Please use this identifier to cite or link to this item: http://repositorio.yachaytech.edu.ec/handle/123456789/726
Title: Annealing high-temperature treatment of CVD-grown graphene
Authors: Chacón Torres, Julio César
Sallo Chabla, Nardy Jacqueline
Keywords: Grafeno
Tratamientos térmicos
Detección de fármacos
Graphene
Thermal treatment
Pharmaceutical detection
Issue Date: Mar-2024
Publisher: Universidad de Investigación de Tecnología Experimental Yachay
Abstract: La presencia de de contaminantes farmacéuticos a través de aguas residuales y residuos de producción de medicamentos representa una amenaza significativa para los ecosistemas acuáticos, comprometiendo la calidad del agua y el equilibrio ecológico. Detectar estos residuos con alta sensibilidad es una prioridad, ya que nos permite abordar de manera integral los riesgos ambientales y proteger eficazmente nuestros ecosistemas. En este estudio, se exploran sensores electrónicos basados en grafeno como una solución prometedora para lograr una detección altamente sensible de productos farmacéuticos, aprovechando las excepcionales propiedades eléctricas del grafeno. Además, para mitigar el impacto de la contaminación superficial en los materiales de carbono y evaluar con precisión las propiedades intrínsecas, aplicamos un tratamiento a alta temperatura para eliminar impurezas del grafeno. La es- tructura química y física del grafeno se analizó utilizando espectroscopía Raman y XPS, mientras que el rendimiento del sensor se evaluó mediante mediciones de conductividad. La espectroscopía Raman se empleó para caracterizar el grafeno debido a su versatilidad, rapidez y naturaleza no destructiva. Proporciona información sobre los modos vibratorios y rotacionales, creando una huella digital para la identificación de moléculas. El estudio de los picos de las bandas G, D y 2D permite determinar el número de capas de grafeno, el nivel de dopaje y la funcionalización del grafeno. Por otro lado, la espectroscopía XPS revela cambios en los entornos de enlace C-C y la presencia de moléculas fisiadsorbidas. Un dato importante a considerar es que el agua molecular, el oxígeno y otros grupos funcionales tienden a adherirse regularmente a la superficie del grafeno cuando este se expone a condiciones ambientales, lo que llega a afectar la respuesta prístina del material. Este proyecto de tesis estudia la capacidad del grafeno para la detección de Ibuprofeno y explora la efectividad de los tratamientos a alta temperatura como métodos de limpieza previa y posterior a la deposición de fármacos para mejorar la sensibilidad superficial del grafeno. Se aplicaron una serie de tratamientos a alta temperatura (100°C durante 1 hora, 300°C durante 1 hora, 600°C durante 1 hora) en condiciones de vacío al grafeno en SiO2 para elim- inar moléculas fisisorbidas. El análisis de espectroscopía XPS y Raman reveló la presencia de grupos moleculares en la superficie del grafeno, como lo evidencian las mediciones de los componentes O1s y C1s, FWHM(G) y la relación D/G, respectivamente. Simultáneamente, se fabricó un sistema de cuatro puntas con configuración colineal para evaluar los cambios en la conductividad eléctrica tras la deposición de Ibuprofeno. Después de la deposición farmacéutica, la pendiente de la curva de corriente-voltaje galvanostática (G-IV) aumentó, lo que indica un aumento en la resistencia y, por lo tanto, una disminución en la conductividad. Esta observación resalta el potential del grafeno para aplicaciones de detección de fármacos.
Description: The emergence of pharmaceutical pollutants through wastewater and drug production waste poses a significant threat to aquatic ecosystems, compromising water quality and ecological balance. Detecting these residues with high sensitivity is a top priority as it allows us to comprehensively address environmental risks and effectively protect our ecosystems.In this study, graphene-based electronic sensors are being explored as a promising solution for achieving highly sensitive detection of pharmaceuticals, leveraging graphene’s exceptional electrical properties. Additionally, to mitigate the impact of surface contamination on carbon materials and accurately assess intrinsic properties, we applied a high-temperature treatment to remove impurities from graphene. The chemical and physical structure of graphene was analyzed using Raman and XPS spectroscopy, while the sensor’s performance was evaluated through conductivity measurements. Raman spectroscopy is the method of choice for characterizing graphene due to its versatility, rapidity, and non-destructive nature. It provides information about the vibrational and rotational modes, creating a fingerprint for molecule identification. The study of peaks G, D, and 2D bands allows for determining the number of graphene layers, doping level, and functionalization of graphene. On the other hand, XPS spectroscopy unveils shifts in C-C bond environments and the presence of physisorbed molecules. An important fact is that molecular water, oxygen, and other functional groups are regularly attached to the graphene surface when exposed to ambient conditions, affecting the pristine response of the material. This thesis project studies graphene’s sensing capabilities for Ibuprofen and explores the effectiveness of high- temperature treatments as pre- and post-deposition cleaning methods to enhance graphene surface sensitivity. A series of high-temperature treatments (100°C for 1 hour, 300°C for 1 hour, 600°C for 1 hour) were applied under vac- uum conditions to graphene on SiO2 substrates to eliminate physisorbed molecules. XPS and Raman spectroscopy analysis unveiled the presence of molecular moieties on the graphene surface, as evidenced by measurements of O1s and C1s components, FWHM(G), and the D/G ratio, respectively. Simultaneously, a homemade collinear four-point probe method was fabricated to assess changes in electrical conductivity upon Ibuprofen deposition. After the pharmaceutical deposition, the galvanostatic current-voltage (G-IV) curve slope increased, indicating an increase in resistance and, thus, a decrease in conductivity. This observation underscores the potential utility of graphene in sensing applications.
URI: http://repositorio.yachaytech.edu.ec/handle/123456789/726
Appears in Collections:Nanotecnología

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.