unrolled” in
multiple feedforward neural networks, one for each time step of the input signal. These
networks are connected in a train like fashion, the output of the first network is con-
nected to the input of the second network, and so on. This method works with signals
of finite time. However, it duplicates the network multiple times, thus increasing the
computation time.

The backpropagation procedure can be divided in four stages: the feedforward stage,
where the outputs of the network are calculated using the input training pattern; the
associated errors stage, where the output of the network is compared to the its expected
value; the backpropagation stage, where the associated errors are propagated backwards;
and the weight updating stage, where using the backpropagated values weights are up-
dated. The training pattern is formed by the input vector & = [z1, %2, ..., ] and the
target outputs t = [t1, 2, ..., t;], where h and m are the number of inputs and outputs

respectively.

o1

02

Figure 3.5: An example of a feedforward neural network for backpropagation, this net-

work is a multilayer perceptron.

For understanding backpropagation, let us assume a FNN with three layers, like the
one in Fig. 3.5. In this network, each layer is only connected to the preceding and

proceeding layers. For this network we define the weight matriz or adjacency matrix

w11 Wiz W13 Win
W21 W22 W23 Won

W (3.9)
Wn1 Wp2 Wn3 Wnn

where each w;; is the weight of the connection from the neuron ¢ to the neuron j and
n is the number of neurons in the network. When two neurons are not connected the

connection weight between is defined as zero, w;; = 0. For the input neurons, i € {1,2,3},
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the output is defined as
yi = &(3). (3.10)

The activation value for a non-input neuron ¢ is given by

n

h; = Zwijyj + 91‘, (3.11)

where o, is the output value of the neuron j and 6; is the bias value of neuron . Thus,

the output of a neuron 1 is
yi = £(hy). (3.12)

When working with backpropagation the activation function must be differentiable.
Here, we assume that all neurons in the network have the same activation function,
&

In the feedforward stage, the output of the network is computed from the input
vector, . For the example network, the input vector is © = [z1, x2, 3]. And, the output

vector is 0 = [o1, 02]. The outputs are given by

=) S wis(€O wiju + 65)) + 6s), (3.13)
j=1 k=1
and . .
=& wio(6>_ wjyn + 6;)) + o). (3.14)
=1 k=1

From the target vector ¢t = [t1,t2] and the output vector o, we calculate the network’s

error for the training pattern as

2
E= Z - Ol (3.15)

i=1
After calculating the associated error, we start the backpropagation stage. We propagate
backwards the errors by calculating the partial derivative of the error with respect to
each weight w;;, using the chain rule twice we obtain
oF _ oF 8yj _ oE 8yj 6hj
8wij 8yj Gwij 8yj 8hj 8wij '

(3.16)

From (3.11), we know that

Oh; 0 Owg; — Ow;y

8’1,0@'«}' 8’LUZ‘_7' (910” 8wij

The terms of the RHS are zero for any value of k except for £ = i. The term a . depends
on the activation function of the neuron, thus

Oy; _ 9&(hy)
oh;  Oh;

(3.18)
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The partial derivative of the quadratic error with respect to the output of the neuron,
g—i, depends on whether or not the neuron is an output neuron or not. If the neuron is
in the output layer, we have that y; is 0;. Thus, we obtain

oF 0

e Lt —u) =t — .. 3.19
oy, 8yj( = Yj) i Yy ( )

However, If the neuron j is an inner neuron, we have

0L _ 5=, 0L O

By = 2"y oy 520

leL
where L is the set of neurons that receive as input the output of the neuron j. This

definition is recursive. Therefore, we have

OFE oF

Finally, the weight updating stage uses

, (3.22)

where 7 is a constant known as the learning rule, as the updating value. The new weight
is the old weight plus Aw;;. The definition of Aw;; determines that the value of E
decreases.

Backpropagation can be used to reduce the error F and train the network. However,
it fails when looking a global minimum of the error function. Also, backpropagation does

not change the architecture of the network, it only alters the connection weights.
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Chapter 4

Neuro Evolution of Augmenting

Topologies

Besides learning procedures like Backpropagation, Evolutionary Algorithms (EA) can
be used to adapt ANN-based systems, in particular, Topology and Weight Evolving
Artificial Neural Networks (TWEANN) uses EAs to perform automatic architecture
alteration and connection weight adaptation of ANNs [25]. Miller et al. in [26] indicated
that the search space generated by the architectures performance values, and all the
possible architectures, has characteristics which make EAs good candidates for searching
optimal network architectures. Neuro Evolution of Augmenting Topologies [27] is a
TWEANN which uses a genetic algorithm with explicit fitness sharing to evolve artificial
neural networks. The evolution objective is to obtain as minimally complex artificial
neural networks as possible. Thus, the evolution process starts with minimally connected
artificial neural networks; inputs neurons fully connected to output neurons without

hidden neurons.
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4.1 Algorithm

Parameter | Description

N Population size, the number of individuals in the population.

O Similarity threshold, the maximum distance between two individu-

als in order to belong to the same species (niche).

Pk Kill percentage, indicates the fraction of the population to be re-

placed at each generation.

Pe Crossover percentage, determines the fraction of the selected pop-

ulation that will go through crossover.

DI Interspecies probability, the probability for which two individuals

from different species can reproduce.

Pan Add-node mutation probability, the probability of an add-node

mutation to take place.

Dac Add-connection mutation probability, the probability of an add-

connection mutation to take place.

Dw Weight mutation probability, the probability of weight mutation

to occur at a connection gene.

Dyr Gene re-enabled probability, the probability of a connection gene

being re-enabled in an offspring if it was inherited as disabled.

Table 4.1: Parameters of Neuro Evolution of Augmenting Topologies.

The algorithm of NEAT requires many input parameters. Thus, before talking of the
steps in NEAT, it is important to enumerate and describe each control parameter. Table
4.1 shows the parameters used to govern the behaviour of a NEAT run!. The first
parameter of importance is the population size, N. The size of the population determines
how many parallel searches can be done. But, with a larger N the computational cost
of the algorithm is increased.

The similarity threshold is a value that specifies the niche size in the population.
Nonetheless, a difficulty arises when selecting an adequate threshold value. The selec-
tion requires an a priori knowledge of the landscape of the search space of all possible
structural configurations of ANNs. The dimensionality of this search space increases as
the search done by NEAT progresses.

The Kkill percentage p, and the crossover percentage p. indicate the portion of the
population that survives, and the portion of the population that participates in crossover

and produce new individuals. The add-node mutation, add-connection mutation and

!The parameters table is based on the Matlab implementation of NEAT found on the official project
web page.
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weight mutation probabilities are necessary to induce the addition of new structures in
the population. However, these probabilities should not be too high, as they introduce

noise into the search.

Alg. 4 shows the general process of NEAT. The process of NEAT starts with the
creation of an initial population. The initial population is composed of fully connected
and structurally minimal artificial neural networks. In other words, networks composed
only of input and output neurons, which are fully connected; each output neuron has a
connection coming from all input neurons. After creating this initial population, NEAT
starts the iterative process of each generation. This process stops either when the max-
imum number of generations is reached, or the fitness objective is achieved. Finally,

NEAT outputs the final population.

