Please use this identifier to cite or link to this item:
http://repositorio.yachaytech.edu.ec/handle/123456789/621
Title: | Multiplicity of solutions for the nonlinear biharmonic Schrödinger equation with critical frequency |
Authors: | Mayorga Zambrano, Juan Ricardo Narváez Pistala, Iván Andrés |
Keywords: | Ecuación no lineal de Schrödinger Operador biarmónico de Laplace Multiplicidad de soluciones Ecuaciones diferenciales parciales Nonlinear Schrödinger equation Biharmonic Laplace operator Multiplicity of solutions Partial differential equations |
Issue Date: | May-2023 |
Publisher: | Universidad de Investigación de Tecnología Experimental Yachay |
Abstract: | Estudiamos la multiplicidad de soluciones del siguiente problema: \begin{equation}\label{eq_} \left\{\begin{array}{rll} -\varepsilon^4 \Delta^2 u(x)+V(x) u(x)-|u(x)|^{p-1} u(x) & =0, & x \in \mathbb{R}^N, \\ u(x) & \longrightarrow 0, & \text { cuando }|x| \longrightarrow +\infty, \end{array}\right. \end{equation} donde $\Delta^2 = \Delta\circ\Delta $, y $1< p+1<2^*$ con $$ 2^*=\left\{\begin{array}{cc} \displaystyle{\frac{2 N}{N-2}}, & \text { if } N\ge 3 ; \\ +\infty, & \text { if } N=1,2 , \end{array}\right. $$ %$$2^*=\displaystyle{\frac{2 N}{N-2}}, \quad \text{if} \quad N\ge 3,$$ bajo los siguientes supuestos:\\ %\item (V1) $V \in C\left(\mathbb{R}^N\right)$ es una funci\'on no negativa,\\ %\item (V2) $V(x) \longrightarrow +\infty$, cuando $|x| \longrightarrow +\infty$,\\ %\item (V3) $\{V=\inf (V)=0\}\neq \emptyset.$\\%$\inf\{Z\}\neq \emptyset.$ %\end{enumerate}%\\ Via un escalamiento adecuado, con $v(x)=u\left(\varepsilon^{\alpha} x\right)$ y $V_{\varepsilon}(x)=V\left(\varepsilon^{ -\alpha} x\right)$, para $\varepsilon>0$ y $\alpha= -1$, tratamos con la siguiente versi\'on equivalente de (2): %(\ref{eq_}): $$ (P_{\varepsilon}')\left\{\begin{aligned} -\Delta^2 u(x)+V_{\varepsilon}(x)u(x)-|u(x)|^{ p-1} u(x) & =0, & x \in \mathbb{R}^N, \\ u(x) &\longrightarrow 0, & \text { cuando }|x| \longrightarrow +\infty . \end{aligned}\right. $$ Consideramos el funcional asociado $ I_{\varepsilon}: \mathcal{M}_{\varepsilon} \subseteq \mathrm{H}^2_{\varepsilon} \longrightarrow \mathbb{R}$, dado por \begin{equation*}\label{eq_2} I_{\varepsilon}(u)=\frac{1}{2} \int_{\mathbb{R}^N}\left[|\Delta u(x)|^2+V_{\varepsilon}(x)|u(x)|^2\right] d x, \end{equation*} definido sobre la variedad $$ \mathcal{M}_{\varepsilon}=\left\{u \in \mathrm{H}^2_{\varepsilon} \big/ \int_{\mathbb{R}^N}|u(x)|^{p+1} d x=1\right\}, $$ donde $$ \mathrm{H}^2_{ \varepsilon}=\left\{u \in \mathrm{H}^2\left(\mathbb{R}^N\right)\big/\|u\|_{\varepsilon}=\left(\int_{\mathbb{R}^N}\left[|\Delta u(x)|^2+V_{\varepsilon}(x)|u(x)|^2\right] d x\right)^{1 / 2}< +\infty\right\} . $$ %nosotros Aplicamos un esquema de Ljusternik-Schnirelman para mostrar que el conjunto de puntos críticos tiene infinitos elementos, esto es realizado a través de escalamiento para obtener soluciones débiles de $(P_{\varepsilon}') |
Description: | In this thesis it's proved the This project deals with the multiplicity of solutions of the problem: %following \begin{equation}\label{eq_} \left\{\begin{array}{rll} -\varepsilon^4 \Delta^2 u(x)+V(x) u(x)-|u(x)|^{p-1} u(x) & =0, & \quad x \in \mathbb{ R}^N, \\ u(x) & \longrightarrow 0, & \text { as }|x| \longrightarrow +\infty, \end{array}\right. \end{equation} where $\Delta^2= \Delta\circ\Delta $, and $1< p+1<2^*$ with %against $$ 2^*=\left\{\begin{array}{cc} \displaystyle{\frac{2 N}{N-2}}, & \text { if } N\ge 3 ; \\ +\infty, & \text { if } N=1,2 , \end{array}\right. $$ under the following assumptions:\\ %\begin{enumerate} %\item (V1) $V \in C\left(\mathbb{R}^N\right)$ is a nonnegative function,\\ %\item (V2) $V(x) \longrightarrow +\infty$, when $|x| \longrightarrow +\infty$,\\ %\item (V3) $\{V=\inf(V)=0 \}\neq \emptyset.$ \\ %\end{enumerate} By a suitable scaling, with $v(x)=u\left(\varepsilon^{\alpha} x\right)$ and $V_{\varepsilon}(x)=V\left(\varepsilon^{ -\alpha} x\right)$, for $\varepsilon>0$ and $\alpha= -1$, we deal with the following equivalent version of (1): $$ (P_{\varepsilon}')\left\{\begin{aligned} -\Delta^2 u(x)+V_{\varepsilon}(x)u(x)-|u(x)|^{ p-1} u(x) &=0, & x \in \mathbb{R }^N, \\ u(x) &\longrightarrow 0, & \text { as }|x| \longrightarrow +\infty. \end{aligned}\right. $$ We consider the associated functional $ I_{\varepsilon}: \mathcal{M}_{\varepsilon} \subseteq \mathrm{H}^2_{\varepsilon} \longrightarrow \mathbb{R}$, given by \begin{equation*}\label{eq_2} I_{\varepsilon}(u)=\frac{1}{2} \int_{\mathbb{R}^N}\left[|\Delta u(x)|^2+V_{\varepsilon}(x) |u(x)|^2\right] d x, \end{equation*} defined on the manifold% variety $$ \mathcal{M}_{\varepsilon}=\left\{u \in \mathrm{H}^2_{\varepsilon} \big/ \int_{\mathbb{R}^N}|u(x)|^{p+1} d x=1\right\}, $$ where $$ \mathrm{H}^2_{ \varepsilon}=\left\{u \in \mathrm{H}^2\left(\mathbb{R}^N\right)\big/\|u\|_{\varepsilon} =\left(\int_{\mathbb{R}^N}\left[|\Delta u(x)|^2+V_{\varepsilon}(x)|u(x)|^2\right] d x\right)^{1 / 2}<+\infty\right\} . $$ We apply a Ljusternik-Schnirelman scheme to show that the set of critical points has infinite elements, this is done through scaling for get weak solutions of $(P_{\varepsilon}') |
URI: | http://repositorio.yachaytech.edu.ec/handle/123456789/621 |
Appears in Collections: | Matemática |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
ECMC0122.pdf | 525.03 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.