Please use this identifier to cite or link to this item:
http://repositorio.yachaytech.edu.ec/handle/123456789/940
Title: | Molecular docking for the study of the mechanism of action of miltefosine in the treatment of American Trypanosomiasis: a strategy for the rational design of drugs targeting parasite phospholipids and enzymes |
Authors: | Lira Vergara, Rene Constanza Rivera Batallas, Miguel Sebastian |
Keywords: | Trypanosoma cruzi Molecular docking |
Issue Date: | Apr-2025 |
Publisher: | Universidad de Investigación de Tecnología Experimental Yachay |
Abstract: | En este estudio se evaluó la interacción molecular entre la miltefosina y el ketoconazol con la enzima fosfatidiletanolamina metiltransferasa (PEMT) del para´sito Trypanosoma cruzi mediante acoplamiento molecular semiflexible. La enzima PEMT fue seleccionada por su papel esencial en la biosíntesis de ergosterol, componente fundamental de la membrana del parásito. Tanto la miltefosina como el ketoconazol interfieren en las rutas de s´ıntesis de fosfol´ıpidos y ergosterol, respectivamente, afectando así la viabilidad del parásito. Dado que la estructura tridimensional de PEMT se obtuvo de AlphaFold, se realizó un análisis de Ramachandran para validar su confiabilidad estructural. Posteriormente, se efectuó el acoplamiento molecular semiflexible entre PEMT y los dos ligandos. La miltefosina mostró una energía de unión de -7.9 kcal/mol y una constante de inhibición de 1.62 uM, mientras que el ketoconazol presentó una energía de unión de -9.6 kcal/mol y una constante de inhibición de 0.092 uM. Estos resultados evidencian interacciones favorables con la enzima. Se observaron enlaces de hidrógeno e interacciones de Van der Waals que estabilizan los complejos formados. Además, mediante el software DoGSiteScorer, se identificó un bolsillo con alto potencial farmacológico (score 0.92), que coincidió con el sitio de unión de ambos ligandos. Esta coincidencia refuerza la hipótesis de que la inhibición simultánea de PEMT por miltefosina y ketoconazol podría tener un efecto sinérgico, actuando sobre rutas biosintéticas críticas para la supervivencia de T. cruzi. |
Description: | In this study, the molecular interaction between miltefosine and ketoconazole with the enzyme phosphatidylethanolamine methyltransferase (PEMT) of Trypanosoma cruzi was evaluated through semiflexible molecular docking. PEMT was selected due to its role in the biosynthesis of ergosterol, a crucial component of the parasite’s membrane. Miltefosine and ketoconazole are known to interfere with phospholipid and ergosterol biosynthesis pathways, respectively, thus compromising parasite viability. Given that, the 3D structure of PEMT was obtained from AlphaFold, a Ramachandran plot analysis was performed to validate the structural reliability of the model. Subsequently, semiflexible docking was carried out between PEMT and the two ligands. Miltefosine exhibited a binding energy of -7.9 kcal/mol and an inhibition constant of 1.62 uM, while ketoconazole showed a binding energy of -9.6 kcal/mol and an inhibition constant of 0.092 uM. These results demonstrate favorable interactions between both compounds and PEMT. The formation of hydrogen bonds and Van der Waals interactions was observed, contributing to complex stabilization. Furthermore, a high-potential binding pocket in PEMT was identified using DoGSiteScorer, with a druggability score of 0.92. This pocket coincided with the binding site of both ligands, suggesting a shared pharmacophoric site. The overlap reinforces the hypothesis that dual inhibition of PEMT by miltefosine and ketoconazole may enhance antiparasitic efficacy through a synergistic mechanism targeting critical biosynthetic routes in T. cruzi. |
URI: | http://repositorio.yachaytech.edu.ec/handle/123456789/940 |
Appears in Collections: | Biomedicina |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Resumen en inglés y español más palabras claves.docx | 22.17 kB | Microsoft Word XML | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.