At the start of each generation, the fitness of each individual is calculated using the
fitness function. This fitness function depends on the problem where NEAT is applied,
whether the problem is solved using supervised or unsupervised learning. For example,
when using NEAT for solving the XOR gate problem, the fitness function depends on
the training set. This training set is built using the truth table of the logical XOR
function. However, when using NEAT to solve the double pole balancing problem, a
training set can not be used as the system is dynamical (changes over time). Thus, the

fitness function in this case depends on the simulation of the physical system.

The second and third step in each generation relates to the niching method used in
NEAT, explicit fitness sharing. Niching is used to conserve and promote diversity in
the population, with the goal of avoiding that the population be overun by a highly fit
individual. And, the search can look in multiple subpopulations or niches. The details
of the niching method are discussed later. The output of the speciation process L is
maintained through the generations. However, individuals from the old population in L

are removed from the species sets, only keeping the species’ representative.

The later steps at each generation comprises the reproduction and mutation stages
of NEAT. Not all individuals in the current population are selected for reproduction,
the percentage of the population that is not going to be selected is given by the kill
percentage, pi. The selection of individuals to be reproduced is done using stochastic
universal sampling, SUS. After this selection, the selected individuals are paired taking
into account the interspecies probability, p;. In principle, individuals from different
species should not be able to reproduce. However, in NEAT to allow the exchange of
genes between species, interspecies reproduction is allowed. The parameter py is used
to regulate the probability of interspecie reproduction. Not all pairs undergo crossover,
the portion of the pairs that do so is given by the crossover percentage, p.. After the
crossover process, the offsprings are produced and these offsprings replace their parents
in the population. Finally, all individuals in the population are subject to mutation

process. The mutation process is parametrized by the different mutation probabilities:
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add-node mutation probability p,,, add-connection mutation probability p,., the weight

mutation probability p,, and the gene re-enabled probability pg,.

Algorithm 4: Algorithm of NEAT.
Input: Population size N, similarity threshold oy, kill percentage py, crossover

percentage p., interspecies probability pr, add-node mutation
probability pg,, add-connection mutation probability p,., weight
mutation probability p,,, gene re-enabled probability p,, fitness
function f, max. number of generations G4z, fitness objective ~y

Output: Population P

1 Create initial population of fully connected networks of inputs and outputs P of
size N,

2 Set generation count g = 0;

3 repeat

4 Calculate fitness of P in f;

5 Speciate P using o, creating the species list L;

6 Do the fitness sharing process;

7 Select group of individuals R to be reproduced using py;
8 Pair individuals in R taking into account the py;

9 Crossover pairs with probability p;
10 Mutate individuals with papn, Pac, Dgr, and pu;
11 Increase generation count;

12 until best_fitness(P) > v or g > Gmaa

4.2 Genome Encoding

In NEAT, an ANN is encoded by a genome (see Fig. 4.1) that is composed of two gene
lists: the node genes (Fig. 4.1b), and the connection genes (Fig. 4.1c). Node genes
represent the neurons or nodes of the artificial neural network. Each node gene has a
unique label, and the neuron’s type. A neuron can be of type: sensor or input, hidden, or
output. The connection genes represent the connectivity mapping of the encoded ANN.
A connection gene is composed of: in node field, out node field, weight, an enabled flag,
and an innovation number. The in node field and out node field, indicates the neurons
to be connected. The weight indicates the strength of this connection. The enabled
flag indicates whether or not this connection gene is expressed in the genome’s resulting
network. The innovation number is used to track corresponding genes (i.e. that represent

the same structure in the current generation).
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1 2 3 4 5
€ Input | Input | Input | Hidden | Output
Q/ (b) Node genes.
(2
YN In: 1 In: 2 In: 3 In: 1 In: 2 In: 4

@ Out: 5 Out: 5 Out: 5 Out: 4 Out: 4 Out: 5
(D/ Weight: 1 | Weight: 1 | Weight: 1 | Weight: 1 | Weight: 1 | Weight: 1
Disabled | Disabled | Enabled Enabled Enabled Enabled
(a,) Expressed a,rtiﬁcial neural network, Innov: 1 Innov: 2 | Innov: 3 | Innov: 4 | Innov: 5 | Innov: 6

(c) Connection genes.

Figure 4.1: NEAT genome encoding example.

Formally, a node gene is a tuple (7, 6) such that n € N and 6 € {0, 1,2}, the value 7 is
the neuron’s label and the value 6 represents the neuron’s type. The representation of the
type of neurons given by the value of 8 follows: If § = 0, n represents an input neuron; If
0 = 1, n represents a hidden neuron; and If § = 2, n represents an output neuron. Then,
we can define the node genes space as = := {(n,0) |n € NAO € {0,1,2}}. A connection
gene is formally represented as a tuple («, 5,w, K, p) such that: «,3,p € N; w € R with
w € [-1,1]; and k € {0,1}. The values o and 3 represent the in-node and out-node of
the connection, respectively. The value w is the connection weight. The value & is the
enabled flag with x = 0 indicates that the gene is not expressed and x = 1 indicates
that the gene is expressed. And, the value p is the connection gene’s innovation number.
Then, we can define the connection genes space as I' := {(a, B, w, K, p) |a, f,w € NAw €
RAk € {0,1},w € [—1,1]}. We should note that both the node genes space and the
connection gene space are both infinite. With both these definitions we can define the
genome space as G :={(®, V)| P CEAV CT'}.

4.3 Crossover

In NEAT, individuals in the same generation might have different genome sizes. Thus,
the crossover process must take into account the varying genome size. The crossover
process produces one offspring from two parent genomes. This process is divided in two
stages: the matching stage, and the inheritance stage.

In the matching stage, the innovation numbers are used to align the genomes’ con-
nection genes (See Fig. 4.2). The alignment produces three sets of connection genes:
matching genes M, the disjoint genes D, and the excess genes E. The matching genes
are the connection genes that belong to both parent, they have the same innovation
numbers.

Disjoint genes are connection genes that belong to only one parent, and their in-
novation numbers are less or equal to the minimum of the parents genomes’ maximum

innovation numbers. The excess genes are the rest of connection genes, they belong to
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parent 1 1 2 3 4 5 6 10
parent 2 1 2 3 4 5 8 11 | 12
matching disjoint excess

Figure 4.2: Example of the matching stage of crossover. The connection genes are

represented by their innovation numbers.

the same parent. The disjoint and excess genes represent the non-common structure
between the parents.

In the inheritance stage, an offspring is produced by selecting genes from the sets
obtained from the matching stage. This selection is done in accordance to the follow-
ing selection rules: matching genes are inherited randomly, and non-matching genes
(disjoint and excess genes) are inherited depending on the parents fitnesses. If the par-
ents’ fitnesses are not equal, the genes from the fitter parent are selected. Otherwise,

non-matching genes are inherited randomly.

