Please use this identifier to cite or link to this item:
http://repositorio.yachaytech.edu.ec/handle/123456789/927
Title: | Existence of a solution for a non-local elliptic equation involving a fractional Laplacian operator |
Authors: | Mayorga Zambrano, Juan Ricardo Vera Montiel, Walter Andre |
Keywords: | Operador integro-diferencial Métodos variacionales Puntos críticos Integro-differential operator Variational methods Critical points |
Issue Date: | Mar-2025 |
Publisher: | Universidad de Investigación de Tecnología Experimental Yachay |
Abstract: | En este trabajo, consideramos una generalización del siguiente problema \[ (-\Delta)^s_p u=\lambda f(x,u)+\mu g(x,u) \text{ en }\Omega,\] \[ u=0 \text{ en }\Real\setminus\Omega,\] donde $(-\Delta)^s_p$ es el operador p-Laplaciano fraccionario, $\lambda$ y $\mu$ son pa-rametros reales, $p\geq 2$, $s\in(0,1)$, $N>ps$, $\Omega\subseteq\Real$ es abierto y acotado con frontera Lipschitz, y $f,g:\Real\to\real$ son dos funciones de Carathéodory adecuadas. Usando un teorema general de puntos críticos de Ricceri y el marco variacional desarrollado por Xiang et al., probamos la existencia de al menos tres soluciones débiles, bajo ciertas condiciones. |
Description: | In this work, we consider the following fractional p-Laplacian problem \[ (-\Delta)^s_p u=\lambda f(x,u)+\mu g(x,u) \text{ in }\Omega,\] \[ u=0 \text{ in }\Real\setminus\Omega,\] where $\lambda,\mu$ are real parameters, $p\geq 2$, $s\in(0,1)$, $N>ps$, $\Omega\subseteq\Real$ is open and bounded with Lipschitz boundary, and $f,g:\Real\to\real$ are two suitable Carathéodory functions. By applying an abstract critical point theorem due to Ricceri and the variational setting developed by Xiang et al., we prove the existence of three weak solutions, under certain assumptions. |
URI: | http://repositorio.yachaytech.edu.ec/handle/123456789/927 |
Appears in Collections: | Matemática |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
ECMC0171.pdf | 504.44 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.