Please use this identifier to cite or link to this item: http://repositorio.yachaytech.edu.ec/handle/123456789/927
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMayorga Zambrano, Juan Ricardo-
dc.contributor.authorVera Montiel, Walter Andre-
dc.date.accessioned2025-04-08T18:55:41Z-
dc.date.available2025-04-08T18:55:41Z-
dc.date.issued2025-03-
dc.identifier.urihttp://repositorio.yachaytech.edu.ec/handle/123456789/927-
dc.descriptionIn this work, we consider the following fractional p-Laplacian problem \[ (-\Delta)^s_p u=\lambda f(x,u)+\mu g(x,u) \text{ in }\Omega,\] \[ u=0 \text{ in }\Real\setminus\Omega,\] where $\lambda,\mu$ are real parameters, $p\geq 2$, $s\in(0,1)$, $N>ps$, $\Omega\subseteq\Real$ is open and bounded with Lipschitz boundary, and $f,g:\Real\to\real$ are two suitable Carathéodory functions. By applying an abstract critical point theorem due to Ricceri and the variational setting developed by Xiang et al., we prove the existence of three weak solutions, under certain assumptions.es
dc.description.abstractEn este trabajo, consideramos una generalización del siguiente problema \[ (-\Delta)^s_p u=\lambda f(x,u)+\mu g(x,u) \text{ en }\Omega,\] \[ u=0 \text{ en }\Real\setminus\Omega,\] donde $(-\Delta)^s_p$ es el operador p-Laplaciano fraccionario, $\lambda$ y $\mu$ son pa-rametros reales, $p\geq 2$, $s\in(0,1)$, $N>ps$, $\Omega\subseteq\Real$ es abierto y acotado con frontera Lipschitz, y $f,g:\Real\to\real$ son dos funciones de Carathéodory adecuadas. Usando un teorema general de puntos críticos de Ricceri y el marco variacional desarrollado por Xiang et al., probamos la existencia de al menos tres soluciones débiles, bajo ciertas condiciones.es
dc.language.isoenges
dc.publisherUniversidad de Investigación de Tecnología Experimental Yachayes
dc.rightsopenAccesses
dc.subjectOperador integro-diferenciales
dc.subjectMétodos variacionaleses
dc.subjectPuntos críticoses
dc.subjectIntegro-differential operatores
dc.subjectVariational methodses
dc.subjectCritical pointses
dc.titleExistence of a solution for a non-local elliptic equation involving a fractional Laplacian operatores
dc.typebachelorThesises
dc.description.degreeMatemático/aes
dc.pagination.pages63 hojases
Appears in Collections:Matemática

Files in This Item:
File Description SizeFormat 
ECMC0171.pdf504.44 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.