4.4 Similarity Measurement

In NEAT, the sets of genes, obtained from the matching stage in crossover (i.e. matching,
disjoint, and excess), are used to measure similarity between two genomes. This measure

J is given by

|E| |D| £772
W 4.1
5—61N+CQN+03 , ( )

where |E| is the number of excess genes, |D| is the number of disjoint genes, N is the
number of genes of the larger genome, W is the average weight differences of matching
genes, and the coefficients ¢y, ¢o, and cg are used to adjust the factors. The distance 0 is
a “genotypic distance”, it measures similarity in the genetic space. In conjunction with

the similarity threshold d,, this distance is used to speciate the population.

4.5 Niching Method

The niching method used in NEAT is explicit fitness sharing. A derivation of fitness
sharing that uses a list of species, L. Each species | € L is a tuple, (r,T), where r is
the genome of the species’ representative, and 1" is the set of individuals in the species.
The collections of T's is a partition of the population. An individual ¢ is said to belong
to a species [ = (r,T), if and only if, the distance d(q,) is less than the dissimilarity
threshold, o,. Niching in NEAT can be divided in two stages, the speciation, and the
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fitness sharing.

Algorithm 5: Speciation in NEAT.
Input: An individual g, the list of species L, similarity threshold o.

Output: L

1 added? = false

2 foreach (r,T) € L do

3 if d(q,r) < o5 then

4 add(q,T)

5 added?=true

6 break;

7 if added? == false then

8 L create_new_species(q, L)

The process of speciation is shown in Alg. 5. In this process, either a non-speciated
individual is added to an existing species, or a new species is created. In this new species,
the individual is chosen as the representative. Speciation in NEAT is a sequential process
and an individual can only belong to one species. In particular, an individual is added
to the first species that complies with d(q,r) < 0.

In the fitness sharing process, the fitness of each individual in the population is shared
with the individual’s species. Therefore, a meassure of the amount of individuals that
are in the same species of a individual ¢ is needed, the niche count m,. Which is given
by

my = IT,], (4.2)

where Ty is the set of individuals that belong to the same species as ¢g. In contrast to
fitness sharing, in explicit fitness sharing the niche count is a natural number. Finally,

for the fitness of an individual f;, the shared fitness f/ is given by

where m; is the niche count.

Explicit fitness sharing differs from fitness sharing as it only allows a one-to-many
relationship between species and individuals. A species can have multiple individuals
however an individual can only belong to one species. In fitness sharing, a many-to-
many relationship is allowed, a species can have multiple individuals and an individual

can belong to multiple species.

4.6 Mutation

NEAT uses mutation to add structure to the population and to do weight adaptation.

The possible mutations are: add-node mutation, add-connection mutation, weight muta-
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tion, and reenabling mutation. These mutations occour in the population with different

probabilities.

w.
Dt )
Figure 4.3: Add node mutation, Wap, Wac, and Wep represent the weight of the

connections. The dashed line represents a disabled connection.

The add-node mutation adds a node (neuron) to the network by splitting the connec-
tion of two connected nodes. Fig. 4.3 shows an example of the add-node mutation. The
connection between the nodes A and B has a weight of W4, the new node C is added by
splitting this connection. Two new connections are formed, one between A and C with a
weight Wac = 1, and the other one between B and C with a weight Wop = Wap. The
old connection from A to B is disabled. The new connections weights Wsc and Wep
are set to these values to reduce the effect on the network’s fitness that the new node
introduces. It should be noted that the new node’s activation function introduces an
element of non-linearity to the network. At the genome level, the mutation introduces
two new connection genes and a node gene, and disables a connection gene.

B (&)

Wap Wee Wap Wpe

Wac
© A “—©

Figure 4.4: Example of the add connection mutation.

The add-connection mutation creates a new connection between two previously un-
connected nodes, see Fig. 4.4, here a new connection from node A to node C is introduced
with a random weight W4c. In the case of NEAT working with recurrent neural net-
works, the possible new connections for the example network (left network on Fig. 4.4)
are: from B to A, from C to B, from A to C, and from C to A. Meaning that the process
of adding a connection takes into account the directivity of the connection. However,
when NEAT works with feedforward neural networks this directivity is ignored. In prac-
tice, whenever a new connection is going to be added to the network, the algorithm
checks whether or not the addition of the connection introduces a cycle in the network.
If recurrent networks are allowed and a cycle is going to be introduced, the connection
is added. If recurrent networks are not allowed, say when working with feedforward
networks, the introduction of cycles is not allowed.

NEAT uses weight mutation to adapt the network’s weights. This mutation does not
introduce any structural alteration (new connections or nodes), like the add-node and

add-connection mutations. In weight mutation, a connection gene is randomly chosen,
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and its weight is changed to a new random value. In some implementations of NEAT,
the connection weights are bounded by wyn and wip,e, parameters, such that the new
weight w € [Wmin, Wmaz). For this work wmin = —1, and wpmee = 1. The re-enabling
connection mutation takes a previously disabled connection and enables it. Disabled

connections result from the add node mutation.
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Chapter 5

New Method

In this chapter, we propose a new algorithm for Topology and Weight Evolving Neural
Networks. This new algorithm is based on NEAT, it uses the same genome encoding
and mutation operators as NEAT. However, it introduces a new method for calculat-
ing the similarity between two genomes, and uses a different niching method, that is,
deterministic crowding.

The chapter is divided in three sections. Section 5.2 exposes the problems of NEAT’s
similarity measure, §. Section 5.2 shows the weaknesses of NEAT’s niching method,

explicit fitness sharing. Finally, in section 5.3, we show the new algorithm.

5.1 The problem of NEAT’s similarity measure

For convenience, we shall remember the definition of § given in 4.4:

90— + W 1
0 ¢ M ¢ M s (5 )

where |E| and |D| are the number of excess and disjoint genes, W is the average weight
difference of matching genes, M is the number of connection genes of the larger genome,
and c1,co and c3 are real value coefficients. Formally, we define the similarity measure
as amap d : G x G — R, where G is the set of genomes in NEAT. In the same manner,
we define E: G xG =N, D:GxG—N,and W: G x G — R. A genome in NEAT is
a tuple (N, C), where N is the set of node genes and C' is the set of connection genes.
In the process of NEAT, we want the population to converge to a global optima. To
ensure convergence we need a metric, in the purely mathematical sense. Although § is
non-negative, nullifying if two copies of the same genome are provided, it does not satisfy
the triangular inequality
8(z,2) < 0(w,y) + Oy, 2), (5.2)

for x,y,z € G.

