Please use this identifier to cite or link to this item: http://repositorio.yachaytech.edu.ec/handle/123456789/927
Title: Existence of a solution for a non-local elliptic equation involving a fractional Laplacian operator
Authors: Mayorga Zambrano, Juan Ricardo
Vera Montiel, Walter Andre
Keywords: Operador integro-diferencial
Métodos variacionales
Puntos críticos
Integro-differential operator
Variational methods
Critical points
Issue Date: Mar-2025
Publisher: Universidad de Investigación de Tecnología Experimental Yachay
Abstract: En este trabajo, consideramos una generalización del siguiente problema \[ (-\Delta)^s_p u=\lambda f(x,u)+\mu g(x,u) \text{ en }\Omega,\] \[ u=0 \text{ en }\Real\setminus\Omega,\] donde $(-\Delta)^s_p$ es el operador p-Laplaciano fraccionario, $\lambda$ y $\mu$ son pa-rametros reales, $p\geq 2$, $s\in(0,1)$, $N>ps$, $\Omega\subseteq\Real$ es abierto y acotado con frontera Lipschitz, y $f,g:\Real\to\real$ son dos funciones de Carathéodory adecuadas. Usando un teorema general de puntos críticos de Ricceri y el marco variacional desarrollado por Xiang et al., probamos la existencia de al menos tres soluciones débiles, bajo ciertas condiciones.
Description: In this work, we consider the following fractional p-Laplacian problem \[ (-\Delta)^s_p u=\lambda f(x,u)+\mu g(x,u) \text{ in }\Omega,\] \[ u=0 \text{ in }\Real\setminus\Omega,\] where $\lambda,\mu$ are real parameters, $p\geq 2$, $s\in(0,1)$, $N>ps$, $\Omega\subseteq\Real$ is open and bounded with Lipschitz boundary, and $f,g:\Real\to\real$ are two suitable Carathéodory functions. By applying an abstract critical point theorem due to Ricceri and the variational setting developed by Xiang et al., we prove the existence of three weak solutions, under certain assumptions.
URI: http://repositorio.yachaytech.edu.ec/handle/123456789/927
Appears in Collections:Matemática

Files in This Item:
File Description SizeFormat 
ECMC0171.pdf504.44 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.