Please use this identifier to cite or link to this item:
http://repositorio.yachaytech.edu.ec/handle/123456789/441
Title: | Some generalizations coming from the study of the discrete nagumo equation |
Authors: | Acosta Orellana, Antonio Ramón Ayala Bolagay, María José |
Keywords: | Ecuación discreta de Nagumo Solución de onda viajera Teorema de Banach de punto fijo Teorema de Schauder de punto fijo Discrete Nagumo’s equation Traveling wave solution Banach Fixed Point Theorem Schauder Fixed Point Theorem |
Issue Date: | Dec-2021 |
Publisher: | Universidad de Investigación de Tecnología Experimental Yachay |
Abstract: | La ecuación discreta de Nagumo corresponde a: u ̇_n=d(u_(n-1)-2u_n+u_(n+1) )+f(u_n ), n ∈ Z y en este trabajo se obtienen resultados concernientes a la siguiente generalización: u ̇_n=d(〖au〗_(n-1)+bu_n+〖cu〗_(n+1) )+f(u_n ), n ∈ Z siendo a, b y c parámetros tales que a + b + c = 0 con a ≥ c ≥ 0. Se han obtenido resultados que generalizan parte del trabajo desarrollado por Bertram Zinner [1] y estos constituyen un punto de partida para posterior obtención de lo que sería existencia de soluciones del tipo ondas viajeras en la ecuación que consideramos. |
Description: | The discrete Nagumo equation corresponds to: u ̇_n=d(u_(n-1)-2u_n+u_(n+1) )+f(u_n ), n ∈ Z and in this work we obtain results concerning the following generalization: u ̇_n=d(〖au〗_(n-1)+bu_n+〖cu〗_(n+1) )+f(u_n ), n ∈ Z With a, b and c being parameters such that a + b + c = 0 with a ≥ c ≥ 0. We have obtained results that generalize part of the work developed by Bertram Zinner [1] and these constitute a starting point for later obtaining what would be the existence of solutions of the traveling wave type in the equation that we consider. |
URI: | http://repositorio.yachaytech.edu.ec/handle/123456789/441 |
Appears in Collections: | Matemática |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
ECMC0083.pdf | 1.08 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.