Proof. Consider the particular case satisfying the following assumptions:
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(i) 2 := (Na, Cp), y := (Ny,Cy) and z := (N,,C,) are genomes with N, C N, and
N, C Ny;

(ii) the coefficients ¢1, co and c3 have the same value ¢, ¢1 = co = ¢3 = ¢;
(iii) all connection weights in Cy, Cy and C, have the same value; and

(iv) the sets of connection genes complies with C, c Cy,, C, C Cy, C, N C, = 0,
|Cz| = |C:], and [Cy| = [Cy| + |C,

From (5.1) and (5.2), we have

E(x,z) D(z,z) —
0z, 2) =c co +cesWix, z
(2:2) = O eI NG+ N Ay " (2 2)
oz, y)=c &) 4+ csWi(x,y 5.3
0 8) = N 1N, T a1, ) e (@ 9) (5:3)
E(y7z) D(y7z) 17
0(y,z) =c + ¢ + c3sW(y, 2).
"max(|N,|,|N.]) max(|N,|,|N.|) )

The terms N and N’ are defined as the number of connection genes for the largest
genome, in number of connection genes, from the two involved genomes in §. There-
fore, from assumption (iv), we know that max(|N,|,|Ny|) = max(|Ny|,|N.|) = |Cyl,
max(|Nz|, |N;|) = |Cy| and |Cy| < |Cy|. Assumptions (ii) and (iii) simplifies (5.3) to

E(z,z2) D(x,2)

0x,z) =c +ec
@2 =eTe, T e,
E(x,y) | D(z,y)
oz, y)=c +c 5.4
B9 =Te, " e, (54)
E(y,z)  D(y,2)
0(y,z) =c +c .
B2) =76, e,
Using (iv) we obtain
E(z,z)+ D(z,z) = |C, UC,| = |Cy| + |C:]
E(r,y)+ D(z,y) = |Cy UCy| - |Cw N Cy| = |Cy|
E(y,z)+ D(y,z) = |CyUC:| — |Cy N C;| = |C;|
|Co| + |C|
o(x,z)=c (5.5)
(n2) =g
(&
o(x, c
(z,9) N
C|
oy, z) =c
B2 =g,

Should ¢ abide the triangular inequality (5.2), we should obtain in the above case

Cal +1C:| _ |Gl +1C
(X oY I

(5.6)
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from where, we deduce that |Cy| > |Cy|, which contradicts |Cy| < |Cy].
The reader might find assumption (ii) restrictive. However, it should be noted that
for any configuration of the coefficients ¢, co and c3, three genomes x,y,z € G can be

constructed, such that

c1E(x,2) + caD(x, 2) = e1(E(z,y) + E(y, 2)) + c2(D(z,y) + D(y, 2)). (5.7)

With these z, y and z, we can prove, in an analogous manner, that § violates the
triangular inequality. We emphasize with this, that the triangular inequality can easily
be violated and such cases should not be neglected

Another caveat with ¢ is that it works in the genotypic space of NEAT, and Mahfoud
noted in [4] the importance of phenotypic distances. These distances reduce the number
of replacement errors, where a replacement error is defined as, given three individuals,
a genetic algorithm wrongly measures the individuals’ similarities to each other. And,

thus wrongly determines the closeness between them.

5.2 The problem of NEAT’s niching method

NEAT’s niching method, explicit fitness sharing, requires the maintenance of a species
list, a structure that increases the time and memory complexity of the algorithm. Also,
speciation is strongly dependent on the species’ representatives, when deciding the species
of an individual, the method (as described in NEAT) selects the first species for which
the similarity between the individual and the species’ representative is less or equal to
the similarity threshold, os. Thus, the method does not always choose the most similar
species to the individual, the appropriate one.

Explicit fitness sharing requires an a priori knowledge of the search space landscape,
when deciding the value of the similarity threshold, 05 [28]. Moreover, the fixing of d5
assumes that the niches in the search space have the same size. Additionally, the com-
putation of each individual niche count, m;, has complexity, in the worst case scenario,
O(N?), with N being the population size [8]. The complexity is based on the number of

computations of the sharing function, sh(i, 7).

5.3 Deterministically Crowded - NEAT

In this work, we propose Deterministically Crowded - Neuro Evolution of Augmenting
Topologies (DC-NEAT), as a new algorithm for TWEANN, based on NEAT. The algo-
rithm uses the same encoding as NEAT, the list of node genes and connection genes.
In addition, DC-NEAT have the same mutation operators as NEAT: add-node muta-

tion, add-connection mutation, weight mutation, and the connection re-enable muta-
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tion. Nonetheless, DC-NEAT differs from NEAT in the crossover procedure, the genome
distance, and the niching method.

DC-NEAT employs deterministic crowding as the niching method. However, deter-
ministic crowding needs that the crossover procedure produces two offspring from the
same parents; NEAT’s crossover produces only one offsprings from the two parents.
Thus, a new crossover must be employed in DC-NEAT. Furthermore, since NEAT’s

similarity measure is not a metric, a new phenotypic distance is used.

5.3.1 New phenotypic distance

All networks encoded by NEAT’s genome encoding can be represented as an adjacency
matrix. For example, the network in Fig. 5.1a is represented by the adjacency matrix A
in 5.1b. The elements of A, a;;, are defined as the weight of the connection from neuron
i to neuron j, for ¢,j = 1,2,...,n where n is the number of neurons in the network. A
weight of value zero, a;; = 0, indicates that there is no connection between neurons i

and j.

(a) Example of an artificial neural network that is possible as the output of NEAT.

00 03 0
A 0 0 —07 05
00 O 1
00 O 0

(b) The adjacency matrix of the network in Fig. 5.1a

Figure 5.1: Example of an artificial neural network and its adjacency matrix.

We leverage this possible representation of networks to define the phenotypic distance

in DC-NEAT. We define the distance between adjacency matrices of size n x n,

d:R” xR"” - R
(X, Y)=dX,)Y)=[X-Y].

Then, we define the helper function
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h:G— | |R”
nL:Jl (5.9)
x — h(y).

This helper function transforms the genome x into the adjacency matrix h(x). The value,

n, is the number of node genes present in the genome. We define the genome distance

0:GxG—=R

(5.10)
(z,y) = d(z,y) = d(h(x), h(y))-

The distance § transforms the genomes x and y into their adjacency matrix representation
h(z) and h(y), then utilizes d to calculate the distance value. This distance is a metric,
(R™,d). In the case, that the dimensions of the adjacency matrices from the genomes x
and y do not match. The matrix with the smaller size is padded with columns and rows
of zeroes, until the dimensions of the ajacency matrices match. It should be noted that
hidden nodes’ genes are added after the input nodes’ genes and output nodes’ genes,
thus hidden nodes would be represented by number larger than the input and output

nodes.

5.3.2 New Crossover procedure

DC-NEAT’s crossover procedure is a map

(:GxG—-GxGE

5.11
(z,y) = ((2,). o1

The function ¢ takes two genomes, parent 1 and parent 2, and produces two offspring,
offspring 1 and offspring 2. Hereafter, we denote parent 1 and parent 2 as p; and p2, and
offspring 1 and offspring 2 as s; and sz. Then, we define p; = (Np,, Cp, ), p2 = (Npy, Cp,),
s1 = (N, Cs,), and s2 = (Ns,,Cs,). In ¢, the connection genes of both parents are
completely inherited by both offspring. In other words, we have C,, U C,, = C,, U,
and Cp, U Cp, = C,, UC,,.

The crossover procedure starts by aligning the connection genes of both parents, Ci,,
and C),, in a similar fashion as in NEAT’s crossover matching stage, this alignment
is done using the connection genes’ innovation numbers. The alignment produces a
set of tuples, the aligned pairs, denoted @, where for (t1,t2) € Q, t1 € Cp, U {D}
and ty € Cp, U{@}. Here, the symbol & denotes that for a connection gene, ¢; with
i € {1,2}, a matching connection gene, a connection gene with the same innovation
number, can not be found in the other genome. Formally, we have that Q C (Cp, U
{@}) x (Cp,U{@}) and (&, @) ¢ Q. For example, for the parent genomes p; and po, with

connection genes Cp, = {1,2,3,7} and Cp, = {1,2,3,4,6}, here the connection genes
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are represented by their innovation numbers, we have that 7' = {1,1,2,2,3,3,4,6,7}
and @ = {(1,1),(2,2),(3,3),(2,4),(2,6),(7,2)}.

