Please use this identifier to cite or link to this item: http://repositorio.yachaytech.edu.ec/handle/123456789/817
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMayorga Zambrano, Juan Ricardo-
dc.contributor.authorDelgado Ochoa, Jeancarlos Dénnis-
dc.date.accessioned2024-07-11T12:04:15Z-
dc.date.available2024-07-11T12:04:15Z-
dc.date.issued2024-07-
dc.identifier.urihttp://repositorio.yachaytech.edu.ec/handle/123456789/817-
dc.descriptionLet's consider the quasi-linear Poisson equation: \begin{equation} -\Delta_p \phi=K(x)|u|^\alpha, \quad x\in\mathbb{R}^N, \end{equation} where $$ -\Delta_p \phi=\operatorname{div}(|\nabla\phi|^{p-2}\nabla\phi)$$ and $\alpha>0$. We assume that $K\in L^p(\mathbb{{R}^N})$ is non-negative, $N\in\mathbb{N}$ and $p\in]1,N[$. We prove that for every $u\in E^p,$ there exists a unique $\phi\in D^{1,p}(\mathbb{{R}^N})$ weak solution of \eqref{psso}. For this, we consider on $D^{1,p}(\mathbb{{R}^N})$ the functionals $J$ and $B,$ given by $$ J(\phi)=\frac{1}{p} \int_{\mathbb{R}^N}|\nabla \phi|^p d x \quad \text { and } \quad\langle b, h\rangle=\int_{\mathbb{R}^N} K(x)|u|^\alpha h d x.$$ When $p=2$ and $N=3$, the result is consequence of the Lax-Milgram theorem. However, we consider the general case of equation \eqref{psso}, $p>1$. To prove the result we use a generalized version of the Lax-Milgram theorem, the Minty-Browder theorem. For this, we prove that $b\in(D^{1,p}(\mathbb{{R}^N}))^{'}$ and that $J$ is of class $C^1.$ Furthemore, we prove that $J'$ is strictly positive and coercive. Finally, we conclude the existence and uniqueness of $\phi\in E^P$ such that $J' \phi =b,$ i.e., $$\forall h\in E^p:\quad \int_{\mathbb{R}^N} |\nabla\phi|^{p-2}\nabla\phi\nabla h dx = \int_{\mathbb{R}^N} K(x)|u|^\alpha h dx.$$es
dc.description.abstractConsideremos la ecuación cuasi-lineal de Poisson: \begin{equation} -\Delta_p \phi=K(x)|u|^\alpha, \quad x\in\mathbb{R}^N, \label{ppoi} \end{equation} donde $$ -\Delta_p \phi=\operatorname{div}(|\nabla\phi|^{p-2}\nabla\phi)$$ y $\alpha>0$. Asumimos que $K\in L^p(\mathbb{{R}^N})$ es no negativa, $N\in\mathbb{N}$ y $p\in]1,N[$. Probamos que para cada $u\in E^p,$ existe un único $\phi \in D^{1,p}(\mathbb{{R}^N})$ solución débil de \eqref{ppoi}. Para esto, consideramos sobre $D^{1,p}(\mathbb{{R}^N})$ los funcionales $J$ y $b$, dados por $$J(\phi)=\frac{1}{p} \int_{\mathbb{R}^N}|\nabla \phi|^p d x \quad \text { y } \quad\langle b, h\rangle=\int_{\mathbb{R}^N} K(x)|u|^\alpha h d x.$$ Cuando $p=2$ y $N=3$, el resultado es consecuencia del teorema de Lax-Milgram. Sin embargo, nosotros consideramos el caso general de la ecuación \eqref{ppoi}, $p>1$. Para probar el resultado usamos una versión generalizada del teorema de Lax-Milgram, el teorema de Minty-Browder. Para esto, probamos que $b\in(D^{1,p}(\mathbb{{R}^N}))^{'}$ y que $J$ es de clase $C^1$. Ademas, probamos que $J'$ es estrictamente positivo y coercivo. Finalmente, concluimos la existencia y unicidad de $\phi\in E^P$ tal que $J' \phi =b,$ i.e., $$\forall h\in E^p: \int_{\mathbb{R}^N} |\nabla\phi|^{p-2}\nabla\phi\nabla h dx = \int_{\mathbb{R}^N} K(x)|u|^\alpha h dx.$$es
dc.language.isoenges
dc.publisherUniversidad de Investigación de Tecnología Experimental Yachayes
dc.rightsopenAccesses
dc.subjectTeorema de Minty-Browderes
dc.subjectEecuación p-Poissones
dc.subjectSolución débiles
dc.subjectMinty-Browder theoremes
dc.subjectp-Poisson equationes
dc.subjectWeak solutiones
dc.titleExistence of solutions for some p-Poisson equations by nonlinear versions of the Lax-Milgram theoremes
dc.typebachelorThesises
dc.description.degreeMatemático/aes
dc.pagination.pages70 hojases
Appears in Collections:Matemática

Files in This Item:
File Description SizeFormat 
ECMC0159.pdf566.92 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.