Please use this identifier to cite or link to this item: http://repositorio.yachaytech.edu.ec/handle/123456789/783
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorAlmeida Galárraga, Diego Alfonso-
dc.contributor.advisorGudiño Gomezjurado, Marco Esteban-
dc.contributor.authorMena Urresta, Kevin Andrés-
dc.date.accessioned2024-05-31T19:46:09Z-
dc.date.available2024-05-31T19:46:09Z-
dc.date.issued2024-05-
dc.identifier.urihttp://repositorio.yachaytech.edu.ec/handle/123456789/783-
dc.descriptionThe present research work focuses on the study of several neural networks trained for the detection of lung diseases. The networks used were ResNet-18, ResNet-50, ResNet 101, VGG19 and Inception V3 and the data set was obtained from NIHCC being 112120 the total number of images with which different experiments and optimization were performed to obtain better results from the training of the networks.es
dc.description.abstractEl presente trabajo de investigación se centra en el estudio de varias redes neuronales entrenadas para la detección de enfermedades pulmonares. Las redes utilizadas fueron ResNet-18, ResNet-50, ResNet 101, VGG19 e Inception V3 y la base de datos fue obtenida de NIHCC siendo 112120 el número total de imágenes con las que se realizaron distintos experimentos y optimización para obtener mejores resultados de los entrenamientos de las redes.es
dc.language.isoenges
dc.publisherUniversidad de Investigación de Tecnología Experimental Yachayes
dc.rightsopenAccesses
dc.subjectEnfermedades pulmonareses
dc.subjectRedes neuronaleses
dc.subjectClasificación de imágeneses
dc.subjectPulmonary diseaseses
dc.subjectNeural networkses
dc.subjectImage classificationes
dc.titleEarly identification of different pulmonary pathologies using chest X-ray and machine learning algorithmses
dc.typebachelorThesises
dc.description.degreeIngeniero/a Biomédico/aes
dc.pagination.pages91 hojases
Appears in Collections:Biomedicina

Files in This Item:
File Description SizeFormat 
ECBI0206.pdf3.19 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.