After the matching is done, we create the two offspring by randomly assigning each
aligned pair component to each offspring, see Alg. 6. When, either component (¢; or
ta in Alg. 6) of the pair has the value &, it is ignored and nothing is added to the
offspring connection genes. Therefore, we can obtain offspring with different number of
connection genes in their genomes. To build the complete genome for the offsprings,
the node genes from both parents are joined, and then each offspring’s node genes are
created taking into account the connection genes. If a node does not participate in any
of the connections in the offspring, it is removed from the offspring’s node genes list.

Thus, the node genes sanity is maintained.

Algorithm 6: Algorithm for the creation of two offspring from the aligned

pairs, Q.
Input: The aligned pairs @

Output: The offspring 1 and 2 connection genes, Cy, and Cj,

1 Cy,=[);

2 Cs,=[];

3 foreach (t1,t2) € Q do

4 p = random(0,1);

5 if p < 0.5 then

6 if t; # @ then

7 L Append t; to Cy;;
8 if to # @ then

L Append t2 to Cl,;

10 else
11 if t1 # @ then

12 L Append t2 to Cy,;
13 if to # @ then

14 L Append t; to Cs,;

15 return Cy, and Cj,
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5.3.3 Deterministic Crowding in DC-NEAT

DC-NEAT uses deterministic crowding for niching, instead of explicit fitness sharing.
Deterministic crowding was chosen for three main reasons: (i) deterministic crowding
does not require any a priori knowledge of the search space landscape shape, (ii) de-
terministic crowding has a simpler implementation compared to explicit fitness sharing,
and (iii) deterministic crowding has lower time complexity.

Explicit fitness sharing in NEAT calls for the fine tuning of the similarity threshold,
o5, this parameter determines the niche size of each species. Thus, knowledge of the
search space landscape formed by the fitness values of all possible ANNs configurations
is needed, which in practice is not available. In explicit fitness sharing, species can
be understood as hyperspheres of radius o, and centered at the species’ representative.
And, since the election of the species’ representative is arbitrary. NEAT might wrongly
partition a cluster of individuals into two species. Specially, if the representative was
chosen from the boundary of the cluster. Deterministic crowding does not require the
similarity threshold parameter, in fact, no knowledge of the search space landscape is
presumed.

In contrast with explicit fitness sharing, deterministic crowding does not explicitly
manage the species in the population. Indeed, deterministic crowding works without
NEAT’s species list, L, reducing the implementation complexity of DC-NEAT. Further-
more, in deterministic crowding, all the population participates in the breeding and
niching process. Therefore, NEAT’s kill percentage, px, is not used. Additionally, since
in deterministic crowding species are implicit, the idea of inter-species reproduction is
mute; the probability, ps, is not adopted in DC-NEAT. Consequently, by introducing
deterministic crowding in DC-NEAT, we reduce the number of parameters and the im-
plementation complexity.

In deterministic crowding, the niching procedure has a fixed time complexity propor-
tionate to the number of similarity calculations of genome pairs of order O(N), where N
is the population size. Whereas, explicit fitness sharing has a worst case time complexity
of O(N?); this is the case when all individuals in the population do not belong to any

of the available species.

5.3.4 Algorithm

Alg. 7 shows the whole process of DC-NEAT, compared to NEAT’s algorithm (Alg. 4),
we can observe that it is simpler. In fact, it has less input parameters. The order of the
mutation and crossover steps is different when compared with NEAT’s algorithm. From
Alg. 7, we note that the whole population is involved in the procedure of deterministic
crowding. As a consequence, all genes in the population have the possibility of surviving,

there is no kill-off population fraction. Mutation in DC-NEAT is parameterized by the
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same mutation probabilities as NEAT, i.e. pan, Pac; Pw, and pgr. In the same manner
as NEAT, DC-NEAT has the same stopping criteria, either the maximum number of

generations G,q, or the fitness objective value ~.

Algorithm 7: Algorithm for Deterministic Crowded NEAT.
Input: Population size N, add-node mutation probability p.,, add-connection

mutation probability p,., weight mutation probability p,,, gene
re-enable probability pg,, fitness function f, max. number of
generations Gqz, fitness objective ~

Output: Population P

1 Create initial population P of size N of fully connected networks;
2 Set generation count g = 0;
3 repeat
4 Randomly pair the population P creating R;
5 foreach (p1,p2) € R do
6 Cross p1 and po creating ¢ and co;
7 Mutate ¢; and ¢z producing ¢; and ¢, using pan, Pac; Pw, and pg,;
8 if (d(p1,ci) + d(p2, ¢3)) < (d(p1, ) + d(pz2; ¢y)) then
9 if f(c}) > f(p1) then
10 L Replace p; with ¢} in P
11 if f(c,) > f(p2) then
12 L Replace py with ¢, in P
13 else
14 if f(c,) > f(p1) then
15 L Replace p; with ¢, in P
16 if f(c}) > f(p2) then
17 L Replace py with ¢} in P
18 Increment generation counter g;

19 until best_fitness(P) >~ or g > Gmax
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Chapter 6
Pole Balancing Problem

In this work, we use the pole balancing problem for testing and comparing the perfor-
mance of NEAT and DC-NEAT. Brownlee in [29] stated: “The pole balancing problem
is a pseudo-standard benchmark problem, from the field of control theory and artificial
neural networks, for designing and testing controllers on complex and unstable non-linear
systems”. Additionally, some work has been done to solve the pole balancing problem
and its variations by combining ANNs with GAs [30, 31, 32]. In particular, NEAT has
been used to solve the pole balancing problem and its variations [27, 30, 33]. There-
fore, we set the one pole balancing problem as the case of study to test the proposed
DC-NEAT and compare its performance with NEAT.

6.1 System Description

Brownlee in [29] offers a canonical description of the one pole balancing problem. The
one pole balancing problem is a feedback control system, part of the output is used as
an input to the system. The system can be divided in two parts: the controller and the
pole system. The controller excites the pole system and receives the state variables of
the system as input. The state variables are used to decide the excitation of the pole
system. Thus, the pole system and the controller form a closed loop. This system has
as objective to balance the pole, preventing it to fall.

The pole system is constituted by a cart on a track with a pole connected to it by a
hinge, see Fig. 6.1. The hinge allows the pole to move, changing the value of the angle
f measured from the vertical axis clockwise. The pole is balanced, if the value of ¢ is on
certain range. In the figure, we can observe that the track is delimited by the values of
—Zmin and Ty,e.. The cart can only move horizontally and between the delimited area.
It should be noted that here we use an ideal model, thus sources of noise like friction

and wind are not taken into account.

The state of the pole system is given by the variables:
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Tmin 0 x Tmazx

Figure 6.1: One pole balancing system.

e 0, the pole angle;

° 9, the angular velocity of the pole;

e 1, the position of the cart with respect to the center of the track; and
e i, the velocity of the cart.

