Please use this identifier to cite or link to this item: http://repositorio.yachaytech.edu.ec/handle/123456789/622
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMorocho Cayamcela, Manuel Eugenio-
dc.contributor.authorPijal Toapanta, Washington Danilo-
dc.date.accessioned2023-06-05T09:40:52Z-
dc.date.available2023-06-05T09:40:52Z-
dc.date.issued2023-05-
dc.identifier.urihttp://repositorio.yachaytech.edu.ec/handle/123456789/622-
dc.descriptionThis research project focuses on image super-resolution (SR) implementing convolutions, vision transformers with shifted windows, and neighbor interpolations to enhance the resolution of images in an upscale of four. These characteristics form part of three modules of the proposed SR architecture based on vision transformers (SwinIR-OH): shallow feature extraction consisting of convolution layers, deep feature extraction containing residual vision transformers with shifted windows blocks, and SR image reconstruction includes convolutions and neighbor interpolations. Recent years have witnessed remarkable progress in SR using deep learning techniques. However, the SR algorithms using deep learning techniques differ in the following significant aspects: different types of network architectures, loss functions, learning principles, and strategies. For that reason, to do more proper research on the effect of the convolutions in the SR transformer-based architecture, all the state-of-the-art SR models presented in this research were trained in the same computational environment. They were selected considering their available source code, the mean peak signal-to-noise ratio (PSNR), and the mean of structural similarity index measure (SSIM). All the SR models form part of five existing methods: neural graph networks, residual networks, attention-based networks, generative adversarial networks models, and vision transformers. On the other hand, the results during the model's training show that traditional SR image reconstruction quality metrics (IRQM), such as the PSNR and SSIM, correlate inaccurately with the human perception of image quality and make it challenging to study the performance of the SR models. These results open the possibility of considering alternatives such as visual information fidelity and the sparse correlation coefficient as potential IRQMs to measure the performance of SR models. Also, the results indicate that implementing sequences of convolutions into SR image reconstruction architecture based on vision transformers improves the performance during SR image reconstruction, recovering some minimal details such as the eyelashes of a portrait, details that, without the sequences of convolutions, are lost during the deep feature extraction module or SR reconstruction module.es
dc.description.abstractEste proyecto de investigación se centra en la superresolución de imagen (SR) implementando convoluciones, transformadores de visión con ventanas desplazadas e interpolaciones proximales para mejorar la resolución de imágenes en una escala de cuatro.Estas implementaciones forman parte de tres módulos principales de la arquitectura SR propuesta (SwinIR-OH): extracción de características superficiales que consta de una capa de convolución de 3×3, extracción de características profundas que contiene transformadores de visión residual con bloques de ventanas desplazados y reconstrucción de imágenes SR que incluye convoluciones e interpolaciones vecinas. Los últimos años han sido testigos de un progreso notable en SR utilizando técnicas de aprendizaje profundo. Sin embargo, los algoritmos de SR que utilizan técnicas difieren en los siguientes aspectos significativos: diferentes tipos de arquitecturas de red, funciones de pérdida, principios de aprendizaje y estrategias. Por tal motivo, para realizar una investigación más adecuada sobre el efecto de las convoluciones en la arquitectura basada en transformadores SR, todos los modelos SR de última generación presentados en esta investigación se entrenaron en el mismo entorno computacional. Todos los modelos de SR forman parte de cinco métodos existentes: redes de gráficos neuronales, redes residuales, redes basadas en la atención, modelos generativos de redes antagónicas y transformadores de visión. Se considera el código fuente disponible y la media de la proporción máxima de señal a ruido (PSNR) con la media del índice de similitud estructural (SSIM) antes de ser entrenado en el mismo entorno computacional. Por otro lado, los resultados durante el entrenamiento del modelo muestran que las métricas de calidad de reconstrucción de imágenes (IRQM) de SR tradicionales, como PSNR y SSIM, se correlacionan de manera imprecisa con la percepción humana de la calidad de imagen y dificultan el estudio del rendimiento de un modelo de SR. Estos resultados abren la posibilidad de considerar alternativas como la fidelidad de la información visual y el coeficiente de correlación disperso como posibles IRQM para medir el desempeño de los modelos SR. Finalmente, los resultados indican que la implementación de secuencias de convoluciones en la arquitectura de reconstrucción de imágenes SR mejora el rendimiento durante la reconstrucción de imágenes SR, recuperando algunos detalles mínimos, como las pestañas de un retrato, detalles que, sin las secuencias de convoluciones, se pierden en los módulos de extracción profunda o el módulo de reconstrucción SR.es
dc.language.isoenges
dc.publisherUniversidad de Investigación de Tecnología Experimental Yachayes
dc.rightsopenAccesses
dc.subjectVisión artificiales
dc.subjectTransformadores de visiónes
dc.subjectResolución de imagenes
dc.subjectComputer visiones
dc.subjectVision transformerses
dc.subjectNeighbor interpolationes
dc.titleImage super-resolution through convolutions, hierarchical vision transformer with shifted Windows, and neighbor interpolationes
dc.typebachelorThesises
dc.description.degreeIngeniero/a en Tecnologías de la Informaciónes
dc.pagination.pages111 hojases
Appears in Collections:Tecnologías de la Información

Files in This Item:
File Description SizeFormat 
ECMC0123.pdf46.1 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.