Please use this identifier to cite or link to this item: http://repositorio.yachaytech.edu.ec/handle/123456789/441
Title: Some generalizations coming from the study of the discrete nagumo equation
Authors: Acosta Orellana, Antonio Ramón
Ayala Bolagay, María José
Keywords: Ecuación discreta de Nagumo
Solución de onda viajera
Teorema de Banach de punto fijo
Teorema de Schauder de punto fijo
Discrete Nagumo’s equation
Traveling wave solution
Banach Fixed Point Theorem
Schauder Fixed Point Theorem
Issue Date: Dec-2021
Publisher: Universidad de Investigación de Tecnología Experimental Yachay
Abstract: La ecuación discreta de Nagumo corresponde a: u ̇_n=d(u_(n-1)-2u_n+u_(n+1) )+f(u_n ), n ∈ Z y en este trabajo se obtienen resultados concernientes a la siguiente generalización: u ̇_n=d(〖au〗_(n-1)+bu_n+〖cu〗_(n+1) )+f(u_n ), n ∈ Z siendo a, b y c parámetros tales que a + b + c = 0 con a ≥ c ≥ 0. Se han obtenido resultados que generalizan parte del trabajo desarrollado por Bertram Zinner [1] y estos constituyen un punto de partida para posterior obtención de lo que sería existencia de soluciones del tipo ondas viajeras en la ecuación que consideramos.
Description: The discrete Nagumo equation corresponds to: u ̇_n=d(u_(n-1)-2u_n+u_(n+1) )+f(u_n ), n ∈ Z and in this work we obtain results concerning the following generalization: u ̇_n=d(〖au〗_(n-1)+bu_n+〖cu〗_(n+1) )+f(u_n ), n ∈ Z With a, b and c being parameters such that a + b + c = 0 with a ≥ c ≥ 0. We have obtained results that generalize part of the work developed by Bertram Zinner [1] and these constitute a starting point for later obtaining what would be the existence of solutions of the traveling wave type in the equation that we consider.
URI: http://repositorio.yachaytech.edu.ec/handle/123456789/441
Appears in Collections:Matemática

Files in This Item:
File Description SizeFormat 
ECMC0083.pdf1.08 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.