The state of the system can be calculated by solving

. Fy—m,l02 sin 0.
0, = ety (6.1)
l[é . my cos? 0y
3 Mme+myp

and

p F + mpl[H? sin 0; — 6, cos 64
t = )

6.2
Me + My ( )

where 6, and &, are the acceleration of both, the pole’s angle and the cart’s position, the
F; is signed magnitude of the applied force to the cart parallel to the track, m, and m.
are the masses of the pole and the cart, [ is the distance from the hinge and the center
of mass of the pole, and g is the gravitational acceleration —9.81m/s2. For all quantities
in the system, we use the international system of units.

The state of the system is solved using Euler’s method and equations (6.1) and (6.2).
Time is discretized by k € N, with a time step, At, equals to 0.002s, thus we have
lr = kAt and x}, = x;,. Therefore, the position and velocity of the cart and the pole’s
angle and its angular velocity are approximated by the rules

T = Tp1 + At

(6.3)
xp = xp—1 + Atdy_q,
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0 = 0,1 + Aty

. (6.4)
Ht = 975_1 + At&t_l.

Thus, the current state of the system depends explicitly on the previous state of the
system. For example, the pole’s angle, 8;, depends on the previous pole’s angle, 6,1,
and the previous pole’s angular velocity, 0,_1. Consequently, to simulate the pole bal-
ancing system, we need to set the values of the initial state, i.e. xg, g, 6y, and 90,
the initial values of the cart’s acceleration and the pole’s angular acceleration , &y and
0y, are calculated from these initial values, the system parameters and the initial signed
magnitude of the applied force, Fjp.

The angle is bounded by the values of 0,,;, and 0,,4,. If the angle, 6, is outside
this bounded region, the simulation is ended. If the cart’s position, x;, is not inside the
region [—Tmin, Tmaz), the simulation also ends. The force exerted to the cart must be
non-zero and of constant magnitude, thus only the force direction is changed.

The controller observes the state of the pole system and exerts the force to the pole
system. The controller uses the state variables of the system (i.e. 6y, ét, ¢, and ét) to
decide the sign of Fj. In particular, F} can be either be F;, = —|Fy| or F; = |Fpl|, where
Fy is the initial signed magnitude of the applied force.

6.2 Experimental Setup

The experimental setup is composed of the pole balancing simulation system and the
controller recurrent neural network. The pole balancing simulation system uses equations
(6.1), (6.2), (6.3) and (6.4) to simulate the state of the pole balancing system from an
initial state. Whereas, the controller recurrent neural network receives the pole balancing
system’s state, from the simulation system, to decide the direction of F;. The simulation
system receives this value and simulates the new state of the pole balancing system.

Two experimental configurations will be used, one called the full-state pole balancing
problem, and the other one called the half-state pole balancing problem. In the full-state
pole balancing, the observable state is given by all the state variables for the pole’s
angle and the cart position (f; and ;) and their respective velocities (6; and z;). In
the half-state pole balancing, only the angle (6;) and position (x;) are observable by the
controller.

The controller of the system is obtained using either DC-NEAT or NEAT, each
individual in the population of either NEAT or DC-NEAT acts as the controller of the
pole balancing system. The fitness of each individual is calculated as the number of time
steps, k, for which the pole is balanced and the cart’s position is between bounds, in
other words, the pole’s angle, 6, is between [0in, Omar] and the cart’s position, x, is
between [—Zmin, Tmaz)-

An individual of DC-NEAT, in this case, represents a recurrent neural network which
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has as input the state of the pole balancing system and outputs a real value, o;. And,
since all neurons on the network will use the sigmoid as their activation function,

_ 1
14

&(h) (6.5)

The value o is then transformed by the function ® : R — R to the signed magnitude, Fj.

This function is defined as

FQ O¢ Z 0.5
®(0f) = , (6.6)
—Fy o0, <0.5

where F' is the force magnitude and it is set as a parameter. Here, the value 0.5 was

chosen to discriminate between Fjy and —Fp as £(0) is 0.5. Thus, we say F; = ®(oy).
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Chapter 7

Results

In total two configurations of the pole balancing system were used, the full state and
the half state, to check DC-NEAT. The pole balancing systems were parameterized by
the values shown in Table 7.1. In both configurations, the pole balancing system started
with the cart centered in x = 0 and the pole’s angle 6y = 0, all other quantities had
initial value zero: 6y = 0, éo =0, 29 = 0, and &y = 0, except for the initial applied
force which had an initial value of 10 N, Fy = 10N. Since the pole balancing system
can be balanced by a network for an infinitely amount of time, a cut-off value of 200000
time steps was chosen to stop the simulation. Thus, the maximum fitness value that a

network can have is 200000.

Parameter Value

Cart’s mass, m, 1.0 kg
Pole’s mass, my, 0.1 kg
Pole’s length, [, 0.5 m

Gravity, g 9.82 m/s?

Force magnitude, F' 10 N
Minimum angle, 6,,,;n —15.0°
Maximum angle, 6,42 15.0°
Minimum position, ., —2.0m
Maximum position, T,qx 2.0 m
Time delta, At 0.002 s

Table 7.1: Parameter values used for all pole balancing system configurations.

7.1 Full state pole balancing problem

As noted in Chapter 6, the full state configuration of the pole balancing problem is the

one where the controller observes the full state of the pole balancing system. Therefore,
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the initial population was conformed by networks with five neurons, four input neurons
and one output neuron. For this configuration DC-NEAT was run for 100 generations
and with a population size of 100 networks. Also, the mutation probabilities were fixed

as shown in Table 7.2. Fig. 7.1 shows the evolution of the population’s best fitness

Probability | Value
Dan 0.1
Pac 0.4
Pw 0.6
Dgr 0.3

Table 7.2: Mutation probabilities used in DC-NEAT for the full state configuration of
the pole balancing problem.

value through the generations for all runs done. The best fitness value of the population
at each generation either increases or remains constant. Thus, as observed in all runs
the best fitness value of the population has an upward trend. Of all the runs done, five
runs achieved the cut-off value of 200000 time steps. In other words, at least the best
individual in the population can balance the system for 200000 time steps (approximately
6-7 minutes) or more. Additionally, we can observe for all the runs that achieved this
cut-off value, the change was abrupt.

Fig. 7.2 shows the evolution of the average fitness value of the population. The

Evolution of the population’s best fitness value through the generations

10(5
—— cut-off value
5 [ T — run 1
10° | | — run 2
| —_— run 3
10* | | run 4
. i : — — runsb
5} N o ——  run6
=
B 10 — run 7
=
run 8
102 + —_— run 9
run 10
10' f

10 20 30 40 50 60 70 80 90 100
Generation

Figure 7.1: Evolution of the population’s best fitness value through the generations for

ten runs of DC-NEAT for the full state configuration of the pole balancing problem.

average fitness has an upward trend, in the same manner as the population’s fitness

value. Besides, we can observe that for all runs the population’s average fitness behaves
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in the same manner.

