Please use this identifier to cite or link to this item:
http://repositorio.yachaytech.edu.ec/handle/123456789/679
Title: | Surface-enhanced Raman spectroscopy on CVD graphene-DNA composites |
Authors: | Chacón Torres, Julio César González Vázquez, Gema Arellano Haro, Daniela Estefania |
Keywords: | Grafeno Ácido desoxirribonucleico (ADN) Graphene Deoxyribonucleic acid (DNA) Chemical vapor deposition (CVD) |
Issue Date: | Nov-2023 |
Publisher: | Universidad de Investigación de Tecnología Experimental Yachay |
Abstract: | La espectroscopia Raman mejorada en superficie (SERS) es un método analítico que mejora la sensibilidad de las señales de dispersión Raman. Los investigadores han utilizado SERS para investigar diversos sistemas químicos y biológicos, incluyendo proteínas, células y ADN. Debido a su composición molecular distinta y a sus propiedades físicas y químicas específicas, la aparición del grafeno proporciona excelentes nanoplataformas para fabricar sustratos activos para SERS. 2,3 En el grafeno, el orbital 2pz restante de cada átomo de carbono hibridado sp2 constituye un gran enlace π deslocalizado del grafeno, que favorece la adsorción de ADN en la superficie del carbono a través de interacciones π − π entre los anillos aromáticos del grafeno y los grupos que contienen N de las bases de ADN.4 El objetivo principal de este proyecto de investigación es sintetizar un compuesto de grafenoADN por CVD y revelar la existencia de la respuesta SERS en el grafeno. Se depositó ADN procedente de un cultivo de bacterias Staphylococcus a diferentes concentraciones 376,2 ng/µL, 409, 8 ng/µL, y 543, 2 ng/µL sobre grafeno en sustrato SiO2/Si. A continuación, se realizó una caracterización via espectroscopia Raman utilizando un láser de 532 nm. En primer lugar, se explica que el SERS sobre grafeno se basa principalmente en el mecanismo químico (CM) debido a las interacciones molécula-sustrato y de una transferencia de carga efectiva entre ellos, que se representan por nuevos modos Raman en los espectros SERS, mapeos y efecto de dopaje. Además, se explica cómo los cambios en la posición de las bandas 2D y G del grafeno son el resultado de efectos intrínsecos del dopaje de carga o de la deformación entre el dsADN y el grafeno. Además, los espectros SERS mostraron bandas superpuestas procedentes de las nucleobases del dsADN debido a que la estructura helicoidal lo limita a través del par de bases más cercano. Se depositó una muestra limpia de ADN (409 8 ng/µL) se depositó sobre sustrato SiO2/Si para comparar la señal Raman del ADN sobre este sustrato con la obtenida en presencia de grafeno, que potencia la respuesta vibrónica de la molécula de dos formas i) apagando la fluorescencia derivada de la biomolécula, lo que hace que las vibraciones principales de un ADN se hagan evidentes, y ii) debido a la fuerte interacción electrostática entre el ADN y el grafeno, esta interacción da lugar a un aumento de la línea D, un desplazamiento al rojo de la línea G y un desplazamiento al azul de la línea 2D del grafeno. Por otra parte, se empleó una técnica alternativa, la espectroscopia Raman infrarroja transformada de Fourier (FTIR), para medir el ADN prístino. Sin embargo, debido a la dilución y baja concentración de ADN en agua( ng/µL), los espectros FTIR obtenidos dificultan las vibraciones del ADN en las fuertes del agua. Como resultado, en esta tesis, confirmamos: i) el empleo de grafeno sirve como plataforma de detección y sustrato óptimo para medir la presencia de biomoléculas de concentración ultrabaja, ii) la fuerte interacción de las biomoléculas con el grafeno potencia la señal Raman, lo que presenta muchas ventajas, como una preparación más sencilla, menor coste, mejor biocompatibilidad y quenching de la fluorescencia, como se demostrará a lo largo de esta tesis. |
Description: | Surface-enhanced Raman spectroscopy (SERS) is an analytical method that enhances the sensitivity of Raman scattering signals. 1 Researchers have utilized SERS to investigate various chemical and biological systems, including proteins, cells, and DNA. Due to its distinct molecular composition and specific physical and chemical properties, the emergence of graphene provides excellent nanoplatforms for fabricating SERS-active substrates.2,3 In graphene, the remaining one 2pz orbital of each sp2 hybridized carbon atom constitutes a large delocalized π-bond of graphene, which favors the adsorption of DNA on the carbon surface through π − π interactions between the aromatic rings of graphene and the N-containing groups of DNA bases.4 The main objective of this research project is to synthesize a CVD graphene-DNA composite and reveal the SERS response’s existence on graphene. DNA from the Staphylococcus bacteria culture was deposited at different concentrations 376.2 ng/µL, 409.8 ng/µL, and 543.2 ng/µL over graphene on SiO2/Si substrate. Then, a characterization via Raman spectroscopy was conducted using a 532 nm laser. First, it is explained that SERS on graphene mainly relies on the chemical mechanism (CM) due to molecule-substrate interactions and from an effective charge transfer between them, which are depicted by new Raman modes on SERS spectra, mappings and doping effect. Also, it explains how shifts in the position of the 2D and G bands of graphene result from intrinsic effects of charge doping or strain between dsDNA and graphene. Additionally, SERS spectra exhibited overlapping bands from nucleobases of dsDNA because the helical structure limits it through the closest base-pair. A clean DNA sample (409.8 ng/µL) was deposited on SiO2/Si substrate to compare the DNA Raman signal on this substrate to the one obtained in the presence of graphene, which enhances the vibronic response of the molecule in two ways: i) by quenching the fluorescence derived from the biomolecule, leading the main vibrations from a DNA to become evident, and ii) due to the strong electrostatic interaction between DNA and graphene, this interaction results in an enhanced D-line, a redshift of the G-line, and a blueshift of the 2D-line of graphene. On the other hand, an alternative technique, Fourier-transformed infrared Raman spectroscopy (FTIR), was employed to measure the pristine DNA. However, due to the dilution and low concentration of DNA in water( ng/µL), the obtained FTIR spectra hinder the DNA vibrations into the strong ones from water. As a result, in this thesis, we confirmed: i) employing graphene serves as a detection platform and an optimal substrate to measure the presence of ultra-low concentrated biomolecules, ii) the strong interaction of biomolecules with graphene enhances the Raman signal, which presents many advantages, such as easier preparation, lower cost, better biocompatibility, and fluorescence quenching, as it will be shown along this thesis. Keywords: graphene, DNA, SERS, Raman, CVD, and FTIR. |
URI: | http://repositorio.yachaytech.edu.ec/handle/123456789/679 |
Appears in Collections: | Nanotecnología |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.