Evolution of the population’s average fitness value through the generations

10" ¢

—— run 1
/—/ / T —— run 2
—_— ‘ —— run 3

103 /_ = - —— run 4
—— run b

—— run 6
102 run 7
run 8

—— run 9
——run 10

Fitness

10!

10 20 30 40 50 60 70 80 90 100
Generation

Figure 7.2: Evolution of the population’s average fitness value through the generations

for ten runs of DC-NEAT for the full state configuration of the pole balancing problem.

Fig. 7.3 shows an example of the architecture of a cut-off network, which is a network
that balances the system for at least 200000 time steps. In this network, the input nodes
are nodes 1, 2, 3, and 4; and the output node is node 5. As we can observe, the
network has two recurrent connections, from the input node 2 to input node 3 and a
loop connection from input node 3 to itself. Besides, the network also has a new node,
hidden node 6.

e~ ——(8)

0y
Ot

Tt

@y

Figure 7.3: Example of the architecture of a cut-off network.

7.2 Half state pole balancing problem

The half state configuration of the pole balancing problem is the one where the con-
troller observes only two variables, the pole’s angle and the cart’s position. Therefore,

the initial population was conformed by networks with three neurons, two input neurons
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and one output neuron. This configuration is more difficult to solve, when compared to
the full state configuration, as the controller must internally “calculate” the two miss-
ing state values, the pole’s angular velocity and cart’s velocity. Therefore, DC-NEAT
was run for 500 generations and with a population of size 200 networks. Moreover, the
mutation probabilities were increased to promote the addition of new structure (nodes
and connections) to the population, these new mutation probabilities can be found in

Table 7.3. In the same manner as the full state configuration, 10 runs of DC-NEAT were

Probability | Value
Dan 0.6
Dac 0.7
Pw 0.6
Dgr 0.3

Table 7.3: Mutation probabilities of DC-NEAT for the half state configuration of the

pole balancing problem.

done. In Fig. 7.4, we observe the evolution of the population’s best fitness value for
all runs. Only two runs achieve the cut-off value, namely run 5 and run 10. However,
for all runs the best fitness value of the population has an upward trend. Despite that
sometimes the best fitness value appears to have stagnated, given enough generations
the value increases. For some runs in Fig. 7.4, we observe large period of time where the
population’s best fitness value, for example for run 1, from generation 16 to generation
146, the fitness value is fixed to the value 6301.

The evolution of the population’s average fitness is shown in Fig. 7.5. We can observe
that for all runs the population’s average fitness has an ascending trend. Also, the aver-

age fitness increases with less jumps when compared to the best fitness value.
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Evolution of the population’s best fitness value through the generations
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Figure 7.4: Evolution of the population’s best fitness value through the generations for

ten runs of DC-NEAT for the half state configuration of the pole balancing problem.

Evolution of the population’s average fitness value through the generations
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Figure 7.5: Evolution of the population’s average fitness value through the generations

for ten runs of DC-NEAT for the half state configuration of the pole balancing problem.

An example of the architecture of a cut-off network for the half state configuration
is shown in Fig. 7.6. This network’s architecture is more complex than the one for
the full state configuration, in particular, this architecture has more hidden nodes and
connections. This architecture has some notable features. Node 6, 9 and 10 act as bias
for nodes 5, 7, 1 and 4, this due to the activation scheme used for the recurrent neural
networks. Since, all neurons, in recurrent neural networks, start with state 0 and neurons
6, 9, and 10 do not receive information from other neurons, the output of this neurons

will always be 0.5, £(0) = 0. Node 8 does not have any outgoing connection, in other
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words there is no other node in the network that receives information from node 8. Thus,
we can safely remove this node from the network, and the network’s behavior would not

change.

Figure 7.6: Example of the architecture of a cut-off network for the half configuration of

the pole balancing problem.
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7.3 NEAT vs DC-NEAT

The full state configuration of the pole balancing problem was used to compare NEAT
and DC-NEAT. In this experiment both NEAT and DC-NEAT start with different initial
populations. NEAT was run with the same population size and mutation probabilities as
DC-NEAT (see Table 7.2); both were run for 100 generations. Additionally, to reduce the
number of meta parameters, NEAT’s kill percentage, py, crossover percentage, p., and
interspecies probability, pr, were set to 1. Therefore, the whole population participates in
the selection and breeding process, likewise, individuals from different species are always
allowed to reproduce. Fig. 7.7 shows the evolution of the population’s best fitness value
of 5 runs of NEAT and 5 runs of DC-NEAT. For all runs of NEAT the population’s best
fitness value increases and decreases in an erratic manner. In contrast with DC-NEAT
all runs of NEAT achieve the cut-off value of 200000, however, all runs lose it afterwards.
In comparison, when DC-NEAT achieves an individual with fitness equal to the cut-off
value, it remains in the population. Nonetheless, NEAT tends to find an individual
with cut-off fitness faster than DC-NEAT, for example run 3 of NEAT achieves it at

generation 10.

Evolution of the population’s best fitness value through the generations for NEAT and DC-NEAT

6
10 —— cut-off value
‘ l ‘ —— DC-NEAT 1
10° I I | ~ DC-NEAT 2
I i 3‘ — DC-NEAT 3
10* I Il | ——DC-NEAT 4
% o : / —— DC-NEAT 5
e NEAT 1
= — NEAT 2
) NEAT 3
10 —— NEAT 4
—— NEAT 5
10t

10 20 30 40 50 60 70 80 90 100
Generation

Figure 7.7: Comparison of the evolution of the population’s best fitness value of NEAT
and DC-NEAT for the full state configuration of the pole balancing problem.

In figure 7.8, we observe the different behavior of the evolution of the population’s
average fitness value for both NEAT and DC-NEAT. As with the population’s best fitness
value, NEAT’s population average fitness increases and decreases in a erratic manner. In
contrast, DC-NEAT’s population average fitness value has a more deterministic behavior,
in fact the population’s average fitness only increases or remains constant.

A comparison of the population’s best individual complexity and the population’s
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Evolution of the population’s average fitness value through the generations for NEAT and DC-NEAT

1 6
0 —— cut-off value

) — DC-NEAT 1
107 ¢ — DC-NEAT 2
—DC-NEAT 3
— DC-NEAT 4

) — DC-NEAT 5
— ~ NEAT 1
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Generation

Figure 7.8: Comparison of the evolution of the population’s average fitness value of
NEAT and DC-NEAT for the full state configuration of the pole balancing problem.

average complexity is given in Fig. 7.9 and Fig. 7.10, the complexity of an individ-
ual (network) is defined as the number of enabled connection genes of the individual’s
genome. Furthermore, the generations at which NEAT and DC-NEAT obtains an indi-
vidual with fitness equal to the cut-off value are marked in both figures. In Fig. 7.9, we
can note that for NEAT, the complexity of the population’s best individual grows linearly
with the generations. In contrast, the complexity of the population’s best individual re-
mains fairly constant for DC-NEAT. The population’s average network complexity for
NEAT and DC-NEAT behaves in a similar manner as can be seen 7.10.
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Evolution of the population’s best individual complexity through the generations for NEAT and DC-NEAT
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Figure 7.9: Comparison of the evolution of the population’s best individual complexity
of NEAT and DC-NEAT. Generations at which NEAT and DC-NEAT has an individual
with fitness 200000 are marked with red dotted lines (NEAT) and red dashed line (DC-
NEAT).

Evolution of the population’s average complexity through the generations for NEAT and DC-NEAT
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Figure 7.10: Comparison of the evolution of the population’s average complexity of
NEAT and DC-NEAT. Generations at which NEAT and DC-NEAT has an individual
with fitness 200000 are marked with red dotted lines (NEAT) and red dashed line (DC-
NEAT).
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Chapter 8

Discussion

In chapter 7, we showed the behavior of DC-NEAT on the pole balancing for both
configurations, full state and half state. For the full state configuration DC-NEAT
achieved the cut-off value in less than 100 generations. Whereas, for the half state
configuration DC-NEAT requires at least 500 generations to achieve the cut-off value.
This difference in the number of generations is due to the difficulty present in the half
state configuration which then requires a more extensive search.

In DC-NEAT, both the population’s best fitness value and average fitness can only
remain constant or increase, these values will never decrease in a run of DC-NEAT.
DC-NEAT uses deterministic crowding as its niching method, in this method, parents
are only replaced in the population by their corresponding offspring if the corresponding
offspring has a better fitness value than the parent. Therefore, whenever a replacement
occurs the average fitness of the population increases. Likewise, if no replacement occurs,
the population’s average fitness remains constant. Additionally, in DC-NEAT parents
can survive in the population for multiple generations. Finally, individuals with the best
fitness value of the population are kept until an individual with better fitness is found.

DC-NEAT runs are parameterized by the population size and the mutation proba-
bilities, the maximum number of generations is only used to control the run time. The
population size determines the amount of parallel searches that DC-NEAT does over the
genome space, G. The decision of the population size should balance the computational
cost of larger populations with the increased search coverage of G that is provided by
the larger population. Mutation probabilities determine the rate at which new structure
genes (node and connection genes) enter the population. Large mutation probabilities
introduce noise to the population and might even reduce DC-NEAT to a random search
over (G. Whereas, small mutation probabilities reduce the rate at which the gene pool of
the population changes thus increasing the number of generations necessary to achieve
target fitness values. Therefore, a balance is required when deciding the mutation prob-
abilities.

Regarding the stagnation of the population in DC-NEAT, from Fig. 7.1 and Fig. 7.5
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that for long periods of time (100-200 generations) the population’s best fitness value
does not change, intuition might suggest that the population have stagnated. However,
if we examine the same periods of time, where the population have “stagnated”, in Fig.
7.2 and Fig. 7.5 we discover that in these periods of time the population’s average fitness
has increased. In these periods of time, new individuals have been produced that are
fitter and have replaced their respective parents in the population, we can say that the
population has continue to evolve. Therefore, whenever we are examining population
stagnation in DC-NEAT, we should pay attention to the population’s average fitness.

When comparing NEAT and DC-NEAT, using the pole balancing problem, in its full
state configuration, we noticed that the complexity of individuals in the population of
NEAT grows linearly. Whereas, in DC-NEAT the complexity lingers around a value less
than 10. This indicates that new structure in DC-NEAT is added more slowly than in
NEAT. Because, individuals in DC-NEAT are only replaced if more fit individuals are
found, and new individuals are only produced from the current population. In other
words, the genetic pool (structures) tends to remain fairly constant. This behavior of
DC-NEAT can be viewed as a double edge sword, the networks produced would be
less complex than those produced by NEAT. However, DC-NEAT might need more
generations to produce these networks.

In contrast to NEAT, DC-NEAT does not have a fitness proportionate mechanism
like stochastic universal sampling or roulette-wheel selection. All individuals in the
population participate once in the breeding process, unlike NEAT, where a highly fit
individual could be selected multiple times to participate in the breeding process denying
other individuals the opportunity of passing on their genes. Thus, in NEAT in order
to reduce the possibility of individuals overcoming the population, the population is
partitioned into explicit species. However, in DC-NEAT this explicit partition is not
required, as individuals are not pitched against each other, by the fitness proportionate
selection method, but against their offspring, in the tournaments.

To measure the computational load of NEAT and DC-NEAT, the run time (mea-
sured in seconds) was first considered. However, it was determined, that it is not a
good measure for computational load in this case. As, the run time depends mainly
on the simulation of the pole balancing system, fitter individuals have a longer simula-
tion time and thus increases the total run time. Therefore, in this case to analyze the

computational load the number of generations was used instead of the run time.
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Chapter 9

Conclusion

This thesis aimed to create a new algorithm for evolving a population of artificial neural
networks based on the algorithm Neuro Evolution of Augmenting Topologies. Based on
a theoretical analysis of NEAT, we identified two problems with NEAT, the similarity
measurement is not a distance and explicit fitness sharing requires the fixation of the
similarity threshold. We demonstrated that NEAT’s similarity measurement violates
the triangular inequality, thus concluding that it is not a distance. Also, we pointed
out that explicit fitness sharing has a worst case time complexity of O(N?), where N is
the population size. Therefore, we proposed the method, Deterministically Crowded -
Neuro Evolution of Augmenting Topologies, which keeps NEAT’s genome encoding and
mutation operators, and replaces explicit fitness sharing with deterministic crowding.
In addition, NEAT’s similarity measurement was replaced by a new measurement that
leverages the matrix representation of artificial neural networks when viewed as weighted
directed graphs and the maximum norm. Deterministic crowding was chosen as DC-
NEAT’s niching method because it has simple implementation and does not require the
similarity threshold. Also, it has a better time complexity than explicit fitness sharing,
deterministic crowding has a fixed time complexity of O(N).

Using the pole balancing problem to examine the behavior of DC-NEAT when solving
problems with dynamical systems. We found that networks produced could balance the
system for at least 6-7 minutes where obtained by DC-NEAT in 100 generations (for
the full state configuration) and 500 (for the half state configuration) achieving the pole
balancing problem objective. Taking into account the simplicity of the implementation
and the reduction of the number of parameters with respect to NEAT, we can view
DC-NEAT as a viable alternative to NEAT.

From the comparison of the behavior of NEAT and DC-NEAT when solving the full
state configuration of the pole balancing problem, we understand that because DC-NEAT
uses deterministic crowding as its niching method, DC-NEAT takes more generations to
solve the problem than NEAT. However, whenever a solution (individual) is found in

DC-NEAT the solution stays in the population through the generations, in contrast with
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NEAT where the solution is lost through the generations. Additionally, we discovered
that as result of DC-NEAT favoring small changes in the population that increases the
population’s total fitness, in terms of the complexity (number of connections) of the
obtained networks, DC-NEAT is an improvement over NEAT.

As future work, we should compare the performance of DC-NEAT and NEAT for
multiple problems (dynamic and static). Additionally, the niching capabilities of both
NEAT and DC-NEAT should be analyzed, however for this a metric for measuring diver-
sity in the case of artificial neural networks must be proposed. Finally, we recommend
extending either NEAT or DC-NEAT to work with convolutional artificial neural net-
works. These type of networks tend to have complex architectures and the design is done
by trial-and-error, which presents a problem since the training of these networks tends

to be computationally costly.
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